
GENERALIZED DE-EMBEDDING
TECHNIQUES

Roger D Pollard

Department of Electrical and Electronic Engineering
The University of Leeds

Leeds LS2 9JT, U.K.

Network Measurements Division
Hewlett-Packard Company

1400 Fountaingrove Parkway
Santa Rosa CA 95401

RF & Microwave
Measurement
Symposium
and Exhibition
Flin- HEWLETT
a:~ PACKARD



GENERALIZED DE-EMBEDDING TECHNIQUES

ABSTRACT

This paper discusses techniques for embedding and de-embedding
the characteristics of two-port devices described by scattering
parameters at microwave frequencies. Such techniques have wide
applications in areas such as the measurement of the parameters
of a semiconductor device mounted in a fixture, removal of the
effects of cables, adapters, etc. and network analyzer
calibration using variant error models.
The uses of the techniques are demonstrated with examples
including the characterization of the HP85041A transistor test
fixture.
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The process of measurement is that
of de-embedding a device under test
out of an environment. Similarly
the design of a circuit or system
can be considered to be embedding a
device in a network to provide a
desired set of terminal properties.

The simplest example in common use
is one-port error correction in a
microwave network analyzer. Here it
is assumed that a two-terminal device
under test (DDT) is connected
to an ideal vector measuring
instrument through a two-port network.
The two-port network (known as the
"error adapter" ) is assumed linear
and can, in general, be characterized
in terms of four scattering
parameters.

Generalized
De-embedding

Techniques

ERROR ADAPTER

When making ratio measurements, only
three independent terms are required
to characterize the error adapter.

The error adapter and device under
test can be represented as a flow­
graph. This flowgraph is readily
solved by conventional techniques
to yield r m in terms of r L or vice
versa. It is, however, interesting
to re-cast the error adapter in the
form of a T-matrix (chain-scattering
matrix) .
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We can then obtain r m in terms of r L •

However if the network is now
cascaded with the inverse T-matrix,
we obtain automatically rLin terms
of r m •

Using the conventional notation for
the 3 terms of the one-port error
adapter, its T-matrix is shown on
the slide.

T

This T-matrix is readily inverted to
yield the result shown on the slide.
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When the inverse matrix is cascaded
wi th fill the original measured
reflection coefficient, we get the
well-known result of the actual
reflection coefficient of the DUT
in terms of r L and the error terms.

rm-EDF

The remaining problem is one of
finding the values of EDF , ESF , ERF
by supplying "known" DUTs
(calibration standards). Note that
the calibration standards need to be
known far more precisely than might
be supposed (their values are
measured through the error adapter
and then effectively used a second
time when the DUT is subsequently
de-embedded). In the example case,
any three devices may be used as
calibration standards and the values
of E

DF
E

SF
E

RF
obtained from the, ,

solution of three linear
simultaneous equations.

b = EDF

c = -EsF

1 1,2,3

It is critically important to realize
that the accuracy of this technique
is highly sensitive to the values of
the parameters. Consider, for
example, the limiting case where
E

RF = 0 (there is no connection)

and it becomes impossible to measure
the DUT at all, even though the
analysis will still yield a result.
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The argument outlined above can be
extended to a whole range of
problems involving cables, adapters,
fixtures, etc. and a whole chain of
networks can be cascaded.

It is necessary only to calculate
the T-matrix for each element and
to multiply the matrices to obtain
the matrix for the total network.

Now we consider the problem of
de-embedding in somewhat more
general terms and look at some
relevant examples.

As a first example, consider the
case shown here, where it is
desired to measure the properties of
a semiconductor chip mounted on a
carrier on a microstrip substrate.
Although, conceptually, it is
possible to devise a means of
providing calibration pieces on­
chip, the difficulties of doing so
and the inherent non-repeatability
of bond-wires, launchers, etc. makes
it very undesirable. In most
instances where bondwires or non­
precision connectors are involved
these items cannot be part of the
calibration scheme.

The most satisfactory approach is to
model the discontinuities and then
to de-embed the device under test
from a measurement made at the test
port connectors based on a highly
reliable calibration scheme based on
repeatable components with precision
connectors.



Each element can be modelled. The
usual technique is measurement and
optimization of the values of the
elements using "Touchstone", "Super
Compact" or similar. These values
are used to create the T-matrix for
the de-embedding process. The
difficulty of creating high quality,
repeatable standards in chip form
means that better results are
obtained by only using the launch
once (for measurement) and not
introducing additional uncertainty
with a calibration step.
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As a second example, let's look at
the HP 85041A transistor test
fixture. The essential problems are
very similar to the situation
described earlier.

HP85041A
TRANSISTOR TEST

FIXTURE

GROUND
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The transistor to be characterized
is necessarily connected to the test
port via a set of discontinuities
which includes the launch and the
parasitics associated with
locating the transistor leads in the
insert. The approach taken in the
HP 85014A software is to model these
effects, to cascade the model with
the HP 8510 error terms and replace
the error terms in the HP 8510 with
a new set which includes the fixture
model.
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The original approach was to model
only the discontinuity caused by the
insert using a CLC pi network and
to calibrate at the launch plane
with open, short, load and thru.
This approach appeared to be
satisfactory with the HP 8409-series
automatic network analyzers. The
HP 8510 revealed that the
repeatability of these (non­
precision) items and the variability
of transistors packaging introduced
additional errors. The results are
poor compared with those obtained by
the use of precision (7mm) standards
in conjunction with a model for the
elements of a more sophisticated
equivalent circuit for the launch
and the insert.
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The technique used to arrive at
values for the model elements employs
a set of components inserted at the
device plane. These include a short
circuit the shape and size of a
packaged transistor, sections of
transistor lead and a very thin
insert to characterize the
discontinuity as well as improved
versions of the calibration
components used in the earlier
technique.

The model shown in the slide is fitted
to the measured data using
optimization techniques.

R = Ro = 0

C ~ 14 FF

Co = 125 FF

T, I 2 3 4 UNITS

zO 50.0 51.4 50.5 240 J"L

I 1.6 0.35 0.25 0.Q3 Cm

Ci .003 .005 .003 .06 neper

OUT

All transmission lines are specified
in terms of Z , length and loss

o
(assumed small but non-zero).

Using this basic principle, it is
not a difficult matter to determine
the appropriate element values for a
model for any custom insert designed
for device package styles not
supported by the HP 8504lA. The
major consideration effecting
ultimate accuracy is the care taken
to ensure good mechanical
compatability of the insert with the
fixture body and precision
manufacture to ensure repeatability.



The approach used in the HP 85014A
software adds a slight extra degree
of complication because of the use
of a l2-term error model in the HP
8510 network analyzer. The model
requires E

RF
and E

TF
in the forward

direction (ERR and E
TR

in the

reverse direction) to be normalized.
This process is straightforward (see
"De-embedded Measurements using the
HP 8510 Microwave Network Analyzer",
Glenn Elmore) and provides almost
real-time measurements of
de-embedded transistor S-parameters.

HP 8510A TWO-PORT DE-EMBEDDING
(FORWARD DIRECTION)

ED5,tinn~
ERF

I

j .EXF

,fl

DWIII"I!I'III I I >

HP 851OAERROR TERM
NORMALIZAnON (FORWARD DIRECTION)

E 1 F 1
IEDD'D

ER

Notice: Cascading E 1 and F] Produces
Non-Utility Forward Transmission Term.
Thus, BOTH Eh and EfF Must Be Normalized
to Account for This.

This approach can be used either for
de-embedding (error removal to get
at the actual value of the unknown
device) or embedding (design of a
circuit in which to place a known
device).

EMBED = FIND r m GIVEN DUT
DE-EMBED = FIND DUT GIVEN r m



Reverse

As discussed above, this approach is
quite straightforward for simple
cascades (no matter how many
components or ports are involved
but becomes more complicated when
there are inter-port couplings.
This is illustrated in the slide
which shows the two-port (12-term)
error model used by the HP 8510. If
there are any additional inter-port
couplings associated with the devices
connected between the measurement
planes, the strategy described
earlier will break down.
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DUT

The generic solution for the
two-port DUT is to use a four-port
network to model the error adapters
at both ports and the inter-port
couplings. The essence of the
arrangement is shown in the diagram;
ports 0 and 3 are the measurement
ports, the two-port device under
test (SA) is connected between ports

1 and 2.

The arrangement can, again, be
described in terms of scattering
parameters.

The error adapted is now completely
described in terms of a 4x4 matrix
with complex entries.



Note that the possibility of effects
due to switches to reverse the
direction of signal flow to measure
reverse parameters can be accounted
for by a further E matrix for each
physical arrangement.

The equations are as shown in the
slide. It is straightforward matrix
algebra to solve Sm and E for SA and

embed or de-embed a cascade of these
four-ports.
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To illustrate the generality of the
approach, consider the usual 12-term
error model interpreted in terms of
the four-port error adapter. All 16
terms are shown on the slide, the
six terms which appear in the forward
direction are shown in solid.

The relation between the
conventional 12-term error model
notation and the elements of the
matrix is shown here.

eZO = eoz = e31 = e13 = elZ = eZl = 0

In filling in the entries in the 4x4
matrix, note how many of the slots
are zero. The normalization
discussed above in connection with
de-embedding and re-inserting the 12
error terms into the 8510 model is
now seen to appear naturally in this
treatment. en = EL

eOO = ED

elO = eZ3 = 1

e32 = Es

ell = Es

e03 = 0
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E3 E4
T4 = E3 1
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A It is convenient at this stage to
partition the matrix.

B We now need the T-matrix for this
network. Note that the solution is
similar to the earlier case and
viewing the large matrix in its
partitioned form the result can be
derived looking identical to the
earlier result except that the
elements of the T-matrix are
themselves matrices.

It is interesting that the solution
only requires the inversion of a
single 2x2 complex matrix (E

3
).

These 4x4 T-matrices are readily
cascaded and inverted, thus we can
now

T

o De-embed a two-port DUT

o Embed a two-port DUT

o Add or subtract line length at
each or all of the four ports.

o Selectively model parts of the
network at one or more ports;
this allows dealings with
non-insertable DUTs.

Now solving the equations, noting
carefully the directions of the
arrows on the flowgraphs, we have SM
(embedding) ...

... and SA (de-embedding).



Although these complex matrix
equations appear complicated, they
are readily implemented on a
desk-top computer (see Appendix).

Note direction of arrows!

[~:] = E 1 [::] + Ez [:~] = E 1 [::] + EZSA [~J

[~~] = E3 [::] + E4 [:~] = E3 [::] + ~SA [~~]

Thus [I-~SA] [=~] = E3 [::]

SM=E1 +EZSA(l-E4SA)-IE3

and SA= [E3(SM-E1)-'Ez+E4]-1

APPENDIX
Implementation of complex matrix math in HP Series 200 BASIC

* Consider the complex arrays

then

C = A+jB

D = E+jF

C * D = (AE-BF) + j(AF+BE)

Provides complex matrix multiplication using real arrays.

* Consider C in terms of the partitioned matrix

C = [~ -~J
then C~ 1 = (A+ BA -IB)~ 1 + j(B+AB~lA)~ 1

and note that
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Et'iBED

DE-Et1BED

Complex arrays

Set up [IJ

Identih.... matrix
Temporary

Imaginar>., part

Rea 1 part

Camp lex mat r" ix

Imaginary part

Real part

Complex matrix multiplication

Tempo ra r" 1 es

Sm = el.Sa.INV(I-e4*Sa)*e3

1 - - - _ --- - - - - - - -- --- - - --- - - -- -- - -""~

! .
! Skeleton program to demonstrate Embeddinq
I and De-embeading algorithm using 4-port- !
i I

i----------------------------------------------------------------------1
OPTION BASE 1
COM E1 r(2.2),E1_i(2,2),E2_r(2,2),E2_i(2,2)
COM E3:r(2~2),E3_i(2,2),E4_r(2,2),E4_~(2,2)
COM Sm_r(2,2),Sm_i(2,2),Sa_r(2,2),Sa_l(2,2)
!
DIM I re(2,2),I im(2,2)
DIM T:re(2,2),T:imC2,2),T1_re(2,2),T1_im(2,2)
!
MAT I re= I Dt'"
~1AT I: i m= (0)
!
!,
Mul(E4_r(*),E4_iC.),Sa_r(.),Sa_i(.),T_reC.),T_imC.))
MAT T re= I re-T re
MAT T-im= I-im-T-im
Inv(T:re(.);T_imr.),T1_re(.),T1_im(.))
Mu 1 (Sa _ r ( • ) , Sa _ i (.) , T1_ r e ( .) T1_ i m(.) T_ t' e ( .) . T_ i mC.) )
Mul(E2 r(.)~E2 i(.),T re(.),t_im(.),Ti re(.)~r1_im(*))
Mul(T1:rel.),TI im(.);E3_r(.),E3_iC.),T_re(.),T_im(.))
MAT Sm r= E1 r+T re
MAT Sm-i= El-i+T-im
! - --
! Sa = INVCe3.INVCSm-e1).e2+e4)
!
MAT T re= Sm_r-E1 r
MAT T-im= Sm i-E1-i
I n v CT- r e C.) , Tim (i) , T1_ r" e C.) , T1_ i mC. ) )
MulCE3_r(.),E3_i(.),T1_re(.)"T1_im(.) T_re(.) T_imC.))
Mu 1 (T r e ( .) •Tim C.) , E2 r C.) ,~2 i ( .) • Ti r" e ( .) , t 1 i mC• ) )
MAT T-re= T1 ;e+E4 r - "- "- ,-
MAT T-im= T1-im+E4-i
Inv(T:re(.),T_imC.r,Sa_r(.),Sa_iC.))
!
END
!
, •••••••••••••••••••• SUBROUTINES •••••••••••••••••••••••••••***••••••••
!
SUB Mu 1 ( AC*) ,2 B C• ) , E C* ) , F C*) •XC.) , Y ( * ) )

OPTION SASe 1 "
?IM TC2,2),T1C2,2)

fiAT T= A*E
MAT T1= B.F
MAT X= T-T1
t'lAT T= A.F
MAT Tl= B*E
MAT 'l= T+Tl

~;U8EHD

!
!-----------------------------------------------------------------------
!
SUB InvCAC.) ,BC.) ,DC*) ,EC*))

OPTION BAS~ 1 '
?IM T(2,2),TIC2,2),T2(2,2)

t1AT T2= IHVCA)
MAT T= B*T2
MAT Tl= T.B
MAT T= A+T1
~1AT D= I Nt) ( T )
MAT T1= S.D
t1AT T= T2*Tl
MAT E= (-1).T

SUBEHD
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