APPENDIX
 an ANaLYSIS
 OF
 VECTOR MEASUREMENT ACCURACY ENHANCEMENT TECHNIQUES
 DOUG RYTTING
 NETWORK MEASUREMENTS DIVISION 1400 FOUNTAIN GROVE PARKWAY SANTA ROSA, CALIFORNIA 95401

RF \& Microwave Measurement Symposium and Exhibition

Figure ?
One-Port Measurement System Block-Diagram

The equations for the error adapter from Fig. 1 are
(1) $b_{0}=e_{00} a_{0}+e_{01} a_{1}$
(2) $b_{1}=e_{10} a_{0}+e_{11} a_{1}$

The equation for the unknown one-port is
(3) $a_{1}=\Gamma_{A}{ }^{b}{ }_{1}$

Substitutions (3) into (1) and (2) yields
(4) $b_{0}=e_{00} a_{0}+e_{01} \Gamma_{A} b_{1}$
(5) $b_{1}=e_{10} a_{0}+e_{11} \Gamma_{A} b_{1}$

Solving for b_{p} from (5)
(6) $b_{1}=\frac{e_{10}}{1-e_{11} \Gamma_{A}} a_{0}$

Substituting (6) into (4)
(7) $b_{0}=\left(e_{00}+\frac{e_{10} e_{01}{ }^{\Gamma_{A}}}{1-e_{11} 1^{I}}\right) a_{0}$

Define $r_{m} \triangleq \frac{b_{0}}{\mathrm{a}_{0}}$
(8)

$$
\Gamma_{m}=e_{00}+\frac{e_{10} e_{01} \Gamma_{A}}{1-e_{11} \Gamma_{A}}
$$

Appendix II: Circle Fitting Procedure
A modified least square error criterion is
(1) $\sum_{i=1}^{N}\left[\left(x_{i}-A\right)^{2}+\left(y_{i}-B\right)^{2}-R^{2}\right]^{2}=\min$

Where $\left(x_{i}, y_{i}\right)$ represent the $x-y$ coordinates of the $i^{\text {th }}$ measured data point, N the number of data points, (A, B) the coordinates of the center, and R the radius of the circle. See Fig. 1 .

Figure 1.
Circle Fitting Procedure

Expanding (1)
(2) $f=\sum_{i=1}^{N}\left(x_{i}^{2}-2 A x_{i}+A^{2}+y_{i}^{2}-2 B y_{i}+B^{2}-R^{2}\right)^{2}=\min$

Now set the derivatives equal to zero
(3) $\frac{\partial f}{\partial A}=\frac{\partial f}{\partial B}=\frac{\partial f}{\partial R}=0$

And letting $\sum_{i=1}^{N} \triangleq \Sigma$
(4) $\frac{\partial f}{\partial R}=-4 R \Sigma\left(x_{i}^{2}-2 A x_{i}+A^{2}+y_{i}^{2}-2 B y_{i}+B^{2}-R^{2}\right)=0$
(5) $\frac{\partial f}{\partial A}=-4 \Sigma\left(x_{i}^{2}-2 A x_{i}+A^{2}+y_{i}^{2}-2 B y_{i}+B^{2}-R^{2}\right)\left(x_{i}-A\right)=0$
(6) $\frac{\partial f}{\partial B}=-4 \Sigma\left(x_{i}{ }^{2}-2 A x_{i}+A^{2}+y_{i}^{2}-2 B y_{i}+B^{2}-R^{2}\right)\left(y_{i}-B\right)=0$

Note that (5) is of the form $\Sigma z_{i} x_{i}-\Sigma z_{i} A=0$, where $z_{i} \triangleq\left(x_{i}{ }^{2}-2 A x_{i}+\right.$ $\left.A^{2}+y_{i}{ }^{2}-2 B y_{i}+B^{2}-R^{2}\right)$. The sum $\Sigma z_{i} x_{i} \neq \Sigma z_{i} A$, therefore $\sum z_{i} x_{i}=0$, and $\Sigma z_{i} A=0$. So (4), (5) and (6) can be written
(7) $\sum z_{i}=0$
(8) $\sum z_{i} x_{i}=0$
(9) $\sum z_{i} y_{j}=0$

Expanding gives
$(10)\left(2 \Sigma x_{j}\right) A+\left(2 \Sigma y_{j}\right) B+(N) C=\Sigma\left(x_{i}{ }^{2}+y_{i}{ }^{2}\right)$
(11) $\left(2 \Sigma x_{i}{ }^{2}\right) A+\left(2 \Sigma x_{i} y_{i}\right) B+\left(\Sigma x_{j}\right) C=\Sigma\left(x_{j}{ }^{3}+x_{i} y_{i}{ }^{2}\right)$
(12) $\left(2 \Sigma x_{i} y_{i}\right) A+\left(2 \Sigma y_{i}^{2}\right) B+\left(\Sigma y_{j}\right) C=\Sigma\left(x_{i}{ }^{2} y_{i}+y_{i}{ }^{3}\right)$

Where
(13) $C \triangleq\left(R^{2}-A^{2}-B^{2}\right)$

The above system of equations can be solved for A, B and C at this point, but to help in the computations let us shift the data to
(14) $x_{i}{ }^{\prime}=x_{i}-\frac{\sum x_{j}}{N}$
(15) $y_{i}{ }^{\prime}=y_{i}-\frac{\Sigma y_{i}}{N}$

Note that $\Sigma x_{j}^{\prime}=\Sigma x_{i}-\Sigma \frac{\Sigma x_{i}}{N^{+}}=\Sigma x_{j}-N \frac{\Sigma x_{i}}{N^{i}}=0$, and that $\Sigma y_{j}{ }^{\prime}=0$ also applies. However $\Sigma\left(y_{i}^{\prime}\right)^{2}, \Sigma\left(x_{i}^{\prime}\right)^{2}, \Sigma x_{j}{ }^{\prime} y_{j}^{\prime}$, etc $\neq 0$. With our new shifted data (10) through (12) can be written.
(16) $N C^{\prime}=\Sigma\left[\left(x_{i}{ }^{\prime}\right)^{2}+\left(y_{i}\right)^{2}\right]$
(17) $\quad\left[2 \Sigma\left(x_{i}{ }^{\prime}\right)^{2}\right] A^{\prime}+\left[2 \Sigma x_{i}{ }^{\prime} y_{i}{ }^{\prime}\right] B^{\prime}=\Sigma\left[\left(x_{i}{ }^{\prime}\right)^{3}+x_{i}{ }^{\prime}\left(y_{i}{ }^{\prime}\right)^{2}\right]$
(18) $\left[2 \Sigma x_{i}{ }^{\prime} y_{i}{ }^{\prime}\right] A^{\prime}+\left[2 \Sigma\left(y_{i}\right)^{2}\right] B^{\prime}=\Sigma\left[\left(x_{i}\right)^{2} y_{i}+\left(y_{i}{ }^{\prime}\right)^{3}\right]$

We can solve (17) and (18) for A^{\prime} and B^{\prime} then shift the answer to A and B by the following

$$
\begin{equation*}
A=A^{\prime}+\frac{\sum x_{j}}{N} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
B=B^{\prime}+\frac{\Sigma y}{N} i \tag{20}
\end{equation*}
$$

From (16) we can solve for (' directly
(21) $\quad C^{\prime}=\frac{1}{N} \Sigma\left[\left(x_{j}{ }^{\prime}\right)^{2}+\left(y_{i}\right)^{2}\right]$

And C' also equals
(22) $C^{\prime}=\left[R^{2}-\left(A^{\prime}\right)^{2}-\left(B^{\prime}\right)^{2}\right]$

Solving for R

$$
\begin{equation*}
R=\left[C^{\prime}+\left(A^{\prime}\right)^{2}+\left(B^{\prime}\right)^{2}\right]^{1 / 2} \tag{23}
\end{equation*}
$$

Solving (17) and (18) for A^{\prime} and B^{\prime}

$$
\begin{equation*}
A^{\prime}=\frac{\Sigma\left(y_{i}{ }^{\prime}\right)^{2} \Sigma\left[\left(x_{i}{ }^{\prime}\right)^{3}+x_{i}{ }^{\prime}\left(y_{i}{ }^{\prime}\right)^{2}\right]-\Sigma x_{i}{ }^{\prime} y_{i}{ }^{\prime} \Sigma\left[\left(x_{i}^{\prime}\right)^{2} y_{i}+\left(y_{i}{ }^{\prime}\right)^{3}\right]}{2\left[\Sigma\left(x_{i}^{\prime}\right)^{2} \Sigma\left(y_{i}{ }^{\prime}\right)^{2}-\Sigma x_{j}{ }^{\prime} y_{i}{ }^{\prime} \Sigma x_{i}{ }^{\prime} y_{i}^{\prime}\right]} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
B^{\prime}=\frac{\left.\Sigma\left(x_{i}\right)^{\prime}\right)^{2} \Sigma\left[\left(x_{i}{ }^{\prime}\right)^{2} y_{i}^{\prime}+\left(y_{i}\right)^{3}\right]-\Sigma x_{i}^{\prime} y_{i}^{\prime} \Sigma\left[\left(x_{i}^{\prime}\right)^{3}+x_{i}{ }^{\prime}\left(y_{i}{ }^{\prime}\right)^{2}\right]}{2\left[\Sigma\left(x_{i}{ }^{\prime}\right)^{2} \Sigma\left(y_{i}{ }^{\prime}\right)^{2}-\Sigma x_{i}{ }^{\prime} y_{j}{ }^{\prime} \Sigma x_{j}^{\prime} y_{i}^{\prime}\right]} \tag{25}
\end{equation*}
$$

Figure 1
Shunt Capacitance of Shielded Open

The normalized reactance of the shunt capacitor (shielded open) of Fig. 1 is
(1) $\frac{Z_{c}}{Z_{0}}=\frac{1}{j 2 \pi f C Z_{0}} \triangleq \frac{1}{j b}, b=2 \pi f C Z_{0}$

The reflection coefficient of a shunt capacitor is
(2) $\Gamma_{c}=\frac{z_{n-1}}{z_{n+1}}, z_{n} \triangleq \frac{z_{c}}{z_{0}}$
(3) $\Gamma_{c}=\frac{\frac{1}{j b}-1}{\frac{1}{j b}+1}=\frac{1-j b}{1+j b}$

Changing the numberator and denominator of (3) to polar form gives
(4) $\Gamma_{c}=\frac{\sqrt{1+b^{2}} e^{-j \tan ^{-1} b}}{\sqrt{1+b^{2}} e^{j \tan ^{-1} b}}$
(5) $\Gamma_{C}=|T| e^{-j 2 \tan ^{-1} b}$

If we define $\Gamma_{c}=e^{-j \beta}$ then
(6) $B=2 \tan ^{-1} b$

Substituting in the value of b from (1)
(7)

$$
B=2 \tan ^{-1}\left(2 \pi f C Z_{0}\right)
$$

Appendix IV: Calibration Using Two Sliding Terminations and a Short The measured reflection coefficient (Γ_{m}) in terms of the actual reflection coefficient $\left(r_{A}\right)$ is
(1) $\Gamma_{m}=\frac{a \Gamma_{A}+b}{c \Gamma_{A}+1}$

If $\left|\Gamma_{A}\right|$ is fixed and the angle of Γ_{A} is variable then we transform a circle centered at the origin in the Γ_{A} plane to that shown in

Fig. 1 in the Γ_{m} plane

Figure 1
Locus of STiding Termination

The equation of the circle in the Γ_{m} plane is
(2) $\left(\Gamma_{m}-\Gamma_{0}\right)\left(\Gamma_{m}-\Gamma_{0}\right)^{\star}=R^{2}$

Substituting (1) into (2) and expanding yields
(3) $\left|\Gamma_{A}\right|^{2}\left[|a|^{2}-2 \operatorname{Re}\left(a \Gamma_{0}{ }^{\star} C^{\star}\right)+\left|\Gamma_{0}\right|^{2}|c|^{2}-R^{2}|c|^{2}\right]+$

$$
\begin{aligned}
& \Gamma_{A}\left[a b^{\star}-\Gamma_{0}{ }^{\star} a-\Gamma_{0} c^{\star}+\left|\Gamma_{0}\right|^{2} c-R^{2} c\right]+ \\
& \Gamma_{A}{ }^{\star}\left[a^{\star} b-\Gamma_{0} a^{\star}-\Gamma_{0} c^{\star} b+\left|\Gamma_{0}\right|^{2} c^{\star}-R^{2} c^{\star}\right] \\
& =R^{2}-|b|^{2}-\left|\Gamma_{0}\right|^{2}+2 \operatorname{Reb} \Gamma_{0}^{\star}
\end{aligned}
$$

Since $\left|\Gamma_{A}\right|$ is a constant and the right hand side of (3) is a constant, that forces the coefficients of Γ_{A} and $\Gamma_{A}{ }^{\star}$ to equal zero. Therefore
(4) $a b^{*}-a \Gamma_{0}^{*}-\Gamma_{0} c b^{*}+\left|\Gamma_{0}\right|^{2} c-R^{2} c=0$

For two different sliding terminations we get
(5) $a b^{*}-a \Gamma_{02}{ }^{*}-\Gamma_{02} c b^{\star}+\left|\Gamma_{02}\right|^{2} c-R_{2}^{2} c=0$
and
(6) $a b^{\star}-a \Gamma_{03}{ }^{*}-\Gamma_{03} c b^{*}+\left|\Gamma_{03}\right|^{2} c-R_{3}^{2} c=0$
subtracting (6) from (5)
(7) $a=c \frac{\left(\Gamma_{02}-\Gamma_{03}\right) b^{\star}+\left|\Gamma_{03}\right|^{2}-\left|\Gamma_{02}\right|^{2}+R_{2}^{2}-R_{3}^{2}}{\Gamma_{03^{\star}}-\Gamma_{02}^{\star}}$
or
(8) $a=c\left(K_{1} b^{*}+K_{2}\right)$
where
(9) $\mathrm{K}_{1} \triangleq \frac{\Gamma_{02}-\Gamma_{03}}{\Gamma_{03}{ }^{\star}-\Gamma_{02}{ }^{\star}}$
and
(10) $k_{2} \triangleq \frac{\left|\Gamma_{03}\right|^{2}-\left|\Gamma_{02}\right|^{2}+R_{2}^{2}-R_{3}^{2}}{\Gamma_{03}{ }^{\star}-\Gamma_{02}{ }^{\star}}$
substituting (8) into (5) eliminates a and c

$$
\begin{equation*}
K_{1}\left(b^{*}\right)^{2}+\left(K_{2}-\Gamma_{02} * K_{1}-\Gamma_{02}\right) b^{*}+\left(\left|\Gamma_{02}\right|^{2}-R_{2}^{2}-\Gamma_{02} * K_{2}\right)=0 \tag{11}
\end{equation*}
$$

Solve the above and order equation for b Since $b=e_{00}$ (the equivalent directivity) which is small, the root choice is easily determined.

Substitute the solution for b into (8)

$$
\begin{equation*}
a=c\left(K_{1} b^{\star}+K_{2}\right) \tag{8}
\end{equation*}
$$

Now measure a short placed on the test port to obtain
(12) $\Gamma_{m 1}=\frac{a \Gamma_{A 1}+b}{c \Gamma_{A 1}+1}=\frac{-a+b}{-c+1}$, when $\Gamma_{A 1}=-1$

Solving for c from (8) and (12) eliminates a

$$
\begin{equation*}
c=\frac{\Gamma_{m l^{-}} b}{\Gamma_{m 1^{1}}-K_{1} b^{*}-K_{2}} \tag{13}
\end{equation*}
$$

and finally (3) can be used to solve for a.

Figure 1

Two-Port Measurement System Block-Diagram

The equations for the above system in matrix terminology
(1)

$$
\left[\begin{array}{l}
b_{0} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
s_{m}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{3}
\end{array}\right],\left[\begin{array}{l}
s_{m}
\end{array}\right]=\left[\begin{array}{ll}
s_{11 m} & s_{12 m} \\
s_{21 m} & s_{22 m}
\end{array}\right]
$$

(2) $\left[\begin{array}{l}b_{0} \\ b_{3} \\ b_{1} \\ b_{2}\end{array}\right]=[E]\left[\begin{array}{l}a_{0} \\ a_{3} \\ a_{1} \\ a_{2}\end{array}\right],[E] \triangleq\left[\begin{array}{l:l}E_{1} & E_{2} \\ \hdashline E_{3} & E_{4}\end{array}\right]=\left[\begin{array}{ll:l}e_{00} & e_{03} & e_{01} \\ e_{30} & e_{02} \\ e_{30} & e_{33} & e_{31} \\ \hdashline e_{32} \\ e_{10} & e_{13} & e_{11} \\ e_{20} & e_{12} \\ e_{23} & e_{21} & e_{22}\end{array}\right]$
(3) $\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]=\left[S_{A}\right]\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right],\left[\begin{array}{l}\left.\left.S_{A}\right]=\left[\begin{array}{ll}S_{11 A} & S_{12 A} \\ S_{21 A} & S_{22 A}\end{array}\right], ~\right] ~\end{array}\right.$

We will first solve for $\left[S_{m}\right]$ in terms of $[E]$ and $\left[S_{A}\right]$. If we write (2) using the partitioned matrix notation
(4) $\left[\begin{array}{l}b_{0} \\ b_{3}\end{array}\right]=\left[\begin{array}{l}E_{1}\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{3}\end{array}\right]+\left[E_{2}\right]\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$
(5) $\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]=\left[\begin{array}{l}E_{3}\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{3}\end{array}\right]+\left[E_{4}\right]\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$

Substituting (3) into (4) and (5) yields
(6) $\left[\begin{array}{l}b_{0} \\ b_{3}\end{array}\right]=\left[E_{7}\right]\left[\begin{array}{l}a_{0} \\ a_{3}\end{array}\right]+\left[E_{2}\right]\left[\begin{array}{l}S_{A}\end{array}\right]\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$

Solving (7) for $\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$
(8) $\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]=\left([I]-\left[E_{4}\right]\left[\begin{array}{l}S_{A}\end{array}\right)^{-1}\left[E_{3}\right]\left[\begin{array}{l}a_{0} \\ a_{3}\end{array}\right],[I] \triangleq\left[\begin{array}{l}10 \\ 01\end{array}\right]\right.$

Substituting (8) into (6) gives

$$
\left[\begin{array}{l}
b_{0} \tag{9}\\
b_{3}
\end{array}\right]=\left(\left[E_{1}\right]+\left[E_{2}\right]\left[S_{A}\right]\left([I]-\left[E_{4}\right]\left[\begin{array}{l}
S_{A}
\end{array}\right)^{-1}\left[E_{3}\right]\right)\left[\begin{array}{l}
a_{0} \\
a_{3}
\end{array}\right]\right.
$$

Comparing (9) with (1) we see that

$$
\begin{equation*}
\left[S_{m}\right]=\left[E_{1}\right]+\left[E_{2}\right]\left[S_{A}\right]\left([I]-\left[E_{4}\right]\left[S_{A}\right]\right)^{-1}\left[E_{3}\right] \tag{10}
\end{equation*}
$$

Equation (10) can be solved for $\left[S_{A}\right]$

$$
\begin{equation*}
\left[S_{A}\right]=\left(\left[E_{3}\right]\left(\left[S_{m}\right]-\left[E_{1}\right]\right)^{-1}\left[E_{2}\right]+\left[E_{4}\right]\right)^{-1} \tag{11}
\end{equation*}
$$

Using S-parameters it is difficult to solve for [E], however, if we use cascading parameters or T-parameters, we get some nice results.

Using the T-parameters, we will solve for $\left[S_{m}\right]$

$$
\left[\begin{array}{l}
b_{0} \tag{12}\\
b_{3} \\
a_{0} \\
a_{3}
\end{array}\right]=[T]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
b_{1} \\
b_{2}
\end{array}\right],[T] \triangleq\left[\begin{array}{c:c}
T_{1} & T_{2} \\
\hdashline T_{3} & T_{4}
\end{array}\right]
$$

Following the same development as we did with [E]

$$
\left[\begin{array}{l}
b_{0} \tag{13}\\
b_{3}
\end{array}\right]=\left[T_{1}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]+\left[T_{2}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
a_{0} \tag{14}\\
a_{3}
\end{array}\right]=\left[T_{3}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]+\left[T_{4}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

Substituting (3) into (13) and (14) yields
(15) $\left[\begin{array}{l}b_{0} \\ b_{3}\end{array}\right]=\left(\left[T_{1}\right]\left[S_{A}\right]+\left[T_{2}\right]\right)\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$
(16)

$$
\left[\begin{array}{l}
a_{0} \\
a_{3}
\end{array}\right]=\left(\left[T_{3}\right]\left[S_{A}\right]+\left[T_{4}\right]\right)\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

Solving (16) for $\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$
(17) $\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]=\left(\left[T_{3}\right]\left[S_{A}\right]+\left[T_{4}\right\rfloor\right)^{-1}\left[\begin{array}{l}a_{0} \\ a_{3}\end{array}\right]$

Substituting (17) into (15) yields for [$\left[S_{m}\right]$

$$
\begin{equation*}
\left[S_{m}\right]=\left(\left[T_{1}\right]\left[S_{A}\right]+\left[T_{2}\right]\right)\left(\left[T_{3}\right]\left[S_{A}\right]+\left[T_{4}\right]\right)^{-1} \tag{18}
\end{equation*}
$$

To solve for [T] we can write (18) as

$$
\begin{equation*}
\left[T_{1}\right]\left[S_{A}\right]+\left[T_{2}\right]-\left[S_{m}\right]\left[T_{3}\right]\left[S_{A}\right]-\left[S_{m}\right]\left[T_{4}\right]=[0] \tag{19}
\end{equation*}
$$

If we expand (19) we will get four linear equations in 9 unknown
T-parameters each. There is a total of 16 unknown T-parameters when we consider the four linear equations together. By using appropriate 2-port and one-port standards $\left[S_{A}\right]$, we generate enough independent linear equations to solve for [T].

We can solve (19) easily to obtain [S_{A}]

$$
\begin{equation*}
\left[S_{A}\right]=\left(\left[T_{1}\right]-\left[S_{m}\right]\left[T_{3}\right]\right)^{-1}\left(\left[S_{m}\right]\left[T_{4}\right]-\left[T_{2}\right]\right) \tag{20}
\end{equation*}
$$

There is a relationship between [T] and [E]

$$
\begin{align*}
& {\left[T_{1}\right]=\left[E_{2}\right]-\left[E_{1}\right]\left[E_{3}\right]^{-1}\left[E_{4}\right]} \\
& {\left[T_{2}\right]=\left[E_{1}\right]\left[E_{3}\right]^{-1}} \\
& {\left[T_{3}\right]=-\left[E_{3}^{-1}\right]\left[E_{4}\right]} \tag{21}\\
& {\left[T_{4}\right]=\left[E_{3}\right]^{-1}}
\end{align*}
$$

If we have four measurement ports with four mixers or samplers connected at all times, then we can remove the switch error by the procedure in Appendix IX.

We will first solve for $\left[S_{m}\right]$ following the development procedure used in Apprendix V. The block diagram for the system is shown in Fig. 1.

Figure 1
Two-port Measurement System Block Diagram

The equations for the system in the forward configuration are
(1) $\left[\begin{array}{l}b_{0} \\ b_{3}\end{array}\right]=\left[S_{m}\right]\left[\begin{array}{l}a_{0} \\ a_{3}\end{array}\right],\left[S_{m}\right]=\left[\begin{array}{ll}S_{11 m} & S_{12 m} \\ S_{21 m} & S_{22 m}\end{array}\right]$
(2) $\left[\begin{array}{l}b_{0} \\ b_{3} \\ b_{1} \\ b_{2}\end{array}\right]=[E]\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right],[E]=\left[\begin{array}{l:l}E_{1} & E_{2} \\ \hdashline E_{3} & E_{4}\end{array}\right]=\left[\begin{array}{l:l}e_{00} & e_{01} \\ e_{0} & e_{02} \\ e_{30} & e_{31} \\ \hdashline e_{32} \\ \hdashline e_{10} & e_{11} \\ e_{20} & e_{12} \\ e_{21} & e_{22}\end{array}\right]$

Note that $\left[E_{1}\right]$ and $\left[E_{3}\right]$ are not square in this case
(3) $\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]=\left[S_{A}\right]\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right],\left[S_{A}\right]=\left[\begin{array}{ll}S_{11 A} & S_{12 A} \\ S_{21 A} & S_{22 A}\end{array}\right]$

Again following the procedure of Appendix V we get for $S_{17 m}$ and $S_{21 m}$
(4) $\left[\begin{array}{l}S_{11 m} \\ S_{21 m}\end{array}\right]=\left[E_{1}\right]+\left[E_{2}\right]\left[S_{A}\right]\left([I]-\left[E_{4}\right]\left[S_{A}\right]\right)^{-1}\left[E_{3}\right] \triangleq\left[S_{F}\right]$

We now repeat the above procedure in the reverse configuration to solve for $S_{22 m}$ and $S_{12 m}$.

In order to solve for $\left[S_{A}\right.$] we need to combine the forward and reverse configuration as follows.

Forward configuration
(5)

$$
\begin{aligned}
& \text { (5) }\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[S_{A}\right]\left[\begin{array}{l}
b_{7} \\
b_{2}
\end{array}\right],[a]=\left[S_{A}\right][b] \\
& \text { (6) }\left[\begin{array}{l}
a_{1} \\
a_{2}^{\prime}
\end{array}\right]=\left[S_{A}\right]\left[\begin{array}{l}
b_{1}^{\prime} \\
b_{2}^{\prime}
\end{array}\right],\left[a^{\prime}\right]=\left[S_{A}\right]\left[b^{\prime}\right]
\end{aligned}
$$

Combining (5) and (6) yields
(7) $\left[\begin{array}{ll}a & a^{\prime}\end{array}\right]=\left[S_{A}\right]\left[\begin{array}{ll}b & b^{\prime}\end{array}\right]$

This can now be solved for $\left[S_{A}\right]$

$$
\left[S_{A}\right]=\left[\begin{array}{ll}
a & a^{\prime}
\end{array}\right]\left[\begin{array}{ll}
b & b^{\prime} \tag{8}
\end{array}\right]^{-1}
$$

We now need a solution for [a] and [b] in the forward configuration and then repeat the procedure for $\left[a^{\prime}\right]$ and $\left[b^{\prime}\right]$ in the reverse configuration. .

Let us start with the equations for the error adapter

$$
\begin{aligned}
& b_{0}=e_{00} a_{0}+e_{01} a_{1}+e_{02} a_{2} \\
& b_{3}=e_{30} a_{0}+e_{31} a_{1}+e_{32} a_{2}
\end{aligned}
$$

$$
\begin{align*}
& b_{1}=e_{10} a_{0}+e_{11} a_{1}+e_{12} a_{2} \tag{9}\\
& b_{2}=e_{20} a_{0}+e_{21} a_{1}+e_{22} a_{2}
\end{align*}
$$

Now rearrange (9) as follows

$$
\begin{align*}
& e_{01} a_{1}+e_{02} a_{2}+\phi b_{1}+\phi b_{2}=b_{0}-e_{00} a_{0} \\
& e_{31} a_{1}+e_{32} a_{2}+\phi b_{1}+\phi b_{2}=b_{3}-e_{30} a_{0} \\
& e_{11} a_{1}+e_{12} a_{2}-b_{1}+\phi b_{2}=-e_{10} a_{0} \tag{10}\\
& e_{21} a_{1}+e_{22} a_{2}+\phi b_{1}-b_{2}=-e_{20} a_{0}
\end{align*}
$$

Writing (10) in matrix form
(11) $\left[\begin{array}{ll:l}e_{01} & e_{02} & \phi \varnothing \\ e_{31} & e_{32} & \phi \varnothing \\ \hdashline e_{11} & e_{12} & -1 \phi \\ e_{21} & e_{22} & \phi-1\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2} \\ \hdashline b_{1} \\ b_{2}\end{array}\right]=\left[\begin{array}{l}s_{11 m}-e_{00} \\ s_{21 m}-e_{30} \\ \hdashline-e_{10} \\ -e_{20}\end{array}\right] a_{0}$

Where
(12) $s_{11 m}=\frac{b_{0}}{a_{0}}$ and $s_{21 m}=\frac{b_{3}}{a_{0}}$

Write (11) in the compact form
(13)

$$
\left[\begin{array}{c:c}
E_{2} & \phi \\
\hdashline E_{4} & -I
\end{array}\right]\left[\begin{array}{c}
a \\
\hdashline b
\end{array}\right]=\left[\begin{array}{c}
S_{F} \\
\hdashline \phi^{-}
\end{array}\right] a_{0}-\left[\begin{array}{c}
E_{1} \\
\hdashline E_{3}
\end{array}\right] a_{0}
$$

Where $\left[E_{1}\right],\left[E_{2}\right],\left[E_{3}\right]$ and $\left[E_{4}\right]$ were defined in (2) and $\left[S_{F}\right]$ is defined in (4)

From the partitioned matrix equation (13)
(14) $\left[E_{2}\right][a]=\left(\left[S_{F}\right]-\left[E_{p}\right]\right) a_{0}$

Solving for [a]

$$
\begin{equation*}
[a]=\left[E_{2}\right]^{-1}\left(\left[S_{F}\right]-\left[E_{1}\right]\right) a_{0} \tag{15}
\end{equation*}
$$

Also from the partitioned matrix (13)
(16) $\left[E_{4}\right][a]-[b]=-\left[E_{3}\right] a_{0}$

Solving for [b]

$$
\text { (17) }[b]=\left[E_{4}\right][a]+\left[E_{3}\right] a_{0}
$$

Substituting in the value of [a] from (15) yields
(18) $[b]=\left(\left[E_{4}\right]\left[E_{2}\right]^{-1}\left(\left[S_{F}\right]-\left[E_{1}\right]\right)+\left[E_{3}\right]\right) a_{0}$

The same procedure can be used to solve for [a'] and [b^{\prime}] in the reverse configuration. Note also that a_{0} will divide out when solving for $\left[S_{A}\right]$ in equation (8).

Appendix VII: Two-port Error Model Using Three Measurement Ports, But With the Assumption That $e_{21}=e_{12}=e_{20}=e_{02}=e_{31}=0$.

With the above assumptions

$$
\begin{aligned}
& {\left[E_{1}\right]=\left[\begin{array}{l}
e_{00} \\
e_{30}
\end{array}\right]} \\
& {\left[E_{2}\right]=\left[\begin{array}{ll}
e_{01} & \phi \\
\emptyset & e_{32}
\end{array}\right]} \\
& {\left[E_{3}\right]=\left[\begin{array}{l}
e_{10} \\
\emptyset
\end{array}\right]} \\
& {\left[E_{4}\right]=\left[\begin{array}{ll}
e_{11} & \phi \\
\emptyset & e_{22}
\end{array}\right]}
\end{aligned}
$$

And from Appendix VI equation (4) for the forward configuration
(2) $\left[\begin{array}{l}S_{11 m} \\ S_{21 m}\end{array}\right]=\left[E_{1}\right]+\left[E_{2}\right]\left[S_{A}\right]\left([1]-\left[E_{4}\right]\left[S_{A}\right]\right)^{-1}\left[E_{3}\right]$

Substituting (1) into (2) and expanding yeilds for Fig 1.

Figure 1
Two-Port Flow Graph in the Forward Configuration

$$
\begin{equation*}
S_{11 m}=\frac{b_{0}}{a_{0}}=e_{00}+\left(e_{10} e_{01}\right) \frac{S_{11 A}-e_{22} \operatorname{DET}\left[S_{A}\right]}{1-e_{11} S_{11 A^{-e_{22}} S_{22 A}+e_{11} e_{22}} \operatorname{DET}\left[S_{A}\right]} \tag{3}
\end{equation*}
$$

(4) $S_{21 m} \frac{b_{3}}{a_{0}}=e_{30}+\left(e_{10} e_{32}\right) \frac{S_{21 A}}{1-e_{11} S_{\left.11 A^{-e_{22}} S_{22 A}+e_{11} e_{22 ~ D E T ~\left[S_{A}\right.}\right]}}$

$$
\operatorname{DET}\left[S_{A}\right]=S_{11 A} S_{22 A}-S_{21 A} S_{12 A}
$$

Repeating procedure for the reverse configuration in Fig. 2

Figure 2
Two-Port Flow Graph in the Reverse Configuration
(5)

$$
S_{22 m}=\frac{b_{3}^{\prime}}{a_{3}^{\prime}}=e_{33}{ }^{\prime}+e_{23} e_{32}^{\prime} \frac{S_{22 A}-e_{11} 1^{\prime} \operatorname{DET}\left[S_{A}\right]}{1-e_{11} S_{11 A^{-e}}{ }^{\prime} S_{22 A}+e_{11}^{\prime} e_{22}^{\prime} \operatorname{DET}\left[S_{A}\right]}
$$

(6)

$$
S_{12 m}=\frac{b_{0}^{\prime}}{a_{3}^{\prime}}=e_{03^{\prime}}+e_{23^{\prime}} e_{01}{ }^{\prime} \frac{S_{12 A}}{1-e_{11} S_{11 A^{-e_{22}}} S_{22 A}+e_{11} e_{22}}{ }^{\prime} \operatorname{DET}\left[S_{A}\right]
$$

$$
\operatorname{DET}\left[S_{A}\right]=S_{11 A} S_{22 A}-S_{21 A} S_{12 A}
$$

Solving for $\left[S_{A}\right]$ could be done by expanding the matrix equations for [a] and [b] from Appendix VI. It is easier however to start fresh.

Remember from Appendix VI equation (8)
(7) $\left[S_{A}\right]=\left[\begin{array}{ll}a & a^{\prime}\end{array}\right]\left[\begin{array}{ll}b & b^{\prime}\end{array}\right]^{-1}$
or
(8) $\left[S_{A}\right]=\left[\begin{array}{ll}a_{1} & a_{1}{ }^{\prime} \\ a_{2} & a_{2}{ }^{\prime}\end{array}\right]\left[\begin{array}{ll}b_{1} & b_{1}{ }^{\prime} \\ b_{2} & b_{2}^{\prime}\end{array}\right]^{-1}$

Expanding (8) gives

$$
S_{11 A}=\frac{a_{1} b_{2}^{\prime}-a_{1}^{\prime} b_{2}}{d}, S_{12 A}=\frac{a_{1}^{\prime} b_{1}-a_{1} b_{1}^{\prime}}{d}
$$

(9)

$$
S_{21 A}=\frac{a_{2} b_{2}^{\prime}-a_{2}^{\prime} b_{2}}{d}, \quad S_{22 A}=\frac{a_{2}^{\prime} b_{1}-a_{2} b_{1}^{\prime}}{d}
$$

$$
d \triangleq b_{1} b_{2}^{\prime}-b_{2} b_{1}^{\prime}
$$

Let us solve for a_{1}, a_{2}, b_{1}, and b_{2}.
From Appendix VI equation (9) and using the assumptions we obtain for the forward configuration
(10) $b_{0}=e_{00} a_{0}+e_{01} a_{1}$
(11) $b_{3}=e_{32} a_{2}+e_{30} a_{0}$
(12) $b_{1}=e_{10} a_{0}+e_{11}{ }^{a} 1$
(13) $\quad b_{2}=e_{22} a_{2}$
(14) $S_{11 m}=\frac{b_{0}}{a_{0}}$ and $S_{21 m}=\frac{b_{3}}{a_{0}}$

Solving (10) and (11) for a_{1} and a_{2}
(15)

$$
a_{1}=\left(\frac{S_{11 m}-e_{00}}{e_{10} e_{01}}\right) e_{10} a_{0}
$$

$$
\begin{equation*}
a_{2}=\left(\frac{S_{21 m}}{e_{10}}-e_{32} e_{30}\right) e_{10} a_{0} \tag{16}
\end{equation*}
$$

b_{1} and b_{2} dome directly from (12) and (13)

$$
\begin{equation*}
b_{1}=\left(1+e_{11} \frac{S_{11 m}-e_{00}}{e_{10} e_{01}}\right) e_{10^{a} 0} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
b_{2}=\left(e_{22} \frac{S_{21 m}-e_{30}}{e_{10} e_{32}}\right) e_{10}{ }^{a} 0 \tag{18}
\end{equation*}
$$

Now repeat the above procedure for the reverse configuration
(19) $b_{0}{ }^{\prime}=e_{33}{ }^{\prime} a_{3}^{\prime}+e_{32}{ }^{\prime} a_{2}{ }^{\prime}$
(20) $b_{3}^{\prime}=e_{01}{ }^{\prime} a_{1}{ }^{\prime}+e_{03}{ }^{\prime} a_{3}{ }^{\prime}$
(21) $b_{1}^{\prime}=e_{17}{ }^{\prime} a_{1}^{\prime}$
(22) $b_{2}^{\prime}=e_{23}{ }^{\prime} a_{3}^{\prime}+e_{22}{ }^{\prime} a_{2}^{\prime}$

Solving (19) and (20) for a_{1}^{\prime} and a_{2}^{\prime}

$$
\begin{equation*}
a_{1}^{\prime}=\frac{s_{12 m}-e_{03}^{\prime}}{e_{23^{\prime}} e_{01}^{\prime}} e_{23^{\prime}} a_{3}^{\prime} \tag{23}
\end{equation*}
$$

(24) $a_{2}^{\prime}=\left(\frac{S_{22 m}-e_{33}{ }^{\prime}}{e_{23}^{\prime} e_{32}}\right) e_{23^{\prime}} a_{3}^{\prime}$
and b_{2}^{\prime} come directly from (21) and (22)
(25) $b_{1}^{\prime}=\left(e_{11} \frac{S_{12 m}-e_{03}}{e_{23} e_{32}^{\prime}}\right) e_{23}{ }^{\prime} a_{3}^{\prime}$
(26) $b_{2}^{\prime}=\left(1+e_{22} \frac{S_{22 m}-e_{33}{ }^{\prime}}{e_{23}{ }^{\prime} e_{32}{ }^{\prime}}\right) e_{23^{\prime}} a_{3}^{\prime}$

Now substitute (15), (16), (17), (18), (23), (24), (25) and (26) into
(9) for $\left[S_{A}\right]$. Note that $e_{10} a_{0}$ and $e_{23}{ }^{\prime} a_{3}$ divide out.

Where

Appendix VIII: Self-Calibration Procedure

The measurement system block diagram shown in Fig. 1 has the flowgraph of Fig 2.

Figure 1
Self-Calibration Measurement System

Figure 2
Self-Calibration Flow-Graph

In the self-calibration procedure we use the cascading parameters or T-parameter discription.
(1) $\left[T_{m}\right]=\left[T_{x}\right]\left[T_{A}\right]\left[T_{y}\right]$

Where $\left[T_{m}\right]$ is the overal 1 measured data including the errors and $\left[T_{A}\right]$ is the parameters of the device under test. $\left[T_{x}\right]$ and $\left[T_{y}\right.$] are the parameters of the error adapters on the input and output of the device under test. The relatiunsrip between the above T-parameters and the error and S-parameters follows.
(2) $\left[T_{m}\right] \triangleq\left[\begin{array}{c}T_{17 m^{\top}} 12 m \\ T_{21 m^{\top}} 22 m\end{array}\right]=\frac{1}{S_{21 m}}\left[\begin{array}{cc}S_{21 m^{S}} 12 m-S_{11 m^{S}} 22 m & S_{11 m} \\ -S_{22 m} & 1\end{array}\right]$

(4) $\left[T_{x}\right] \triangleq\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\frac{1}{e_{10}}\left[\begin{array}{cc}e_{10} e_{01}-e_{00} e_{11} & e_{00} \\ -e_{11} & 1\end{array}\right]$
(5) $\left[T_{y}\right] \triangleq\left[\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right]=\frac{1}{e_{32}}\left[\begin{array}{cc}e_{32} e_{23}-e_{22} e_{33} & e_{22} \\ -e_{33} & 1\end{array}\right]$

Figure 3
Self-Calibration Procedure

The first step is the thru connection, see Fig. 3
(6) $\left[T_{m t}\right]=\left[T_{x}\right]\left[T_{A t}\right]\left[T_{y}\right]=\left[T_{x}\right]\left[T_{y}\right]$

Since for a thru
(7) $\left[T_{A t}\right] \triangleq\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Now the second step is the delay connection, see Fig 3.
(8) $\left[T_{m d}\right]=\left[T_{x}\right]\left[T_{A d}\right]\left[T_{y}\right]$

Where
(9) $\left[T_{A d}\right] \triangleq\left[\begin{array}{ll}e^{-\gamma \ell} & 0 \\ 0 & e^{\gamma \ell}\end{array}\right]$

Note that $T_{12 A}=T_{21 A}=0$ means $S_{11 A}=S_{22 A}=0$ or a matched $\left(Z_{0}\right)$ line. This Z_{0} line is the calibration standard. Let us now solve for as much of $\left[T_{x}\right]$ as possible. First solve (6) for $\left[T_{y}\right]$
(10) $\left[T_{y}\right]=\left[T_{x}\right]^{-1}\left[T_{m t}\right]$

Substituting into (8) yields
(11) $[M]\left[T_{x}\right]=\left[T_{x}\right]\left[T_{A d}\right]$

Where
(12) $[M] \triangleq\left[T_{m d}\right]\left[T_{m t}\right]^{-1}=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]$

Rewriting (11) gives
(13) $\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]\left[\begin{array}{ll}e^{-\gamma l} & 0 \\ 0 & e^{\gamma l}\end{array}\right]$
or
(14) $m_{11} x_{11}+m_{12} x_{21}=x_{11} e^{-8 l}$
(15) $m_{21} x_{11}+m_{22} x_{21}=x_{21} e^{-\gamma \ell}$
(16) $m_{11} x_{12}+m_{12} x_{22}=x_{12}$ e ℓl
(17) $m_{21} x_{12}+m_{22} x_{22}=x_{22}$ e $\ell \ell$
eliminating $e^{-\gamma l}$ from (14) and (15) yields
(18) $m_{21}\left(\frac{x_{11}}{x_{21}}\right)^{2}+\left(m_{22}-m_{11}\right)\left(\frac{x_{11}}{x_{21}}\right)-m_{12}=0$
eliminating eld from (10) and (17) yields
(19) $m_{21}\left(\frac{x_{12}}{x_{22}}\right)^{2}+\left(m_{22}-m_{11}\right)\left(\frac{x_{12}}{x_{22}}\right)-m_{12}=0$

Note that the solutions to (18) and (19) are the same. The root choices are obvious, because
(20) $\left(\frac{x_{11}}{x_{21}}\right) \triangleq a=e_{00}-\frac{\left(e_{10} e_{01}\right)}{e_{11}}$
and
(21) $\left(\frac{x_{12}}{x_{22}}\right) \triangleq \quad b=e_{00}$
a is large and b is small for a typical reflectometer
From (20) and (21)
(22) $e_{00}=b$
(23) $\frac{\left(\mathrm{e}_{10}{ }^{\mathrm{e}} 01\right)}{\mathrm{e}_{11}}=b-a$

We need to solve for e_{11} but cannot at this time. Following the same procedure we can solve for as much of [T_{y}] as possible. Like (11) we get
(24) $\left[T_{y}\right][N]=\left[T_{A d}\right]\left[T_{y}\right]$

Where
(25) $[N] \triangleq\left[T_{m t}\right]^{-1}\left[T_{m d}\right]=\left[\begin{array}{ll}n_{11} & n_{12} \\ n_{21} & n_{22}\end{array}\right]$

We finally obtain
(26) $n_{12}\left(\frac{y_{11}}{y_{12}}\right)^{2}+\left(n_{22}-n_{11}\right)\left(\frac{y_{11}}{y_{12}}\right)-n_{21}=0$
and
(27) $n_{12}\left(\frac{y_{21}}{y_{22}}\right)^{2}+\left(n_{22}-n_{11}\right)\left(\frac{y_{21}}{y_{22}}\right)-n_{21}=0$
we define
(28) $\left(\frac{y_{11}}{y_{12}}\right) \triangleq c=\frac{\left(e_{23} e_{32}\right)}{e_{22}}-e_{33}$
(29) $\left(\frac{y_{21}}{y_{22}}\right) \triangleq d=-e_{33}$
from (28) and (29)
(30) $e_{33}=-d$
(31) $\frac{\left(e_{23} e_{32}\right)}{e_{22}}=c-d$

We need to solve for e_{22} but cannot at this time.

To solve for e_{11} and e_{22} let us use the standard one-port calibration procedure. With a termination Γ_{A} on port-1 of error adapter x, step 3 of Fig. 3.
(32) $\Gamma_{m x}=e_{00}+\frac{\left(e_{10} e_{01}\right) \Gamma_{A}}{T-\frac{e_{11} \Gamma_{A}}{}}$

Solving for Γ_{A} and using equations (22) and (23)
(33) $\Gamma_{A}=\frac{1}{e_{11}} \frac{b-\Gamma_{m x}}{a-\Gamma_{m x}}$

With the same termination Γ_{A} on port-2 of error adaptor y, see
Fig. 3, step 3.
(34) $\Gamma_{m y}=e_{33}+\frac{\left(e_{23}{ }^{e} 32\right) \Gamma_{A}}{1-e_{22} \Gamma_{A}}$

Solving for Γ_{A} and using equations (30) and (31)
(35) $\quad \Gamma_{A}=\frac{1}{e_{22}} \frac{d+\Gamma_{m y}}{c+\Gamma_{m y}}$

Eliminating Γ_{A} from (33) and (35)
(36) $\frac{1}{e_{22}}=\frac{1}{e_{11}}\left(\frac{b-\Gamma_{m x}}{a-\Gamma_{m x}}\right)\left(\frac{c+\Gamma_{m y}}{d+\Gamma_{m y}}\right)$

During the thru connection, step 1 of Fig. 3, we know that we can measure e_{22} with the port-1 reflectometer
(37) $\Gamma_{m 1}=e_{00}+\frac{\left(e_{10} e_{01}\right) e_{22}}{1-e_{11} e_{22}}$

Solving (37) for e_{11}
(38) $e_{11}=\frac{1}{e_{22}} \frac{b-\Gamma_{m l}}{a-\Gamma_{m 1}}$

We can now substitute the value of $\frac{1}{e_{22}}$ from (36) into (38) to obtain
(39) $e_{11}=\left[\left(\frac{b-\Gamma_{m x}}{a-\Gamma_{m x}}\right)\left(\frac{c+\Gamma_{m y}}{d+\Gamma_{m y}}\right)\left(\frac{b-\Gamma_{m 1}}{a-\Gamma_{m i}}\right)\right]^{1 / 2}$
also from (38)
(40) $\quad e_{22}=\frac{1}{e_{11}}\left(\frac{b-\Gamma_{m 1}}{a-\Gamma_{m 1}}\right)$
from (23)
(41) $\left(e_{10} e_{01}\right)=(b-a) e_{11}$
and from (31)
(42) $\left(e_{23} e_{32}\right)=(c-d) e_{22}$

We still need the two transmission tracking terms ($\mathrm{e}_{10} \mathrm{e}_{32}$) and $\left(e_{23} e_{01}\right)$. This can be obtained from the thru connection, step 1 of Fig. 3, since
(43) $S_{21 m}=\left(e_{10} e_{32}\right) \frac{1}{1-e_{11} e_{22}}$
and
(44) $S_{12 m}=\left(e_{23} e_{01}\right) \frac{1}{1-e_{11} e_{22}}$

We know e_{11} and e_{12}, therefore

$$
\begin{equation*}
\left(e_{10} e_{32}\right)=S_{21 m}\left(1-e_{11} e_{22}\right) \tag{45}
\end{equation*}
$$

$$
\begin{equation*}
\left(e_{23} e_{01}\right)=s_{12 m}\left(1-e_{11} e_{22}\right) \tag{46}
\end{equation*}
$$

Notice that we solved for the e-parameters instead of $\left[T_{x}\right.$] or $\left[T_{y}\right.$]. We chose the e-parameters so that this calibration technique would be compatible with the other error correction procedures developed and used earlier.

Also, the switch repeatability errors can be removed by the procedure in Appendix IX if we use four measurement ports with four mixers or samplers connected at all times.

The value of Γ_{A} and $\gamma \ell$ were not needed but can be calculated by

$$
\begin{equation*}
\Gamma_{A}=\frac{1}{e_{11}} \frac{b-\Gamma_{m x}}{a-\Gamma_{m x}} \tag{33}
\end{equation*}
$$

And $\gamma \ell$ by taking the ratio of (17) to (14) which yields

$$
\begin{equation*}
e^{2 \gamma l}=\frac{b m_{21}+m_{22}}{\frac{1}{a} m_{12}+m_{11}} \tag{47}
\end{equation*}
$$

If we have a system block diagram as shown in Fig. 1 the characteristics of the switch can be removed by assuming that the $a_{3} \neq 0$ (non z_{0} term,) in the forward configuration and $a_{0}{ }^{\prime} \neq 0$ in the reverse configuration. This approach is a generalized method of measuring S-parameters where Z_{0} terminations are not assumed.

Figure 1
Measurement System Block Diagram

In the forward configuration

$$
\begin{align*}
& b_{0}=S_{11 m} a_{0}+S_{12 m} a_{3} \\
& b_{3}=S_{21 m} a_{0}+S_{22 m} a_{3} \tag{1}
\end{align*}
$$

And in the reverse configuration

$$
b_{0}{ }^{\prime}=S_{11 m} a_{0}^{\prime}+S_{12 m} a_{3}^{\prime}
$$

$$
\begin{equation*}
b_{3}^{\prime}=S_{21 m} a_{0}^{\prime}+S_{22 m} a_{3}^{\prime} \tag{2}
\end{equation*}
$$

Combining the forward and reverse configurations
(3) $\left[\begin{array}{ll}b_{0} & b_{0}^{\prime} \\ b_{3} & b_{3}^{\prime}\end{array}\right]=\left[\begin{array}{ll}s_{11 m} & s_{12 m} \\ S_{21 m} & s_{22 m}\end{array}\right]\left[\begin{array}{ll}a_{0} & a_{0}^{\prime} \\ a_{3} & a_{3}^{\prime}\end{array}\right]$
or
(4) $[b]=\left[S_{m}\right][a]$

Since [a] and [b] are square and non-singular
(5) $\left[S_{m}\right]=[b][a]^{-1}$

Expanding (5) gives
(6) $S_{11 m}=\frac{b_{0} a_{3}^{\prime}-b_{0}^{\prime} a_{3}}{\Delta}$, forward
(7) $S_{12 m}=\frac{b_{0}{ }^{\prime} a_{0}-b_{0}{ }_{0}{ }^{\prime}}{\Delta}$, reverse
(8) $S_{21 m}=\frac{b_{3} a_{3}^{\prime}-b_{3}{ }^{\prime} a_{3}}{\Delta}$, forward
(9) $S_{22 m}=\frac{b_{3}{ }^{\prime} a_{0}-b_{3} a_{0}{ }^{\prime}}{\Delta}$, reverse

Where

$$
(10) \Delta \triangleq a_{0} a_{3}^{\prime}-a_{3} a_{0}^{\prime}
$$

The typical network analyzer, which measures phase, needs to make a ratio measurement. Equations (6) through (9) can be factored into form as follows. Where the incident signals are a_{0} and $a_{3}{ }^{\prime}$

$$
\begin{equation*}
S_{11 \mathrm{~m}}=\frac{\frac{b_{0}}{a_{0}}-\frac{b_{0}^{\prime}}{a_{3}} \frac{a_{3}}{a_{0}}}{d} \text {, forward } \tag{11}
\end{equation*}
$$

(12) $S_{12 m}=\frac{\frac{b_{0}{ }^{\prime}}{a_{3}{ }^{\prime}}-\frac{b_{0}}{a_{0}} \frac{a_{0}{ }^{\prime}}{a_{3}{ }^{\prime}}}{d}$, reverse
(13)

$$
S_{21 m}=\frac{\frac{b_{3}}{a_{0}}-\frac{b_{3}}{a_{3}^{\prime}} \frac{a_{3}}{a_{0}}}{d} \text {, forward }
$$

$$
s_{22 m}=\frac{\frac{b_{3}{ }^{\prime}}{a_{3}^{\prime}}-\frac{b_{3}}{a_{0}} \frac{a_{0}{ }^{\prime}}{a_{3}^{\prime}}}{d} \text {, reverse }
$$

Where

$$
(15) \quad d \triangleq 1-\frac{a_{3}}{a_{0}} \frac{a_{0}^{\prime}}{a_{3}^{\prime}}
$$

The leakage, missmatch, and repeatability of the switch are removed by this procedure.

If $a_{3}=0\left(Z_{0}\right.$ termination) for the forward configuration
(16) $S_{11 m}=\frac{b_{0}}{a_{0}}$ and $S_{21 m}=\frac{b_{3}}{a_{0}}$

And if $a_{0}{ }^{\prime}=0$ (Z_{0} termination) for the reverse configuration
(17) $S_{22 m}=\frac{b_{3}{ }^{\prime}}{a_{3}{ }^{\prime}}$ and $S_{12 m}=\frac{b_{0}{ }^{\prime}}{a_{3}}$

Acknowledgments

The following individuals at Hewlett Packard, Santa Rosa, have contributed to error correction algorithms and measurement techniques:
 John Barr
 Jim Fitzpatrick
 Sy Ramey

I would like to thank them for allowing me to present many of their ideas in this seminar. Thanks are also due to Margie Brown for many hours of assistance.

References

The following papers have been useful in stimulating our thinking in error correction techniques. Some of the approaches used in this seminar originated in these references.
(1) I. Kasa, 'A Circle Fitting Procedure and its Error Analysis," IEEE Transactions on Instrumentation and Measurement, pp 7-14, March 1976.
(2) I. Kasa, "Closed-Form Mathematical Solutions to Some Network Analyzer Calibration Equations," IEEE Transactions on Instruments and Measurement, Vol. IM-23, No.4, pp 309-402, December 1974.
(3) Glenn F. Engen, "Calibration Technique for Automated Network Analyzers with Application to Adapter Evaluation," IEEE Transactions on Microwave Theory and Technique, Vol. MTI-22, No. 12, pp 1255-1260, December 1974.
(4) Ross A. Speciale, "A Generalization of the TSO Network Analyzer Calibration Procedure, Covering n-Port ScatteringParameter Measurements, Affected by Leakage Errors," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-25, No.12, pp 1100-1115, December 1977.
55) W. Kruppa and Kenneth F. Sodomsky, "An Explicit Solution for the Scattering Parameters of a Linear Two-Port Measured with an Imperfect Test Set," IEEE Transactions on Microwave Theory and Techniques, Vol. 19, No. 1, pp 122-123, January, 1971.
(6) Stig Rehnmark, "On the Calibration Process of Automatic Network Analyzer Systems," IEEE Transactions on Microwave Theory and Techniques, pp 457-458 April, 1974.
(7) Jim Fitzpatrick, "Error Models for Systems Measurement," Microwave Journal, pp 63-66, May, 1978.
(8) C. McKay Allred, "The Calibration and Use of Directional Couplers Without Standards," IEEE Transactions on Instrumentation and Measurement, Vol. 25 No. 1, pp 84-89, March, 1976.
(9) Glenn F. Engen and Cletus A. Hoer, "An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-27, No. 12, pp 987-993, December 1979

(hp
 HEWLETT
 PACKARD

