HP Archive

This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com
Please visit us on the web.
For free distribution only!

Thanks to on-line curator: Marc Scheerders for supplying and scanning this vintage document.

740B
 DC STANDARD/ DIFFERENTIAL VOLTMETER

OPERATING AND SERVICE MANUAL

CERTIFICATION

The Hewlett-Packard Company certifies that this instrument was thoroughly tested and inspected and found to meet its published specifications when it was shipped from the factory. The HewlettPackard Company further certifies that its calibration measurements are traceable to the U.S. National Bureau of Standards to the extent allowed by the Bureau's calibration facility.

WARRANTY AND ASSISTANCE

All Hewlett-Packard products are warranted against defects in materials and workmanship. This warranty applies for one year from the date of delivery, or, in the case of certain major components listed in the operating manual, for the specified period. We will repair or replace products which prove to be defective during the warranty period. No other warranty is expressed or implied. We are not liable for consequential damages.

For any assistance contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

SERIALS PREFIXED: 610-, $722-$

Copyright Hewlett-Packard Company 1966
P. O. Box 301, Loveland, Colorado 80537 U.S.A.

TABLE OF CONTENTS

Section Page
I GENERAL INFORMATION 1-1
1-1. Introduction 1-1
1-3. Description 1-1
1-5. DC Standard 1-1
1-7. Differential Voltmeter. 1-2
1-9. High Impedance Voltmeter 1-2
1-11. Amplifier 1-2
1-14. Internal Adjustment 1-2
1-16. Specifications 1-2
1-18. Instrument Identification 1-2
1-20. Accessory Equipment Supplied 1-2
1-22. Accessory Equipment Available 1-2
Section Page
II INSTALLATION 2-1
2-1. Introduction 2-1
2-3. Initial Inspection 2-1
2-5. Power Requirements 2-1
2-7. Grounding Requirements 2-1
2-10. Installation 2-1
2-12. Bench Mounting 2-1
2-14. Rack Mounting 2-1
2-16. Repackaging for Shipment $2-1$
Section Page
III OPERATING INSTRUCTIONS 3-1
3-1. Introduction 3-1
3-3. Accuracy Specifications 3-1
3-7. Operating Precautions 3-1
3-9. Controls, Indicators and
Connectors 3-1
3-11. DC Standard 3-5
3-12. Description 3-5
3-14. Operating Precautions 3-5
3-16. Sensing 3-6
3-24. Guarding 3-7
3-26. Negative Outputs 3-7
3-31. Using the Zero Control 3-7
3-38. Using the Current Limit Control 3-7
3-41. Differential Voltmeter 3-8
3-42. Description 3-8
3-45. Operating Procedure. 3-8
3-47. Zeroing External Offset Voltages 3-9
3-49. Guarding 3-10
3-55. Voltmeter 3-12
3-56. Description 3-12
3-58. Operating Procedure 3-12
3-60. Amplifier 3-13
3-62. Power Amplifier. 3-13
3-67. Voltage Amplifier 3-13
SectionIV THEORY OF OPERATION 4-1
4-1. Modes of Operation 4-1
4-3. Standard 4-1
4-12. Differential Voltmeter 4-2
4-22. Voltmeter 4-3
4-24. Circuit Description 4-3
4-25. Lnput Circuits 4-3
4-34. Main Loop Voltage Feedback
Amplifier 4-4
4-83. Reference Loop 4-8
4-99. Meter Loop 4-9
Section IV (Cont' ${ }^{\prime}$) Page
4-115. Power Supplies 4-10
4-127. Chopper Neon Drivers 4-11
Section Page
V MAINTENANCE 5-1
5-1. Introduction 5-1
5-3. Required Test Equipment 5-1
5-5. Performance Tests 5-1
5-12. DC Standard Performance Test 5-2
5-25. Differential Voltmeter and High Impedance Voltmeter Perfor - mance Tests 5-6
5-34. Adjustment and Calibration 5-10
5-36. Meter Mechanical Zero Adjustment 5-10
5-38. Meter Chopper Frequency Adjustment (A8R3) 5-10
5-41. Main Loop Chopper Frequency Adjustment (A8R20) 5-12
5-44. Internal Zero Adjustment (A4R13) 5-12
5-46. Balance Adjustment (A4R6) 5-12
5-48. Meter Loop Adjustments 5-12
5-53. Standard Vernier Adjustment (A10R11) 5-13
5-55. Maximum Current Limit Adjustment (A10R8) 5-13
5-57. Internal Alignment Procedure 5-13
5-63. Voltage Set Drift Correction 5-15
5-69. Troubleshooting Procedure 5-17
5-72. Troubleshooting Trees 5-17
5-76. Loop Gain Check 5-28
5-78. Meter Loop Chopper Check 5-28
5-80. Main Loop Chopper Check 5-28
5-82. Repair Procedures 5-29
5-84. Replacement of Factory Selected Components 5-29
5-104. Servicing Etched Circuit Boards 5-30
5-106. Servicing Rotary Switches 5-30
5-109. Main Loop Feedback DividerReplacement (A9R4 throughA9R9)5-31
Section Page
VI REPLACEABLE PARTS 6-1
6-1. Introduction 6-1
6-4. Ordering Information 6-1
6-6. Non-Listed Parts 6-1
Section Page
VII CIRCUIT DIAGRAMS 7-1/7-2
7-1. Introduction $7-1 / 7-2$
7-3. Block Diagrams 7-1/7-2
7-5. Functional Diagram 7-1/7-2
7-7. Schematic Diagrams 7-1/7-2
7-9. Component Location Diagrams 7-1/7-2
Appendix
A CODE LIST OF MANUFACTURERSB SALES AND SERVICE OFFICESC BUILDING A DC CALIBRATION SYSTEM

LIST OF TABLES

Numbe		Page
1-1.	Specifications	1-0/1-1
1-2.	Accessory Equipment Supplied	1-2
1-3.	Accessory Equipment Available	1-2
3-1	Output Terminal Connections .	3-5
3-2.	ZERO Control Range	3-7
3-3.	Input Terminal Connections	3-9
3-4.	VM Mode RANGE and SENSITIVITY Settings	
3-5.	Input Terminal Connections	3-12
3-6.	Power Amplifier Output Voltage	3-13
3-7.	RECORDER OUTPUT Voltage Gain as a Function of RANGE and SENSITIVITY.	3-13
4-1.	Main Loop Gain Characteristics	4-1
4-2.	Main Loop Gain ($\triangle \mathrm{VM}$)	4-2
4-3.	Meter Loop Gain (\triangle VM and VM)	4-3
5-1.	Required Test Equipment.	

$\begin{array}{lr}\text { Number } & \text { Page } \\ 5-2 . \quad \text { DC Standard - Accuracy and Linearity } & \\ & 5-3\end{array}$
5-3. Output Noise and Hum Test Data 5-6
5-4. $\Delta \mathrm{VM}$ and VM Accuracy Test Data, 1 V - 1000 V 5-9
5-5. $\quad \Delta V M$ and VM Accuracy Test Data, $1 \mathrm{mV}-100 \mathrm{mV}$5-9
5-6. Changing the Padding Resistance with Jumper Wires 5-15
5-7. Changing the Padding Resistors 5-15
5-8. Preliminary Checks 5-16
5-9. Front Panel Troubleshooting . . . 5-17/5-18
5-10. Main Loop Troubleshooting . 5-21/5-22/5-23
5-11. Meter Loop Troubleshooting 5-25
5-12. Reference Loop Troubleshooting 5-27
6-1. Mechanical Parts 6-3
6-2. Replaceable Parts 6-16

LIST OF ILLUSTRATIONS

Numb	Page
1-1.	Model 740B DC Standard/Differential Voltmeter 1-0
3-1.	Output Voltage Accuracy, STD Mode . . 3-0
3-2.	Voltage Reading Accuracy, \triangle VM Mode . 3-0
3-3.	Front and Rear Panel Controls, Indicators and Comnectors. 3-2/3-3/3-4
3-4.	Local Sensing 3-6
3-5.	Remote Sensing 3-6
3-6.	Maximum Output Current Characteristics 3-8
3-7.	Sixth Digit \triangle VM 3-9
3-8.	Measurement Error Caused by AC Ground Currents 3-10
3-9.	Measurement Error Caused by DC Ground Currents 3-10
3-10	Guarding Against AC Ground Currents. . 3-11
3-11.	Guarding Against DC Ground Currents. . 3-11
5-1.	DC Standard Accuracy Test. 5-2
5-2.	Current Limit Test 5-4
5-3.	Load Regulation and Output Resistance Test 5-4
5-4.	RFI Test. 5-5
5-5.	Input Resistance Test. 5-6
5-6.	Superimposed AC Rejection Test. . . . 5-7
5-7.	AC Common Mode Rejection Test . . . $5 . .7$
5-8.	$\triangle V M$ and VM Accuracy Test, 1V-1000 V 5-8
5-9.	```\DeltaVM and VM Accuracy Test, 1mV - 100 mV 5-10```
5-10.	Meter Loop Chopper Waveshape 5-10
5-11.	Internal Adjustments and Test Points . 5-11
5-12.	Main Loop Chopper Waveshape 5-12
5-13.	Reference Supply Calibration 5-14
5-14.	Front Panel Troubleshooting Tree . . . 5-16
5-15.	Main Loop Troubleshooting Tree . 5-19/5-20
5-16.	Meter Loop Troubleshooting Tree . . . 5-24
7.	Reference Loop Troubleshooting Tree

Number Page
6-1. Mechanical Parts 6-2
7-1. DC Voltmeter and Differential Voltmeter Block Diagram 7-3/7-4
7-2. DC Standard Block Diagram 7-5
7-3. Functional and Component Location Diagram 7-6/7-7/7-8/7-9
7-4. Input and Output Cable Assemblies Schematic Diagram.7-10

7-5. Internal Alignment Schematic and Component Location Diagram
7-6. Meter Amplifier ($\mathrm{p} / \mathrm{o} A 2$) Schematic and Component Location Diagram 7-13/7-14
7-7. Low Level Amplifier (A3) Schematic and Component Location Diagram 7-15/7-16
7-8. Operational Filter and Differential Amplifier (A4) Schematic and Com ponent Location Diagram. 7-17/7-18
7-9. Pulse Width Converter, 20 kHz Clock and External Current Limit (A5) Schematic and Component Location Diagram

7-19/7-20
7-10. Guarded Power Supply (A6) Schematic and Component Location Diagram. 7-21/7-22
7-11. Power Switch Driver, Internal Cur rent Limit and Unguarded Power Supply (A7) Schematic and Component Location Diagram. 7-23/7-24
7-12. Chopper Neon Drivers (A8) Schematic and Component Location Diagram. 7-25/7-26
7-13. Oven Heater and 1 V Reference Supply (p/o A1, p/o A2, A13) Schematic and Component Location Diagram
$7-27 / 7-28$
7-14. Voltage Set and Sensitivity Switching
(S2, 54 thru S8) Schematic and
Component Location Diagram . . 7-29/7-30

Figure 1-1. Model 740B DC Standard/Differential Voltmeter

Table 1-1. Specifications

DC STANDARD

RANGES:

Output Voltage: 0 to 1000^{*} volts in 4 decade ranges with outputs as follows:

0 to 1.000000 volts in $1 \mu \mathrm{~V}$ steps
0 to 10.00000 volts in $10 \mu \mathrm{~V}$ steps
0 to 100.0000 volts in $100 \mu \mathrm{~V}$ steps
0 to 1000.000 volts in 1 mV steps
PERFORMANCE RATING:
Accuracy: $\pm(0.002 \%$ of setting $+0.0004 \%$ of range $)$ at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$, less than 70% relative humidity, constant load.
Stability: Rated accuracy is met after 1 hour warm-up period, with a 30 -day calibration cycle.
Short Term: 1 ppm of setting +0.5 ppm of range/hour; 5 ppm of setting +1 ppm of range/ day. (<100 volts output.)
Temp. Coefficient: Less than (2 ppm of setting or 1 ppm of range whichever is greater) per ${ }^{0} \mathrm{C} ; 10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.

OUTPUT CHARACTERISTICS:

Output Current: Current limiter continuously adjustable 5-50 mA nominal. Max. output current, 50 mA decreasing linearly to 20 mA at 1000 volts output.
Output Resistance: Less than (0.0002+0.0001 Eo) ohms at $\overline{D C}$.
Load Regulation: Less than ($0.0005 \%+10 \mu \mathrm{~V})$ change, no load to full load.
Line Regulation: Less than $\pm(0.0005 \%$ of setting $+0.0001 \%$ of range) for 10% line voltage change.

Noise and Hum: . 01 to 1 Hz : less than 1 ppm of range; 1 Hz to 1 MHz ; 100 dB below full scale or $100 \mu \mathrm{~V}$ rms, whichever is greater.

Output Terminals: Plus andminus output, plus and minus sense, circuitguard, and chassis ground. Banana jacks mounted on remote terminal box (Accessory 11055B, furnished). Outputand sense terminals are solid copper, gold flashed. A maximum of 500 Vdc may be applied between chassis ground and guard or circuit ground.
Zero Control Limits: $\pm 0.001 \%$ of range nom inal.
Readout: 5 digital display tubes indicate first 5 digits; meter displays 6 th digit.

DC DIFFERENTIAL VOLTMETER

Voltage Ranges: 1 mV to $1000 \mathrm{~V}^{*} \mathrm{DC}$ in 7 decade ranges.
Resolution: Null ranges give full scale indication of $\pm 0.01 \%$ of range. Max. resolution 1 ppm at full scale. Max. usable null sensitivity: $1 \mu \mathrm{~V}$ full scale.

PERFORMANCE RATING:

Accuracy: $\pm(0.005 \%$ of reading $+0.0004 \%$ of range $+1 \mu \mathrm{~V}$) at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$, less than $70^{\circ} \%$ relative humidity.
Stability: Ratedaccuracy is met after a 1 hour warm-up period, with a 30 -day calibration cycle.
Short-term: $1 \mathrm{ppm} / \mathrm{hr} ., 5 \mathrm{ppm} /$ day exclusive of zero drift. (-100 volts input.)
Zero stability: (1ppm of range : $2 \mu \mathrm{~V}$)/day.
Temp. Coefficient: Less than $\pm(2 \mathrm{ppm}$ of reading $+1 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Line Regulation: Less than \pm (0.001% of readings $+2 \mu \mathrm{~V})$ change for 10% line voltage change.

SECTION I
 GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This section contains general information about the Model 740B DC Standard/Differential Voltmeter.

1-3. DESCRIPTION.

1-4. The Hewlett-Packard Model 740B is a precision multifunction instrument that operates as a dc standard voltage source, a dc differential voltmeter, a
high impedance dc voltmeter and a dc power and voltage amplifier. The instrument is designed for use in both the standards laboratory and the field.

1-5. DC STANDARD.

1-6. When used as a dc standard, the Model 740B provides output voltages from 0 to 1000 V in 4 decade ranges: $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V . The output voltage on each range can be set with 6 -digit resolution.

Table 1-1. Specifications (Cont'd)

> INPUT CHARACTERISTICS:
> Input Resistance: $>10^{10}$ ohms 100 mV to 1000 V ranges.
> $>10^{9}$ ohms on 10 mV range.
> $>10^{8} \mathrm{ohms}$ on 1 mV range.
> Independent of null condition.
> Superimposed AC Noise Rejection: Less than 0.001% error for ac voltages above 60 Hz equal to DC signal ($25 \mathrm{~V} \mathrm{rms} \mathrm{max}$. .).
> Effective AC Common Mode Rejection: >120 dB at 60 Hz with $1 \mathrm{k} \Omega$ unbalance.
> Input Terminals: Plus, minus, guard, and chassis ground; Banana jacks mounted on remote terminal Box. Plus and minus terminals are solid copper, goldflashed. 500 Vdc maximum may be connected between chassis ground and guard or circuit ground.

HIGH IMPEDANCE VOLTMETER

Voltage Ranges: $1 \mu \mathrm{~V}$ to 1000^{*} volts end scale in 10 zerocentered ranges. ($1 \mu V$ to 1 mV ranges obtainedby using null sensitivity pushbuttons.)

PERFORMANCE RATING:

Accuracy: $\pm(2 \%$ of end scale $+0.1 \mu \mathrm{~V})$.

INPUT CHARACTERISTICS:
Input Resistance: $>10^{10}$ ohms 100 mV to 1000 V ranges.
$>10^{9}$ ohms on 10 mV range.
$>10^{8} \mathrm{ohms}$ on $1 \mu \mathrm{~V}$ to 1 mV ranges.
Zero Control Limits: $\pm 10 \mu \mathrm{~V}$ nominal.
Zero Drift: Less than $2 \mu \mathrm{~V}$ per day after 30 minute warm-up.
Superimposed AC Rejection: Ac voltages above $60 \mathrm{~Hz} ; 60 \mathrm{~dB}$ greater than end scale affects reading less than $2 \%(25 \mathrm{~V} \mathrm{rms}$ max. $)$.

RECORDER OUTPUT

Adjustable 0 to $\pm 1 \mathrm{Vdc}$ at 1 mA for end scale meter indication. Recorder negative terminal common with input negative terminal.

AMPLIFIER

Voltage Gain: Recorder Output: 120 dB max. Output terminals:
60 dB on 1 mV range
40 dB on 10 mV range
20 dB on 100 mV range
Unity on 1 V to 1000 V ranges
Performance Rating: (output terminals)
Gain Accuracy: $\pm(0.001 \%+5 \mathrm{ppm}$ of range + $2 \mu \mathrm{~V})$ referred to input.
Linearity: $\pm 0.002 \%$ on any range. (1 mV and above)
Output Current: Same as DC Standard.
Bandwidth: DC to 0.2 Hz .
Input Resistance: Same as $\triangle V M$.
Line Regulation: Less than 0.0005% of reading $+2 \mu \mathrm{~V}$ referred to in put for 10% line voltage change.
Noise: . 01 Hz to 1 Hz (referred to input) $<.5$ $\mu \mathrm{V} \mathrm{pk}$ - pk at $60 \mathrm{~dB}<1.0 \mu \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ at 40 dB gain. $<3 \mu \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ at 20 dB gain. Unity gain ($1 \mu \mathrm{~V}$ range and above) same as DC Standard.
1 Hz to 1 MHz : 1 V to 1000 V ranges: same as DC Standard. Below 1 V range: $100 \mu \mathrm{~V}$ RMS.

GENERAL

Operating Temperature: $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
Storage Temperature: $-40^{\circ} \mathrm{C}$ to $-65^{\circ} \mathrm{C}$.
RFI: Meets MIL Spec. 6181D. **
Power Supply: $115 / 230 \mathrm{Vac}=10 \%, 50 \mathrm{~Hz}$ to $1000 \mathrm{~Hz}, 125$ watts max.

* A maximum of -500 Vdc with respect to line ground can be applied to or obtained from the -hp- Model 740B.
** Positive or negative output terminals of the output box (-hp-11055B) comected to chassis, and guard and chassis terminals of the input box (-hp-11054A) connected together.

The output voltage is accurate to within $\pm(0.002 \%$ of setting -0.0004% of range). Output voltage is indicaied on digital readout iubes (first five digits) and the meter (sixth digit). Maximum output current is 50 mA on the 1 V range decreasing linearly to 20 mA at full output voltage on the 1000 V range. The front panel CURRENT LIMIT control allows adjustment of the maximum output current from approximately 10% to 100% of the available output current at each voltage setting. Remote sensing allows the output voltage to be regulated at the load, eliminating the effects of lead resistance. The output circuit is floating and guarded. A pushbutton switch allows the output voliage to be switched on and off without resetting the voltage dials.

i-7 DIFFERENTIAL VOLTMETER.

1-8. Used as a differential voltmeter, the Model 740 B measures de voltage on seven decade ranges from 1 mV to 1000 V . Voltage measurements are ac curatewithin.$(0.005 \%$ of reading $+0.0004 \%$ of range $\because 1 \mu \mathrm{~V})$. The measured voltage is indicated on five digital readout tubes (first five digits) and the meter (sixth digit). High input resistance (:-1010 s? on all ranges above 10 mV) is maintained regardless of whether or not the voitage dials are nulled. The input circuit is floating and guarded, allowing accurate measurements to be made under conditions where ground loops are a problem.

1-9. HIGH IMPEDANCE VOLTMETER.

1-10. The Model 740 B can also be used as a $\pm 2 \%$ floating and guarded de voltmeter with 10 voltage ranges from $1 / / \mathrm{V}$ to 1000 V . Input resistance is $>10^{10} \Omega$ on all ranges above 10 mV The measured voltage is indicated on the meter.

1-11. AMPLIFIER.

1-12. The Model 740B canbe used as a de power amplifier in the Volimeter and Differential Voltmeter modes of operation by connecting the source to the input terminals and taking the output from the output terminals. Voltage gain is unity on the 1 V range and higher, but increases in 20 dB steps on the lower ranges to a maximum of 60 dB on the 1 mV range. Output current characteristics are the same as the DC Standard mode and the high input resistance characteristics of the Voltmeter and Differential Voltmeter modes are retained. Voltage gainaccuracy is $\pm(0.01 \%$ +5 ppm of range $-2 \mu \mathrm{~V})$.

1-13. The Model 740 B can also be used as a voltage amplifier in the Voltmeter and Differential Volmeter modes with up to 120 dB of voltage gain available at the rear panel RECORDER OUTPUT terminals. Voltage at these terminals is directly proportional to meter deflection and is 0 to $\pm 1 \mathrm{~V}$ on all ranges, $1 \mu \mathrm{~V}$ to 1000 V .

1-14. INTERNAL ADJUSTMENT.

1-15. An internalbridging arrangement, requiring no external equipment, allows resistors in the first and second decades and the range divider to be ratio matched to compensate for long term aging effecis. The front panel meter serves as a bridge null indi-
cator and an internal alignment switch sets up the bridge. A total of 12 adjustments match the resistors. The only other adjustment affecting basic instrument accuracy can easily be made with a standard cell or other known voltage source. The internal aligment procedure is outlined on the instrument internal guard cover and described in detaid in Section V of this manual

1-16. SPECISICATION:

1-17. Table 1-1 lists the specifications for the Model 740 B . Specifications are listed by instrument iunction. Those specifications listed with a function apply to that function only.

1-18. INSTRUMENT IDENTIFICATION.

1-19. Hewlett-Packard uses a two-section eight-digit serial number (000-00000). If the first three digits of the serial number on your instrument do not asree with those on the title page of this manual, a Manual Change Sheet supplied with this manual will define differences between your instrument and the Model 740 B described in this manual. If a letter prefixes the serial number, the instrument was manufactured out side the United States.

1-20. ACCESSORY EQUIFMENT SUPPLIED.

1-21. The accessory cquipment supplied with the Model 740B is listed in Table 1-2.

Table 1-2. Accessory Fquipment Supplied

-hp-Part No.	Quantity	Description
11054 A	1	Input Cable Assembly
11055 B	1	Output Cable Assembly
$5000-4932$	1	Printed Circuit Board Extractor
$5060-0776$	1	7 inch Rack Mounting Kit
$8120-0078$	1	AC Power Cord
$00740-66535$	1	Printed Circuit Board Extencler
$00740-90002$	1	Operating and Servicc Manual

1-22. ACCESSORY EQUIPMENT AVAILABLE.

1-23. Accessory equipment available for the Model 740B is listed in Table 1-3.

Table 1-3. Accessory Equipment Availalle

-hp-Part No.	Description
11000 A	Test Cable: dual banana plug to dual banana plug (44 in.$)$
11002 A	Test Cable: dual banana plus to alligator clips (60 in.$)$
11003 A	Test Cable: dual banana pllug to probe and alligator clip (60 in.)

SECTION II
 INSTALLATION

2-1. INTRODUCTION.

2-2. This section contains information on preparing the Model 740B for use and repackaging the instrument for shipment.

2-3. INITIAL INSPECTION.

$2-4$. This instrument was carefully inspected both mechanically and electrically before shipment. It should be physically free of mars or scratches and in perfect electrical order upon receipt. To confirm this, the instrument should be inspected for physical damage that occurred in transit. If the instrument was damaged in transit, file a claim with the carrier. Check for supplied accessories, and test the electrical performance of the instrument using the procedure outlined in Paragraph 5-5. If there is damage or deficiency, see the warranty on the inside front cover of this manual.

2-5. POWER REQUIREMENTS.

2-6. The Model 740B can be operated from any source of 115 or 230 volts ($\pm 10 \%$), at 50 to 1000 Hz . With the instrument disconnected from the ac power source, move the slide switch (located on the rear panel) until the desired line voltage appears. Power dissipation is 125 watts maximum.

2-7. GROUNDING REQUIREMENTS.

$2-8$. To protect operating personnel, the National Electrical Manufacturers' Association (NEMA) recommends that the instrument panel and cabinet be grounded. This instrument is equipped with a threeconductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable three-prong connector is the ground wire.

2-9. To preserve the protection feature when operating the instrument from a two-contact outlet, use a threeprong to two-prong adapter and connect the green pigtail on the adapter to ground.

2-10. INSTALLATION.

2-11. The Model 740B is fully transistorized; therefore, no special cooling is required. However, the instrument should not be operated where the ambient temperature exceeds $+40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or the relative humidity exceeds 70%.

2-12. BENCH MOUNTING.

2-13. The Model 740B is shipped with plastic feet and tilt stand in place, ready for use as a bench instrument.

2-14. RACK MOUNTING.

2-15. The Model 740B may be rack mounted by using the 7" Rack Mount Kit (-hp- Part No. 5060-0776). Instructions for the conversion are included with the kit. The rack mount for the Model 740B is an EIA standard width of 19 inches. When mounted in a rack using the rack mount kit, additional support at the rear of the instrument should be provided if vibration or similar stress is likely.

2-16. REPACKAGING FOR SHIPMENT.

2-17. The following paragraphs contain a general guide for repackaging of the instrument for shipment. Refer to Paragraph 2-18 if the original container is to be used; 2-19 if it is not. If you have any questions, contact your local -hp- Sales and Service Office. (See Appendix B for office locations.)

$$
\begin{aligned}
& \hline \text { NOTE - } \\
& \text { If the instrument is to be shipped } \\
& \text { to Hewlett-Packard for service or } \\
& \text { repair, attach a tag to the instru- } \\
& \text { ment identifying the owner and in- } \\
& \text { dicating the service or repair to be } \\
& \text { accomplished; include the model } \\
& \text { number and full serial number of } \\
& \text { the instrument. In any corres- } \\
& \text { pondence, identify the instrument } \\
& \text { by model number and serial number. }
\end{aligned}
$$

2-18. If original container is to be used, proceed as follows:
a. Place instrument in original container with appropriate packing material. If original container is not available, one can be purchased from your nearest -hp-Sales and Service Office.
b. Ensure that container is well sealed with strong tape or metal bands.

2-19. If original container is not to be used, proceed as follows:
a. Wrap instrument in heavy paper or plastic before placing in an inner container.
b. Place packing material around all sides of instrument and protect panel face with cardboard strips.
c. Place instrument and inner container in a heavy carton or wooden box and seal with strong tape or metal bands.
d. Mark shipping container with 'DELICATE INSTRUMENT," "FRAGILE," etc.

Figure 3-1. Output Voltage Accuracy, STD Mode

3-1. INTRODUCTION.

3-2. This section contains instructions and information on operating the Model 740B. Included is a discussion of the accuracy specifications, operating precautions, identification of controls, indicators and connectors and step-by-step operating instructions for each instrument function.

3-3. ACCURACY SPECIFICATIONS.

3-4. When operated as a dc standard, the Model 740B accuracy specification is: $\pm(0.002 \%$ of setting $+0.0004 \%$ of range). The differential voltmeter accuracy specification is $\pm(0.005 \%$ of reading $+0.0004 \%$ of range + $1 \mu \mathrm{~V})$. The instrument should operate within these limits providing it hasbeen calibratedwithin the past 30 days and is operated at the ambient temperature present at the time of calibration. If operated at a different ambient temperature, the accuracy specifications should be derated according to the following:
a. Standard Mode Temperature Coefficient: Less than (2 ppm of setting or 1 ppm of range, whichever is greater) per ${ }^{\circ} \mathrm{C} ; 10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.

Example: Normal allowable accuracy deviation for a 1 V output on the 1 V range is $\pm 24 \mu \mathrm{~V}(0.002 \%$ of setting $+0.0004 \%$ of range). If the ambient temperature differs by $5^{\circ} \mathrm{C}$ from the ambient temperature at the time of calibration, the allowable accuracy deviation becomes $\pm 34 \mu \mathrm{~V}$ for the 1 V output (original deviation of $24 \mu \mathrm{~V}$ plus the TC correction factor of $10 \mu \mathrm{~V}$).
b. Differential Voltmeter Mode Temperature Coefficient: Less than \pm (2 ppm of reading + $1 \mu \mathrm{~V}$) per ${ }^{\circ} \mathrm{C} ; 10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.

Example: Normal allowable accuracy deviation for a 1 V reading on the 1 V range is $\pm 55 \mu \mathrm{~V}(0.005 \%$ of reading $+0.0004 \%$ of range $+1 \mu \mathrm{~V}$). If the ambient tem perature differs by $5^{\circ} \mathrm{C}$ from the ambient temperature at the time of calibration, the allowable accuracy deviation becomes $\pm 70 \mu \mathrm{~V}$ for the 1 V reading (original deviation of $55 \mu \mathrm{~V}$ plus the TC correction factor of $15 \mu \mathrm{~V}$).

3-5. Figure 3-1 shows how the output voltage accuracy in Standard Mode varies with percentage of range.

Notice that the output accuracy at 100% of range is $\pm 0.0024 \%$ (24 ppm). However, as the magnitude of the output decreases with respect to full scale, theaccuracy decreases. At 10% of range, the accuracy is $\pm 0.006 \%(60 \mathrm{ppm})$ of setting. At 1% of range, the accuracy decreases to $\pm 0.042 \%$ (420 ppm) of setting. Whenever optimum accuracy is desired, the Model 740B should be operated as near full scale as possible.

3-6. Figure 3-2 shows how the voltage reading accuracy in Differential Voltmeter Mode varies with percentage of range. Again, greatest accuracy is achieved at 100% of range. Separate curves show the accuracy characteristics on the millivolt ranges. The accuracy decreases on each descending millivolt range due to the effects of signal noise on low level dc inputs. Inputs of 1 mV and below are measuredwith nearly the same accuracy on the 1 mV and 10 mV ranges. A 1 mV input, for example, would be measured with an accuracy of $\pm 0.105 \%$ of reading on the 1 mV range and $\pm 0.11 \%$ of reading on the 10 mV range. However, measurement resolution (the capability of detecting small changes in the input) wouldbe ten times greater on the 1 mV range.

3-7. OPERATING PRECAUTIONS.

3-8. The following precautions should be observed whenever using the Model 740B.
a. BEFORE APPLYING POWER TO THE MODEL 740B, VERIFY THAT THE REAR PANEL LINE VOLTAGE SWITCH INDICATES THE LINE VOLTAGE TO BE USED.
b. DONOT FLOAT -INPUT OR -OUTPUT TERMINAL MORE THAN 500 VDC ABOVE OR BELOW CHASSIS (POWERLINE) GROUND.
c. DISCHARGE INPUT BY MOMENTARILY SETTING INPUT Z SWITCH (ON INPUT BOX) TO 2 MEG POSITION FOLLOWING ALL HIGH VOLTAGE MEASUREMENTS.

3-9. CONTROLS, INDICATORS AND CONNECTORS.

3-10. Each operating control, indicator and connector located on the Model 740B is identified in Figure 3-3. The description of each component is keyed to the illustrations which are included within the figure.

Figure 3-3. Front and Rear Panel Controls, Indicator's and Connectors

INDEX NO.	NAME	FUNCTION
7	OVERLOAD Indicator 10	Indicates an input voltage in excess of the selected range in the Differential Voltmeter and DC Volt meter modes of operation; indicates the selected current limit has been exceeded in the DC Stan- dard mode of operation; may light momentarily when RANGE, FUNCTION or VOLTAGE SET is
changed to indicate circuit instability.		

Figure 3-3. Front and Rear Panel Controls, Indicators and Connectors (Cont'd)

INDEX NO.	NAME	FUNCTION
21 22 23 24	+ and - OUTPUT Terminals Ground ($\stackrel{\perp}{=}$) Terminal + and - SENSE Terminals HIGH VOLTAGE Indicator	Accept leads for application of output voltage to remote location. Accepts lead for connecting to power line ground. This terminal and the instrument case are connected to power line ground through the center conductor of the power cord. Accept leads for remote sensing of output voltage. When not using remote sensing, the + SENSE terminal is shorted to the + OUTPUT terminal and the - SENSE terminal is shorted to the - OUTPUT terminal. Lights to indicate presence of high voltage (>120 Vdc) at the OUTPUT terminals.
INDEX NO.	NAME	FUNCTION
25 26 27 28 29 30	AC Fuses AC Power Connector Line Voltage Two-Position Slide Switch DC Fuse RECORDER AMPLITUDE Adjustment RECORDER OUTPUT +, - and $\stackrel{\perp}{\perp}$ Terminals	Protect Primary Power Circuitry. Accepts power cable supplied with the instrument. Sets the instrument for either 115 Vac or 230 Vac operation. Protects internal - 42 V supply. Variable attenuator which enables adjustment of RECORDER OUTPUT voltage. Provide output voltage proportional to meter deflection for recorder applications.

Figure 3-3. Front and Rear Panel Controls, Indicators and Connectors (Cont'd)

3-11. DC STANDARD.

3-12. DESCRIPTION.

3-13. In Standard mode, the Model 740B amplifies an internally generated reference voltage. The VOLTAGE SET switches operate a voltage divider that varies the reference supply output. The reference supply output (0 to 1 V) is applied to the main loop amplifier where it is amplified by 0 dB (1 V range), 20 dB (10 V range), 40 dB (100 V range) or 60 dB (1000 V range). The gain of the amplifier is determinedby the position of the RANGE switch. The amplifier output voltage $(0-1000 \mathrm{~V})$ is applied to the + and - OUTPUT terminals when the OUTPUT pushbutton/indicator is lighted. The + and - SENSE terminals provide voltage feedback to the main loop amplifier and ensure proper voltage regulation. The CURRENT LIMIT control varies the maximum available output current. The OVERLOAD indicator lights whenever the output current exceeds the setting of the CURRENT LIMIT control. The ZERO control is used to zero the amplifier output or to null out the effects of small external offset voltages. The output voltage is indicated directly on the digital readout tubes (first five digits) and the meter (sixth digit). The decimal point is automatically placed.

3-14. OPERATING PROCEDURE.

3-15. To operate the Model 740B in Standard mode, proceed as follows:
a. Set rear panel LINE VOLTAGE switch to correct position for available line voltage.
b. Connect ac power cord to ac power connector; connect cord plug to ac line.
c. Turn on the Model 740B by depressing the POWER pushbutton (indicator glows). Allow the instrument to warm up for one hour.
d. Set FUNCTION to STD.
e. Check OUTPUT indicator. If glowing, depress to turn output off.
f. Connect output cable assembly (-hp- Model 11055B) to OUTPUT Receptacle.
g. Connect output box terminals for the output condition desired, using the information in Table 3-1.

NOTE

1. Make sure all connections are tight. Use insulated solid copperwirefor all leads. + and OUTPUT leads should be 20 gauge or larger.
2. Sensing is explained in Paragraph 3-16.
3. Guarding is explained in Paragraph 3-24.
4. Negative outputs are explained in Paragraph 3-26.
h. Set RANGE to range nearest above desired output voltage.

——— NOTE-

1. The $1 \mathrm{mV}, 10 \mathrm{mV}$ and 100 mV ranges are inoperative in STD mode. OVERLOAD indicator will glow if these ranges are selected.
2. OVERLOAD light may also glow temporarily when RANGE, FUNCTION or VOLTAGE SET controls are changed to indicate temporary loop instability.
i. Set ZERO control for desired output zero reference. (See Paragraph 3-31 for a detailed discussion on using the ZERO control.)

Table 3-1. Output Terminal Connections

$\begin{gathered} \text { TYPE } \\ \text { OF } \\ \text { OUTPUT } \end{gathered}$	CONNECT OUTPUT TERMINALS					
	+ OUTPUT	- OUTPUT	+ SENSE	- SENSE	GUARD	$\stackrel{1}{ \pm}$
Local output, unguarded	Directly to load	Directly to load	$\begin{gathered} \text { To + } \\ \text { OUTPUT } \end{gathered}$	To OUTPUT	To OUTPUT	Not Connected
Remote output, unguarded	To load via a test cable	To load via a test cable	To load + via a test cable	To load - via a test cable	To OUTPUT	Not Connected
Local output, guarded	Directly to load	Directly to load	$\begin{gathered} \text { To + } \\ \text { OUTPUT } \end{gathered}$	To OUTPUT	To load guard	Not Connected
Remote output, guarded	To load via a test cable	To load via a test cable	To load + via a test cable	To load - via a test cable	To load guard	Not Connected

j. Set VOLTAGE SET control for first five digits of desired output voltage as indicated by the digital readout tubes. Set STANDARD VERNIER control for sixth digit of output voltage as indicated by the meter.

Each integer of the sixth digit is represented by one major division on the meter.
k. Set CURRENT LIMIT control to desired maximum limit of output current. (See Paragraph 3-38 for a detailed discussion on using the CURRENT LIMIT control.)

1. Depress OUTPUT pushbutton. OUTPUT indicator glows to indicate application of output voltage to load.
m . To remove output voltage, depress OUTPUT pushbutton. Indicator light goes out to indicate removal of output voltage from OUTPUT terminals.

WARNING

ALWAYS DE-ENERGIZE OUTPUT OR SET VOLTAGE SET AND STAN DARD VERNIER CONTROLS TO ZERO WHEN MAKING CHANGES IN THE OUTPUT TERMINAL CONNECTIONS.

3-16. SENSING.

3-17. The purpose of the SENSE terminals is to furnish voltage feedback from the load to the main loop amplifier. If current is being drawn from the OUTPUT terminals, small voltage drops occur in the output leads since they are not perfect conductors. This results in slightly low voltage at the load. If the SENSE leads are connected to the load, this low voltage condition is "sensed" by the main loop amplifier. The amplifier then increases its output voltage to com pensate for the voltage drop in the output leads. Voltage drop in the SENSE leads is insignificant, since very little current flows in these leads.

3-18. LOCAL SENSING.

3-19. Local serising can be used whenever the operating conditions require little or no current from the 740B output or when the load is connected directly (through very short leads) to the output box terminals.

3-20. Local sensing is accomplished by connecting the + SENSE terminal to the + OUTPUT terminal and connecting the - SENSE terminal to the - OUTPUT terminal (Figure 3-4). The connections should be made with short conductors, preferable solid copper wire.

Figure 3-4. Local Sensing

3-21. REMOTE SENSING.

3-22. Remote sensing should be used whenever the 740B is delivering current to a load and whenever the load is away from the output terminal box.
$3-23$. Remote sensing is accomplished by connecting the + and - SENSE terminals to the load using extension leads. The + SENSE terminal must be connected to the + end of the load and the - SENSE ter minal must be connected to the - end of the load (Figure 3-5).

Figure 3-5. Remote Sensing
Either local or remote sensing
must be used at all times in
Standard mode.

3-24. GUARDING.
3-25. The output cable GUARD terminal is connected to the Model 740B guard chassis and may be used to reference the guard chassis to a desired potential. Normally the GUARD terminal is connected to the - OUTPUT terminal using the strap attached to the GUARD terminal. The GUARD terminal may, however, be connected to a reference potential or guard terminal in the load to reduce the effects of unequal ground potentials, stray ac pickup, etc.

3-26. NEGATIVE OUTPUTS.

3-27. FLOATING.

3-28. Negative output voltage not referenced to earth ground is obtained by connecting the + OUTPUT and + SENSE terminals to the high (least negative) side of the load and connecting - OUTPUT and - SENSE to the low (most negative) side of the load. The INPUT and OUTPUT $\stackrel{\perp}{=}$ terminals must not be connected to any of the other terminals.

3-29. GROUNDED.

3-30. Negative outputs referenced to earth ground are obtained by connecting the + OUTPUT and + SENSE leads to the ground reference point in the circuit under test. The 740B then drives the - OUTPUT and - SENSE leads negative with respect to the ground reference. Again, the INPUT and OUTPUT $\stackrel{\perp}{=}$ terminals must not be connected to any of the other terminals.

DO NOT FLOAT - OUTPUT TERMINAL MORE THAN 500 V ABOVE OR BELOW EARTH GROUND ($\stackrel{\perp}{=}$).

3-31. USING THE ZERO CONTROL.

3-32. In Standard mode, the ZERO control sets the output voltage zero reference. The ZERO control range of adjustment varies with the voltage range selected (Table 3-2).

Table 3-2. ZERO Control Range

Model 740B Voltage Range	ZERO Control, Approximate Range of Adjustment
1 V	$\pm 10 \mu \mathrm{~V}$
10 V	$\pm 100 \mu \mathrm{~V}$
100 V	$\pm 1 \mathrm{mV}$
1000 V	$\pm 10 \mathrm{mV}$

3-33. The ZERO control may be used to set the output to exactly zero volts or to null the effects of small dc offset voltages existing in a test setup. Offset voltage is present if the load (divider, potentiometer, etc.) produces a small voltage with no apparent drive voltage applied. Such voltages are usually produced when contact is madebetween dissimilar metals, temperature gradients exist in a test setup, etc.

3-34. SETTING THE OUTPUT TO ZERO.

$3-35$. To set the output voltage zero reference to 0 V , proceed as follows:
a. Set 740B FUNCTION to STD, RANGE to the desired range, VOLTAGE SET and STANDARD VERNIER to zero and OUTPUT on.
b. Connect a sensitive dc null detector across the + and - OUTPUT terminals.
c. Set null detector range to obtain an off-null indication.
d. Set 740B ZERO control to obtain a null indication.
e. Disconnect null detector.

The ZERO control setting varies slightly from range to range. Readjust ZERO control each time RANGE is changed.

3-36. NULLING EXTERNAL OFFSETS.

$3-37$. To null the effects of external dc offset voltage; proceed as follows:
a. Set 740B FUNCTION to STD, RANGE to the desired range, VOLTAGE SET and STANDARD VERNIER to zero and OUTPUT on.
b. Connect the OUTPUT terminals to the load.
c. Connect a sensitive null detector across the load (or across the reference leg of the load).
d. Set null detector range to obtain an off-null indication.
e. Set 740B ZERO control to obtain a null indication.

The ZERO control setting varies slightly from range to range. Readjust ZERO control each time RANGE is changed.

3-38. USING THE CURRENT LIMIT CONTROL.

3-39. Maximum output current available at the OUTPUT terminals depends on both the value of the output
voltage and the setting of the CURRENT LIMIT control. With the CURRENT LIMIT control set to maximum (fully cw), the maximum output current varies from 50 mA at voltage outputs less than 1 V to 20 mA for a 1000 V output (Figure 3-6). When the CURRENT LIMIT control is set to minimum (fully ccw) the maximum output current varies from 5 mA (less than 1 V output) to 2 mA (1000 V output). These figures and the values represented in Figure 3-6 should be regarded only as typical, since the current limit circuit is affected by temperature and the setting of the maximum current limit adjustment (A10R8).

Figure 3-6. Maximum Output Current Characteristics

3-40. Since the setting of the CURRENT LIMIT control corresponds to different current values at different voltage outputs, accurate setting of the CURRENT LIMIT control can be accomplished only at the desired voltage output. The following procedure can be used to set the CURRENT LIMIT control to limit output current to a specific value.
a. Calculate the load resistance value needed to draw the desired output current at the desired output voltage:

$$
R_{\text {load }}=\frac{E_{\text {out }}}{I_{\text {desired }}}
$$

b. Calculate the load resistance power rating:

$$
\text { Power rating }=I_{\text {desired }} \times E_{\text {out }}
$$

c. Connect a resistor meeting the requirements of a and b across the Model 740B + and OUTPUT terminals.
d. Turn CURRENT LIMIT control fully ccw .
e. Set Model 740B for the desired output voltage. Turn Output on. (OVERLOAD light will glow.)
f. Rotate the CURRENT LIMIT control slowly cw until the OVERLOAD light just goes out. The Model 740B will now limit current at the desired current value.

3-41. DIFFERENTIAL VOLTMETER.

3-42. DESCRIPTION.

3-43. In the Differential Voltmeter mode, the 740B measures the input voltage by nulling feedback voltage from the main loop amplifier with an internally generated reference voltage. The value of the reference voltage is controlled by a voltage divider operated by the VOLTAGE SET controls. The meter indicates the differencebetween the reference voltage and the feedback voltage. The SENSITIVITY pushbuttons control the meter sensitivity; and moving left to right depressing each successive pushbutton, increases the meter sensitivity by a factor of 10 . The ZERO control sets the input zero reference. The OVERLOAD indicator lights whenever the input voltage exceeds the selected range and may also light temporarily whenever RANGE, FUNCTION or VOLTAGE SET is changed. The input voltage is indicated directly on the digital readout tubes (first five digits) and the meter (sixth digit). The decimal point is automatically placed.

3-44. High input impedance is maintained at all times regardless of null condition. An off-null condition does not load the voltage source being measured.

3-45. OPERATING PROCEDURE.

3-46. To make a differential measurement, proceed as follows:
a. Set rear panel LINE VOLTAGE switch to cor rect position for available line voltage.
b. Connect ac power cord to ac power connector; connect cord plug to ac line.
c. Turn on the Model 740B by depressing the POWER pushbutton (indicator glows). Allow the instrument to warm up for one hour.
d. Set FUNCTION to $\triangle V M$.
e. Check OUTPUT indicator. If glowing, depress to turn Output off.
f. Connect Input Cable Assembly (-hp-11054A) to INPUT receptacle. Set INPUT Z switch to ∞.
g. Set RANGE to the range nearest above voltage to be measured.
h. Set VOLTAGE SET controls to zero (all fully ccw).
i. Connect a shorting wire from + to - INPUT terminals.
j. Depress $\mathrm{X} 10^{4}$ SENSITIVITY. (If 1 mV range is selected, depress $X 10^{3}$ SENSITIVITY.)

Table 3-3. Input Terminal Connections

TYPE OF	CONNECT INPUT TERMINALS			
	+	-	GUARD	上
Unguarded	To high (most positive) of source	To low (most negative) of source	To - terminal	Not Connected
Guarded	To high (most positive) of source	To low (most negative) of source	To reference potential of source	Not Connected

k. Adjust ZERO if necessary to obtain a zero meter indication.

—— NOTE

The ZERO control has the greatest effect on the lower ranges and no noticeable effect on the 100 V and 1000 V ranges. Paragraph 3-47 explains how to cancel the effects of small offset voltages with the ZERO control.

1. Depress X1 SENSITIVITY and remove short from input terminals.
m . Connect input box terminals for the type of measurement desired using the information in Table 3-3.
2. Make sure all terminals are tight. Use insulated solid copper wire for all leads.
3. When measuring the voltage drop across a current carrying load, be careful to connect the + and - INPUT leads directly to the load and not to the current supply wires. Voltage drop along the current carrying wires can cause a significant mea surement error.
4. Paragraph 3-49 explains guarded measurements.
n. Meter should indicate between +0.1 and +1.0 . If necessary, change setting of RANGE switch until a reading of +0.1 to +1.0 is obtained.
o. Turn X1 VOLTAGE SET clockwise until the meter deflection is between 0 and +0 . 1. Each step of the VOLTAGE SET switch changes the meter deflection by one major scale division.
p. Depress X10 SENSITIVITY and turn the corresponding VOLTAGE SET control cw to obtain a meter reading between 0 and +0.1 .
q. Repeat step p for $\mathrm{X} 10^{2}, \mathrm{X} 10^{3}$ and $\mathrm{X} 10^{4} \mathrm{SEN}$ SITIVITY buttons and VOLTAGE SET controls.
r. Read the first five digits from the digital readout tubes; sixth digit from the meter (Figure 3-7).

Figure 3-7. Sixth Digit $\Delta V M$

A full scale input (1 V on the 1 V range, for example) is indicated by the digital readout tubes indicating 9-9-9-9-9 (first five digits) and the meter indicating 10 (sixth digit).
s. Before removing leads from device under test, depress X1 SENSITIVITY.

$$
\begin{aligned}
& \text { THE 740B INPUT SHOULD BE } \\
& \text { DISCHARGED FOLLOWING ALL } \\
& \text { HIGH VOLTAGE MEASUREMENTS } \\
& \text { TO PREVENT CARRYING THE } \\
& \text { STORED CHARGE TO THE NEXT } \\
& \text { POINT OF MEASUREMENT. }
\end{aligned}
$$

t. Remove leads from device under test or deenergize voltage source and place INPUT Z switch to 2 Meg position to discharge Model 740 B input. Return INPUT Z switch to ∞ after discharging input.

3-47. ZEROING EXTERNAL OFFSET VOLTAGES.

3-48. Quite often small offset voltages exist in a test setupas a result of contact between dissimilar metals, thermals, etc. Offset voltage is present if a test setup produces a voltage with no apparent drive volt age applied. The effects of offset voltage up to approximately $\pm 10 \mu \mathrm{~V}$ can be eliminated by the following procedure:

Figure 3-8. Measurement Error Caused by AC Ground Currents
a. Connect + and - INPUT terminals to circuit under test. Do not turn on circuit or apply drive voltage.
b. Set 740B RANGE to 1 mV ; depress X10 ${ }^{3}$ SENSITIVITY.
c. Adjust ZERO control for a zero meter indication.

NOTE

If the resistance connected between the + and - INPUT terminals is greater than $10 \mathrm{k} \Omega$, this adjustment maybe difficult due to stray voltage pickup caused by electrostatic charges, low humidity, etc.

3-49. GUARDING.
3-50. The Model 740B is a floating instrument; however, a finite impedance exists from the - INPUT terminal (circuit ground) to earth ground ($\underset{\equiv}{\perp}$). This impedance is representedby Z_{1} and Z_{2} in Figure 3-8.

3 -51. Induced ac ground currents can generate a potential between the voltage source ground and the 740B ground. This current will cause an ac voltage to appear at the - INPUT terminal which may cause a measurement error, especially when making low level measurements. Also, the - INPUT terminal may be driven at a potential above ground in the voltage source circuit (Figure 3-9). The impedance from - INPUT to chassis ground (Z_{1} and Z_{2}) parallels part of the voltage source circuit (R4) and causes a larger current to flow through R1, R2 and R3, increasing the apparent voltage across R3. (Arrows

Figure 3-9. Measurement Error Caused by DC Ground Currents

Figure 3-10. Guarding Against AC Ground Currents
indicate direction of current flow in the conventional manner: positive to negative.)

3-52. Guarding is a procedure for eliminating these problems. Induced ac ground currents can be eliminated by connecting the guard shield to the ground reference point ($\stackrel{\perp}{=}$) in the voltage source circuit (Figure 3-10). The induced ground current now flows through the GUARD lead and Z_{2}, bypassing the -INPUT lead.

3-53. The error current caused by floating the -INPUT terminal above ground (Figure 3-9) can be eliminated by connecting the guard shield to a potential equal to, but isolated from, the - INPUT potential (Figure 3-11). In the example shown, this potential is derived from an added string of resistors, R5-R8.

The added resistors may be somewhat less accurate than R1-R4 and do not even have to be the same value providing they closely duplicate the voltages available at the taps on the R1-R4 divider. By connecting the GUARD lead to the corresponding tap on the R5-R8 divider, the 740B guard shield is referenced to the same potential as the - INPUT terminal. Current through Z_{1} is thus eliminated and the loading current now flows through the GUARD lead, Z_{2} and the ground return, eliminating the loading effect on the R1-R4 divider.
$3-54$. If the voltage source circuit is not referenced to earth ground there is no need for guarding. In this case the GUARD and - INPUT terminals should be connected together at the output terminal box using the shorting strap attached to the GUARD terminal.

Figure 3-11. Guarding Against DC Ground Currents

3-55. VOLTMETER.

3-56. DESCRIPTION.
3-57. In the Voltmeter mode, the Model 740B functions as a high impedance dc voltmeter with end scale ranges from $1 \mu \mathrm{~V}$ to 1000 V . Ranges below 10 mV are obtained by using the SENSITIVITY pushbuttons to increase meter sensitivity. The input voltage is indicated on the meter.

3-58. OPERATING PROCEDURE.

3-59. The following steps describe the procedure for using the Model 740B in the Voltmeter mode:
a. Set rear panel LINE VOLTAGE switch to correct position for available line voltage.
b. Connect ac power cord to ac power connector; connect cord plug to ac line.
c. Turn on the Model 740B by depressing the POWER pushbutton (indicator glows).
d. Set FUNCTION to VM.

> NOTE-
> Digital readout tubes will not glow in VM mode.
e. Check OUTPUT indicator. If glowing, depress to turn output off.
f. Connect input cable assembly (-hp- 11054A) to INPUT receptacle. Set INPUT Z switch to ∞.
g. Set RANGE and SENSITIVITY for the desired end scale voltage (Table 3-4).

An additional end scale voltage range of $0.1 \mu \mathrm{~V}$ could be obtained by setting RANGE to 1 mV and depressing X10 ${ }^{4}$ SENSITIVITY. Meaningful measurements cannot, however, be made on this range due to the problems of noise at this extremely low voltage level.

Table 3-4. VM Mode RANGE and SENSITIVITY Settings

Desired End Scale Voltage Range	RANGE	SENSITIVITY
$1000 \quad \mathrm{~V}$	1000 V	X 1
$100 \quad \mathrm{~V}$	100 V	X 1
10 V	10 V	X 1
1 V	1 V	X 1
100 mV	100 mV	X 1
10 mV	10 mV	X 1
1 mV	10 mV	X 10
$100 \mu \mathrm{~V}$	10 mV	$\mathrm{X} 10^{2}$
$10 \mu \mathrm{~V}$	10 mV	$\mathrm{X10}{ }^{3}$
$1 \mu \mathrm{~V}$	10 mV	$\mathrm{X} 10^{4}$

h. Zero the 740 B input (1 mV range and below) by connecting a shorting wire from + to INPUT terminals andadjusting ZERO control for zero meter deflection.
i. Connect input box terminals for the type of measurement desired using the information in Table 3-5.
Negative voltages up to 1 V can be
measured in VM mode without re-
versing the + and - INPUT terminal
connections.
j. Read the input voltage on the 740B meter.

$$
\{\text { CAUTION }
$$

THE 740B INPUT SHOULD BE DISCHARGED FOLLOWING ALL HIGH VOLTAGE MEASUREMENTS TO PREVENT CARRYING THE STORED CHARGE TO THE NEXT POINT OF MEASUREMENT.
k. Remove leads from device under test or deenergize voltage source and place INPUT Z switch to 2 MEG position to discharge 740B input.

Table 3-5. Input Terminal Connections

TYPE OF	CONNECT INPUT TERMINALS			
	(-	GUARD	$\frac{1}{=}$
Unguarded (floating)	To high (most positive) of source	To low (most negative) of source	To - terminal	Not Connected
Guarded				
(floating)	To high (most positive) of source	To low (most negative) of source	To reference potential of source	Not Connected

3-60. AMPLIFIER.

3-61. In the Voltmeter and Differential Voltmeter modes of operation, the Model 740B may be used as a power and voltage amplifier. Two separate amplifier outputs are available.

3-62. POWER AMPLIFIER.

3-63. DESCRIPTION.

3-64. Whenever an input voltage is applied to the Model 740B in Voltmeter or Differential Voltmeter modes, a voltage is present at the + and - OUTPUT terminals when the Output is turned on. This voltage is equal to the input voltage on the 1 V range and above. Output voltage on the millivolt ranges exceeds the input voltage by $20 \mathrm{~dB}, 40 \mathrm{~dB}$ or 60 dB on the 100 mV , 10 mV and 1 mV ranges respectively (Table 3-6). Output current characteristics are the same as Standard mode; the high input resistance characteristics of the Voltmeter and Differential Voltmeter modes are retained. When used as a power amplifier in Voltmeter mode, up to 110% of range may be applied to and obtained from the Model 740B with no loss of gain accuracy.

Table 3-6. Power Amplifier Output Voltage

RANGE	VOLTAGE GAIN	OUTPUT VOLTAGE (With full scale input applied)
1000 V	0 dB	1000 V
100 V	0 dB	100 V
10 V	0 dB	10 V
1 V	0 dB	1 V
100 mV	+20 dB	1 V
10 mV	+40 dB	1 V
1 mV	+60 dB	1 V

3-65. OPERATING PROCEDURE.

3-66. To use the Model 740B as a power amplifier, proceed as follows:
a. Turn on the Model 740B and allow one hour for instrument warmup.
b. Set FUNCTION to $\triangle V M$ or $V M$ as desired.
c. If measurement of input voltage is desired, perform steps e through \mathbf{r} of Paragraph 3-46 for $\triangle V M$ position or e through j of Paragraph $3-59$ for VM position. If measurement of input is not desired, set RANGE to the range nearest above the input voltage.
d. Check OUTPUT pushbutton-indicator. If glowing, depress to turn Output off.
e. Connect Output Cable (-hp-Accessory 11055B) to Output Receptacle.
f. Connect OUTPUT terminals for the output condition desired (Table 3-1).
g. Set CURRENT LIMIT control for the desired maximum limit of output current (Paragraph 3-38).
h. Depress OUTPUT pushbutton indicator. Indicator lights to indicate dc output. OVERLOAD indicator, if glowing, indicates the current limit has been exceeded or no remote or local sensing is in effect.

3-67. VOLTAGE AMPLIFIER.
3-68. DESCRIPTION.
3-69. The rear panel RECORDEROUTPUT terminals provide a dc voltage which is proportional to meter

Table 3-7. RECORDER OUTPUT Voltage Gain as a Function of RANGE and SENSITIVITY

RANGE	SENSITIVITY				
	X1	X10	$\times 10^{2}$	$\times 10^{3}$	$\times 10^{4}$
1000 V	- 60 dB	- 40 dB	- 20 dB	0 dB	+ 20 dB
100 V	-40 dB	$-20 \mathrm{~dB}$	0 dB	+ 20 dB	+ 40 dB
10 V	$-20 \mathrm{~dB}$	0 dB	$+20 \mathrm{~dB}$	+ 40 dB	+ 60 dB
1 V	0 dB	$+20 \mathrm{~dB}$	$+40 \mathrm{~dB}$	+ 60 dB	+ 80 dB
100 mV	$+20 \mathrm{~dB}$	$+40 \mathrm{~dB}$	+ 60 dB	+ 80 dB	$+100 \mathrm{~dB}$
10 mV	$+40 \mathrm{~dB}$	$+60 \mathrm{~dB}$	$+80 \mathrm{~dB}$	$+100 \mathrm{~dB}$	$+120 \mathrm{~dB}$
1 mV	$+60 \mathrm{~dB}$	$+80 \mathrm{~dB}$	$+100 \mathrm{~dB}$	$+120 \mathrm{~dB}$	$+140 \mathrm{~dB}^{*}$

* Not recommended
deflection. Polarity of this voltage depends upon the polarity of the meter deflection. Magnitude of the voltage depends upon the degree of meter deflection and the setting of the RECORDER AMPLITUDE control. With the RECORDER AMPLITUDE control set to maximum (fully cw) the output voltage is approximately 1 Vdc into a $1 \mathrm{k} \Omega$ load. The RECORDER AMPLITUDE control may be useful in matching the output voltage scale to an external recorder or monitoring device. Normally the RECORDER AMPLITUDE control is adjusted for a 1 Vdc output (with recorder or monitoring device connected) for an end scale meter deflection.

3-70. Voltage gain from the Model 740B input to the RECORDER OUTPUT terminals depends on the RANGE and SENSITIVITY selected. Table 3-7 shows the gain produced by different combinations of RANGE and SENSITIVITY.

3-71. The - RECORDER OUTPUT terminal is connected in common with the - INPUT and -OUTPUT terminals on the Model 740B. All of these terminals are isolated from earth ground ($\underset{=}{\perp}$) although the main chassis and cabinet are connected to earth ground through the center pin of the line cord plug. This allows the Model 740B to make floating measurements (measurements where the -INPUT terminal is referenced above or below earth ground) without danger to the operator since the chassis and cabinet remain at earth ground potential. The chassis and cabinet of most recorders, however, are not isolated from the recorder's - input terminal. This means that floating measurements usually cannot be safely made with a recorder connected to the RECORDER OUTPUT terminals since the recorder's chassis and cabinet would be connected to the floating potential. Using an isolation transformer or 3 prong to 2 prong adapter to isolate the power input to the recorder would not help. The recorder's cabinet and chassis would be floated at the same potential as the Model 740B - INPUT terminal and a dangerous condition would exist. The only safe way to make floating measurements using a
recorder is to select a recorder with a floating input (- input terminal isolated from the recorder cabinet and chassis) and a grounded chassis and cabinet.

3-72. OPERATING PROCEDURE.

3-73. To use the Model 740B as a voltage amplifier. proceed as follows:
a. Turn on the Model 740B and allow one hour for instrument warmup.
b. Connect recorder or monitoring device to RECORDER OUTPUT terminals.

CAUTION\}
DO NOT ATTEMPT TO FLOAT MODEL 740B -INPUT TERMINAL UNLESS RECORDER - TERMINAL IS ALSO FLOATED (PARAGRAPH 3-71).
c. Set FUNCTION to STD; turn STANDARD VERNIER fully cw (meter deflects to + end scale).
d. Adjust RECORDER AMPLITUDE controlfor desired end scale voltage value as indicated on recorder or monitoring device.
e. Return STANDARD VERNIER control tozero (fully cew).
f. Set FUNCTION to $\triangle V M$ or $V M$ as desired.
g. Perform steps e through r of Paragraph 3-46 if $\Delta V M$ mode is selected; steps e through j of Paragraph 3-59 if VM mode is selected.
h. Observe RECORDER OUTPUT voltage on recorder or monitoring device.

SECTION IV
 THEORY OF OPERATION

4-1. MODES OF OPERATION.

4-2. The Model 740B has three basic modes of oper ation: 1) Standard, 2) Differential Voltmeter, and $3)$ Voltmeter. Through the use of a function switching technique, many of the same basic circuits are used in each mode of operation. These circuits are: 1) a Main Loop, 2) a Meter Loop, and 3) a Reference Loop. The Standard and Differential Voltmeter modes utilize all of thesebasic circuits. The Voltmeter mode utilizes all of them except the Reference Loop. The following paragraphs discuss the theory for each mode of operation.

4-3. STANDARD (Figure 7-2).

4-4. In Standard mode of operation, the Model 740B Reference Loop generates a very stable and accurate reference voltage. The value of the reference voltage (0 to 1 V) is controlled by the front panel VOLTAGE SET and STANDARD VERNIER switches. The voltage is then amplified by the Main Loop and applied through the output cable to the + and - OUTPUT terminals.

4-5. The Reference Loop consists of a 1 V reference supply, a binary coded decimal divider and a step vernier control. The reference supply generates a very stable +1 Vdc which is applied to the binary coded decimal divider. Divider ratios in the binary coded decimal divider are controlled by the five front panel VOLTAGE SET switches. The step vernier control, operated by the front panel STANDARD VERNIER switch, further divides the reference supply output. The resultant output of the Reference Loop is a dc level adjustable in $1 \mu \mathrm{~V}$ steps from 0 to +1 Vdc . The output is applied to the Main Loop.

4-6. Basically, the Main Loop is a high gain dc amplifier which uses degenerative voltage feedback to obtain precise gain characteristics, high input resistance and low output resistance. The Main Loop consists of several internal amplifiers and a feedback network connected from the Main Loop output to the input. The amplifiers in the Main Loop are connected in cascade and collectively have an open loop gain (gain without feedback) of from 10^{5} on the 1 V range to 10^{8} on the 1000 V range (Table $4-1$). The feedback network monitors the actual value of the output voltage and feeds a controlled fraction of the output back to the input. The feedback voltage is compared to the input in such a way that it subtracts from the input voltage. The amplifier then amplifies only the error voltage: the difference between the input voltage and the feedback voltage. Since the amplifier input voltage is greatly reduced by the degenerative feedback, the effective (closed loop) gain is much smaller than open loop gain -- providing a sizable portion of the output is used as feedback. The closed loop gain is
the effective voltage gain of the amplifier and can be calculated from the following formula:

$$
G=\frac{A}{1+\beta A}
$$

where:
$\mathrm{G}=$ closed loop gain
A = open loop gain
$\beta=$ portion (fraction) of the output voltage that is used as degenerative feedback.

4-7. Mathematically, it can be shown that when A becomes very large, the formula can be essentially reduced to:

$$
G=\frac{1}{\beta}
$$

Note that closed loop gain depends only on β whenever open loop gain (A) is very high. Closed loop gain accuracy then is dependent almost entirely on the accuracy of the voltage divider which determines β. The Main Loop Feedback Divider is made from stable, precisionwire-wound resistors enabling the Main Loop to have stable, precise closed loop gain characteristics.

Table 4-1. Main Loop Gain Characteristics

Range	A	β	G
1 V	10^{5}	1	1
10 V	10^{6}	0.1	10
100 V	10^{7}	0.01	10^{2}
1000 V	10^{8}	0.001	10^{3}

4-8. Closed loop gain increases by a factor of ten on each increasing voltage range. The input to the Main Loop from the Reference Loop is 0 to 1 V in $1 \mu \mathrm{~V}$ steps on all ranges. This results in available outputs from the Main Loop of:

0 to 1 V in $1 \mu \mathrm{~V}$ steps	(1 V range)
0 to 10 V in $10 \mu \mathrm{~V}$ steps	$(10 \mathrm{~V}$ range $)$
0 to 100 V in $100 \mu \mathrm{~V}$ steps	$(100 \mathrm{~V}$ range $)$
0 to 1000 V in 1 mV steps	$(1000 \mathrm{~V}$ range $)$

The output of the Main Loop is applied through an internal switch to the + and - OUTPUT terminals whenever the Output is turned on. The SENSE terminals provide voltage feedback to the Main Loop Feedback Divider.

4-9. The only purpose of the Meter Loop in Standard mode is to indicate the value of the sixth digit of the
output voltage. The value of the sixth digit is controlled by a deck of the ten position STANDARD VERNIER switch. A second deck of the switch selects a voltage proportional to the sixth digit from a voltage divider. The output from the second deck of the switch is 0 to +0.1 V in 0.01 V steps. The 0 to +0.1 V output of the STANDARD VERNIER switch is applied as an input to the Meter Loop.

4-10. The Meter Loop, like the Main Loop, is basically a voltage feedback amplifier. In Standard Mode, the feedback factor (β) is always 0.1 resulting in a constant closed loop gain (G) of 10.

4-11. The Meter Loop consists of a meter amplifier, a meter, and a feedback network. The output of the meter amplifier drives the meter. The meter drives from 0 (mid scale) to +1.0 in. 1 steps as the STANDARD VERNIER switch is rotated clockwise. The decimal point in the meter indication is not considered present in Standardmode, resulting in a 0 to 10 indication for the sixth digit.

4-12. DIFFERENTIAL VOLTMETER (Figure 7-1).

4-13. In the Differential Voltmeter mode of operation, the unknown voltage is applied to the Main Loop. Feedback voltage from the Main Loop output to the input controls the closed loop gain. The magnitude of the feedback voltage is proportional to the unknown input voltage.
4-14. The Main Loop feedback voltage, or a portion of it (depending on range), is applied in series opposition to the Reference Loop output. The Reference Loop generates a very stable reference voltage. Magnitude of the reference voltage (0 to 1 V) is controlled by the front panel VOLTAGE SET switches.
4-15. The Meter Loop Monitors the difference between the Main Loop feedback and the Reference Loop output and indicates null (0) when the two voltages are equal. The value of the input voltage is then indicated on the digital readout tubes (first five digits) and the meter (sixth digit).
4-16. The input voltage is applied through the Overload Protection circuit and Input Filter to the Main Loop. The Overload Protection circuit protects the instrument from voltages that exceed the selected
range. The input filter removes any ac signal and noise superimposed on the dc input.

4-17. The operation of the Main Loop in Differential Voltmeter mode is similar to its operation in. Standard Mode. The Main Loop Feedback Divider determines the closed loop gain by controlling the amount of feedback returned to the input on each range. Table 4-2 shows the gain relationships.

4-18. Regardless of the range selected, the feedback voltage to the Main Loop input is of the same polarity and nearly the same amplitude as the unknown dc input. The Main Loop amplifies the difference between the two voltages. Since the feedback and input voltages are almost equal, very little current is drawn from the input voltage source by the Main Loop and the input section presents a very high impedance to the signal source.

4-19. On the 1 V range andbelow, the feedback voltage from the Main Loop output is applied directly to the Reference Loop. Closed loopgain of the Main Loop is $1,10,10^{2}$ and 10^{3} on the $1 \mathrm{~V}, 100 \mathrm{mV}, 10 \mathrm{mV}$ and 1 mV ranges respectively, which result in a 0 to 1 V input to the Reference Loop on these ranges. On the ranges above 1 V , the feedback voltage from the Main Loop output is divided by 10,100 and 1000 on the 10 V , 100 V and 1000 V ranges respectively before being applied to the Reference Loop. On all ranges, the input to the Reference Loop is 0 to 1 V , proportional to the unknown de input voltage (Table 4-2).
$4-20$. The operation of the Reference Loop in Differential Voltmeter mode is very similar to its operation in Standard mode. The reference supply furnishes a stable and accurate 1 V reference voltage to the binary coded decimal divider. Divider ratios are controlled by the five VOLTAGE SET switches. The STANDARD VERNIER control, however, is not used in Differential Voltmeter mode. The resultant output of the divider is 0 to +1 Vdc in $10 \mu \mathrm{~V}$ steps. The divider output is applied through the SENSITIVITY switch and FUNCTION switch in series opposition to the 0 to 1 V from the Main Loop feedback. If the voltages are not equal, current will flow through the Reference Loop. This current is applied to the Meter Loop.

Table 4-2. Main Loop Gain ($\triangle \mathrm{VM}$)

Range	β	Closed Loop Gain, G $\left(\frac{1}{\beta}\right)$	Main Loop Output with Full Scale Input Applied	Input to Reference Loop with Full Scale Input Applied
1 mV	.001	10^{3}	1 V	1 V
10 mV	.01	10^{2}	1 V	1 V
100 mV	.1	10	1 V	1 V
1 V	1	1	1 V	1 V
10 V	1	1	10 V	1 V
100	V	1	1	100 V
1000 V	1	1	1000 V	1 V

4-21. The Meter Loop is basically a voltage feedback amplifier. Closed loop gain of the Meter Loop is determined by the SENSITIVITY pushbuttons which control the feedback factor, β. Moving left to right, depressing each successive SENSITIVITY pushbutton increases the closed loop gain by a factor of ten. Table 4-3 shows the gain relationships.

Table 4-3. Meter Loop Gain ($\Delta \mathrm{VM}$ and VM)

SENSITIVITY	Closed Loop Gain, G $\left(\frac{1}{\beta}\right)$	Required Input for End-Scale Meter Deflection
$\mathrm{X1}$	1	1 V
$\mathrm{X10}$	10	100 mV
$\mathrm{X10}$	10 mV	
$\mathrm{X} 10^{3}$	10^{2}	1 mV
$\mathrm{X} 10^{4}$	10^{3}	$100 \mu \mathrm{~V}$

4-22. VOLTMETER (Figure 7-1).
4-23. In Voltmeter mode of operation, the Main Loop amplifies the input voltage and provides a high input impedance to the signal source. Feedback voltage from the Main Loop Feedback Divider is applied directly to the Meter Loop. By depressing the SENSITIVITY pushbuttons, the Meter Loop provides additional gain, extending the instrument useful sensitivity down to $1 \mu \mathrm{~V}$ end-scale (10 mV Range, X104 Sensitivity). An additional range of $0.1 \mu \mathrm{~V}$ end-scale can be obtained by selecting the 1 mV Range and X104 Sensitivity. Meaningful measurements, however, cannot be made under these conditions due to the problems of noise at this extremely low voltage level. The Reference Loop is not used in the Voltmeter mode of operation.

4-24. CIRCUIT DESCRIPTION.

4-25. INPUT CIRCUITS.

4-26. INPUT CABLE ASSEMBLY (Figure 7-4).

4-27. In Voltmeter and Differential Voltmeter modes of operation, the unknown de input voltage is applied to the + and - INPUT terminals located on the Input Cable Assembly (-hp-Accessory 11054A). The INPUT Z switch on the Input Box provides a selection of input resistances. In the ∞ position, the input resistance is determined by the very high input resistance characteristics of the Main Loop. The resulting input resistance for the various ranges are as follows:

$$
\begin{aligned}
& 1 \mathrm{mV} \text { range: } \quad>10^{8} \Omega \\
& 10 \mathrm{mV} \text { range: }>10^{9} \Omega \\
& 100 \mathrm{mV} \text { to } 1000 \mathrm{~V} \text { range: }>10^{10} \Omega
\end{aligned}
$$

4-28. When the INPUT Z switch is placed in the 2 MEG position, a $2 \mathrm{M} \Omega$ resistor is connected across the + and - INPUT terminals. Normally, this switch position is used only to discharge any residual voltage charge maintained by the input circuit following high
voltage measurements. The voltage charge might otherwise be maintained indefinitely due to the very high input resistance characteristics of the Main Loop. The switch may be left in the 2 MEG position when making voltage measurements; however, the loading effects of the $2 \mathrm{M} \Omega$ resistor will cause a measurement error. The GUARD terminal on the Input Cable Assembly is connected through the cable to the instrument internal guard shield. The guard shield contains all of the critical circuits and isolates them from the instrumentmain chassis. Also, the guard shield may be referenced to a different potential than the main chassis by connecting the GUARD terminal to a reference potential. Guarded measurements are explained in Paragraph 3-49.

4-29. The $\stackrel{\perp}{\leftrightarrows}$ terminal is connected through the cable to the cabinet and main chassis and to powerline ground through the center conductor of the line cord. The $\stackrel{\perp}{\perp}$ terminal may be used to ground external test equipment.

4-30. INPUT PROTECTION CIRCUIT AND INPUT FILTER (Figure 7-3).

$4-31$. The + INPUT terminal is connected through the INPUT receptacle to A9V2. Under non-overload conditions, A9V2 is in its low resistance state and the applied signal isfed through A9V2 to the Input Filter. With no overload, A9V2 remains in its low resistance state in the following manner: Transistor A9Q1 is normally conducting due to the forwardbias conditions established by the -30 V supply and A9R1. When A9Q1 conducts, A9DS2 turns on and illuminates the photocell, A9V2. The light on A9V2 causes its resistance to be low and the input signal is conducted through A9V2 to the Input Filter.

4-32. Assume now that an input voltage greatly in excess of the selected range is applied to the + and - INPUT terminals: A9DS1 is connected from the Main Loop Feedback line to the Input Filter. With a large overload, the Main Loop feedback voltage cannot match the input voltage because the amplifiers in the Main Loop saturate. When the difference between feedback and input reaches about 90 V, A9DS1 ionizes and illuminates A9V1. A9V1 goes to a low resistance state and turns off A9Q1. With A9Q1 turned off, A9DS2 goes out and A9V2 goes to a high resistance state and blocks the input voltage. With the overload voltage felt across A9V2, A9DS3 now ionizes and allows enough overload current to flow to keep A9DS1 ionized and prevent oscillations. A9R3 limits current through A9DS3 to protect the input circuits. Removal of the overload returns the circuit to the normal state.

4-33. The Input Filter is a 2 -section LC filter consisting of L2, C6 and C7. The filter presents a high rejection to unwanted noise superimposed on the dc input. In Standard mode, the output of the Reference Loop is fed through part of the filter to the Main Loop input. The filter removes any superimposed noise on the reference voltage.

4-34. MAIN LOOP VOLTAGE FEEDBACK AMPLIFIER (Figure 7-3).

4-35. The input circuits feed a dc voltage to the Main Loop. The dc voltage is the unknown dc input in Voltmeter and Differential Voltmeter modes, or the Reference Loop output in Standard Mode. The purpose of the Main Loop is to furnish extremely high input resistance, precise voltage gain and high current gain. Extremely high input resistance allows high impedance voltage sources to be measured without loading errors. It also allows the Reference Loop to be well isolated from a load connected to the Output terminals in Standard mode. Precise voltage gain is necessary for accurate measurements in Voltmeter and Differential Voltmeter modes and for accurate outputs in Standard mode. High current gainallows the Main Loop output to drive a load in Standard mode without drawing significant current from the Reference Loop. It also allows the Model 740B to be used as a dc power amplifier in Voltmeter and Differential Voltmeter modes. Significant loads can be driven by the output without loading the signal source applied to the input.

4-36. The Main Loop consists of a Low Voltage Section and a High Voltage Section. The two sections operate together as a voltage feedback amplifier. Degenerative feedback voltage from the output of the High Voltage Section is fed back to the input of the Low Voltage Section and determines the closed loop (effective) gain. The feedback controls the closed loop gain in the following manner: Assume 1 Vdc is applied as an input to the Low Voltage Section of the Main Loop (Voltmeter mode, 1 V range). The open loop (actual) gain of the Main Loop is 105 (Table 4-1). The voltage at the Main Loop output starts at zero and increases in a positive direction. On the 1 V range, the feedback factor. β, is 1 (unity) which means all of the Main Loop output is fed back to the input. After a very short time, the value of the feedback voltage approaches the value of the input voltage (1 V). The feedback voltage is compared to the input voltage in such a manner as to subtract from itand the Main Loop amplifies only the error difference between the two voltages. Since the feedback voltage is rapidly approaching the input voltage, the error voltage rapidly approaches zero. When the error voltage reaches approximately $10 \mu \mathrm{~V}$, the Main Loop output stabilizes at $0.999990 \mathrm{~V} .10 \mu \mathrm{~V}$ represents the smallest error volt age that will produce a feedback voltage nearly equal to the 1 V input voltage when amplified by the 10^{5} open loop gain.

4-37. The $10 \mu \mathrm{~V}$ error causes outputs to be slightly low in Standard mode and indications to be slightly high in Differential Voltmeter mode. Generally, greatest instrument accuracy is desired in Standard mode. The effects of the $10 \mu \mathrm{~V}$ error in Standard mode are compensated by adjusting the 1 V Reference Supply until the Main Loop produces an accurate 1 V at the Output terminals (Paragraph 5-62 steps m through p). This procedure provides best instrument accuracy in Standard mode with a slight loss of accuracy in Differential Voltmeter mode. If optimum accuracy is desired in Differential Voltmeter mode (with some loss of sccuracy in Standard mode), the

Reference Supply calibration can be performed in Dif erential Voltmeter mode. Paragraph 5-62, step p describes this procedure. The effects of the small gain error are not great enough to affect instrument performance in Voltmeter mode.

4-38. LOW VOLTAGE SECTION.

4-39. The Low Voltage Section consists of the chopper stabilized Low Level Amplifier (A3) and the Operational Filter (part of A4).

4-40. Low Level Amplifier. A3 (Figure 7-3 and 7-7). In the Voltmeter and Differential Voltmeter modes of operation, the unknown de input is applied through the input circuits to the Modulator, A17. In Standard mode, the Reference Loopoutput (0 to +1 V) is applied through a section of the Input Filter to the Modulator.

4-41. The Modulator consists of two photocells, A17V1 and A17V2, and two neon lamps, A17DS1 and A17DS2. The photocells are in a low resistance state when lighted by the neons, and a high resistance state when not lighted. The neons are driven by pulses from the Neon Driver, A8. The neons light alternately at a rate of 162 Hz . A17V1 is in series with the voltage from the Input Filter. A17V2 is in series with the Main Loop feedback. The resultant output of the Modulator is a 162 Hz ac error signal proportional in peak-to-peak amplitude to the difference between input voltage and feedback voltage. The ac errox signal rides on a de level equal to the input voltage.

4-42. The 162 Hz error signal is fed through the Range and Function Switch to the Low Level Amplifier, A3. An ac attenuator on the Range Switch, consisting of S1C1, S1R1, S1C2, S1R2, S1R3 and S1R4, reduces the amplitude of the signal by a factor of ten on each increasing range above 1 V in the Voltmeter and Dil ferential Voltmeter modes. In Standard mode, the ac error signal bypasses the attenuator andgocs directly to A3 pin 1.
4-43. A3C1 removes the dc component from the ac error signal. CR1 limits large negative spikes that occur when the selected range is exceeded or when the input voltage changes faster than the Main Loop can respond. A3Q1 through A3Q3 comprise a cascadecoupled, three-stage amplifier. Degenerative ac feedback from the emitter of $A 3 Q 3$ to the emitter of A3Q1 ensures gain stability. DC fecdback from the collector of A3Q3 to the base of A3Q1 controls the bias on Q1 and provides some gain correction for varying input voltages. The signal from the collector of A3R9* (typically $22 \mathrm{k} \Omega$) is factory selected t) set the gain of the Low Level Amplifier to properly match the gain characteristics of the other Main Loop components. Paragraph 5-91 explains the A3R9* selection procedure. A3Q3 is capacitively coupled to A3Q4. A 3 Q 4 and A 3 Q 5 comprise a variable gain differential amplifier. The output of the amplifier, at the collector of $A 3 Q 4$ is proportional to the difference in signal levels between the base of A 3 Q 4 and the base of A3Q5. The signal applied to the base of A3Q5 is degenerative feedback from the output stage of the Low Level Amplifier. The feedback is divided by the A3R19/A3R11 divider before being applied to the dif -
ferential amplifier. A3R20 is switched in paralleI with A3R19 on the 1 V range and above to increase the amount of degenerative feedback and reduce the Low Level Amplifier gain on these ranges. The output of the differential amplifier is applied to the base of $A 3 Q 6$, amplified by $A 3 Q 6$ and applied to $A 3 Q 7$ and $A 3 Q 8$. $A 3 Q 7$ and $A 3 Q 8$ comprise a class $A B$ push-pull amplifier which provides additional gain to the error signal. A3R13, A3CR2, A3CR3 and A3R17 keep A3Q7 and A3Q8 slightly forward biased under no-signal conditions, eliminating crossover distortion and providing temperature compensation for the circuit. The output of the push-pull amplifier can be monitoredat A3TP10.

4-44. The amplified error signal from the push-pull output circuit is monitored by the Overload Detector circuit. A3C6 couples the ac signal to A3CR4 and A3CR5 which form a peak detector. If the ac signal is large enough to turn on A3CR4 and A3CR5, negative pulses appear at the anode of A3CR4. A3C7 filters the pulses and the resulting dc is applied through A3R21 to A3Q9, causing A3Q9 to conduct. When A3Q9 conducts, A3Q10 is forward biased andbegins to conduct, turning on DS1, the front-panel OVERLOAD light. When the error signal is small, A3CR4 and A3CR5 turn off, and A3C7 discharges through A3R22, removing the forward bias from A3Q9. A3Q10 then turns off and the OVERLOAD light goes out.

4-45. The output of the Low Level Amplifier is coupled through C5 to the Demodulator, A17. The Demodulator consists of two photocells, A17V3 and A17V4. The photocells are lighted alternately by A17DS1 and A17DS2, the same neons that control the modulator photocells (A17V1 and A17V2). Demodulation takes place and the resultant output of the demodulator is a dc level proportional in magnitude to the ac error signal amplitude. Magnitude of the dc level is approximately 0 to -10 mV on all ranges and functions. Voltage gain of the Low Level Amplifier is approximately 10^{3} on the 1 V to 1000 V ranges; 10^{4} on the mV ranges.

4-46. The Demodulator output is fed through the Gain Check switch, S10, to the Operational Filter, part of A4. The Gain Check switch, when depressed, introduces a dc offset into the Main Loop and provides a way of checking Low Level Amplifier gain (Paragraph 5-76).

4-47. Operational Filter, p/o A4 (Figure 7-8). The Operational Filter is basically a frequency selective, voltage feedback amplifier. Capacitively coupled degenerative feedback from the amplifier's output stage to the input stage greatly reduces the amplifier's ac gain. DC voltage gain is approximately 100. The net effect is to greatly increase the signal-to-noise ratio without the use of large filter capacitors or inductors which would reduce the response time of the Main Loop when an input is applied.

4-48. The 0 to -10 mV input to the Operational Filter is proportional to the Main Loop input voltage and represents the "error" between the Main Loop input and feedback voltages. The dc input is applied through A4R1 and $A 4 R 2$ to the base of $A 4 Q 1$. The quiescent voltage
at the base of A4Q1 is controilea by A4Q3, A4R5 and A4R6. A4R6 (BAL ADJ) is adjusted for 0 V at the base of A4Q1 with no input signal applied. Generally, A4R6 does not need to be adjusted unless A4Q1 or $A 4 Q 2$ is replaced. A4TP11 monitors the voltage at the base of A4Q1.

4-49. The input stage consists of a differential pair, A 4 Q 1 and A 4 Q 2 . A 4 Q 2 establishes the zero reference for the circuit and provides temperature compensation for A4Q1. A4R13 (INT ZERO) sets the operating point of $A 4 Q 2$. A4CR2 and A4CR3 regulate the + and - supply voltages for the Operational Filter to +6.8 V and -6.8 V respectively. The output of A 4 Q 1 is further amplified by A4Q4 and A4Q5.
$4-50$. The output of $A 4 Q^{5}$, at the junction of A4R17 and A4R18, is fedback degeneratively through 2 paths to the base of A4Q1. DC feedback is divided by the A4R19/A4R20 divider and fed back through A4R21 to A4Q1, setting the dc gain of the Operational Filter at about 100. Degenerative ac feedback is fed directly through A4C4 to the base of A4Q1. A4C4 is a very low impedancefeedback path for ac and the ac gain of the Operational Filter at most frequencies approaches zero. On instruments above Serial No. 610-00376, A4C4 is discharged when switching modes or when switching between the $10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V ranges. The discharge path is from A4 pin 8 to A4 pin 22 through S1R20. The path is completed by momentary shorting contacts on the Range and Function Switch, S1. The contacts briefly complete the discharge path when the Range or Function switch is between positions.
$4-51$. The dc output of $A 4 Q 5$ is further filtered by two $39 \mu \mathrm{~F}$ electrolytic capacitors, A4C5 and A4C6. A4C5 and A4C6 are connected back-to-back which results in a $19.5 \mu \mathrm{~F}$, non-polarized, low leakage filter. Shunt limiter A4CR4 through A4CR9, limits the Operational Filter output to values between -1.8 V and +1.8 V . The Operational Filter output (0 to +1 Vdc) is applied to the Differential Amplifier (Paragraph 5-54).

4-52. HIGH VOLTAGE SECTION.

4-53. The High Voltage Section is a voltage feedback amplifier within the Main Loop. In Standard mode, the High Voltage Section generates the desired output voltage and current. In Voltmeter and Differential Voltmeter modes, 1 V range and above, the High Voltage Section duplicates the unknown dc input voltage. On the ranges below 1 V , the High Voltage Section generates 0 to 1 V proportional to the unknown dc input voltage. Closed loop gain of the High Voltage Section is controlled by voltage feedback from the output stage to the Differential Amplifier input stage. The High Voltage Section has a closed loop gain of 1 (unity) on the 1 V range and below; 10 on the 10 V , 10^{2} on the 100 V Range; 10^{3} on the 1000 V Range.
4-54. Differential Amplifier p/o A4 (Figure 7-8). The Differential Amplifier is the input stage of the High Voltage Section of the Main Loop. The differential Amplifier compares the output of the Operational Filter to feedback voltage from the output stage of the High Voltage Section. It then furnishes a voltage to the Pulse Width Converter (part of A5) which is proportional to the difference between the two voltages.

4-55. The dc output of the Operational Filter is applied to the base of $A 4 Q 7$. The base of $A 4 Q 7$ is grounded through A4 pin 8 and a deck of the Range and Function Switch whenever operation on the mV ranges in Standard mode is attempted, preventing operation of the High Voltage Section. The Differential Amplifier consists of $A 4 Q 7$ through A4Q10. A4Q7/A4Q8 and A4Q9/ A4Q10 are Darlington Pairs which provide high gain and sensitivity to the amplifier. Whenever a current is drawn from the + and - OUTPUT terminals which exceeds the setting of the CURRENT LIMIT control, A4Q12 is forward biased by an input from A5, and lowers the voltage at the emitters of $\mathrm{A} 4 \mathrm{Q}^{8}$ and A 4 Q 9 , reducing the output of the differential amplifier. The dc output of the Differential Amplifier is further amplified and inverted by A4Q11 and fed through A4 pin 3 to the Pulse Width Converter. The signal at this point varies from approximately +8.4 V (for a 0 V Main Loop output) to +6 V (for a 1000 V 20 mA Main Loop output).

4-56. Pulse Width Converter and 20 kHz Clock, p/o A5 (Figure 7-9). The dc input to the Pulse Width Converter from the Differential Amplifier is a dc level that varies from approximately $+8.4 \mathrm{~V}(0 \mathrm{~V}$ Main Loop output) to +6 V (1000 V 20 mA Main Loop output). The Pulse Width Converter converts this input voltage to 20 kHz pulses that vary in width proportional to the Main Loop output voltage and current. The 20 kHz Clock controls the pulse frequency.
$4-57$. The 20 kHz Clock consists of A5Q1 and A5Q2 which form an astable (free-running) multivibrator. A5R1, A5C2 and A5R5 determine the 20 kHz switching frequency. The multivibrator output is differentiated by A5C1, A5C4 and A5C3. A5CR1 removes the negative spikes. The remaining 20 kHz positive spikes are applied through A5CR2 to the Pulse Width Converter at the collector of $A 5 Q 3$.

4-58. A5Q3 and A5Q4 form a Schmitt-Trigger that functions as a monostable (one-shot) multivibrator. In the stable state, A 5 Q 4 is conducting and A 5 Q 3 is cut off. Each positive pulse from the 20 kHz Clock causes the multivibrator to switch to the unstable state. The length of time the multivibrator stays in the unstable state is determined by the voltage at the base of A5Q3 from the Differential Amplifier. When this voltage is +8.4 V (representing a 0 V Main Loop output) the unstable state is very short -- approximately the same length as the triggering pulse from the 20 kHz Clock. As the voltage at the base of A 5 Q 3 decreases toward +6 V , the multivibrator stays in the unstable state longer each time it is triggered. When the A5Q3 base voltage reaches +6 V (representing maximum voltage and current output from the Main Loop), the unstable state reaches a maximum duration of approximately $20 \mu \mathrm{sec}$. The resultant output of the Pulse Width Converter at the collector of A5Q4 is a series of negative 20 kHz pulses, varying in width from approximately $2 \mu \mathrm{sec}$ to $20 \mu \mathrm{sec}$, proportional to the Main Loop output voltage and current. A5Q5, an emitter follower, provides current gain for the pulses. The pulses are then fed out A5 pin 19 and through T3 to the Power Switch Driver, part of A7.

4-59. Power Switch Driver and Power Switch (Figure 7-11). The Power Switch Driver and Power Switch provide current gain and shaping to the variable-width 20 kHz pulses from the Pulse Width Converter.

4-60. The variable-width 20 kHz pulses from A5 pin 19 are transformer-coupled to A7 pin 1. From A7 pin 1 the pulses are applied through A7R1 and A7L1 to A7Q1. The leading edge of each pulse turns on A7Q1. When A7Q1 conducts, negative voltage from the emitter of A7Q1 turns on the Power Switch Transistors, Q1 and Q2. When Q1 and Q2 conduct, current flows from the emitter of A7Q1 through A7R10 to the base of Q2. This base current through A7R10 keeps $A 7 Q 2$ and $A 7 Q 3$ cut off for the duration of the pulse.

4-61. The trailing edge of the variable-width pulse turns off A7Q1. The emitter of A7Q1 is then clamped to approximately +1.2 V by A7CR1 and A7CR2. The positive voltage turns off the Power Switch Transistors. Q1 and Q2, and turns on A 7 Q 2 and A 7 Q 3 . Conduction of $A 7 Q 2$ and $A 7 Q 3$ helps discharge the emitter-base capacitance of the Power Switch Transistors, greatly decreasing their turn-off time at the end of the vari-able-width pulse. A7C8* (typically $0.0068 \mu \mathrm{~F}$) is factory selected to match the reactive characteristics of the Power Switch Driver with the Power Switch transistors, Q1 and Q2. Paragraph 5-95 explains the A7C8* selection procedure.

4-62. Internal Current Limit, p/o A7 (Figure 7-11). The $-\overline{42} \mathrm{~V}$ Power Supply supplies collector current to Q1 and Q2 through R4, F3 and the primary of T4. At high output voltage and power levels, the voltage pulses across R4 increase in amplitude. A7R14 and A7C7 integrate these pulses and the resulting average voltage is applied across A7CR3 and the emitter-base junction of A7Q5. At excessive output voltage and power levels, the voltage across R4 becomes sufficient to forward-bias A7Q5. The effect is further amplified by A7Q4 which applies a positive voltage to the base of A7Q1. A7Q1 then reduces or blocks the variable width pulses from T3, resulting in lower output voltage and current from the Main Loop.

4-63. High Voltage Pulse Transformer, T4, and High Voltage Rectifier, p/o A11 (Figure 7-3). The Power Switch transistors, Q1 and Q2, function to store and release energy in the High Voltage Transformer, T4. The release of energy from the secondary of T4 is converted to dc by the High Voltage Rectifier, A11CR1.

4-64. Q1 and Q2 conduct for the duration of each 20 kHz pulse from the Power Switch Driver. During this conduction time, a magnetic field builds up around T 4 as a result of the large current drawn through the primary winding. The voltage across the secondary winding reverse biases the High Voltage Rectifier, A11CR1, and no current flows in the secondary.
$4-65$. When the trailing edge of the 20 kHz pulse turns off Q1 and Q2, the following events occur: The mag netic field around $T 4$ begins to collapse attempting to induce current flow in both the primary and secondary windings. The primary circuit, however, is incom-
plete since Q1 and Q2 are in the non-conducting state. The collapse of the field around the secondary winding forward biases the High Voltage Rectifier, A11CR1, and a large current flows in the secondary circuit. The secondary current charges several capacitors in the output circuit. These capacitors charge to a value determined by the energy in the collapsing magnetic field around T4.

4-66. The energy transferred to the secondary of T4 depends on several factors. Q1 and Q2 turn off very rapidly at the end of each 20 kHz pulse, partly due to the action of A7Q2 and A7Q3 (Paragraph 4-61). This extremely sudden interruption of primary current in T4 results in a veryhigh voltage across the secondary winding. The power delivering capability of the secondary winding depends on how much energy is available in the collapsing magnetic field. The energy content of the magnetic field is determined mainly by the length of time the Power Switch allows current to flow through the primary of T4 each time a 20 kHz pulse is applied. A wide pulse applied to the Power Switch allows a large magnetic field to be developed and a large amount of powe r to be delivered by the secondary. Conversely, a narrow pulse results in a small amount of power delivered by the secondary of T4.

4-67. The output of High Voltage Rectifier, A11CR1, is fed through A11R1 to the output circuits.

4-68. Output Circuits (Figure 7-3). The positive spikes from the High Voltage Rectifier are filtered in several places. The filtering is provided by $\mathrm{A} 5 \mathrm{C} 4, \mathrm{C} 4$ and A 11 L 1 on the 1 V range and below; $\mathrm{A} 5 \mathrm{C} 5, \mathrm{~A} 5 \mathrm{C} 8, \mathrm{C} 4$ and A 11 L 1 on the 10 V range; $\mathrm{A} 5 \mathrm{C} 8, \mathrm{C} 3, \mathrm{~A} 11 \mathrm{~L} 1$ and C 4 on the 100 V range; and C3, A11L1 and C4 on the 1000 V range.

4-69. The filtered output voltage is fed through the Output Rotary Switch, K1, to the +OUTPUT terminal when K 1 is energized. K1 is a two-position solenoidactuated rotary switch that energizes when the Output Pushbutton Switch, S11, is depressed. -42 V is supplied to one lead of the switch solenoid. Depressing S11 connects the other lead of the solenoid to ground, completing the path for current through the solenoid and energizing K1. In the energized position, current through the solenoid is limited by R3 to prevent overheating.

4-70. An interlock from pin 1 to pin 5 in the Output Cable Assembly prevents K1 from energizing when the Output Cable Assembly is not connected to the Output Jack, J2. When S11 is turned on, S11DS1 lights. When $\mathrm{S11}$ is depressed a second time the ground is removedfrom K1; K1 de-energizes and S11DS1 goes out. The operation of S11DS1 is not affected by the interlock for K1. Cycling S11 without the Output Cable Assembly connected to the Output Jack will cause S11DS1 to alternately light and go out even though K1 will not energize.

4-71. The Floating 12 V Power Supply (p/o A5) references the - Output terminal to +12 V with respect to the negative lead of the High Voltage Pulse Transformer, T4. This condition causes the High Voltage

Section to generate an output in series-opposition to the +12 V from the floating supply. The High Voltage Section then must generate $\mathrm{a}+12 \mathrm{~V}$ output just to maintain 0 V across the + and - Output terminals. This action is necessary in order to keep the Pulse Width Converter and Power Switch circuits in the linear region of their dynamic range when the Main Loop is generating an output near 0 V .

4-72. High Voltage Section Feedback Divider (Figure 7-3). The closed loop gain of the High Voltage Section is controlled by degnerative feedback from the output stage to the Differential Amplifier input stage (p/o A4). Feedback is controlled by the High Voltage Section Feedback Divider, S1R11 through S1R14. On the 1 V range and below, the feedback factor (β) is 1 (unity) resulting in a closed loop gain of 1 . On the $10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V ranges, β decreases to $0.1,0.01$, and 0.001 resulting in closed loop gains of $10,10^{2}$ and 10^{3} respectively. Precise closed loop gain characteristics in the High Voltage Sectionare not essential since the overall Main Loop feedback controls the Main Loop accuracy and will overcome small gain errors in both the Low Voltage and High Voltage sections.

4-73. External Current Limit, p/o A5 (Figure 7-9), The External Current Limit Circuit functions to protect the Model 740B from excessive loads connected to the Output terminals. The External Current Limit Circuit is comprised of the front Panel CURRENT LIMIT Control, the Current Limit Adjustment (A10R8) and the Current Limit Detector, p/o A5.

4-74. R12 (CURRENT LIMIT Control), A10R1 and A10R8 are in series with the - Output from the Main Loop. The voltage drop across this series combination appears across A5 pin 17 and A5 pin 6 and is directly proportional to the current delivered by the Output terminals. Under no-load conditions, the voltage at both pin 17 and pin 6 is approximately -12 V , caused by the operation of the Floating 12 V Supply. Under these conditions, A5Q6 is turned off and the voltage level coupled from A5Q6 to the base of $A 5 Q 7$ keeps A5Q7 from conducting. The collector of A5Q7 is connected through A5 pin 15 and A4 pin 20 to a voltage divider consisting of A4R35, A4CR11 and A4CR12 (Figure 7-8). The voltage divider clamps the collector of A 4 Q 7 and the bases of A 4 Q 6 and A 4 Q 12 to approximately - 1 V. A4Q6 and A4Q12 function as diodes and do not conduct unless an overload condition exists.

4-75. When excessive current is delivered by the Main Loop Output, a significant voltage drop occurs across R12, A10R1 and A10R8 causing A5Q6 to conduct. This causes A 5 Q 7 to conduct and the collector of A5Q7 goes positive, overcoming the -1 V from A4R35, A4CR11 and A4CR12. The positive level at the collector of A5Q7 is coupled through A5 pin 15 and A4 pin 20 to the bases of $A 4 Q 6$ and $A 4 Q 12 . A 4 Q 6$ and $A 4 Q 12$ are then forward biased, reducing the gain of the Operational Filter and Differential Amplifier, and the Main Loop output voltage decreases to a safe level.

4-76. The CURRENT LIMIT Control (R12) varies the sensitivity of the Current Limit Detector by changing the resistance in series with the -Output. When the

CURRENT LIMIT Control is set to MIN (fully ccw), R12 is set at maximum resistance, causing a larger voltage drop across the R12/A10R1/A10R8 combination for a given output current. The Current Limit Adjustment (A10R8) sets the range of the CURRENT LIMIT Control.

4-77. Output voltage also affects the Current Limit Detector. At low voltage outputs, the sensitivity of the circuit depends almost entirely on the current through R12, A10R1 and A10R8 and the circuit is calibrated to limit output current to approximately 50 mA when the CURRENT LIMIT Control is set to MAX. At high output voltages, positive prebias voltage from A11R4 (Figure 7-3) starts to forward bias the emitter-base junction of A5Q6. This increases the sensitivity of the Current Limit Detector causing the maximum output current to decrease to approximately 20 mA when the output voltage reaches 1000 V .

4-78. MAIN LOOP FEEDBACK DIVIDER (Figure 7-3).

4-79. The closed loop voltage gain accuracy of the Main Loop is almost entirely determined by the accuracy of the Main Loop Feedback Divider. The divider controls the Main Loop Gain on all ranges and functions as an input attenuator for the Meter Loop on all ranges above 1 V .

4-80. The Main Loop Feedback Divider consists of A9R4 through A9R12 which comprise a $3 \mathrm{M} \Omega$ decade divider. A9R4 through A9R9 are precision wirewound resistors that are factory matched to have similar temperature coefficient characteristics. A9R10, A9R11 and A9R12 calibrate the divider for precision decade division ratios of 10:1, 100:1 and 1000:1.

4-81. ZERO CONTROL CIRCUIT (Figure 7-3).

4-82. The Zero Control circuit functions to set the Main Loop zero reference in all modes of operation. The Zero Control circuit is comprised of A10BT1, the front panel ZERO Control (R13) and several other resistors. 1.4 V from A10BT1 is dropped across A10R6, A10R7 and A10R13. Part of this series string is paralleled by S1R9, S1R10, S1R8 and R13 (ZERO Control). Varying R13 causes the voltage across S1R10 to vary approximately $\pm 15 \mu \mathrm{~V}$, introducing a small offset voltage in the Main Loop feedback path. A10BT1 discharges constantly through the resistors that comprise the Zero Control Circuit. Discharge current is extremely low -- approximately $0.2 \mu \mathrm{~A}-$ and the service life of the cell approaches normal shelf-life. The variable offset can be used to compensate for small external offset voltages existing in a measurement setup or to set the Main Loop input or output to exactly zero.

4-83. REFERENCE LOOP.

4-84. The Reference Loop supplies a stable, accurate voltage to the Main Loop input in Standard mode. In Differential Voltmeter mode, the Main Loop feedback voltage (or a portion of it) is compared to the Reference Loop output voltage. The Reference Loop is comprised of the 1 V Reference Supply and the Reference Divider which is operated by the front panel VOLTAGE SET and STANDARD VERNIER Controls.

4-85. 1 V REFERENCE SUPPLY (Figure 7-13).

4-86. The Reference Oven Assembly (A13) contains the Control Differential Amplifier (A13Q3, A13Q4) and the Oven Heater and Regulator Circuits.

4-87. A13CR1 is a pre-aged Zener diode selected to have excellent stability characteristics. A13CR1 establishes the reference voltage for the Control Differential Amplifier (A13Q3 and A13Q4). Also, the voltage across A13CR1 is used to develop the +1 V output of the 1 V Reference Supply. The operating voltages for the Control Differential Amplifier are generated by the +34 V Supply ($\mathrm{p} / \mathrm{o} \mathrm{A} 6$) and preregulated by A2Q14 and A2Q15. The output from A13CR1 is dropped across the Reference Adjustment resistors (p / o A1) , S3R1 and S3R2. The REF COARSE and FINE adjustments (A1R40 and A1R41) set the voltage at the junction of S3R1 and S3R2 to +1 V .

4-88. The Oven Heater and Regulator Circuits function tokeep the interior temperature of the Reference Oven Assembly at a constant $80^{\circ} \mathrm{C}$. This allows the reference diode, A 13 CR 1 , to develop a very stable output voltage, regardless of ambient temperature.

4-89. The Temperature Sensing Bridge is balanced only when the oven temperature reaches $80^{\circ} \mathrm{C}$. A termistor, A13R7, functions as the heat-sensing element. When the bridge is not balanced, the voltage at the collector of A 13 Q 2 changes. This change is amplified by the Error Amplifier, A2Q12 and A2Q13. The output from the collector of A2Q13 is fed to the Heater Control transistor, Q3. Q3 controls the current through the Oven heating element, HR1. The current through HR1 is increased or decreased according to the temperature Sensing Bridge output until the oven temperature stabilizes at $80^{\circ} \mathrm{C}$, balancing the bridge.

4-90. The A13 circuit components are factory matched and aged. For this reason, the components in A13 are not separately replaceable.

4-91. REFERENCE DIVIDER (Figure 7-14).

4-92. The Reference Divider supplies a 0 to +1.00000 V output in Standard mode; 0 to +0.99999 V output in Differential Voltmeter mode. The divider consists of the five front panel VOLTAGE SET switches, the STANDARD VERNIER switch and some padding resistors on A1.
4-93. The +5.9 V output of the 1 V Reference Supply at A1 pin 22 (Figure 7-13) is dropped across S3R1 and S3R2. The $10 \mathrm{k} \Omega$ resistance of the X1 VOLTAGE SET divider is in parallel with S3R2, causing the parallel resistance of S3R2 and the X1 divider to be $1 \mathrm{k} \Omega$. The voltage across the parallel resistance is a stable and accurate 1 V .

4-94. Regardless of how the resistors in the X1 divider are switched, there will be a total of $9 \mathrm{k} \Omega$ within the X 1 divider which will make from 0 to +0.9 V in 0.1 V steps available at the X 1 divider output. The remaining 0.1 V is dropped across the parallel combination of S4R5 and the X10 divider resistance.

4-95. The X10 divider is arranged in the same manner as the X1 divider. The X10 divider input resistance is $10 \mathrm{k} \Omega$: $9 \mathrm{k} \Omega$ within the divider and $1 \mathrm{k} \Omega$ from the exterior combination of $\operatorname{S5R} 5$ and the $\mathrm{X} 10^{2}$ divider. The X 10 divider divides the input voltage in 0.01 V steps resulting in an outputacross the entire Reference Divider of 0 to +0.99 V . The $\mathrm{X} 10^{2}, \mathrm{X} 10^{3}$ and $\mathrm{X} 10^{4}$ dividers operate in the same manner. Each divider adds resolution to the output resulting in a 0 to +0.99999 V output when all five VOLTAGE SET Controls are rotated.

4-96. In Standard mode, the output voltage is taken from the Standard Vernier Divider which drops the remaining 0.00001 V in steps of $1 \mu \mathrm{~V}$, from 0 to +10 $\mu \mathrm{V}$. The resultant Reference Divider output in Standard mode is 0 to +1.00000 V .

4-97. Each decade of the Reference Divider utilizes 4 resistors to derive the 1 to 0.1 division ratios. The resistor values are $1 \mathrm{k} \Omega$ (R 1), $2 \mathrm{k} \Omega$ (R2), $2 \mathrm{k} \Omega$ (R3) and $4 \mathrm{k} \Omega$ (R4). The VOLTAGE SET switches, S 4 thru S 8 , rearrange the connections between the four resistors to obtain nine combinations, each combination producing a different division ratio, yet maintaining a resistance of $9 \mathrm{k} \Omega$ within each divider. The output of each decade divider is paralleled with the resistance of an external resistor (S4R5, S5R5, etc.) and the complex resistance of the following decade dividers. The entire series-parallel resistance combination remains at $1 \mathrm{k} \Omega$, regardless of the settings of the VOLTAGE SET switches.

4-98. Resistors in the X1 and X10 dividers are individually matched by adjusting variable padding resistors on A1 (Figure 7-5). The A1 padding resistors allow compensation to be made for aging of the resistors on S4 and S5. The padding resistors are adjusted when performing the Internal Alignment Procedure (Paragraph 5-57).

4-99. METER LOOP.

4-100. The Meter Loop consists of the Meter Filter, the Meter Amplifier, the front panel meter and part of the Sensitivity switching. The meter displays the input voltage in Voltmeter mode, the 6th digit of the input voltage in Differential Voltmeter mode and the 6 th digit of the output voltage in Standard mode.

4-101. The input to the Meter Loop comes from the Main Loop voltage feedback path in Voltmeter mode. On the 1 mV to 1 V ranges, the Meter Loop input is 0 to $1 \mathrm{Vdc}-$ - the same voltage fed back from the output of the Main Loop to the Main Loop Feedback Divider. On the $10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V ranges, the Main Loop Feedback Divider attenuates the Meter Loop input by a factor of $0.1,0.01$ and 0.001 respectively, resulting in a constant 0 to 1 V input on all ranges in Voltmeter mode.

4-102. In Differential Voltmeter mode, the Meter Loop input is connected to $\sqrt[2]{ }$, the Reference Supply common. The Meter Loop is referenced to ∇, the ground referencefor all of the critical circuits in the Main Loop. Whenever the Reference Loop output differs from the Main Loop feedback voltage, current flows through the

Meter Loop, proportional to the error between the Main Loop feedback and Reference Loop output volt ages. The Meter Loop detects and displays the error voltage, allowing a differential measurement to be made. The X1 through X10 ${ }^{4}$ SENSITIVITY pushbuttons control the Meter Loop sensitivity.

4-103. In Standard Mode, the Meter Loop inp ut comes from the Standard Vernier Divider, p/o S9. The input varies from 0 to +0.1 V according to the position of the STANDARD VERNIER Control. Meter Loop gain is 10 in Standard mode resulting in a 0 to + end-scale deflection as the STANDARD VERNIER Control is turned clockwise.

4-104. METER FILTER AND AC AMPLIFIER (Figure 7-6).
4-105. The input to the Meter Loop is applied to the Meter Filter, C8, C9, C10 and R6. The Meter Filter removes noise from the dc input. The dc output of the Meter Filter is applied to the Modulator, A16V1 and V2.

4-106. The Modulator consists of two photocells that are lighted alternately by neon lamps A16DS1 and A16DS2. The lamps are driven by a 95 Hz square wave from A8. The modulated output of A16V1/V2 is a 95 Hz square wave proportional to the difference between the Meter Loop input and degenerative feedback voltage from the output. After the Meter Loop responds to an input, the amplitude of the square wave is very small due to the high gain of the Meter Amplifier.

4-107. The ac error signal from the Modulator is applied through A2 pin 1 and A2C1 to the base of A2Q1. A2C1 decouples the ac error signal from the input dc level. A2CR1 limits large negative spikes that may occur when changing ranges or functions. A2Q1 through A2Q3 comprise a cascade-coupled, threestage amplifier. Degenerative feedback within the three-stage amplifier ensures gain stability and provides some gain correction for varying input voltages. The output of the three-stage amplifier is coupled through A2C4 to A2Q4.
4-108. A2Q4 and A2Q5 comprise a differential amplifier. Gain of the amplifier is affected by feedback voltage from the collector of A2Q16 through A2R15 to A2Q5. When the X102. X10 ${ }^{3}$ or X 10^{4} SENSITIVITY pushbutton is depressed, the degenerative feedback is reduced by switching A2R11 in parallel with A2R12, reducing the feedback impedance to ground. This results in increased gain for the A2Q4/A2Q5 differ ential amplifier. The output of the differential amplifier is amplifiedby A2Q16 and coupled through A2C7 and A2 pin 8 to the Demodulator. A2TP8 provides a convenient point to monitor the operation of the Meter Amplifier AC Section.

4-109. The amplified ac error signal is demodulated by A16V3 and A16V4. The Demodulator photocells are lighted by A16DS1 and A16DS2, the same neons that light the Modulator photocells. The Demodulator output is a dc level proportional to the input ac error signal. The Demodulator output voltage is applied to the Meter Driver through A2 pin 10.

4-110. METER DRIVER AND FEEDBACK DIVIDER.

4-111. From A2 pin 10, the dc signal is fed through A2R17 and A2R19* to A2Q6. A2R19* (typically $22 \mathrm{k} \Omega$) is factory selected to set the gain of the Meter Driver. (Paragraph 5-86 describes the procedure for selecting A2R19*.) A2Q6 amplifies the dc level and drives A2Q8. A2Q7 provides temperature compensation for A2Q6. The signal is amplified by A2Q8 and A2Q9 and applied to the class $A B$ push-pull output stage, A2Q10 and A2Q11. A2CR3 and A2CR4 keep A2Q10 and A2Q11 slightly forward-biased under no-signal conditions in order to prevent crossover distortion. Degenerative ac feedback from the emitters of A2Q10 and A2Q11 to A2Q6 causes the Meter Driver to have good noise rejection. DC gain of the Meter Driver is controlled by degenerative dc feedback through A2R32 and A2R31 to A2Q6. DC gain is approximately 200.

4-112. The output of the Meter Driver drives the Meter, M1. C13 bypasses any sharp transients around M1. A10R3 and A10R10 match the meter characteristics to the output of the Meter Driver. A10R10 calibrates the meter end-scale deflection. The Meter Driver output voltage is also applied across R14 to the RECORDEROUTPUT terminals. R14 varies the voltage from 0 to approximately 1 V for an end-scale meter deflection, allowing the output voltage to be matched to an external recorder or monitoring device.

4-113. The Meter Loop Feedback Divider controls the Meter Loop gain. The divider is comprised of S2R1 through S2R5 and the Sensitivity switch, S2. When the X1 SENSITIVITY button is depressed, all of the Meter Driver output voltage is fed back to the Modulator, A16V1/V2, setting the effective gain of the Meter Loop at 1 (unity). Depressing the X10 through X10 ${ }^{4}$ pushbuttons decreases the feedback by a factor of ten each time, resulting in an end-scale sensitivity of $100 \mu \mathrm{~V}$ on the $\mathrm{X} 10^{4}$ Sensitivity. The divider resistors (S2R1 through S2R5) are precision wirewound resistors. The divider is calibrated by adjusting A10R9 which changes the effective resistance of S2R5.

4-114. Zero offsets in the Meter Loop are nulled out by a controlled opposing offset voltage from A10R12. The voltage from the wiper of A10R12 is fed through A10R5 to the Meter Loop Feedback Divider.

4-115. POWER SUPPLIES (Figure 7-3).

4-116. Power is supplied to the Model 740B from an external 115 Vac or 230 Vac source through the Power Input Receptacle, J3. The power is applied through L6 and L7 to the POWER ON-OFF Switch, S12, and the $115-230$ Switch, S13. S12DS1 lights when S12 is in the ON position. S13 switches the primary windings of T1 from series-connected to parallel-connected when 115 Vac operation is selected. The voltage acrossone primary winding of T1 is fed to the primary of T2. T1 provides power to the Unguarded Power Supplies; T2 provides power to the Guarded Power Supplies.

4-117. GUARDED POWER SUPPLIES.

4-118. Floating 12 V Power Supply, p/o A5 (Figure 7-9). The Floating 12 V Power Supply consists of a full-wave
rectifier (A5CR6 and A5CR7) and a filter (A5C7). A secondary winding of T2 provides approximately 30 V rms to the power supply. The Floating 12 V Power Supply keeps Zener Diode A5CR4 in permanent breakdown. A5R18 limits the breakdown current. The voltage across A5CR4 introduces a permanent 12 V offset in the - Output stage of the Main Loop, allowing linear operation at low output voltage (Paragraph 4-71).

4-119. $\pm 22 \mathrm{~V}, \pm 10 \mathrm{~V},-30 \mathrm{~V}$ and +34 V Supplies, A 6 (Figure 7-10). T2 provides approximately 40 V rms tobridge rectifier A6CR1 through A6CR4. The +output of the bridge is filtered by A6C5 and the resultant +22 V is fed out A6 pin 13. The - output of the bridge is filtered by A 6 C 11 and the resultant -22 V is fed out A6 pin 12. The + and -22 V supplies are unregulated.
$4-120$. The +10 V Supply consists of a Darlingtonconnected series regulator, A6Q1 and A6Q2. A6CR5 provides the reference voltage for the controlamplifier, A6Q3. A6Q3 provides the correct bias for the series regulator. The +10 V Supply obtains primary power from the + output of the bridge rectifier, A6CR1 through A6CR4. The regulated +10 V output is fil tered by C1 and fed out A6 pin 21.

4-121. The -10 V Supply is similar to the +10 V Supply. The major difference is the voltage reference for the control amplifier, A6Q4, which is derived from the output of the +10 V Supply dropped across A6R11 and A6R10. The -10 V regulated output is led oul A 6 pin 18.

4-122. The -30 V and +34 V Supplies consist of bridge rectifiers A6CR10 through A6CR13 and A6CR6 through A6CR9. The -30 V output is fed out A6 pin 14 and filtered by C12. The +34 V output is filtered by A 6 C 13 and fed out A6 pin 3. The +34 V Supply is referenced to $\sqrt[2]{ }$ but may be measured with respect to ∇ in Standard mode when the two grounds become electrically common. The -30 V and +34 V Supplies are unregulated.

4-123. UNGUARDED POWER SUPPLIES.

4-124. - 42 V Supply (Figure 7-3). T1 provides primary power for $Z 1$ located on the main chassis. The rectified output of Z 1 is filtered by C1, L1 and C2. An interlock on A7 pins 13 and 14 interrupts the -42 V Supply whenever A7 is removed. The -42 V Supply provides power to the Power Switch (Q1 and Q2) and supplies energizing current for the Output Rotary Switch, K1. The output of the -42 V Supply is referenced to $\sqrt[4]{ }$. ($\sqrt[3]{ }$ and $\sqrt[4]{ }$ are electrically common)

4-125. $\pm 16.5 \mathrm{~V}$ Power Supply, p / o A7 (Figure 7-11). T1 supplies approximately 26 V rms whridge rectifier A7CR4 through A7CR7. The , output of the bridge is filtered by A7C2 and connceted to A6 pin 17. The -output of the bridge is filtered by A 7 Cl and connected to A7 pin 18. The Oulput Switch Interlock is connectedacross A7 pins 17 and 18. The interlock consists of relay A7K1 and A7R19. The interlock interrupts the -42 V supply r,utput to the Output Switch, K1, when the instrument is turned off. K1wesuld otherwise remain energized for several seconds duc to the long discharge time of the -42 V Power Supply
filters, C1 and C2. The + and -16.5 V Supplies are referenced to $\frac{1}{4} \cdot\left(\frac{1}{3}\right.$ and $\frac{1}{\sqrt[4]{7}}$ are electrically common).

4-126. $+180 \mathrm{~V},+360 \mathrm{~V}$ Power Supply, p/o A8 (Figure 7-12). The +180 V Power Supply consists of A8CR2 and A8C2 which comprise a half-wave unregulated supply. A8CR1 and A8C1 along with the +180 V Supply components form a voltage doubler for generating +360 V . Both suppliesare referenced to $\sqrt[4]{ }$. ($\sqrt[1]{3}$ and $\sqrt[4]{4}$ are electrically common). The output of the +180 V Supply provides operating voltages for the Neon Drivers ($\mathrm{p} / \mathrm{o} \mathrm{A8)}$). The +360 V output is fed out A8 pin 1 to the digital indicator tubes in Standard and Differential Voltmeter modes.

4-127. CHOPPER NEON DRIVERS, p/o A8 (Figure 7-12).

4-128. METER LOOP NEON DRIVER.

4-129. The Meter Loop Neon Driver supplies a 95 Hz square wave to the Meter Chopper neons A16DS1 and A16DS2. The Meter Loop Neon Driver is a freerunning multivibrator consisting of A8Q1, A8Q2 and associated components. A8R3 is adjusted to set the multivibrator frequency to 95 Hz . A8R8* and A8R9* are factory selected to set the range of adjustment of A8R3. Paragraph 5-99 describes the procedure
for selecting A8R8* and A8R9*. The square wave can be observed at A8TP21.

4-130. A16DS1 and A16DS2 are connected to opposite sides of the multivibrator which causes them to flash alternately. A16DS1 illuminates A 16 V 2 and A 16 V 4 ; A16DS2 illuminates A16V1 and A16V3.

4-131. MAIN LOOP NEON DRIVER.

4-132. The Main Loop Neon Driver supplies pulses to the Main Loop Chopper Neons, A17DS1 and A17DS2. A 8 Q 3 and A 8 Q 4 and associated components comprise a free-running multivibrator. The frequency is adjusted to 162 Hz by A8R20.

4-133. A8Q5, A8Q6 and associated components act together to shorten each of the square wave alternations from the multivibrator. The leading edge of the positive half of the square wave from A8Q4 triggers A8Q5 and A8Q5 conducts until A8C10 discharges. The discharge time occurs approximately half way through the positive alternation of the square wave. When A8Q5 conducts, A17DS2 lights. A8Q3 and A8Q6 function in a similar manner. A17DS1 lights when A8Q6 conducts. This results in the neons lighting alternately; but each neon goes out approximately 1.5 msec before the other neon lights.

Table 5-1. Required Test Equipment

EQUIPMENT TYPE	REQUIRED CHARACTERISTICS	RECOMMENDED MODEL
DC Null Detector/Voltmeter	Accuracy: $\pm 3 \%$ Sensitivity: $10 \mu \mathrm{~V}$ end-scale to 500 V end-scale Input Resistance: $>1 \mathrm{M} \Omega$ on ranges above 100 mV Input: Floating	-hp- Model 419A DC Null Voltmeter
1 V Reference Supply	Accuracy: $1 \mathrm{~V} \pm 0.0002 \%$ (See Appendix C) Stability: $10 \mathrm{ppm} /$ month	-hp- Model 735A DC Transfer Standard
Precision Decade Divider	Division Ratios: 10:1, 100:1 and 1000:1	-hp-11100A Series Resistors (See Appendix C)
Variable Line Transformer	Voltage Outputs: 102 Vac to 128 Vac or 207 Vac to 253 Vac Output Power: 125 Watts	Superior Type UC1MB (115 V) or UC 2 MB 230 V)
Oscillator	$\begin{aligned} & \text { Frequency: } 70 \mathrm{~Hz} \pm 5 \% \\ & \text { Output: } 1 \text { V rms (adjustable) } \end{aligned}$	-hp- Model 651B Test Oscillator
AC Voltmeter	Accuracy: $\pm 5 \%$ from 1 Hz to 1 MHz Response: Average or RMS responding RMS calibrated Sensitivity: $100 \mu \mathrm{~V}$ end-scale to 10 mV end-scale	$\begin{aligned} & \text {-hp-Model 403A AC } \\ & \text { Voltmeter } \end{aligned}$
Oscilloscope	Bandwidth: DC to 20 MHz Vertical Sensitivity: $5 \mathrm{mV} / \mathrm{cm}$ Time Buse: $20 \mu \mathrm{sec} / \mathrm{cm}$ to $20 \mathrm{msec} / \mathrm{cm}$	-hp-Model 180A/1801A/ 1802A Oscilloscope
Frequency Counter	Accuracy: $\pm 1 \%$ Range: 50 Hz to 400 Hz	-hp- Model 5211A Electronic Counter
1-1000 V Power Supply	Stability: . 001\%/24 hours Resolution: . 0001\%	-hp- Model 740B or 741B DC Standard
Clip-On DC Milliammeter	Range: 1 mA to 100 mA full-scale Accuracy: $\pm 3 \%$	-hp-Model 428B Clip-On Milliammeter
Resistors	$\begin{aligned} & 20 \Omega \pm 1 \% 1 / 2 \mathrm{~W} \\ & 1 \mathrm{k} \Omega \pm 10 \% \\ & 1 \mathrm{k} \Omega \pm 5 \% 5 \mathrm{~W} \\ & 10 \mathrm{k} \Omega \pm 10 \% \\ & 100 \mathrm{k} \Omega \pm 10 \% \end{aligned}$	-hp- Part No. 0811-0305 -hp- Part No. 0684-1021 -hp- Part No. 0812-0099 -hp- Part No. 0684-1031 -hp- Part No. 0811-0050
Capacitor	$2 \mu \mathrm{~F} \pm 20 \%$ non-polarized	-hp- Part No. 0170-0002

SECTION V
 MAINTENANCE

5-1. INTRODUCTION.

5-2. This section contains maintenance instructions for the Model 740B. Included are performance tests, adjustment and calibration procedures, and troubleshooting and repair procedures.

5-3. REQUIRED TEST EQUIPMENT.

5-4. Table 5-1 lists the required test equipment for maintenance of the Model 740B. Includedfor each piece of test equipment are required characteristics and a recommended commercial model. If the recom mended model is not available, select another model with similar characteristics.

5-5. PERFORMANCE TESTS.

5-6. The performance tests presented in the following paragraphs are front-panel procedures designed to compare the Model 740B with its specifications (Table $1-1$). These tests may be used for incoming inspection, periodic maintenance and for specification tests after repair or adjustment. The tests may also be useful as a first step in troubleshooting (Paragraph 5-69).

5-7. A Performance Check Test Card is included in this section on pages $5-32 \mathrm{a}$ and $5-32 \mathrm{~b}$. The card lists the test limits and provides spaces for recording the test readings. The card can be removed from the manual and used in conjunction with incoming inspection to provide a permanent record of the instrument performance.

5-8. In order to verify the accuracy specifications with a high degree of certainty, it is necessary to use a calibration system that is at least three times as accurate as the specification being checked. The most accurate mode of the Model 740B is Standard where accuracy is within $\pm 24 \mathrm{ppm}$ at maximum output voltage on any range. This requires using a calibration system accurate to within $\pm 8 \mathrm{ppm}$ to verify this specification.

5-9. A calibration system consisting of a precision divider, a 1 V reference supply and a null detector is used (in various forms) in the accuracy tests which follow. The divider is a string of adjustable transfer resistors which have been accurately ratio matched. Overall ratio accuracy is within $\pm 2 \mathrm{ppm}$ at all taps, with no need to use correction factors. The 1 V reference supply is a dc transfer standard, calibrated to $1 \mathrm{~V} \pm 2 \mathrm{ppm}$. The null detector is a sensitive dc null voltmeter capable of resolving off-null conditions of less than $0.25 \mu \mathrm{~V}$. Using the technique described, the overall accuracy of the system is within about $\pm 5 \mathrm{ppm}-$ well within the required $\pm 8 \mathrm{ppm}$.

5-10. Appendix C gives details on calibrating the transfer standard and building the divider. Fixed value standard resistors may be used in the divider providing the correction factors for each resistor are known (or derived) and applied.

5-11. The Meter Mechanical Zero Adjustment (Paragraph 5-36) and the Internal Alignment Procedure (Paragraph 5-57) should be performed before proceeding with the Performance Tests. These adjustments calibrate the instrument for the temperature existing at the time of adjustment. If the instrument is mounted in a rack or otherwise relocated to an area of different ambient temperature, the allowable accuracy deviations (given in Tables 5-2, 5-3, and 5-4) must be increased according to the following Temperature Coefficient specifications:
a. DC Standard mode: Less than (2 ppm of setting or 1 ppm of setting, whichever is greater) per ${ }^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.

Example: Normal allowable accuracy deviation for a 1 V output on the 1 V range is $\pm 24 \mu \mathrm{~V}$ obtained from the accuracy specification: $\pm(0.002 \%$ of setting $+0.0004 \%$ of range). If the temperature is changed $5^{\circ} \mathrm{C}$, the allowable accuracy deviationbecomes $\pm 34 \mu \mathrm{~V}$ for the 1 V output (original deviation of $\pm 24 \mu \mathrm{~V}$ plus the temperature correctionfactor of $10 \mu \mathrm{~V}$).
b. Differential Voltmeter mode: (2 ppm of reading $+1 \mu \mathrm{~V}$) per ${ }^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.

Example: Normal allowable accuracy deviation for a 1 V measurement on the 1 V range is $\pm 55 \mu \mathrm{~V}$ obtained from the accuracy specification: $\pm 0.005 \%$ of reading $+0.0004 \%$ of range $+1 \mu \mathrm{~V}$). If the temperature is changed $5^{\circ} \mathrm{C}$, the allowable accuracy deviation becomes $\pm 70 \mu \mathrm{~V}$ for the same measurement (original deviation of $\pm 55 \mu \mathrm{~V}$ plus the temperature correction factor of $15 \mu \mathrm{~V}$).

1. Ambient calibration temperature and ambient operating temperature must be between $10^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. Relative humidity must be less than 70%.
2. Allow a one hour warm-up period before proceeding with the performance tests.

Figure 5-1. DC Standard Accuracy Test

5-12. DC STANDARD PERFORMANCE TESTS.

5-13. OUTPUT VOLTAGE ACCURACY, LINEARITY

 AND LINE REGULATION TEST.$5-14$. This test compares the Model 740B output voltage accuracy with the specification: \pm (0.002% of setting $+0.0004 \%$ of range). As the line voltage is increased or decreased 10%, the output voltage should not change more than $\pm(0.0005 \%$ of setting $+0.0001 \%$ of range). A precision voltage divider (-hp-11100A series Resistors), a $1 \mathrm{~V} \pm 0.0002 \%$ reference supply (-hp- Model 735A DC Transfer Standard), a dc null detector (-hpModel 419A DC Null Voltmeter) and a variable line transformer (Superior Type VC1MB or VC2MB) are required for this test.

NOTE

Appendix C gives details on constructing the precision divider and calibrating the 1 V reference supply to the accuracies required.
a. Construct test setup shown in Figure 5-1. Make all connections with insulated solid copper wire, 20 gauge or larger. S1 should be a solid copper contact knife switch. Connect Model 740B power input to a variable line transformer supplying 115 or 230 Vac.
b. Set 740B controls as follows:

| FUNCTION STD | | |
| :--- | :--- | ---: | ---: |
| RANGE | 1 V | |
| VOLTAGE SET. | .00000 | |
| STANDARD VERNIER | . | 0 |
| CURRENT LIMIT | MAX | |
| OUTPUT | On | |

c. Zero the null detector on the $3 \mu \mathrm{~V}$ range.

> NOTE
> Periodically rezero the null detector.
d. Zero the 740B output by placing S1 in position 1 and adjusting the ZERO control for a null indication $\pm 1 \mu \mathrm{~V}$ on the null detector ($3 \mu \mathrm{~V}$ range).
e. Set VOLTAGE SET and STANDARD VERNTER controls to 9-9-9-9-9-10 (all fully cw) for a 1 V output.
f. Set S1 to position 2 to compare 740 B output with the precision 1 V reference supply output.
g. Adjust null detector range to obtain an on-scale reading. Null detector reading should not exceed $\pm 24 \mu \mathrm{~V}$. Record reading: \qquad -

Table 5-2. DC Standard-Accuracy and Linearity Test Data

RANGE	OUTPUT	DIVIDER CONNECTIONS		DIVIDER RATIO	NULL DETECTOR READINGS (MAX)
		740B	PRECISION 1 V REFERENCE		
1 V	1.00000	A and B	A and B	1:1	$\pm 24 \mu \mathrm{~V}$
10 V	1.00000	A and B	A and B	1:1	$\pm 60 \mu \mathrm{~V}$
10 V	2.00000	A and C	A and B	2:1	$\pm 40 \mu \mathrm{~V}$
10 V	3.00000	A and D	A and B	3:1	$\pm 33 \mu \mathrm{~V}$
10 V	4.00000	A and E	A and B	4:1	$\pm 30 \mu \mathrm{~V}$
10 V	5.00000	A and F	A and B	5:1	$\pm 28 \mu \mathrm{~V}$
10 V	6.00000	A and G	A and B	6:1	$\pm 27 \mu \mathrm{~V}$
10 V	7.00000	A and H	A and B	7:1	$\pm 26 \mu \mathrm{~V}$
10 V	8.00000	A and I	A and B	8:1	$\pm 25 \mu \mathrm{~V}$
10 V	9.00000	A and J	A and B	9:1	$\pm 24 \mu \mathrm{~V}$
10 V	10.0000	A and K	A and B	10:1	$\pm 24 \mu \mathrm{~V}$
100 V	100.000	A and L	A and B	100:1	$\pm 24 \mu \mathrm{~V}$
10000 V	1000.00	A and M	A and B	1000:1	$\pm 24 \mu \mathrm{~V}$

* Readings are maximum allowable deviation at calibration temperature. If performance checks are performed at a different temperature, the allowable deviation must be increased (Paragraph 5-11).
The reading of the null detector
in $\mu \mathrm{V}$ gives the accuracy de-
viation of the Model $740 \mathrm{~B}, 1 . \mathrm{V}$
output, 1 V range. Deviation
should not exceed $\pm 24 \mu \mathrm{~V}$, ob-
tained from the Standard mode
accuracy specification: $\pm(0.002 \%$
of setting $+0.0004 \%$ of range $)$.
h. Increase the 740 B line voltage from 115 V to 126.5 V (115 V operation) or from 230 V to 253 V (230 V operation). Record null detector reading: \qquad . Reduce line voltage to 103.5 V (115 V operation) or 207 V (230 V operation). Record null detector reading: \qquad . The readings obtained in this step shouldnot differ from the reading recorded in step g by more than $\pm 6 \mu \mathrm{~V}$.

$$
\begin{aligned}
& \text { The changes in the null detector } \\
& \text { reading gives the } 740 \mathrm{~B} \text { output } \\
& \text { voltage change for a } 10 \% \text { line } \\
& \text { voltage change. Changes of } 6 \\
& \mu \mathrm{~V} \text { or less verify the line regu- } \\
& \text { lation specification: } \pm(0.0005 \% \\
& \text { of setting }+0.0001 \% \text { of range) } \\
& \text { for a } 10 \% \text { line voltage change. }
\end{aligned}
$$

i. Return 740 B line voltage to 115 or 230 V .
j. Place S 1 to position 1 to remove the 1 V reference from the divider.
k. Return 740B VOLTAGE SET and STANDARD VERNIER to $0-0-0-0-0-0$ to remove the out put from the divider.

1. Set 740B RANGE to 10 V and zero the output by adjusting ZERO control for a null indication $(\pm 10 \mu \mathrm{~V})$ on the null detector.
m. Set 740 B for a 1 V output ($1-0-0-0-0-0$) on the 10 V range.
n. Place $S 1$ to position 2 to compare the 740 B output with the precision 1 V reference. The null detector should indicate $\pm 60 \mu \mathrm{~V}$ or less.
o. De-energize 740B output and connect +OUTPUT and +SENSE leads to point C on the divider.
p. Set 740 B for a 2 V output ($2-0-0-0-0-0$).
q. Null detector reading should not exceed $\pm 40 \mu \mathrm{~V}$.

The null detector indicates the differencebetween the 1 V reference and one half of the 740B output. Allowable accuracy deviation for a 2 V output on the 10 V range is $\pm 80 \mu \mathrm{~V}$. Since the output is divided in half by the divider, only half of the error ($40 \mu \mathrm{~V}$ or less) will be indicated by the null detector.
r. Repeat the procedure in steps o through q for the other outputs listed in Table 5-2.

ALWAYS DE-ENERGIZE THE 740B OUTPUTWHEN MAKING CHANGES IN THE TEST SETUP.

NOTE

Zero the 740 B output according to the procedure in stepl whenever changing ranges. Use the $100 \mu \mathrm{~V}$ and 1 mV ranges on the null detector for the 100 V and 1000 V ranges respectively on the 740B.

Figure 5-2. Current Limit Test

5-15. OUTPUT CURRENT AND CURRENT LIMIT TEST.

5-16. This test checks the maximum output current (at least 50 mA) and the range of the CURRENT LIMIT control (5-50 mA nominal). A $20 \Omega \pm 1 \% 1 / 2 \mathrm{~W}$ resistor (-hp- Part No. 0811-0305) and a clip-on dc milliammeter (-hp- Model 428B Clip-On DC Milliammeter) are required for this test.
a. Connect test setup shown in Figure 5-2.
b. Set 740B controls as follows:

| FUNCTION | STD |
| :--- | ---: | ---: |
| RANGE | 10 V |
| VOLTAGE SET . . . | 1.50000 |
| CURRENT LIMIT . . . | MAX |
| OUTPUT | On |

OVERLOAD indicator will glow.
c. The milliammeter should indicate 50 mA or greater.
d. Turn CURRENT LIMIT control fully ccw (MIN).
e. The milliammeter reading should decrease to 5 mA or less.

5-17. LOAD REGULATION AND OUTPUT RESISTANCE TEST.

5-18. This test measures the no-load to full-load output voltage excursion of the Model 740B. From this voltage, the load regulation and output resistance can be calculated. A $20 \Omega \pm 1 \% 1 / 2 \mathrm{~W}$ resistor (-hpPart No. 0811-0305), a $1 \mathrm{~V} \pm 0.0002 \%$ reference supply (-hp-Model 735A DC Transfer Standard) and a de null detector (-hp- Model 419A DC Null Voltmeter) are required for this test.

Figure 5-3. Load Regulation and Output Resistance Test
a. Connect test setup shown in Figure 5-3. Leave the 20Ω resistor disconnected.
b. Set Model 740B controls as follows:

```
FUNCTION . . . . . . . . . . . STD
RANGE . . . . . . . . . . . . . 1 V
VOLTAGE SET . . . . . . 0.99999
STD VERNIER . . . 1.0 (fully cw)
CURRENT LIMIT. . . . . . . MAX
OUTPUT . . . . . . . . . . . . On
```

c. Using ZERO and STANDARD VERNIER controls, make small changes in the 740 B output voltage until the null detector indicates null on the $10 \mu \mathrm{~V}$ range.
\qquad
If null cannot be reached, the 740B reference supply should be adjusted even though the instrument may be operating within specifications. Paragraph 5-62 steps m through pgives the procedure for adjusting the reference supply.
d. Connect the 20Ω resistor across the $740 \mathrm{~B}+$ and - OUTPUT terminals.
e. The null detector reading should be $\pm 15 \mu \mathrm{~V}$ or less.

NOTE

1. An indication of $15 \mu \mathrm{~V}$ or less verifies the load regulation specification: less than $(0.0005 \%+10 \mu \mathrm{~V})$ change, no-load to full-load.
2. An indication of $15 \mu \mathrm{~V}$ or less also verifies an output resistance of 0.0003Ω or less, obtained from the output resistance specification: less then ($0.0002+0.0001 \mathrm{E}_{\text {out }}$) ohms atdc. Output resistance can be calculated from the formula:

$$
R_{\mathrm{O}}=\frac{\Delta \mathrm{E}}{\Delta \mathrm{I}}
$$

where $R_{0}=$ output resistance in ohms.
$\Delta \mathrm{E}=$ change in output voltage, no load to full load (null detector reading).
$\Delta I=$ change in output current, no load to full load (0.05 A).
5-19. RADIO FREQUENCY INTERFERENCE (RFI).
$5-20$. If the Model 740 B is to be checked for RFI in accordance with MIL Spec. 6181D, connect the input and output terminals as shown in Figure 5-4.
5-21. OUTPUT NOISE AND HUM TEST.
5-22. This test measures noise and hum superimposed on the 740B output. A sensitive dc voltmeter (-hpModel 419A DC Null Voltmeter) and a 1 Hz to 1 mHz ac voltmeter (-hp- Model 403A AC Voltmeter)are required for this test.
a. Set 740B controls as follows:
FUNCTION STD
RANGE. 1 V
VOLTAGE SET. 00000
STANDARD VERNIER 0
DC OUTPUT On
b. Connect the dc voltmeter across the 740B + and - OUTPUT terminals.
c. Zero the 740 B output by adjusting ZERO control for a null indication on the voltmeter ($10 \mu \mathrm{~V}$ range).
d. Voltmeter pointer movement $(0.01 \mathrm{~Hz}$ to 1 Hz noise) should not exceed $\pm 1 \mu \mathrm{~V}$. This verifies the 0.01 Hz to 1 Hz noise specification: less than 1 ppm of range.
e. In a similar manner, check the 0.01 Hz to 1 Hz noise on the $10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V ranges. Table 5-3 lists the maximum voltmeter pointer movement.
\qquad
Zero the 740B output each time before the 0.01 to 1 Hz noise is measured.

Figure 5-4. RFI Test

Table 5-3. Output Noise and Hum Test Data

740B RANGE	DCVM POINTER MOVEMENT (Max.)	ACVM READING (Max.)
1 V	$\pm 1 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$
10 V	$\pm 10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$
100 V	$\pm 100 \mu \mathrm{~V}$	1 mV
1000 V	$\pm 1 \mathrm{mV}$	10 mV

f. Connect the ac voltmeter across the + and OUTPUT terminals and check the 1 Hz to 1 MHz noise on the $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V ranges. Table 5-3 lists the noise limits for each range.

5-23. ZERO CONTROL LIMITS TEST.

$5-24$. This test checks the range of the front panel ZERO control. A sensitive dc voltmeter (-hp- Model 419A DC Null Voltmeter) is required for this test.
a. Set 740B controls as follows:

FUNCTION	STD	
RANGE	1 V	
VOLTAGE SET	00000	
STANDARD VERNIER	.	0
OUTPUT	On	

b. Connect + and - OUTPUT terminals to voltmeter input.
c. Vary 740B ZERO control from one extreme to the other. Voltmeter indication should vary from at least $-10 \mu \mathrm{~V}$ to at least $+10 \mu \mathrm{~V}$.
5-25. DIFFERENTIAL VOLTMETER AND HIGH IMPEDANCE VOLT'METER PERFORMANCE TESTS.

5-26. INPUT RESISTANCE TEST.

5-27. This test measures the Model 740B input resistance. A 1 V reference supply (-hp- Model 735A DC Transfer Standard), a $100 \mathrm{k} \Omega \pm 1 \%$ resistor (-hpPart No. 0811-0050) and a solid copper contactknife switch are required for this test.
a. Connect test setup shown in Figure 5-5.
b. Measure the 1 V reference out put in $\triangle V M$ mode. Leave the X10 ${ }^{4}$ SENSITIVITY button depressed.
c. Open the switch to place the $100 \mathrm{k} \Omega$ resistor in series with the 740B input. The 740B meter reading should change less than $10 \mu \mathrm{~V}$ (1 major division).

—— NOTE

A change of less than $10 \mu \mathrm{~V}$ verifies the input resistance specification: greater than $10^{10} \Omega$ (1 V range). Input resistance can be calculated from the formula:

$$
R_{\text {in }}=\frac{R_{s} E_{a}}{\Delta E_{a}}
$$

$$
\text { where } \begin{aligned}
\mathrm{R}_{\mathrm{S}} & =\text { input resistance } \\
\mathrm{E}_{\mathrm{a}} & =\text { applied voltage (} 1 \mathrm{~V} \text {) } \\
\Delta \mathrm{E}_{\mathrm{a}}= & \text { voltage change (less } \\
& \text { than } 10 \mu \mathrm{~V} \text {) when } \\
& \text { series resistance is } \\
& \text { added }
\end{aligned}
$$

5-28. SUPERIMPOSED AC REJECTION TEST.

5-29. This test measures the error introduced when an ac signal is superimposed on the dc input to the Model 740B. A 1 V source (-hp- Model 735A DC Transfer Standard), an oscillator (-hp-Model 651B Test Oscillator), an ac voltmeter (-hp-Model 403A), a $10 \mathrm{k} \Omega \pm 10 \%$ resistor (-hp- Part No. 0684-1031). and a $2 \mu \mathrm{~F} \pm 20 \%$ capacitor (-hp-Part No. 0170-0002) are required for this test.
a. Connect test setup shown in Figure 5-6. Do not turn on oscillator yet.
b. Measure the 1 V output of the dc transfer standard in $\triangle \mathrm{VM}$. Leave the X10 ${ }^{4}$ SENSITIVITY button depressed.
c. Turn on oscillator; set frequency to 70 Hz ; adjust amplitude for a reading of 1 V on the ac voltmeter.

Figure 5-5. Input Resistance Test

Figure 5-6. Superimposed AC Rejection Test
d. After the initial transient, the 740 B reading should return to within $10 \mu \mathrm{~V}$ (1 major meter division) of the initial reading. This verifies the specification: Less than 0.001% error for ac voltages above 60 Hz equal to the DC signal (25 V rms, maximum).

5-30. AC COMMON MODE REJECTION TEST.

5-31. This test measures the error introduced by an ac signal applied between the + INPUT and $\stackrel{1}{=}$ terminals with a $1 \mathrm{k} \Omega$ unbalance across the + and - INPUT terminals. A test oscillator (-hp-Model 651B), an ac voltmeter (-hp-Model 403A), and a $1 \mathrm{k} \Omega \pm 10 \%$ resistor (-hp-Part No. 0684-1021) are required for this test.
a. Set 740B controls as follows:
FUNCTION VM
RANGE 1 V
SENSITIVITY X10
INPUT Shorted
b. Adjust ZERO control to zero the 740B meter.
c. Remove short from input terminals.
d. Construct test setup shown in Figure 5-7.
e. Set oscillator frequency to 60 Hz ; adjustamplitude to 10 V rms as indicated by the ac voltmeter.
f. 740B meter deflection should be less than $10 \mu \mathrm{~V}$ (1 major division). This verifies ac common mode rejection $>120 \mathrm{~dB}$ where:
Common Mode Rejection $=\frac{\mathrm{E}_{\text {Oscillator }}(\mathrm{rms})}{\mathrm{E}_{740 \mathrm{~B}}}$

5-32. ACCURACY AND LINE REGULATION TEST.

$5-33$. This test compares the measuring accuracy of the Model 740B with the specifications:

$$
\begin{aligned}
& \pm(0.005 \% \text { of reading }+0.0004 \% \\
& \text { of range }+1 \mu \mathrm{~V} \text {) } \Delta \mathrm{VM} \text { mode } \\
& \pm(2 \% \text { of end scale }+0.1 \mu \mathrm{~V}) \text {. . . VM mode }
\end{aligned}
$$

Figure 5-7. AC Common Mode Rejection Test

Figure 5-8. $\quad \Delta \mathrm{VM}$ and VM Accuracy Test, $1 \mathrm{~V}-1000 \mathrm{~V}$

As the line voltage is increased or decreased 10%, the indicated voltage ($\Delta V M$ mode) should not change more than $\pm(0.001 \%$ of reading $+2 \mu \mathrm{~V})$. A precision voltage divider (-hp-11100 series Resistors), a stable $1-1000$ Vdc power supply (-hp-Model 741B or 740B), a dc null detector (-hp- Model 419A DC Null Voltmeter) and a variable line transformer (Superior type VC1MB or VC2MB) are required for this test.

- NOTE

Appendix C gives details on constructing the precision divider and calibrating the 1 V reference supply to the accuracies required.
a. Construct test setup shown in Figure 5-8. Make all connections with insulated solid copper wire, 20 gauge or larger. Connect 740B power input to the variable line transformer supplying 115 or 230 Vac.
b. Connect power supply + lead to point B on the divider.
c. Set power supply output to 1 V . Makeminor changes in the voltage source output, if needed, to maintain a null indication on the null detector (10 $\mu \mathrm{V}$ range).

NOTE

Periodically check null detector zero.
d. Set 740B controls as follows:

$$
\begin{aligned}
& \text { FUNCTION } \\
& \text { RANGE } \\
& \text { VOL } 1 \text { V } \\
& \text { VOLTAGE SET } 00000 \\
& \text { SENSITIVITY }
\end{aligned}
$$

e. Zero the 740B input by connecting the + INPUT lead to the - INPUT lead (point A on the divider) and adjusting ZERO control for a zerometer indication.
f. Connect $740 \mathrm{~B}+$ INPUT lead to point B on the divider.
g. Measure the voltage ($\Delta \mathrm{VM}$ mode). 740 B should indicate $1 \mathrm{~V} \pm 55 \mu \mathrm{~V}$ (Table 5-4). Record 740B indication: \qquad .
h. Increase the 740 B line voltage from 115 V to 126.5 V (115 V operation) or from 230 V to 253 V (230 V operation). Record 740B voltage indication: . Reduce line voltage to $103.5 \mathrm{~V}(115 \mathrm{~V}$ operation) or $207 \mathrm{~V}(230 \mathrm{~V}$ operation). Record 740B voltage indication: . The readings obtained in this step should not differ from the reading recorded in step gbymore than $\pm 12 \mu \mathrm{~V}$. Return line volt age to 115 V or 230 V .
i. Depress X1 SENSITIVITY and set FUNCTION to VM. 740 B meter should indicate $1 \mathrm{~V} \pm 0.02 \mathrm{~V}$ (Table 5-4).
j. Set 740B RANGE to 10 V , FUNCTION to $\triangle \mathrm{VM}$ and zero the input on the X 10^{4} SENSITIVITY (stepe).
k. Move power supply + OUTPUT lead and 740B + INPUT lead to point C on the divider.

WARNING

DE-ENERGIZE POWER SUPPLY OUTPUT WHEN MAKING CHANGES IN THE TEST SETUP.

Table 5-4. $\quad \Delta \mathrm{VM}$ and VM Accuracy Test Data, $1 \mathrm{~V}-1000 \mathrm{~V}$

DIVIDER CONNECTIONS, 740B INPUT AND POWER SUPPLY OUTPUT	IN-TOLERANCE 740B INDICATIONS	
	$\triangle \mathrm{VM}$ MODE	VM MODE
A and B	$1 \mathrm{~V} \pm 0.000055 \mathrm{~V}$	$1 \mathrm{~V} \pm 0.02 \mathrm{~V}$
A and C	$2 \mathrm{~V} \pm 0.00014 \mathrm{~V}$	$2 \mathrm{~V} \pm 0.2 \mathrm{~V}$
A and D	$3 \mathrm{~V} \pm 0.00019 \mathrm{~V}$	$3 \mathrm{~V} \pm 0.2 \mathrm{~V}$
A and E	$4 \mathrm{~V} \pm 0.00024 \mathrm{~V}$	$4 \mathrm{~V} \pm 0.2 \mathrm{~V}$
A and F	$5 \mathrm{~V} \pm 0.00029 \mathrm{~V}$	$5 \mathrm{~V} \pm 0.2 \mathrm{~V}$
A and G	$6 \mathrm{~V} \pm 0.00034 \mathrm{~V}$	$6 \mathrm{~V} \pm 0.2 \mathrm{~V}$
A and H	$7 \mathrm{~V} \pm 0.00039 \mathrm{~V}$	$7 \mathrm{~V} \pm 0.2 \mathrm{~V}$
A and I	$8 \mathrm{~V} \pm 0.00044 \mathrm{~V}$	$8 \mathrm{~V} \pm 0.2 \mathrm{~V}$
A and J	$9 \mathrm{~V} \pm 0.00049 \mathrm{~V}$	$9 \mathrm{~V} \pm 0.2 \mathrm{~V}$
A and K	$10 \mathrm{~V} \pm 0.00054 \mathrm{~V}$	$10 \mathrm{~V} \pm 0.2 \mathrm{~V}$
A and L	$100 \mathrm{~V} \pm 0.0054 \mathrm{~V}$	$100 \mathrm{~V} \pm 2 \mathrm{~V}$
A and M	$1000 \mathrm{~V} \pm 0.054 \mathrm{~V}$	$1000 \mathrm{~V} \pm 20 \mathrm{~V}$

1. Set power supply output to 2 V . Make minor changes in the output voltage, if needed, to maintain a null indication on the null detector (10 $\mu \mathrm{V}$ range).
m . Measure the voltage in $\triangle \mathrm{VM}$ and VMmodes. Indicated voltage should be within the tolerances listed in Table 5-4.
n. Progressively move up the divider, applying the voltage shown at each point and measuring the voltage at that point in $\triangle \mathrm{VM}$ and VM modes with the 740B. Compare the voltage readings with the tolerances listed in Table 5-4.

NOTE

1. Make minor changes in the power supply output at each point to maintain null on the null detector.
2. Periodically check null detector zero.
3. Zero the 740 B input whenever changing ranges.
o. Reconnect the test setup as shown in Figure $5-9$. Do not connect the reference supply and power supply + leads yet.
p. Set 740 B controls as follows:
FUNCTION $\Delta V M$
RANGE 100 mV
VOLTAGE SETT . . . 00.000
SENSITIVITY X104
q. Adjust ZERO control for a zero indication on the 740 B meter.

It is not necessary to short the + and - leads when adjusting ZERO control due to the low impedance ($1 \mathrm{k} \Omega$) across the input terminals.
r. Connect the 1 V reference supply and stable power supply + leads to point K on the divider. Adjust the power supply output for null on the null detector.
s. Measure the voltage (at point B) with the 740 B ($\Delta \mathrm{VM}$ mode). Compare the reading with the tolerances listed in Table 5-5.
t. Switch FUNCTION to VM; depress X1 SENSITIVITY. Compare the 740 B meter reading with the tolerances listed in Table 5-5.
u. Move the 1 V reference supply and power supply + leads to point L and then to point M on the divider, measuring the voltages each time at point B in both $\triangle V M$ and VM modes. Compare the indications with the tolerances given in Table 5-5.
—— NOTE ——_

1. Zero the 740 B input each time RANGE is changed. The ZERO control is more sensitive on the lower ranges. Depress $\mathrm{X} 10^{3}$ SENSITIVITY to zero the input on the 1 mV range.
2. Periodically check null detector for null and adjust (if necessary) the stable power supply output to maintain null.

Table 5-5. $\quad \Delta \mathrm{VM}$ and VM Accuracy Test Data, $1 \mathrm{mV}-100 \mathrm{mV}$

1 V REFERENCE SUPPLY AND STABLE POWER	VOLTAGE AT SUPPLY + LEADS	POINT B	IN-TOLERANCE	
		$\Delta 40 B$ INDICATIONS		
Point K	100 mV	$100 \pm 0.0064 \mathrm{mV}$	VM	
Point L	10 mV	$10 \pm 0.0015 \mathrm{mV}$	$100 \mathrm{mV} \pm 2 \mathrm{mV}$	
Point M	1 mV	$1 \pm 0.001 \mathrm{mV}$	$10 \mathrm{mV} \pm .2 \mathrm{mV}$	

Figure 5-9. $\quad \Delta \mathrm{VM}$ and VM Accuracy Test, $1 \mathrm{mV}-100 \mathrm{mV}$

5-34. ADJUSTMENT AND CALIBRATION.

5-35. The following paragraphs contain a complete adjustment and calibration procedure for the Model 740B. This procedure should be performed every 30 days to maintain in-specification operation. Allow the instrument to warmupfor at least one hour before performing the procedure. Be sure to complete all of the adjustments in the order given, as several of the adjustments interact. Figure 5-11 shows the location of the internal adjustments.

5-36. METER MECHANICAL ZERO ADJUSTMENT.

5-37. The meter mechanical zero should be checked when the instrument has been turned off for one minute following a normal (60 minute) warmup period. If the meter pointer does not rest exactly on the meter zero calibration mark, perform the following adjustment:
a. Rotate the meter mechanicalzero adjustment screw to position the meter pointer to the left of zero.
b. Carefully rotate the adjustment screw clockwise; stop when the pointer is exactly at zero. If the pointer overshoots zero, repeat steps a and b.
c. When pointer is exactly on zero, rotate the adjustment screw approximately 15 degrees counterclockwise to free the adjustment screw from the meter suspension. If pointer moves during this stepbecause the adjustment screw is turned too far counterclockwise, repeat steps a, b and c.

5-38. METER CHOPPER FREQUENCY ADJUSTMENT (A8R3).

5-39. The meter chopper frequency adjustment (A8R3) adjusts the frequency of the square wave applied to the neons in the Meter Chopper Assembly (A16). An electronic counter (-hp- Model 5211 A) is required for this adjustment procedure.
a. Connect counter input to A8TP21. Connect counter ground clip to $\sqrt[3]{3}$ (Figure 5-11).
b. Adjust A8R21 for an indication of 95 ± 1 pulses per second on the counter.

5-40. ALTERNATE METHOD.

If an electronic counter is not available, the following procedure may be used to adjust A8R3.
a. Connect an oscilloscope to A8TP21 and $\frac{1}{3}$ (Figure 5-11).
b. Adjust A 8 R 3 for a square wave repetition period of 10.5 msec (Figure 5-10).

Figure 5-10. Meter Loop Chopper Waveshape

Figure 5-11. Internal Adjustments and Test Points

5-41. MAIN LOOP CHOPPER FREQUENCY ADJUST MENT (A8R20).

5-42. The main loop chopper frequency adjustment (A8R20) adjusts the frequency of the neon driver waveshape applied to the neons in the Main Loop Chopper Assembly (A17). An electronic counter (-hp- Model 5211 A) is required for this adjustment procedure.
a. Connect counter input to A8TP20. Connect counter ground clip to $\sqrt[1]{\sqrt[3]{~(F i g u r e ~ 5-11) . ~}}$
b. Adjust A8R20 for an indication of 324 ± 2 pulses per second on the counter.

NOTE

324 pulses per second corresponds to a chopper frequency of 162 Hz since the firing pulses for both neons are present at A8TP20.

5-43. ALTERNATE METHOD.

If an electronic counter is not available, the following procedure may be used to adjust A8R20.
a. Connect an oscilloscope to A8TP20 and $\sqrt[3]{3}$ (Figure 5-11).
b. Adjust A8R20 for a repetition period (2 cycles) of 6.17 msec (Figure $5-12$).

Figure 5-12. Main Loop Chopper Waveshape
\qquad
2 cycles in 6.17 msec corresponds to a chopper frequency of 162 Hz since the firing pulses for both neons are present at A8TP20.

5-44. INTERNAL ZERO ADJUSTMENT (A4R13).
5-45. The internal zero adjustment (A4R13) adjusts the main loop zero reference. A sensitive dc voltmeter (-hp- Model 419A DC Null Voltmeter) is required to perform this adjustment.
a. Set Model 740B controls as follows:

```
RANGE. . . . . . . . . . . }100\mathrm{ V
FUNCTION . . . . . . . . . }\DeltaV
VOLTAGE SET . . . . . 00.000
INPUT . . . . . . . . . . shorted
```

b. Connect a sensitive dc voltmeter across the + and - OUTPUT terminals.
\qquad
Make sure that the + SENSE terminal is connected to the + OUTPUT terminal and that the - SENSE terminal is connected to the - OUTPUT terminal.
c. Set voltmeter to 1 mV range and adjust A4R13 (INT. ZERO) for a zero indication $\pm 100 \mu \mathrm{~V}$ on the voltmeter.

5-46. BALANCE ADJUSTMENT (A4R6).

5-47. The balance adjustment, A4R6, is factory set to match the operating characteristics of A 4 Q 1 and A 4 Q 2 and does not need to be adjustedunless A4Q1 or A 4 Q 2 is replaced. If one of these transistors is replaced, proceed as follows:
a. Perform internal zero adjustment (Paragraph 5-44).
b. Remove instrument guard shield cover
c. Connect a dc voltmeter (-hp-Model 419A) to A4TP12 and ∇ (Figure 5-11).
d. Set voltmeter range to 10 mV .
e. Adjust A4R6 for $0 \pm 3 \mathrm{mV}$ on the voltmeter.
f. Replace instrument guard shield cover.
g. Recheck internal zero adjustment (Paragraph 5-44).

5-48. METER LOOP ADJUSTMENTS.

5-49. The meter loop adjustments consist of the meter zeroadjustment (A10R12), the 1 V adjustment (A10R10) and the $100 \mu \mathrm{~V}$ adjustment (A10R9). The meter zero adjustment sets the meter deflection to zero when no input is applied to the meter loop. The 1 V adjustment varies current through the meter, and in this manner matches meter deflection to the meter amplifier output. The $100 \mu \mathrm{~V}$ adjustment calibrates the meter amplifier gain on the X10 thru X10 ${ }^{4}$ SENSITIVITY ranges. No external test equipment is required to perform these adjustments.

5-50. METER ZERO ADJUSTMENT (A10R12).

a. Set Model 740 B controls as follows:
FUNCTION $\Delta V M$
RANGE 1 V
VOLTAGE SET. 00000
SENSITIVITY. $\mathrm{X} 10^{4}$
INPUT shorted
b. Adjust A10R12 (METER ZERO) for a zero indication on the Model 740B meter.

5-51. 1 V ADJUSTMENT (A10R10).

a. Set Model 740B controls as follows:
FUNCTION $\Delta V M$
RANGE 1 V
VOLTAGE SET 00000
SENSITIVITY X104
INPUT
b. Zero the meter with the front panel ZERO control.
c. Depress X1 SENSITIVITY and rotate X1 VOLTAGE SET to 9 (fully clockwise).
d. Adjust A10R10 (METER 1 V ADJ.) for a meter deflection of -0.9 .

5-52. $100 \mu \mathrm{~V}$ ADJUSTMENT (A10R9).
a. Set Model 740B controls as follows:

FUNCTION $\Delta V M$		
RANGE 1 V		
VOLTAGE SET0000
SENSITIVITY	.	.
INPUT 10^{4}		
IN	shorted	

b. Zero the meter with the front panel ZERO control.
c. Rotate $\mathrm{X} 10^{3}$ VOLTAGE SET to 1 (one position cw).
d. Adjust A10R9 (METER $100 \mu \mathrm{~V}$ ADJ.) for a meter deflection of -1.0 .

5-53. STANDARD VERNIER ADJUSTMENT (A10R11).
$5-54$. The standard vernier adjustment adjusts the voltage applied to the meter loop input in STD mode. No external test equipment is required to perform this adjustment.
a. Set Model 740B controls as follows:

```
FUNCTION
STD VERNIER . . . . . fully cw
```

b. Adjust A10R11 (STD VERNIER ADJ.) for a meter deflection of +1.0 .

5-55. MAXIMUM CURRENT LIMIT ADJUSTMENT (A10R8).

5-56. The maximum current limit adjustment (A10R8) sets the maximum available output current by adjusting the range of the front panel CURRENT LIMIT control. A $1 \mathrm{k} \Omega \pm 5 \% 5 \mathrm{~W}$ resistor (-hp-Part No. 08120099) is required for this adjustment procedure.
a. Set Model 740B controls as follows:

RANGE 100 V	
VOLTAGE SET	60.000
STD VERNIER	fully ccw
CURRENT LIMIT	MAX
OUTPUT	

b. Connect a $1 \mathrm{k} \Omega$ resistor across + and - OUT PUT terminals.
c. Depress OUTPUT pushbutton to apply 60 V to load.
d. Turn A10R8 (MAX. CURRENT LIMIT) cw until front panel OVERLOAD light glows.
e. Turn A10R8 slowly ccw until OVERLOAD light just goes out.

5-57. INTERNAL ALIGNMENT PROCEDURE

5-58. The internal alignment procedure is a method of accurately calibrating and adjusting the VOLTAGE SET dividers, the Precision Range Divider and the Reference Supply.

5-59. The VOLTAGE SET resistors are ratio matched with the front panel meter serving as the null indicator. Meter ratio sensitivity is very high - -approximately 8 ppm full scale --and a perfect null is both hard to achieve and unnecessary. The adjustments shouldbe set as near null as possible and rechecked after the procedure is completed. If null is maintainedwithin 10% (one major meter division) of 0 , the instrument will operate well within its specifications. The first adjustment, A1R1, calibrates a 2:1 divider used as a reference for the following adjustments. The next eight adjustments (A1R2 through A1R9) match the VOLTAGE SET resistors by adjusting the corresponding parallel padding resistance on A1. After a long period of time, one or more of the VOLTAGE SET resistors may drift beyond the adjustment range of the variable padding resistance. Paragraph 5-63 explains the procedure for modifying the padding resistance to compensate for the long term drift.

5-60. A9R10, A9R11 and A9R12 are adjusted to meter indication values printed on the guard shield cover. These values are determined at the factory for each instrument and should not be changed unless the precision divider (A9R4 through A9R9) is replaced. If the precision divider is replaced, the new numbers canbe determinedusing the procedure given in Paragraph 5-109.

5-61. The last two adjustments of this procedure (A1R40 and A1R41) calibrate the internal reference supply. An external reference voltage (-hp- Model 735A DC Transfer Standard) and a null detector (-hp- Model 419A DC Null Voltmeter) are required for these adjustments.

5-62. The following steps describe the internal alignment procedure. The procedure is also outlined on the instrument guard shield cover.
a. Turn on the instrument and allow it to warm up for at least 60 minutes.

In-tolerance instrument performance can be expected when the internal alignment procedure is
performed after a normal (60 minute) warmup period. For optimum instrument accuracy, this procedure may be repeated after an eight hour (or longer) warmup period.
b. Remove instrument top cover.
c. Set front panel controls as follows:
RANGE 100 V
FUNCTION VM
VOLTAGE SET 00.000
SENSITIVITY X104
INPUT Shorted
d. Adjust A10R12 (Meter Zero) for zerometer indication.
e. Switch RANGE to "Dot" position (fully ccw).
f. Turn INTERNAL ALIGNMENT switch to position 1. If meter pointer is off-scale, depress X10 ${ }^{3}$ SENSITIVITY.
g. Alternate between positions 1 and 2 adjusting A1R1 for equal meter deflection (and same polarity) at both positions.
h. Adjust A1R2 for zero meter indication (X104 SENSITIVITY). Positions 1 and 2 should now both read zero on the meter. If not, repeat steps g and h .
i. Progressively switch to positions 3 through 9 adjusting the corresponding controls (A1R3 through A1R9) for a zero meter indication in each position.
j. Adjust A9R10, R11 and R12 to the values indicated in step B-6 of the internal alignment
procedure printed on the guard shield. The optimum values for these adjustments are determined at the factory and will vary from instrument to instrument.
k. Return INTERNAL ALIGNMENT switch to OPERATE position.
l. Set FUNCTION to $\triangle V M$ and check meter indication. Adjust A10R12 (METER ZERO ADJ.) for a zero meter indication.

NOTE

There is generally a slight zero turn-over errorbetween VM and $\Delta \mathrm{VM}$ modes and this is quite normal. A10R12 must be readjusted in $\Delta V M$ mode before proceeding with the following steps.
m. Set FUNCTION to STD and RANGE to 1 V . Using a sensitive dc voltmeter ($10 \mu \mathrm{~V}$ range) adjust 740B front panel ZERO control for 0 Vdc at the + and - OUTPUT terminals.

If a standard cell is used in the following steps, zero the 740 B output (step m) on the 10 V range.
n. Connect 740B OUTPUT terminals as shown in Figure 5-13. Set VOLTAGE SET and STD VERNIER controls to the value of the known external reference voltage.
— NOTE——_

If a dc transfer standard is used, it shouldbe calibrated to $1 \mathrm{~V} \pm 2 \mathrm{ppm}$ according to the procedure in Appendix C .

Figure 5-13. Reference Supply Calibration

Table 5-6. Changing the Padding Resistance with Jumper Wires

Variable Padding Resistor	Required Change In Series Resistance To Move Meter In A		To Increase Series Resistance, Clip Jumper Across	To Decrease Series Resistance, Add Jumper Across
	Positive Direction	Negative Direction		
	Rncrease	Decrease	R14 or R15	R14 or R15
R3	Decrease	Increase	R17 or R18	R17 or R18
R4	Decrease	Increase	R20 or R21	R20 or R21
R5	Decrease	Increase	R24 or R25	R24 or R25
R6	Decrease	Increase	R27 or R28	R27 or R28
R7	Decrease	Increase	R30 or R31	R30 or R31
R8	Decrease	Increase	R33 or R34	R33 or R34
R9	Decrease	Increase	R37 or R38	R37 or R38

o. Depress OUTPUT pushbutton to compare 740B output with external voltage.
p. Adjust A1R40 (REF COARSE ADJ) and A1R41 (REF FINE ADJ) as necessary to produce a null indication on the null voltmeter $10 \mu \mathrm{~V}$ range. This calibrates the internal 1 V referency supply for best accuracy in STD mode.

NOTE

For better than specified instrument accuracy in the $\triangle \mathrm{VM}$ mode (with a slight loss of accuracy in STD mode) the reference supply adjustments can be made with the known external voltage applied to the + and - INPUT terminals ($\triangle \mathrm{VM}$ mode). Set VOLTAGE SET controls to indicate first five digits of known external voltage. Adjust A1R40 (REF COARSE ADJ) and A1R41 (REF FINE ADJ) to give correct meter indicationfor sixth digit with $\mathrm{X} 10^{4}$ SENSITIVITY depressed.

5-63. VOLTAGE SET DRIFT CORRECTION.
5-64. The following paragraphs describe the procedure for changing the range of adjustment of the VOLTAGE SET padding resistor adjustments, A1R2 through A1R9. This procedure should be performed only when one or more of the resistors cannot be adjusted for a null indication when performing the internal alignment pro-
cedure (Paragraph 5-57). Refer to Figure 7-5, Internal Alignment Schematic and Component Location Diagram, for the following discussion.

5-65. The range of adjustment of each variable padding resistor (A1R2 through A1R9) is controlled by several series resistors. Some of the series resistors are shunted by jumper wires during manufacture.

5-66. If null cannot be achieved, determine if the padding resistance must be increased or decreased (Table 5-6). To increase the resistance, clip one of the jumperwires shunting one of the padding resistors associated with the appropriate adjustable resistor (Table 5-6). For example, if it is necessary to increase the resistance in series with $A 1 R 2$, clip the jumper wire shunting A1R14 or A1R15. To decrease the resistance, a jumper must be added across A1R14 or A1R15.
5-67. In some cases, both jumper wires may already have been clipped or removed and it is necessary to increase the resistance in series with one of the variable resistors. In this case, it will be necessary to increase the value of one of the fixed resistors. Table 5-7, lists the recommended changes and gives the -hp-part number of the new resistor.

5-68. It may be necessary to decrease the series resistance even though two of the series resistors are already shunted by a jumper. In this case, the linearizing resistor associated with the appropriate variable resistor must be changed. Table 5-7 lists the recommended change and gives the -hp-part number of the new resistor.

Table 5-7. Changing the Padding Resistors

Variable Padding Resistor	To Increase Series Resistance When Both Jumpers Are Already Removed, Change	-hp- Part No. of New Resistor	To Decrease Series Resistance When Both Jumpers Are Installed, Change	-hp- Part No. of New Resistor
R2	R 14 to $255 \mathrm{k} \Omega$	0698-3149	R 13 to $750 \mathrm{k} \Omega$	0757-0486
R3	R 17 to $511 \mathrm{k} \Omega$	0757-0482	R 16 to $1.3 \mathrm{M} \Omega$	0757-0872
R4	R 20 to $511 \mathrm{k} \Omega$	0757-0482	R 19 to $1.3 \mathrm{M} \Omega$	0757-0872
R5	R 24 to $1 \mathrm{M} \Omega$	0698-5475	R 22 to $1 \mathrm{M} \Omega$	0698-5475
R6	R 27 to $255 \mathrm{k} \Omega$	0698-3149	R 26 to $600 \mathrm{k} \Omega$	0698-4077
R7	R30 to $511 \mathrm{k} \Omega$	0757-0482	R 29 to $1.3 \mathrm{M} \Omega$	0757-0872
R8	R 33 to $511 \mathrm{k} \Omega$	0757-0482	R 32 to $1.3 \mathrm{M} \Omega$	0757-0872
R9	R 37 to $1 \mathrm{M} \Omega$	0698-5475	R35 to $1 \mathrm{M} \Omega$	0698-5475

SYMPтом	possible Cause/CORrective action
$\underset{\substack{\text { Inoperative (any or all } \\ \text { modes) }}}{\text { and }}$	1. Check AC Fuses. 2. Make sure Internal Alignment Switch (S3) is in "Operate" position. 3. Check Power Supply Voltages (Figure 7-3, of 4)
Erratic Operation or Poor Repeatability	Switches may be dirty. Turn instrument off; rotate all switches several times (including are self-cleaning (Paragraph 5-108).
$\underset{\text { (all modes) }}{\text { OVERLOAD Light On }}$	Check DC Fuse. If blown, replace. If fuse blows again, Q1 or Q2 may be shorted. Proceed to Main Loop Troubleshooting Tree step 34.
OVERLOAD Light On (STD mode, mV Ranges)	Normal indication. In STD mode, mV Rances are inoperative (Paragraph 3-15, step h)
Output voltage inaccurate	1. Make sure SENSE terminals are connected correctly (Paragraph 3-17). Remote Sensing must be used for remote loads. 2. Make sure ZERO control is set properly
$\Delta \mathrm{VM}$ mode inacurate	1. Make sure INPUT z Switch is set to ∞ position. 2. Make sure ZERO control is set properly (Paragraph 3-46, 3-47).
Unable to zero Input or Output with ZERO contro	1. Recheck Internal Zero Adjustment (Para graph 5-44), Balance Adjustment (Para- graph 5-46) and Meter Zero Adjustment (Paragraph 5-50). 2. Check A10BT1 (1.3 V minimum)
OUTPUT Indicator lighted when Output Cable is not connected	Normal indication. OUTPUT Indicator lights when depressed even when Output Cable AsSwitch (K1), however, does not energize.
Internal Buzzing when changing Ranges or ex- ceeding Current Limit	This is normal. The noise comes from the Internal Current Limit Circuit.
$\underset{\text { Noisy meter on } 1 \mathrm{mV} \text { Range, }}{\substack{\text { N } \\ \text { Sensitivity }}}$	Normal indication. (Paragraph 3-59, step g)

5-69. TROUBLESHOOTING PROCEDURE.

5-70. The following paragraphs contain information on troubleshooting the Model 740B. Before troubleshooting the Model 740B, attempt the Adjustment and Calibration Procedure (Parag raph 5-34). Some apparent malfunctions can be correctedusing this procedure. For example, inaccuracy or non-linearity may be corrected by performing the Internal Alignment Procedure (Paragraph 5-57).

5-71. Check Table 5-8, Preliminary Checks, for the trouble symptom. If the symptom is not listed, the Troubleshooting Trees (Paragraph 5-72) should be helpful.

5-72. TROUBLESHOOTING TREES.

5-73. The Front Panel Troubleshooting Tree in Figure 5-14 consists of some fairly rapid checks arranged
to isolate trouble to a major loop and occasionally traces trouble to a specific circuit. In addition, the Front Panel Treechecks most of the Range and Function Switching.
5-74. The Main Loop, Meter Loop and Reference Loop Troubleshooting Trees (Figures 5-15, 5-16, 5-17) can be helpful in isolating trouble to a specific circuit within these major circuits.
5-75. To use the Troubleshooting Trees, decide if step 1 passes or fails, and proceed to the next step along the appropriate branch of the tree. The steps in each tree are explained in detail in a table adjacent to the tree. The checks outlined in the trees do not usually isolate trouble to a specific circuit component. Once the trouble is isolated to a specific circuit, additional checks will probably be required to isolate the faulty component. Waveshapes and operating voltages shown on the schematic diagrams may give additional help.

Table 5-9. FRONT PANEL TROUBLESHOOTING

1. A correct indication shows that the Main Loop and Meter Loop are probably working.
2. A correct indication shows that STD mode Function switching is probably working and that the Reference Loop is relatively noise free.
3. A correct indication shows that the Main Loop is not causing the noise or offset shown on the 740B meter.
4. Acorrect indication shows that the Main Loop, Reference Loop and Meter Loopare all relatively free of noise and offset.
5. A correct indication shows that the Reference Loop is probably not causing the noise or offset.
6. A correct indication shows that the Meter Loop is probably not causing the noise or offset problem.
7. If the output is free of noise and offset in STD mode, the Main Loop is probably not at fault.
8. A correct indication verifies that the Reference Loop and Main Loop are operative.
9. Since trouble occurs only in $\triangle V M$, the trouble is most likely in Δ VM Function switching. Possible trouble areas: Deck $\operatorname{SiH}(F), S 1 I(F)$ and $\operatorname{SiG}(R)$ of Range/Function Switch, S1 (Figure 7-3).
10. Trouble is probably in STD mode Function switching. Possible trouble areas: Deck SlI(F), S1H(R) and $\mathrm{S} 1 \mathrm{H}(\mathrm{F})$ of Range/Function Switch. S 1 (Figure 7-3).
11. Follow procedure in Reference Loop Troubleshooting Tree (Figure 5-17).
12. Function Switching used in VM is probably at fault. Possible Trouble areas: Deck $\operatorname{SiI}(F)$ and $S 1 H(R)$ of Range/Function Switch, S1 (Figure 7-3).
13. Since the Main Loop is not causing noise or off set and the trouble occurs in both VM and $\triangle \mathrm{VM}$, the problem is most likely in the Meter Loop. Follow procedure in Meter Loop Troubleshooting Tree (Figure 5-16).
14. A correct indication shows that the Main Loop is capable of operating properly.
15. Since noise and offset are present at Output terminals in all modes, the trouble is most likely in the Main Loop. Follow procedure in Main Loop Troubleshooting Tree (Figure 5-15).
16. A correct indication shows that the Meter Loop and the Standard Vernier Circuit are functioning.
17. A correct indication shows that the Main Loop is operating.
18. VM mode Function switching in Main Loop is probably at fault. Possible trouble areas: Deck S1G(R) and S1H(F) of Range/Function Switch, S1 (Figure 7-3).
19. If noise and offset disappears, the Main Loop is not at fault.
20. A correct indication verifies proper operation of the Input Protection Circuits, VM mode Function switching and the Meter Loop (X1 Sensitivity).
21. These settings duplicate the Meter Loop operation attempted in step 16. A correct indication shows that the Meter Loop is not at fault.
22. A correct indication in $\Delta V M$ shows that the Reference Loop and Main Loop are probably not at fault.
23. Follow procedure in Main Loop Troubleshooting Tree (Figure 5-15).

Table 5-9. FRONT PANEL TROUBLESHOOTING (Cont'd)
24. Troubleshoot Input Protection Circuit (Figure 7-3). Possible trouble: Bad A9Q1, A9DS2 or A9V2.
25. If noise and offset are still present at Output terminals, trouble is probably in the Main Loop. Check Range/Function switching between A17V1, V2 (Modulator) and A3 pin 1; also check Range/ Functionswitching associatedwith the Main Loop Feedback Divider ($\mathrm{p} / \mathrm{o} \mathrm{A} 9$). If trouble cannot be found, follow procedure in Main Loop Troubleshooting Tree (Figure 5-15).
26. A good indication verifies proper operation of Δ VM Function switching and Meter Loop operation on the higher Sensitivities.
27. A correct voltage at the Outputterminals verifies proper operation of the Main Loop.
28. The trouble is probably in the Standard Vernier Divider, S9A (Figure 7-3). Also check for continuity (STD mode) between pins 7 and 8 , deck S1I(F), of Range/Function Switch, S1.
29. Follow procedure in Meter Loop Troubleshooting Tree (Figure 5-16).
30. STD mode Function switching is probably at fault. Possible trouble areas: Deck $\operatorname{SlJ}(F)$, $\operatorname{S1H}(\mathrm{R})$, $\mathrm{S} 1 \mathrm{H}(\mathrm{F})$ and $\mathrm{S} 1 \mathrm{I}(\mathrm{F})$ of Range/Function Switch, S 1 (Figure 7-3).
31. Follow procedure in Reference Loop Troubleshooting Tree (Figure 5-17).
32. A correct output verifies proper operation of the Main Loop on the 1000 V Range.
33. A correct indication verifies proper $\Delta \mathrm{VM}$ Function switching in the Main Loop.
34. A correct indication shows that VM mode Function switching is probably not at fault.
35. A correct indication shows that the Input Protection Circuit is not at fault.
36. A correct indication shows that the Main Loop works properly in VM mode, 1000 V Range.
37. A correct output with no load indicates low gain or Current Limit problems in the Main Loop.
38. Correct indications verify proper operation of the Meter Loop.
39. $\Delta \mathrm{VM}$ Function Switching in the Main Loop is probably at fault. Possible trouble areas: Deck $\mathrm{S} 1 \mathrm{H}(\mathrm{F})$ and $\mathrm{S} 1 \mathrm{G}(\mathrm{R})$ of Range/Function Switch, S1 (Figure 7-3).
40. Follow procedure in Meter Loop Troubleshooting Tree (Figure 5-16).
41. Check deck $\operatorname{S1I}(\mathrm{R})$ pins 4 and 5 for continuity in VM mode (Figure 7-3). If trouble cannot be found, follow procedure in Meter Loop Troubleshooting Tree (Figure 5-16).
42. VM mode Function switching is probably at fault. Possible trouble areas: Deck $\operatorname{S1G}(\mathrm{R})$, $\mathrm{S} 1 \mathrm{H}(\mathrm{R})$, S1H(F) and S1I(F) of Range/Function Switch, S1 (Figure 7-3).
43. Since the trouble occurs in both $V M$ and $\Delta V M$ modes, the trouble is probably in the Input Protection Circuit (Figure 7-3). Possible trouble: Bad A9Q1, A9DS2 or A9V2.
44. A correct indication shows that the Main Loop provides the necessary increased gain on the mV Ranges.
45. Range switching used only in VM and $\triangle V M$ is probably at fault. Possible trouble area: Deck S1C(R) of Range/Function Switch, S1 (Figure 7-3).
46. Perform Loop Gain Check (Paragraph 5-76). If instrument passes, proceed to step 49 in Main Loop Troubleshooting Tree (Figure 5-15).
47. A correct indication shows that the Main Loop is capable of functioning on the 1000 V Range.
48. $\Delta V M$ Function switching in Meter Loop or Reference Loop is probably at fault. Possible trouble areas: Deck $\operatorname{SiI}(F)$ and $\operatorname{S1H}(R)$ of Range/ Function Switch, S1 (Figure 7-3).
49. Follow procedure in Meter Loop Troubleshooting Tree (Figure 5-16).
50. STD and $\triangle V M$ Accuracy tests are outlined in the Performance Tests section (Paragraph 5-5).
51. Range switching used only on the mV Ranges may be atfault. Possible trouble areas: Deck S1B(F) and S1F(F) of Range/Function Switch, S1 (Figure 7-3). If trouble cannot be found, proceed to step 2 in Main Loop Troubleshooting Tree (Figure 5-15).
52. Range Switching used in STD mode is probably at fault. Possible trouble areas: $\operatorname{Deck} \operatorname{S1B}(R)$ and S1C(F) of Range/Function Switch, S1 (Figure 7-3).
53. Trouble is probably in the High Voltage Section of the Main Loop. Proceed to step 16 in Main Loop Troubleshooting Tree (Figure 5-15).
54. If instrument passes all of the previous checks, all of the major loops are functioning properly.
55. If the instrument fails one or more of the accuracy tests, the trouble is probably associated with circuits or switching peculiar to that test. For example: If inaccuracy occurs only on the 100 V Range and only in STD mode, the trouble may be in Range Switching for the 100 V Range that is used only in STD (Deck S1B(R) of Range/Function Switch, S1).

Figure 5-15. Main Loop Troubleshooting Tree

1. A correct voltage at the Output terminals shows that the Main Loop is functioning.
2. The Loop Gain Check is given in Paragraph 5-76.
3. $>+0.9 \mathrm{~V}$ at A4 pin 8 verifies that the Low Voltage Section of the Main Loop is functioning.
4. A correct output shows that the Main Loop is relatively noise-free.
5. Connecting a jumper wire from A17V2 to ∇ creates a 1 V difference between the Main Loop input voltage (+1 V from the Reference Loop) and the feedloack voltage (0 V). If the Modulator output exceeds $0.5 \mathrm{~V} \mathrm{p-p}$, the Modulator is probably not at fault.
6. If the OVERLOAD Light is on, the Low Level Amplifier (A3) is probably functioning.
7. $>-7 \mathrm{mV}$ present at A4 pin 21 indicates that the Operational Filter is receiving a drive voltage.
8. If output zeroes, the ZERO Control Circuit is working properly.
9. If noise decreases when jumper wire is connected to A4 pin 8, the circuits between the output of the Operational Filter and the Output terminals are probably not causing noise.
10. A waveshape $>20 \mathrm{~V} \mathrm{p-p}$ at A17V4 verifies proper operation of the Demodulator (A17V3/V4).
11. Troubleshoot the Modulator (A17V1/V2) according to the procedure in Paragraph 5-80.
12. If the DC Fuse is not blown, the Power Switch transistors (Q1 and Q2) are probably not at fault.
13. Since the OVERLOAD Light is not on, the Main Loop is probably stable. Since no voltage (or an incorrect voltage) is present at the Output terminals, the Output Rotary Switch, K1, is likely at fault (Figure 7-3).
14. The Operational Filter ($\mathrm{p} / \mathrm{oA4}$) is receiving a sufficient input (>-7 mV) but not producing a sufficient output. Troubleshoot Operational Filter (Figure 7-8).
15. If the OVERLOAD Light is on, the Low Level Amplifier (A3) is producing an output and probably is not at fault.
16. A 10 V output verifies proper operation of the feedback switching and filtering (10 V range) in the High Voltage Section of the Main Loop.
17. Check the voltage of A 10 BT 1 (1.3 V minimum). If A10BT1 is good, check the other ZERO control Circuit components (Figure 7-3).
18. Since noise decreased when the Operational Filter output was connected to $\stackrel{\nabla}{\nabla}$ (step 9), the noise source is between the Main Loop input and the Operational Filter output (A4 pin 8). Noise at A4 pin 8 should be about 1% the amplitude of the noise at A4 pin 21 if the Operational Filter is functioning. (Observe noise with oscilloscope). If the Operational Filter is functioning, the trouble is probably in the Low Level Amplifier, A3 (Figure 7-7), or A17. Paragraph 5-80 gives the procedure for troubleshooting A17.
19. If noise increases by a factor of ten on each increasing range, the 1 V Filter is probably not at fault.
20. The Modulator and Demodulator are functioning (steps 5 and 10) but the Low Voltage Section of the Main Loop has insufficient gain (step 2).The trouble is probably low gain in the Low Level Amplifier, A3 (Figure 7-7).
21. A waveshape $>25 \mathrm{Vp-p}$ at A3TP10 shows that the Low Level Amplifier is producing a good output when driven to saturation.
22. A waveshape $>15 \mathrm{~V} \mathrm{p-p}$ and $>5 \mu \mathrm{sec}$ duration shows that the Power Switch (Q1, Q2) and Power Switch Driver (p/o A7) are functioning.
23. If fuse does notblow again, the instrument may beworking properly. Blownfuse may have been caused by an excessive overload at the Output terminals.
24. The Low Level Amplifier is producing a good output (step 15) but the Operational Filter is not receiving a correct input (step 7). The Demodulator (A17V3/V4) is probably at fault. Troubleshoot the Demodulator according to the procedure in Paragraph 5-80.
25. Connecting the jumper wire from A17V2 to $\stackrel{\downarrow}{\nabla}$ creates a 1 V difference between the Main Loop input voltage (1 V) and the feedback voltage (0 V). If the Modulator output exceeds $0.5 \mathrm{Vp}-\mathrm{p}$, the Modulator is probably working correctly.
26. If the instrument provides correct output voltages on the 100 V and 1000 V ranges, range switching for these ranges is functioning properly.
27. The Main Loop provided a correct output on the 1 V range (step 1) so the trouble is probably in one of the Feedback Dividers, (A9R4-12 and S1R11-14), Range switching, or the 10 V Filter, A5C5 (Figure 7-3).

Table 5-10. MAIN LOOP TROUBLESHOOTING (Cont'd)
28. Since noise increases by a factor of ten on each increasing range, filtering for each range is probably not at fault. The noise is probably originating in the Pulse Width Converter, p/o A5 (Figure 7-9) or the Differential Amplifier, p/o A7 (Figure 7-11).
29. Filtering for the 1 V range is probably causing the trouble. Check for bad A5C4 (Figure 7-9).
30. The Demodulator receives a correct input from A3 (step 21) but produces a low output (step 10). Troubleshoot the Demodulator (A17V3/V4) according to the procedure in Paragraph 5-80.
31. The Low LevelAmplifier (A3) does not produce a satisfactory output when driven to saturation (step 21). Troubleshoot the Low Level Amplifier (Figure 7-7).
32. The Power Switch circuits are functioning (step 22) but no voltage (or an incorrect voltage) is present at the Output terminals (step 1). The trouble is probably in Range Switching or Filtering (Figure 7-3).
33. If waveshape at A5 pin 19 is greater than 20 $\mu \mathrm{sec}$ duration, the Pulse Width Converter (p / o A5) is furnishing T3 with a proper input.
34. Connect negative lead of ohmmeter to $\frac{13}{\sqrt[3]{2}}$ or $\frac{1}{4}$; positive lead to collectors of Q1 and Q2 (blue wires). If resistance measures $>75 \Omega, \mathrm{Q} 1$ and Q2 are probably working.
35. Check voltage at Output terminals.
36. The Modulator is apparently working (step 25) but the Low Level Amplifier is not turning on the Overload Light (step 15). Troubleshoot Low Level Amplifier (Figure 7-7).
37. If +1 V is present at A17V1, the Modulator is receiving a correct input voltage from the Reference Loop.
38. A correct output voltage shows that the Main Loop can deliver maximum rated output power (20 W), verifying proper operation of the Internal and External Current Limit circuits.
39. If the 1000 V range is the only range that mal functions, the range switching probably is not at fault.
40. The Pulse Width Converter is producing a correct output (step 33)but the Power Switch is not producing proper pulses (step 22). The trouble is probably in T3 or the Power Switch Driver ($\mathrm{p} / \mathrm{o} \mathrm{A} 7$). Refer to Figure 7-11.
41. $<+8 \mathrm{~V}$ at A5 pin 20 verifies that the Differential Amplifier (p / o A4) is furnishing a correct Output to the Pulse Width Converter.
42. Since fuse blows (step 23) and Q1 and Q2 are not shorted (step 34), the Power Switch Driver, p/o A7, is probably at fault (Figure 7-3). Possible trouble: shorted A7Q1.
43. Replace bad Q1 or Q2. Figure 7-1, Detail D shows the assembly sequence for $\mathrm{Q} 1, \mathrm{Q} 2$ and attaching hardware. A layer of silicongrease should be applied to both sides of the mica insulator (MP45) before reassembly.
44. Verify operation in $V M$ and $\Delta V M$ modes. If operating, there is probably no other malfunction. If a problem occurs in VM or $\triangle V M$, perform procedure in Front Panel Troubleshooting Tree (Figure 5-14).
45. Since the instrument does not operate, a problem still exists in the High Voltage Section. Proceed to step 22.
46. The Modulator is receiving a correct input voltage from the Reference Loop (step 37) but does not produce a good output (step 25). Troubleshoot the Modulator according to the procedure in Paragraph 5-80.
47. The absence of +1 V at A 17 V 1 may be caused by trouble in the Input Filter: L2, C6, C7 (Figure 7-3). Check for open L2 or shorted C6 or C7. If Filter is not at fault, the Reference Loop is not generating +1 V . Follow procedure in Reference Loop Troubleshooting Tree (Figure 5-17).
48. A correct indication shows that the 100 mV Range switching is operative.
49. If the instrument provides a correct output (1 V across 20Ω), the External Current Limitcircuit is probably not at fault.
50. Marginal gain in the Operational Filter (p/o A4) will probably show up only on the 1000 V Range. Using an oscilloscope, compare the noise amplitude at A4 pin 8 with the amplitude at A4 pin 21. Waveform at pin 8 should be approximately 1% the amplitude at pin 21 if Operational Filter has sufficient gain. If Operational Filter appears to be functioning, troubleshoot 1000 V Range switching (Figure 7-3) and Differential Amplifier (Figure 7-8).
51. If the trouble also occurs on the 100 V range, filtering or switching for the bad range(s) is probably at fault. Troubleshoot C3 and Range Switching (Figure 7-3) and 100 V Filter, A5C6 (Figure 7-9).
52. The Pulse Width Converter (p / oA A) is receiving a correct input (step 41) but is not generating a correct output (step 33). Troubleshoot the Pulse Width Converter and 20 kHz Clock (Figure 7-9).

Table 5-10. MAIN LOOP TROUBLESHOOTING (Cont'd)
53. The Operational Filter is producing a correct output to the Differential Amplifier (step 3) but the Differential Amplifier is not generating a correct output (step 41). Troubleshoot the Dif ferential Amplifier, p/o A4 (Figure 7-8).
54. Correct indications verify proper Range switching operation on the 10 mV and 1 mV range.
55. A correct indication (but excessive response time) shows that range switching for the Main Loop Feedback Divider is operating.
56. Since the instrument is capable of delivering maximum output current at low voltages (step 49) the trouble is probably in the Internal Current Limit circuit, p/o A7 (Figure 7-11).
57. Since output current is insufficient at both high and low voltages (steps 38 and 49) the trouble is probably in the External Current Limit circuit (Figures 7-3 and 7-9).
58. If the instrument passes all of the preceding checks, the Main Loop is functioning properly.
59. Troubleshoot Range switching for the inoperative range (Figure 7-3).
60. Excessive response time but a correct final indication (step 55) may be caused by incorrect mV Range switching for the Low Level Amplifier. Check for a short between A3 pin 21 and A3 pin 17. If short is present, troubleshoot Deck S1B(F) of Range/Function Switch, S1 (Figure 7-3).
61. If problem disappears when jumper wire is connected, the Main Loop Feedback Divider switching is not at fault.
62. If problem disappears when jumper wire is connected, there is probably a bad switch contact between A17V1/V2 and pin 1 (Figure 7-3). Check for continuity between these points on the mV ranges (VM and $\triangle V M$ modes).
63. Since trouble is not caused by Range/Function switching between A17 and A3 (step 61), the trouble may be mV Range switching associated with the Main Loop Feedback Divider (Figure 7-3).

Table 5-11. METER LOOP TROUBLESHOOTING

1. Connecting a jumper wire from A 16 V 2 to \downarrow creates a 1 V difference between the Meter Loop input voltage (+1 V from the Main Loop) and the feedback voltage (0 V). If the Modulator output exceeds $0.5 \mathrm{~V} \mathrm{p-p}$, the Modulator is probably not at fault.
2. A waveshape $>6 \mathrm{~V} \mathrm{p-p}$ at A 2 pin 10 shows that the Demodulator (A16V3/V4) is probably not at fault.
3. If $+\mathbf{1} \mathrm{V}$ is present, the Meter Loop is receiving a correct input voltage from the Main Loop.
4. Reducing 740B input voltage to 50 mV allows the gain of A2Q1, Q2 and Q3 to be evaluated. $>5 \mathrm{~V}$ $\mathrm{p}-\mathrm{p}$ at collector of A 2 Q 3 indicates sufficient gain between A2 pin 1 and A2Q3 collector.
5. A waveshape $>8 \mathrm{~V}$ p-p at A2TP8 shows that the Demodulator (A16V3/V4) is receiving a correct input from A2 pin 8.
6. The Modulator is receiving a correct input (step 3) but not producing a correct output (step 1). Troubleshoot A16 according to the procedure in Paragraph 5-78.
7. Since the Meter Loop is not receiving an input voltage from the Main Loop (step 3), the Main Loop is probably at fault. Before troubleshooting the Main Loop, check for shorted C9 or C10 (Meter Filter).
8. Further reduction of 740 B input voltage allows the operation of A2Q4, A2Q5 and A2Q6 to be evaluated (X1 SENSITIVITY). $1 \mathrm{~V} \mathrm{p}-\mathrm{p}$ or more at A2TP8 indicates A2Q4, A2Q5 and A2Q16 are functioning.
9. Gain between A2 pin 1 and collector of A2Q3 is low (step 4). Troubleshoot A2Q1, A2Q2 and A2Q3.
10. The Demodulator is receiving a correct input from A2 pin 8 (step 5) but is not producing a correct output (step 2). Troubleshoot A16 according to the procedure in Paragraph 5-78.
11. A waveshape $>5 \mathrm{~V} \mathrm{p-p}$ at the collector of A 2 Q 3 shows that $\mathrm{A} 2 \mathrm{Q} 1, \mathrm{Q} 2$ and Q 3 are not at fault.
12. A waveshape $>9 \mathrm{~V}$ p-p at A2TP8 shows that the gain of A2Q4, A2Q5 and A2Q16 is effectively increased on the higher sensitivities.
13. Since the output of A2Q16 is low (step 8), there is insufficient gain between A2Q3 collector and A2TP8. Troubleshoot A2Q4, A2Q5 and A2Q16.
14. A2Q3 is providing A2Q4, A2Q5 and A2Q16 with a correct input (step 11) but the output of A2Q16 is low (step 5). Troubleshoot A2Q4, A2Q5 and A2Q16. Probable trouble: A2Q16.
15. A2Q1 is provided with a correct input (step 1) but the output of A2Q3 is low (step 11). Troubleshoot A2Q1, A2Q2 and A2Q3.
16. End-scale deflection within 3 seconds indicates adequate Meter Loop response time.
17. Since the output of A2Q16 did not increase on the X10 ${ }^{2}$ SENSITIVITY, the gain is low. Troubleshoot A2Q4, A2Q5, A2Q16, and Sensitivity Gain Switch (S2).
18. If meter deflects to $\mathbf{- 1} \mathrm{V}$, Meter Driver is working.
19. If response time changes when jumper is connected, the trouble is not in the Meter Amplifier.
20. If the only problem is slow response when $\mathrm{X} 10^{4}$ SENSITIVITY is depressed, reselect A2R19* (Paragraph 5-86). If response is still too slow, troubleshoot A16 (Paragraph 5-78).
21. If meter deflects positive (step 16) but will not deflect negative, trouble is probably in Meter Driver. Troubleshoot A2Q6 through A2Q11.
22. Check for loss of continuity between A 2 pin 12 and A16V2 (white wire), with X1 SENSITIVITY depressed.
23. If meter does not deflect to full scale, the Meter Driver is probably at fault. Troubleshoot A2Q6 through A2Q11.

If meter deflects to full scale but has >3 seconds response time, reselect A2R19* (Paragraph 5-86).

REFERENCE LOOP TROUBLESHOOTING TREE

notes

1. All voltage mea surements made with respect to
2. Reference Loop schematic and com ponent loca-
tion diagrams are shown in F \&ures $7-13$ and
${ }_{7}$ tion diagrams are shown in Fgures $7-13$ and
A13, Oven Assembly, is not field reparable.
3. A13, Oven Assembly, is not tield reparable.

\downarrow

Figure 5-17. Reference Loop Troubleshooting

Table 5-12. REFERENCE LOOP TROUBLESHOOTING

1. If +5.9 V is present at A1TP1, the Reference Supply is generating a voltage.
2. If $+12 \mathrm{~V} \pm 0.6 \mathrm{~V}$ is present at A2TP7, Series Regulator (p / oA) is functioning.
3. $\quad+12 \mathrm{~V}$ at A2TP7 shows that the Series Regulator ($\mathrm{p} / \mathrm{o} \mathrm{A} 2$) is probably not at fault.
4. Correct indications show that the Oven Heater and Regulator circuits are working correctly.
5. If no voltage is present at A2TP7 (step 2) the Series Regulator ($\mathrm{p} / \mathrm{oA} 2$) is probably at fault. See Figure 7-13.
6. $\quad+5.9 \mathrm{~V}$ at A 1 pin 21 shows that the Control Differential Amplifier ($\mathrm{p} / \mathrm{oA13}$) is probably not at fault.
7. Since +12 V is not present at A2TP7, the Series Regulator ($\mathrm{p} / \mathrm{oA} 2$) may be at fault. Remove A2 and check for +34 V at pin 22 of A 2 jack. If voltage is not present, troubleshoot +34 V supply, p/o A6 (Figure 7-10). If +34 V is present, troubleshoot Series Regulator, p/oA2 (Figure 7-13).
8. +1 V atS4E ($\mathrm{F}-6$) shows that the VOLTAGE SET Dividers are receiving a correct input from the Reference Supply.
9. A correct reading shows that the Oven Heater is probably not at fault.
10. Check for open A1R40.
11. The Control Differential Amplifier ($\mathrm{p} / \mathrm{OA} 13$) is receiving a correct input (step 6). Remove A1 and measure voltage at pin 21 of A1 jack. If voltage is between +5.9 V and +6.4 V , trouble may be in VOLTAGE SET Dividers. Proceed to step 13. If voltage does not measure between +5.9 V and +6.4 V , the Control Differential Amplifier ($\mathrm{p} / \mathrm{oA13} \mathrm{)} \mathrm{is} \mathrm{not} \mathrm{working}. \mathrm{A13} \mathrm{must}$ be replaced. (Components in A13 are not separately replaceable.)
12. Correct indications show that the VOLTAGE SET and STANDARD VERNIER Dividers are functioning properly.
13. VOLTAGE SET and STANDARD VERNIER controls must be set to first position (0) to make this check. If resistance is $1 \mathrm{k} \Omega, \mathrm{S} 4$ and S4R5 are probably not at fault.
14. A correct indication shows that the Temperature Sensing Bridge is probably not at fault.
15. If Heater is bad, entire A13 assembly must be replaced. Components in A13 are not separately replaceable.
16. If the instrument passes all of the previous checks, the Reference Loop is probably notat fault.
17. Trouble in one of the VOLTAGE SET Switches will probably show up only when that switch is varied. Once the trouble is isolated, check the switching associated with the malfunctioning switch position (Figure 7-14). If one of the switches is completely inoperative, troubleshoot corresponding SENSITIVITY Switch.
18. Check for open, shorted or changed-value S3R1.
19. To further isolate the trouble, select $\triangle V M$ and measure resistance from $\mathrm{S} 4 \mathrm{E}(\mathrm{F}-6)$ to 3 (S2A pin 10). If resistance now measures $1 \mathrm{k} \Omega$, trouble is in STD mode FUNCTION Switching. Probable trouble area: deck $S 1 I(F)$ of Range/Function Switch, S1 (Figure 7-3). If trouble remains, troubleshoot S4.
20. Since the Temperature Sensing Bridge is working, the trouble is probably in the Error Amplifier or Heater Control (Figure 7-13).
21. Remove A2 and measure voltage at pin 16 of A2 jack. If approximately -4 V is present, the Error Amplifier (p/o A2) or Heater Control is probably at fault. If approximately -4 V is not present, the Temperature Sensing Bridge is not working. Entire A13 assembly must be replaced since individual components in A13 are not separately replaceable.

5-76. LOOP GAIN CHECK.

5-77. The following steps outline a method of evaluating open loop gain of the Main Loop. If gain is too high or too low, reselection of A3R9* (Paragraph 5-91) may be helpful. Generally, insufficient gain causes slow instrument response to an input voltage and may cause inaccuracy in $\triangle V M$ or STD modes. Excessive gain may cause output noise and instability. To perform the Loop Gain Check, proceed as follows.
a. Set Model 740B controls as follows:
FUNCTION VM
RANGE 10 mV
SENSITIVITY X10
INPUT Shorted
b. Depress Gain Check Switch, S 10 (on bottom of instrument, behind Guard Shield).
c. Meter should deflect to between $+8 \%$ of end scale and $+15 \%$ of end-scale. If meter deflects to more than $+15 \%$ end-scale, gain is too low; if deflection is less than $+8 \%$, gain is too high. If meter does not deflect, check A11BT1 (1. 3 V minimum).

5-78. METER LOOP CHOPPER CHECK.

5-79. The following procedure can be used to evaluate the performance of the Meter Loop Chopper, A16. The chopper photocells change impedance somewhat during instrument warmup; some effects of the impedance change do not disappear for at least 24 hours. A meaningful check of the chopper operation can be performed only if the instrument has been turned off for 24 hours (or longer) prior to performing the check. The tests should be performed in a controlled environment with the ambient temperature remaining at $24^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\left(75^{\circ} \mathrm{F} \pm 4^{\circ} \mathrm{F}\right)$. Since the chopper impedance changes during warmup, all of the checks should be performed during the period of 1 minute to 5 minutes after instrument turn-on. Steps d and e check the Chopper Modulator; steps f and g check the Demodulator. A high input impedance ohmmeter (-hpModel 427A), a $1 \mu \mathrm{~F}$ capacitor (-hp- Part No. 01603033) and a $20 \mu \mathrm{~F}$ capacitor (-hp- Part No. 01800300) are required for the check. Do not turn on the instrument until step d.
a. Connect a $1 \mu \mathrm{~F}$ capacitor between the Common and Ohms leads of the ohmmeter. Leave the capacitor connected while making the impedance measurements.
b. Remove A2 and DC Fuse. Set RANGE to IV.
c. Connect ohmmeter leads to A16V1 (terminal nearest A13) and A16V2 (terminal nearest T2). Carefully turn FUNCTION Switch to a position between $\triangle V M$ and VM. Ohmmeter reading will increase when switch is positioned correctly. This isolates the Modulator from any input voltage.
d. Turn on the instrument; wait at least one minute. Ohmmeter should indicate $>346 \mathrm{k} \Omega$ (Modulator series impedance).
e. Move one of the ohmmeter leads to the rearmiddle terminal. Connect a jumperwire from A16V1 (terminal nearest A13) to A16V2 (terminal nearest T2). Ohmmeter should indicate $<38 \mathrm{k} \Omega$ (Modulator parallel impedance).
f. Connect ohmmeter leads to A16V3 (black wire) and A16V4 (white/black/yellow wire). Ohm meter should indicate $>78 \mathrm{k} \Omega$ (Demodulator series impedance).
g. Leave ohmmeter leads connected to A16V3 and A16V4. Connect a $20 \mu \mathrm{~F}$ capacitor across A16V3 (black wire and white/yellow/blue wire). Ohmmeter should indicate $<64 \mathrm{k} \Omega$ (Demodulator output impedance).
If the instrument passes all of the
checks, A16 is working properly.
If one or more of the check results
are marginal (within 20% of passing)
and the Meter Loop performance is
worse thanmarginal, AI6 may not be
the source of trouble. Before re-
placing A16, check the waveshape at
A8TP21 to verify proper operation
of the Meter Loop Neon Driver. The
correct waveshape is shown in Fig-
ure $7-12$. Components in A16are not
separately replaceable.

5-80. MAIN LOOP CHOPPER CHECK.

5-81. The following procedure canbe used to evaluate the performance of the Main Loop Chopper, A17. The chopper photocells change impedance somewhat during instrument warmup; some effects of the impedance change do not disappear for at least 24 hours. A meaningful check of the chopper operation can be performed only if the instrument has been turned off for 24 hours (or longer) prior to performing the check. The tests should be performed in a controlled environment with the ambient temperature remaining at $24^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\left(75^{\circ} \mathrm{F} \pm 4^{\circ} \mathrm{F}\right)$. Since the chopper impedances change during warmup, all of the checks should be performed during the period of 1 minute to 5 minutes after instrument turn-on. Steps d and e check the Modulator; steps f and g check the Demodulator. A high impedance ohmmeter (-hp-Model 427A), a $1 \mu \mathrm{~F}$ capacitor (-hp- Part No. 0160-3033) and a $20 \mu \mathrm{~F}$ capacitor (-hp- Part No. 0180-0300) are required for the check. Do not turn on the instrument until step d.
a. Connect a $1 \mu \mathrm{~F}$ capacitorbetween the Common and Ohms leads of the ohmmeter. Leave the capacitor connected while making the impedance measurements.
b. Remove A3, A4, A5 and rear panel dc fuse. Set FUNCTION to VM; RANGE to 1 V .
c. Connect ohmmeter to A17V1 (red wire) and A17V2 (white wire).
d. Turn on instrument; wait at least 1 minute. Ohmmeter should indicate $>160 \mathrm{k} \Omega$ (Modulator series impedance).
e. Move one of the ohmmeter leads to the middle terminal on A17. Connect a jumper wire from A17V1 (red wire) to A17V2 (white wire). Ohmmeter should indicate $<30 \mathrm{k} \Omega$ (Modulator parallel impedance).
f. Connect ohmmeter leads to A17V3 (black wire) and A17V4 (white/red/blue wire). Ohmmeter should indicate $>132 \mathrm{k} \Omega$.
g. Leave ohmmeter leads connected to A17V3 and A17V4. Connecta $20 \mu \mathrm{~F}$ capacitor across A17V3 (middle terminal andblack wire). Ohm meter should indicate $<42 \mathrm{k} \Omega$ (Demodulator output impedance).

> If the instrument passes all of the checks, A17 is working properly. If one or more of the check results are marginal (within 20% of passing) and the Main Loop performance is worse than marginal, A17 may not be the source of trouble. Before replacing A17, check the waveshape at A8TP20 to verify proper operation of the Main Loop Neon Driver. The correct waveshape is shown in Figure $7-12$. Components in A17 are not separately replaceable.

5-82. REPAIR PROCEDURES.

5-83. The following paragraphs contain information on special repair procedures and replacement parts selection for the Model 740B.

WARNING

TO PROTECT THE OPERATOR FROM POSSIBLE HIGH VOLTAGE SHOCK WHEN FLOAT ING THE MODEL 740B, CHECK THE CONTROL KNOBS FOR PRESENCE OF INSULATING MATERIAL IN SET-SCREW HOLES. IF MATERIAL IS NOT PRESENT, FILL THE SET-SCREW HOLES WITH GENERAL ELECTRIC TRANSLUCENT SILICON RUBBER RTV-108 (-hp- PART NUMBER 0470-0304).

5-84. REPLACEMENT OF FACTORY SELECTED COMPONENTS.

5-85. Certain components within the Model 740B are individually selected in order to compensate for slightly varying circuit parameters. These components are identified by an asterisk ($*$) on the schematic diagrams and a typical value is shown. Thefollowing paragraphs describe the function of the factory selected components and give replacement instructions.

5-86. A2R19*.
5-87. A2R19* is factory selected to set the response time of the Meter Loop to 2 to 3 seconds on the X10 ${ }^{4}$

Sensitivity. A2R19* is a $1 / 4$ watt composition $\pm 10 \%$ resistor with a typical value of $68 \mathrm{k} \Omega$. A2R19* may have to be reselected if the Meter Loop Chopper (A16) is replaced or if repair work is performedon the Meter Amplifier (p/o A2).

5-88. Use the following procedure to evaluate the selection of A2R19*.
a. Set Model 740B controls as follows:

```
FUNCTION . . . . . . . . . . .VM
RANGE . . . . . . . . . . . 1000 V
SENSITIVITY . . . . . . . . . X1
```

b. Apply $\mathrm{a}+0.1 \mathrm{~V}$ input voltage to the Input terminals.
c. Depress X10 ${ }^{4}$ SENSITIVITY. Meter should deflect to + end scale in 2 to 3 seconds.

5-89. If response time is longer than 3 seconds, decrease the value of A2R19* in $5 \mathrm{k} \Omega$ steps until response time is between 2 and 3 seconds. Do not use a value less than $30 \mathrm{k} \Omega$ for A2R19*.

5-90. If response time is shorter than 2 seconds, increase the value of $\mathrm{A} 2 \mathrm{R} 19 *$ in $5 \mathrm{k} \Omega$ steps until response time is between 2 and 3 seconds. Do not use a value greater than $100 \mathrm{k} \Omega$ for A2R19*.

5-91. A3R9*.
5-92. A3R9* is factory selected to control the gain of the Low Level Amplifier (A3). A3R9* is a $1 / 4$ watt composition $\pm 10 \%$ resistor with a typical value of $22 \mathrm{k} \Omega$. A3R9* may have to be reselected if the Main Loop Chopper (A17) is replaced or if repair work is performed on A3. To determine if A3R19* is the correct value, perform the Loop Gain Check (Paragraph 5-76). If the instrument passes, A3R9* should not be changed.

5-93. If the instrument has low gain (meter deflection $>15 \%$ end-scale), increase the value of A3R9* in $5 \mathrm{k} \Omega$ steps until the meter deflection is between 8% and 15% of end-scale. Do not use a value greater than $47 \mathrm{k} \Omega$ for A3R9*.

5-94. If the instrument has too much gain (meter deflection $<8 \%$ end-scale), decrease the value of A3R9* in $5 \mathrm{k} \Omega$ steps until the meter deflection is between 8% and 15% of end-scale. Do not use a value less than $6.8 \mathrm{k} \Omega$ for $\mathrm{A} 3 \mathrm{R} 9 *$.

5-95. A7C8*.

5-96. A7C8* is factory selected to compensate for the effects of inter-element capacitance in the Power Switch transistors (Q1 and Q2). A7C8* is a $\pm 20 \%$ ceramic 1000 V capacitor with a typical value of $0.0068 \mu \mathrm{~F}$. A7C8* may have to be reselected if Q1 or Q2 is replaced or if repair work is performed on the Pulse Width Converter (p / o A5).

5-97. To determine if A7C8* is the correct value, perform the following procedure.
a. Set Model 740B controls as follows:

$$
\begin{aligned}
& \text { FUNCTION STD } \\
& \text { RANGE } 1 \text { V } \\
& \text { VOLTAGE SET. } 00000
\end{aligned}
$$

b. Observe waveshape at Q1-Q2 collectors. (Waveshape is shown in Figure 7-11). Waveshape should be stable and noise-free.
$5-98$. If the waveshape is unstable or noisy, reselect A7C8*. Change A7C8* in approximately $0.002 \mu \mathrm{~F}$ steps (either increasing or decreasing) until Q1-Q2 collector waveshape stabilizes. Value limits for A7C8* are 0 to $0.02 \mu \mathrm{~F}$.

5-99. A8R8*, A8R9*.

5-100. A8R8* and A8R9* control the range of adjustment of the Meter Loop Chopper Frequency Adjustment, A8R3. A8R8*and A8R9*are $1 / 4 \mathrm{~W}$ composition $\pm 5 \%$ resistors with a typical value of $75 \mathrm{k} \Omega$. A8R8* and A8R9* may have to be reselected if repair work is performed on the Meter Loop Neon Driver ($\mathrm{p} / \mathrm{o} A 8$). A8R8* and A8R9* should be reselected only if the Meter Chopper Frequency Adjustment cannot be set to 95 Hz (Paragraph 5-38).

5-101. To reselect A8R8* and A8R9*, use the following procedure.
a. Set A8R3 (Meter Chopper Frequency Adjustment) to mid-value.
b. Measure Meter Chopper Frequency (Paragraph 5-38).
c. If measuredfrequency is greater than 100 Hz , increase the value of A8R8* and A8R9*. If frequency is less than 90 Hz , decrease the values of A8R8* and A8R9*. A resistance change of $10 \mathrm{k} \Omega$ affects the chopper frequency approximately 20 Hz . The resistance values for A8R8* and A8R9* must be equal and should never be changed to less than $40 \mathrm{k} \Omega$ or greater than $150 \mathrm{k} \Omega$.

5-102. A13R13*, A13R14*.
5-103. A13R13* and A13R14* are factory selected to match the voltage characteristics of A13CR1 with the output voltage requirements of the Reference Oven Assembly (A13). Components within A13 are factory matched and aged. For this reason, none of the components within A13 are separately replaceable.

5-104. SERVICING ETCHED CIRCUIT BOARDS.

5-105. The Model 740B contains plated-through doublesided, etched circuit boards. When working on these boards, observe the following rules to prevent damage to the circuit board or components:
a. Use a low -heat (25 to 50 watts) soldering iron with a small tip.
b. To remove a component, clip a heat sink (long nose pliers, commercial heat sink tweezers, etc.) on the component lead as close to the component as possible. Place the soldering iron directly on the component lead, and pull up on the lead. If a component is obviously damaged or faulty, clip the leads close to the component, and remove the leads from the board.

$\{$ CAUTION\}

EXCESSIVE OR PROLONGED HEAT CAN LIFT THE CIRCUIT FOIL FROM THE BOARD OR CAUSE DAMAGE TO COMPONENTS.

c. Clean the component lead holes by heating the solder in the hole, quickly removing the soldering iron, and inserting a pointed, nonmetallic object such as a toothpick.
d. To mount a new component, shape the leads and insert them in the holes. Clip a heat sink on the component, heat with the soldering iron, and add solder as necessary to obtain a good electrical connection.

5-106. SERVICING ROTARY SWITCHES.

5-107. The Model 740B contains several rotary switches: S1 RANGE/FUNCTION Switch, S4-S8 VOLTAGE SET Switches, S9 STANDARD VERNIER Switch, and K1 Output Rotary Switch (solenoid-actuated). When replacing components on these switches, observe the following rules:
a. Use a low heat (25 to 50 watts) soldering iron with a small tip.
b. When replacing components, attempt to dress them as nearly to their original alignment as possible.
c. Clean excessive flux from the connection and adjoining area.
d. After cleaning the switch, apply a light coat of lubriplate to the switch detent balls. DO NOT apply lubricant to switch contacts or allow lubricant to contaminate components.
e. If switch knobs were removed and reinstalled during the switch repair, the set screw holes should be filled with General Electric Translucent Silicon Rubber RTV-108 (-hp- Part No. 0470-0304).

5-108. The switches are self-cleaning in normal use; but may, with time, build up a dust accumulation. Generally, the effects of dust can be eliminated by rotating the switches from stop-to-stop several times. (K1 canbe rotated by cycling the OUTPUT pushbutton switch several times with the instrument turned on and the Output Cable Assembly connected.) If dust accumulation is severe, a small amount of distilled water may be used as a cleaning agent. DO NOT use

Freon, Carbon Tetrachloride or any chemical solvent on the switches.

5-109. MAIN LOOP FEEDBACK DIVIDER REPLACE -
MENT (A9R4 through A9R9).

5-110. The Main Loop Feedback Divider consists of A9R4 through A9EI2. A 9 K4 through A9K9 are a matched set of precision wirewound resistors. A9R10, A9R11 and A9R12 are adjustments that calibrate the divider and are adjusted for meter indication values printed on the guard shield cover when performing the Internal Alignment Procedure (Paragraph 5-57). The meter indication values are derived at the factory for each resistor set/instrument combination and should be validfor the life of the resistors. If A9R4-A9R9 are ever replaced, new meter indication values for adjustments A9R10, A9R11 and A9R12 must be derived. After installing the new resistors, the following procedure should be performed.
a. Perform steps a through i of Paragraph 5-62.
b. Set INTERNAL ALIGNMENT switch to positions 10, 11 and 12 adjusting A9R10, A9R11 and A9R12 for a meter indication of zero at each position. Return INTERNAL ALIGNMENT Switch to Operate position.
c. Connect Model 740B to a Precision Divider, 1 V Reference Supply and Null Detector setup in the configuration shown in Figure 5-1.
\qquad

1. The Precision Divider must be very accurate -- preferably better than $\pm 5 \mathrm{ppm}$ divisionaccuracy at the $10: 1,100: 1$ and 1000:1 taps. Construction of the divider shown in Figure 5-1 is described in Appendix C.
2. Calibration of the 1 V Reference Supply is not highly important for this procedure, but the Supply must have good short-term stability characteristics.
d. Set Model 740B controls as follows:
```
FUNCTION . . . . . . . . . . . STD
RANGE . . . . . . . . . . . . . 1 V
VOLTAGE SET. . . . . . . . }0000
STANDARD VERNIER . 0 (fully ccw)
OUTPUT . . . . . . . . . . . . . On
```

e. Set S 1 (in test setup) to position 1.
f. Adjust Model 740B ZERO Control for a null indication $(\pm 1 \mu \mathrm{~V})$ on the Null Detector.
g. Set S1 to Position 2. Set Model 740B VOLTAGE SET and STANDARD VERNIER Controls to 9-9-9-9-9-10 for a 1 V output on the 1 V Range. Do not change ZERO Control Setting.
h. Adjust Model 740B REF ERENCE COARSE and FINE Adjustments (A1R40 and A1R41) until $0 \mathrm{~V} \pm 1 \mu \mathrm{~V}$ is indicated by the Null Detector. (Periodically check Null Detector Zero setting). The Model 740B output now matches the 1 V Reference Supply output.
i. Return Model 740B VOLTAGE SET and STANDARD VERNIERContiols to 0-0-0-0-0-0. Set S1 to position 1.
j. Connect Model 740B + SENSE and + OUTPUT leads to point K ($10: 1$ division tap) on the divider.
k. Set Range to 10 V and adjust ZERO Control for a null indication ($\pm 1 \mu \mathrm{~V}$) on the Null Detector.

1. Set S1 to position 2; set Model 740B controls for a 10 V output on the 10 V Range. Do not vary ZERO Control.
m. Adjust A9R10 until Null Detector indicates null ($\pm 1 \mu \mathrm{~V}$). This calibrates the $10: 1$ division accuracy of the new Main Loop Feedback Divider resistors.
n. Return 740 B controls to 0 V ; set S 1 to position 1 ; connect + SENSE and + OUTPUT to point L (100:1 division tap) on the divider.
o. Set RANGE to 100 V and ZERO control for a null indication ($\pm 1 \mu \mathrm{~V}$) on the Null Detector.
p. Set S1 to position 2; set Model 740B controls for a 100 V output on the 100 V Range. Do not vary ZERO Control.
q. Adjust A9R11 until Null Detector indicates null ($\pm 1 \mu \mathrm{~V}$). This calibrates the 100:1 division accuracy of the new resistors.
r. Return 740 B controls to 0 V ; set S 1 to position 1; connect + SENSE and + OUTPUT to point M (1000:1 division tap) on the divider.
s. Set RANGE to 1000 V and adjust ZERO Control for a null indication ($\pm 1 \mu \mathrm{~V}$) on the Null Detector.
t. Set S1 to position 2; set Model 740B controls for a 1000 V output. Do not vary ZERO Control.
u. Wait 60 seconds for the effects of self-heating to stabilize and then adjust A9R12 until Null Detector indicates null ($\pm 1 \mu \mathrm{~V}$). This calibrates the 1000:1 division accuracy of the new resistors.
v. Return VOLTAGE SET and STANDARD VERNIER Controls to $0-0-0-0-0-0$. Disconnect test setup.
w. Set Model 740B controls as follows:
RANGE'Dot" position (fully ccw)
FUNCTION VM
SENSITIVITY X10
INPUT Shorted
x. Turn INTERNAL ALIGNMENT Switch to position 1 and then position 2 adjusting A1R1 for equal meter deflection (and same polarity) at both positions.
y. Set INTERNAL ALIGNMENT Switch to position 10. Note meter deflection and polarity; record this value in first blank in step B-6 on the guard shield cover.
z. Set INTERNAL ALIGNMENT Switch to position 11 and then to position 12; record the observed meter deflection values in the second and third blanks of step B-6 on the guard shield cover. (Wait 60 seconds before recording reading at position 12.)

PERFORMANCE CHECK TEST CARD

Hewlett-Packard Model 740B
DC Standard/Differential Voltmeter

Tests performed by
Date \qquad

Serial No. \qquad - \qquad

TEST	READING	TEST LIMITS
A. DC STANDARD		
1. 1 V output, 1 V range		$-24 \mu \mathrm{~V}$ to $+24 \mu \mathrm{~V}$
2. Line Regulation, high line		Within $6 \mu \mathrm{~V}$ of \#1.
3. Line Regulation, low line		Within $6 \mu \mathrm{~V}$ of \#1.
4. 1 V output, 10 V range		$-60 \mu \mathrm{~V}$ to $+60 \mu \mathrm{~V}$
5. 2 V output, 10 V range		$-40 \mu \mathrm{~V}$ to $+40 \mu \mathrm{~V}$
6. 3 V output, 10 V range		$-33 \mu \mathrm{~V}$ to $+33 \mu \mathrm{~V}$
7. 4 V output, 10 V range		$-30 \mu \mathrm{~V}$ to $+30 \mu \mathrm{~V}$
8. 5 V output, 10 V range		$-28 \mu \mathrm{~V}$ to $+28 \mu \mathrm{~V}$
9. 6 V output, 10 V range		$-27 \mu \mathrm{~V}$ to $+27 \mu \mathrm{~V}$
10. 7 V output, 10 V range		$-26 \mu \mathrm{~V}$ to $+26 \mu \mathrm{~V}$
11. 8 V output, 10 V range	-	$-25 \mu \mathrm{~V}$ to $+25 \mu \mathrm{~V}$
12. 9 V output, 10 V range		$-24 \mu \mathrm{~V}$ to $+24 \mu \mathrm{~V}$
13. 10 V output, 10 V range		$-24 \mu \mathrm{~V}$ to $+24 \mu \mathrm{~V}$
14. 100 V output, 100 V range		$-24 \mu \mathrm{~V}$ to $+24 \mu \mathrm{~V}$
15. 1000 V output, 1000 V range		$-24 \mu \mathrm{~V}$ to $+24 \mu \mathrm{~V}$
16. Maximum Output Current		50 mA min
17. Minimum Output Current		5 mA max
18. Load Regulation		$-15 \mu \mathrm{~V}$ to $+15 \mu \mathrm{~V}$
19. 0.01 Hz to 1 Hz noise, 1 V Range		$-1 \mu \mathrm{~V}$ to $+1 \mu \mathrm{~V}$
20. 0.01 Hz to 1 Hz noise, 10 V Range		$-10 \mu \mathrm{~V}$ to $+10 \mu \mathrm{~V}$
21. 0.01 Hz to 1 Hz noise, 100 V Range		$-100 \mu \mathrm{~V}$ to $+100 \mu \mathrm{~V}$
22. 0.01 Hz to 1 Hz noise, 1000 V Range		-1 mV to +1 mV
23. 1 Hz to 1 MHz noise, 1 V Range		$100 \mu \mathrm{Vrms} \mathrm{max}$
24. 1 Hz to 1 MHz noise, 10 V Range		$100 \mu \mathrm{Vrms} \mathrm{max}$
25. 1 Hz to 1 MHz noise, 100 V Range		1 mV rms max
26. 1 Hz to 1 MHz noise, 1000 V Range		10 mV rms max
27. Zero Control Limits		$\begin{aligned} & -10 \mu \mathrm{~V} \text { to }+10 \mu \mathrm{~V} \\ & \mathrm{~min} \end{aligned}$

PERFORMANCE CHECK TEST CARD(Cont'd)

SECTION VI
 REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains informationfor ordering replacement parts. Table 6-1 lists the mechanical parts shown in Figure 6-1; Table 6-2 lists the electrical components and miscellaneous parts. Table 6-1 lists parts in numerical order of their reference designators and indicates the description, -hp- part number and total quantity of each part. Attaching hardware for each mechanical part is listed with that part. Table 6-2 lists the electrical components in alpha-numeric order of their reference designators and indicates the description and -hp- part number of each part, and provides the following:
a. Total quantity used in the instrument (TQ column). The total quantity is given the first time the part number appears.
b. Typical manufacturer of the part in a five-digit code. (See Appendix A for list of manufacturers).
c. Manufacturers part number.

6-3. Miscellaneous parts are listed at the end of Table 6-2.

6-4. ORDERING INFORMATION.

6-5. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Field Office. (See Appendix B for list of office locations.) Identify parts by their Hewlett-Packard part numbers. Include instrument model and serial numbers.

6-6. NON-LISTED PARTS.

6-7. To obtain a part that is not listed, include:
a. Instrument model and serial numbers.
b. Description of the part.
c. Function and location of the part.

DESIGNATORS

A	= assembly	F	= fuse	MP	$=$ mechanical part	TC	= thermocouple
B	$=$ motor	FL	= filter	P	= plug	V	= vacuum tube, neon
BT	= battery	HR	= heater	Q	= transistor		buib, photocell, etc.
C	= capacitor	IC	= integrated circuit	QCR	$=$ transistor-diode	W	= cable
CR	= diode	J	= jack	R	= resistor	X	= socket
DL	= delay line	K	= relay	RT	= thermistor	XDS	= lampholder
DS	= lamp	L	= inductor	S	= switch	XF	= fuseholder
E	$=$ misc electronic part	M	= meter	T	= transformer	Z	= network
ABBREVIATIONS							
Ag	= silver	ID	= inside diameter	ns	$=$ nanosecond (s) $=10^{-9}$	sl	= slide
Al	= aluminum	impg incd ins	= impregnated	nsr	seconds	SPDT	$\begin{aligned} & =\text { single-pole double }- \\ & \text { throw } \end{aligned}$
A	= ampere (s)		= incandescent		$=$ not separately replace -		
Au	$=$ gold		= insulation (ed)		able	SPST	$\begin{aligned} & =\text { single-pole single- } \\ & \text { throw } \end{aligned}$
C	$=$ capacitor $=$ ceramic	$\mathrm{k} \Omega$	$=$ kilohm (s) $=10^{+3} \mathrm{ohms}$	Ω obd OD	$=\mathrm{ohm}(\mathrm{s})$	$\begin{aligned} & \mathrm{Ta} \\ & \mathrm{TC} \\ & \mathrm{TiO}_{2} \end{aligned}$	= tantalum $=$ temperature coefficient $=$ titanium dioxide
cer coef	$=$ ceramic $=$ coefficient	kHz	= kilohertz $=10^{+3}$ hertz		= order by description		
com	= common				= outside diameter		
comp	= composition	L	= inductor	$\begin{aligned} & \mathrm{p} \\ & \mathrm{pc} \end{aligned}$			
conn	= connection	lin	= linear taper		$=\hat{p r i n t e d} \text { circuit }$	tog	$=\text { toggle }$
dep	= deposited	10 g	= logarithmic taper			tol trim	$\begin{aligned} & =\text { tolerance } \\ & =\text { trimmer } \end{aligned}$
DPDT	$\begin{aligned} & =\text { double-pole double- } \\ & \text { throw } \end{aligned}$	m	$=$ milli $=10^{-3}$	pF	$\begin{aligned} & =\underset{\text { farads }}{\operatorname{picofarad}(s)}=10^{-12} \\ & \text { 五 } \end{aligned}$	$\begin{aligned} & \text { trim } \\ & \text { TSTR } \end{aligned}$	$\begin{aligned} & =\text { trimmer } \\ & =\text { transistor } \end{aligned}$
DPST	$\begin{aligned} & =\text { double-pole single- } \\ & \text { throw } \end{aligned}$	mA	$\begin{aligned} & =\text { milliampere }(s)=10^{-3} \\ & \text { amperes } \end{aligned}$	$\begin{aligned} & \text { piv } \\ & \mathrm{p} / \mathrm{o} \end{aligned}$	$\begin{aligned} & =\text { peak inverse voltage } \\ & =\text { part of } \end{aligned}$	V vacw	$\begin{aligned} & =\text { volt (s) } \\ & =\text { alternating current } \end{aligned}$working voltage
		MHz	$=$ megahertz $=10^{+6}$ hertz	pos	$=$ position (s)		
elect	$=$ electrolytic		$=$ megohm (s) $=10^{+6} \mathrm{ohms}$	poly	= polystyrene	var vdcw	```= variable = direct current working voltage```
encap	= encapsulated	$\begin{aligned} & \text { met flm } \\ & \text { mfr } \end{aligned}$	$\begin{aligned} & =\text { metal film } \\ & =\text { manufacturer } \end{aligned}$	$\begin{aligned} & \text { pot } \\ & \text { p-p } \end{aligned}$	= potentiometer = peak-to-peak		
F	$=$ farad (s)	$\mathrm{mtg}$$\mathrm{mV}$	$=$ mounting$=$ millivolt $(\mathrm{s})=10^{-3}$ volts	ppm prec	= parts per million		
FET	$=$ field effect transistor				= precision (temperature	W	= watt (s)
fxd	= fixed	μ	$=\text { micro }=10^{-6}$		coefficient, long term stability, and/or tol-	w/	= with
GaAs		$\cdots \mathrm{V}$	$=$ microvolt $\langle\mathrm{s})=10^{-6}$ volts				= working inverse voltage = without = wirewound
GHz	$=\text { gigahertz }=10^{+9} \text { hertz }$		$=\text { Mylar } R$		erance)	$\begin{aligned} & \text { wiv } \\ & \text { w/o } \end{aligned}$	
gd	= guard (ed)	nA	$=\text { nanoampere }(\mathrm{s})=10^{-9}$	R = resistor		ww	= wirewound
Ge	= germanium		amperes	Rh	= rhodium	*	= optimum value selected at factory, average value shown (part may be omitted)
grd	= ground (ed)	NC	$=$ normally closed	rms	$=\text { root-mean-square }$		
H		Ne NO	$\begin{aligned} & =\text { neon } \\ & =\text { normally open } \end{aligned}$	rot	$=\text { rotary }$		
${ }_{\mathrm{H}}^{\mathrm{Hg}}$	= henry (ies)		= normally open		$\begin{aligned} & =\text { selenium } \\ & =\text { section }(\mathrm{s}) \\ & =\text { silicon } \end{aligned}$		
Hg Hz	$=$ mercury $=$ hertz (cycle (s) per	NPO	= negative positive zero (zero temperature coefficient)	Se sect Si		**	= no standard type number assigned (selected or special type)
Hz	second)						
reva		(R) Dupont de Nemours					

Figure 6-1. Mechanical Parts

Table 6-1. Mechanical Parts

$\begin{array}{\|l} \hline \text { MP } \\ \text { No. } \end{array}$	-hp-Part No.	Description	Qty	$\begin{array}{\|l\|} \hline \text { MP } \\ \text { No. } \\ \hline \end{array}$	-hp- Part No.	Description	Qty
1	5060-0740	Top Cover	1	23	1490-0030	Tilt Stand	1
	2370-0013	Screw: Phillips $3 / 8 \mathrm{in}$. (hardware for MP1)	4	24	03420-04301	Decal Set (5 decals)	1
	00740-00608	Guard Shield Cover: Top	1	25	0370-0312	Pushbutton: gray (SENSITIVITY)	5
	2370-0012	Screw: Phillips 1/4 in. (hardware for MP2)	6		3030-0033	Setscrew (p/o MP25)	2
3	00740-00204	Rear Panel	1	26	0370-0329	Knob: black (VOLTAGE SET)	5
4	00740-01223		2		3030-0033	Setscrew (p/o MP26)	2
5	5000-4932	Extractor: PC Board	1	27	1410-0091	Bushing (VOLTAGE SET, STANDARD VERNIER and CURRENT LIMIT)	7
6	5060-0765	Retainer: Handle Assy (fits either side)	2				
7	5060-0763	Handle Assy (fits either side)	2	2829	$\begin{aligned} & 2950-0001 \\ & 2190-0022 \end{aligned}$	Nut: $1 / 2$ in ID Washer: $11 / 16$ in ID	1
8	$\begin{aligned} & 0370-0091 \\ & 0370-0084 \end{aligned}$	Knob: black w/arrow Setscrew (p / o MP8) Bracket: Chassis (fits either side)	2	30	0370-0115	Knob: red w/arrow (FUNCTION)	1
	00740-01208		2		3030-0033	Setscrew (p/o MP30)	2
9				31	0370-0113	Knob: black w/arrow (RANGE)	1
11	1000-0031	Filter: Digital Readout	1		3030-0005	Setscrew (p/o MP31)	2
12	00740-09901	Insert: Front Panel	1	32	1410-0289	Bushing (RANGE/FUNCTION and ZERO)	2
13	0370-0330	Knob: black (STANDARD VERNIER)	1	33	00740-20502	Trim Strip: Front Panel	2
	3030-0033	Setscrew (p/o MP13)	2	34	2950-0001	Nut: $1 / 2$ in D	1
14	0570-0131	Screw: Thumb	2	35	2190-0042	Washer: $3 / 8$ in ID	1
15	0370-0084	Knob: black w/arrow (ZERO and CURRENT LIMIT)	2	36	5040-0647	Washer: Plastic (RANGE/ FUNCTION and RECORDER AMPLITUDE)	2
	3030-0005	Setscrew (p/o MP15)	2	37	5040-0656	Switch Retainer: Plastic	1
16	00740-00613	Shield: Bottom Screw: Phillips $1 / 4$ in. (hardware for MP16)	1	38	1251-0466	Socket: INPUT Connector J1 (Includes nut, lockwasher and 0 ring)	1
	2370-0012		6				
17	5060-0734	Frame Assy: side (fits either side)	2	39	1251-0467	Socket: OUTPUT Connector J1 (Includes nut, lockwasher and 0 ring)	1
	2530-0011	Screw: Flathead 3/8 in. (hardware for MP17)	12	40	3050-0383	Washer: $11 / 16$ in ID (hardware for MP38 and	2
18	5000-0052	Trim Strip: Side Panel	2			MP39)	
19	5000-0742	Side Cover Screw: Phillips $1 / 4$ in. (hardware for MP19)	2	41	2200-0025	Screw: Roundhead 1/2 in.	4
	2370-0012		4	42	1200-0081	Insulator: Nylon	4
				43	0360-0005	Lug: 11/16 in	1
20	00740-00611	Guard Shield Cover: Bottom	1	44	$\begin{gathered} 00735-64101 \\ 1200-0077 \end{gathered}$	Plate: Anodized Insulator: Mica	2
	2370-0012	Screw: Phillips $1 / 4$ in. (hardware for MP20)	7	45			2
				46	00740-21101	Heat Sink (Q1, Q2)	1
21	5060-0767	Foot Assy Bottom Cover Screw: Phillips $3 / 8$ in. (hardware for MP22)	5	47	2190-0003	Washer	4
22	$\begin{aligned} & 5060-0752 \\ & 2370-0013 \end{aligned}$		14	$\begin{aligned} & 48 \\ & 49 \\ & 50 \end{aligned}$	$\begin{aligned} & 2260-0001 \\ & 2190-0007 \\ & 2360-0008 \end{aligned}$	Nut Washer Screw: Round head 5/8 in.	444

Table 6-2. Replaceable Parts

Table 6-2. Replaceable Parts (Cont'd)

REFERENCE DESIGNATOR	$\begin{gathered} -h p- \\ \text { PART NO. } \end{gathered}$	TQ	DESCRIPTION	MFR.	MFR. PART NO.
A2 Cont'd					
CR1	1901-0156	2	Diode: Si 50 mA at +1 V 20 wiv	84411	PS5553
$\begin{aligned} & \text { CR2 thru } \\ & \text { CR4 } \end{aligned}$	1901-0025	35	Diode: Si 100 mA 12 pF 100 wiv	03877	SG-817
CR5	1902-0048	4	Diode: breakdown 6.81V $\pm 5 \% 400 \mathrm{~mW}$	04713	SZ10939-134
Q1 thru Q8	1854-0033	25	TSTR: Si NPN 2N3391	24446	2N3391
Q9	1853-0001	12	TSTR: Si PNP	07263	S-3251
Q10	1854-0033		TSTR: Si NPN 2N3391	24446	2N3391
Q11	1853-0001		TSTR: Si PNP	07263	S-3251
Q12	1854-0066	3	TSTR: Si NPN 2N2925	24446	obd
Q13	1853-0001		TSTR: Si PNP	07263	S-3251
Q14, Q15	1854-0039	13	TSTR: Si NPN 2N3053	01295	- obd
Q16	1853-0001		TSTR: Si PNP	07263	S-3251
R1	0683-2045	1	R : fxd comp $200 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB2045
R2	0683-2425	1	R: fxd comp $2400 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB2425
R3	0684-8251	2	R : fxd comp 8.2 M $\Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB8251
R4	0683-8205	1	R: fxd comp $82 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB8205
R5	0684-1051	10	$\mathrm{R}: \mathrm{fxd}$ comp $1 \mathrm{M} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1051
R6	0684-2241	3	R : fxd comp $220 \mathrm{k} \Omega \pm 10 \% \mathrm{l} / 4 \mathrm{~W}$	01121	CB2241
R7	0683-1645	2	R : fxd comp $160 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB1645
R8	0684-2231	11	R : fxd comp $22 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2231
R9	0684-1051		R : fxd comp $1 \mathrm{M} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1051
R10	0684-5631	2	R : fxd comp $56 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB5631
R11	0684-1031	12	R : fxd comp $10 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1031
R12	0684-1061	2	$\mathrm{R}: \mathrm{fxd}$ comp $10 \mathrm{M} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1061
R13	0684-2221	8	R: fxd comp $2200 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2221
R14	0684-1831		R : fxd comp $18 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1831
R15	0684-1051		R : fxd comp $1 \mathrm{M} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1051
R16	0684-1021	6	R: fxd comp $1000 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1021
R17	0684-6831	4	R : fxd comp $68 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB6831
R18	0684-6821	4	R: fxd comp $6800 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB6821
R19*			See Paragraph 5-86 for Replacement Instructions		
R20	0684-2211	3	R : fxd comp $220 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2211
R21	0698-5102	1	R: fxd C comp 1.2 M ${ }^{\text {d }} \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1251
R22	0698-5098	4	R : fxd C comp 2.7 M $\Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2751
R23	0684-2231		R : fxd comp $22 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2231
R24	0684-1031		R: fxd comp $10 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1031
R25	0684-6831		R: fxd comp $68 \mathrm{k} \Omega \pm 10 \% \mathrm{l} / 4 \mathrm{~W}$	01121	CB6831
R26	0684-2221		R: fxd comp $2200 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2221
R27	0698-5098		R : fxd C comp 2.7 M $\Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2751
R28	0684-2231		R : fxd comp $22 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2231
R29	0684-6831		R : fxd comp $68 \mathrm{k} \Omega \pm 10 \% \mathrm{l} / 4 \mathrm{~W}$	01121	CB6831
R30	0684-2221		R: fxd comp $2200 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2221
R31	0698-5098		R: fxd C comp 2.7 M $\sim \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2751
R32	0684-1041	8	R: fxd comp $100 \mathrm{k} \Omega \pm 10 \% \mathrm{l} / 4 \mathrm{~W}$	01121	CB1041
R33	0684-1031		R : fxd comp $10 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1031
$\begin{aligned} & \text { R34 thru } \\ & \text { R37 } \end{aligned}$			Not Assigned		
R38	0684-1031		$\mathrm{R}:$ fxd comp $10 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1 031
R39	0684-1011		R: fxd comp $100 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1011
R40	0684-3321	6	R: fxd comp $3300 \Omega \pm 10 \% \mathrm{l} / 4 \mathrm{~W}$	01121	CB3321
R41	0690-2721	1	R : fxd comp $2700 \Omega \pm 10 \% 1 \mathrm{~W}$	01121	GB2721
R42	0687-6811	1	R: fxd comp $680 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	78488	RC-20 obd
R43	0684-6811	1	R: fxd comp $680 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB6811
R44	0684-3921	2	R: fxd comp $3900 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB3921
R45	0684-6821		R: fxd comp $6800 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB6821

Table 6-2. Replaceable Parts (Cont'd)

Table 6-2. Replaceable Parts (Cont'd)

REFERENCE DESIGNATOR	$\begin{aligned} & \text {-hp- } \\ & \text { PART NO. } \end{aligned}$	TQ	DESCRIPTION	MFR.	MFR. PART NO.
A4 Cont'd					
C4	0160-2323	1	C: fxd my $10 \mu \mathrm{~F} \pm 10 \% 50 \mathrm{vdcw}$	56289	218P1069R5S4
C5, C6	0180-0393	2	C: fxd Ta elect $39 \mu \mathrm{~F} \pm 10 \% 10 \mathrm{vdcw}$	56289	$\begin{aligned} & \text { 150D396X9010 } \\ & \text { B2-DYS } \end{aligned}$
C7	0180-0104	2	C: fxd Al elect $200 \mu \mathrm{~F}+75 \%-10 \% 15$ vdcw	56289	$\begin{aligned} & \text { 30D207G015DF4- } \\ & \text { DSM } \end{aligned}$
C8	0160-0155	1	C: fxd my $0.0033 \mu \mathrm{~F} \pm 10 \% 50$ vdcw	56289	192P33292-PTS
C9	0180-0106	1	C: fxd Ta elect $60 \mu \mathrm{~F} \pm 20 \% 6$ vdcw	56289	$\begin{aligned} & \text { 150D606X0006 } \\ & \text { B2-DYS } \end{aligned}$
C10	0150-0093	1	C: fxd cer $0.01 \mu \mathrm{~F}+80 \%-20 \% 100$ vdew	91418	TA
CR1	1901-0025		Diode: Si 100 mA 12 pF 100 wiv	03877	SG-817
CR2, CR3	1902-0048		Diode: breakdown $6.81 \mathrm{~V} \pm 5 \% 400 \mathrm{~mW}$	04713	SZ10939-134
CR4 thru CR12	1901-0025		Diode: Si 100 mA 12 pF 100 wiv	03877	SG-817
Q1, Q2	1854-0033		TSTR: Si NPN 2N3391	24446	2N3391
Q3	1853-0010	1	TSTR: Si PNP	07263	obd
Q4	1854-0033		TSTR: Si NPN 2N3391	24446	2N3391
Q5	1853-0001		TSTR: Si PNP	07263	S-3251
Q6 thru Q12	1854-0033		TSTR: Si NPN 2N3391	24446	2N3391
R1	0684-6831		R: fxd comp $68 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB6831
R2	0683-2055	1	R : fxd comp $2 \mathrm{M} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB2055
R3, R4	0684-4751	2	R : fxd comp $4.7 \mathrm{M} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB4751
R5	0698-5097	1	R : fxd C comp 1.5 M $\Omega \pm 10 \% \mathrm{l} / 4 \mathrm{~W}$	01121	CB1551
R6	2100-1406	2	R : var comp lin $50 \mathrm{k} \Omega \pm 20 \% 1 / 8 \mathrm{~W}$	71450	XQS-200
R7	0684-1041		R: fxd comp $100 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1041
R8	0698-5099	1	R : fxd C comp 3.9 $\mathrm{M} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB3951
R9	0698-5098		R : fxd C comp 2.7 M $\Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2751
R10	0684-4711	5	R : fxd comp $470 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB4711
R11	0684-3921		R: fxd comp $3900 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB3921
R12	0698-5096	1	R : fxd C comp $680 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB6841
R13	2100-1406		R : var comp lin $50 \mathrm{k} \Omega \pm 30 \% \mathrm{l} / 8 \mathrm{~W}$	71450	XQS-200
R14	0684-1031		R : fxd comp $10 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1031
R15	0684-2231		R : fxd comp $22 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2231
R16	0684-4711		R: fxd comp $470 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB4711
R17	0684-4721		R : fxd comp $4700 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB4721
R18	0684-2231		R : fxd comp $22 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2231
R19	0684-2241		R: fxd comp $220 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2241
R20	0684-1831		R : fxd comp $18 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1831
R21	0698-5100	1	R: fxd C comp $22 \mathrm{M} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2261
R22	0684-5631		R: fxd comp $56 \mathrm{k} \Omega \pm 10 \% \mathrm{l} / 4 \mathrm{~W}$	01121	CB5631
R23	0684-1061		R : fxd comp $10 \mathrm{M} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1061
R24	0684-4731		R: fxd comp $47 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB4731
R25	0684-6821		R: fxd comp $6800 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	C.B6821
R26	0684-1021		R: fxd comp $1000 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1021
R27	0684-4731		$\mathrm{R}:$ fxd comp $47 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB4731
R28	0684-2711	1	R : fxd comp $270 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2711
R29	0684-8211	2	R: fxd comp $820 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB8211
R30	0684-2221		R: fxd comp $2200 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2221
R31	0684-1031		R: fxd comp $10 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1031
R32	0684-2211		R: fxd comp $220 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2211
R33	0684-6821		R: fxd comp $6800 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB6821
R34	0684-3321		R: fxd comp $3300 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB3321
R35	0684-1041		R: fxd comp $100 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1041

Table 6-2. Replaceable Parts (Cont'd)

REFERENCE DESIGNATOR	-hp- PART NO.		TQ	DESCRIPTION	MFR.	MFR. PART NO.
xparceswe	kuncme	\square	0	W2,	5 m	
A 5	00740-66525		1	Assembly: Includes all mounted parts	-hp-	
C1	0140-0200		1	C: fxd mica $390 \mathrm{pF} \pm 5 \%$	04062	RDM15F391J3C
C2	0160-0314		1	C: fxd my $0.01 \mu \mathrm{~F} \pm 5 \% 400 \mathrm{vdcw}$	84411	Type 663UW
C3	0160-0156		1	C: fxd my $0.0039 \mu \mathrm{~F} \pm 10 \% 200 \mathrm{vdcw}$	56289	192P39292-PTS
C4	0180-0285		1	C: fxd Al elect non-polar $1200 \mu \mathrm{~F}$ $+100 \%-10 \% 5 \mathrm{vdcw}$	56289	D31343
C5	0180-0293		1	C: fxd Al elect $375 \mu \mathrm{~F}+75 \%-10 \% 15 \mathrm{vdcw}$	56289	obd
C6	0180-0282		3	C: fxd Al elect $35 \mu \mathrm{~F}+75 \%-10 \% 250 \mathrm{vdcw}$	56289	D38270
C7	0180-0058		1	C: fxd Al elect $50 \mu \mathrm{~F}+75 \%-10 \% 25 \mathrm{vdcw}$	56289	30D506G025 CC2-DSM
C8	0150-0012			C: fxd cer $0.01 \mu \mathrm{~F} \pm 20 \% 1000 \mathrm{vdcw}$	56289	29C214A3
C9	0160-0127			C: fxd cer $1.0 \mu \mathrm{~F} \pm 20 \% 25 \mathrm{vdcw}$	56289	5 C 13 C
CR1	1910-0014		2	Diode: Ge IN277	03877	obd
CR2	1901-0040		1	Diode: Si 30 mA 2 pF 2 ns 30 wiv	07263	FDG1088
CR3	1901-0025			Diode: Si 100 mA 12 pF 100 wiv	03877	SG-817
CR4	1902-0211		1	Diode: Si breakdown $12.1 \mathrm{~V} \pm 10 \%$	12954	DZ70414Z
CR5, CR6	1901-0025			Diode: Si 100 mA 12 pF 100 wiv	03877	SG-817
Q1, Q2	1850-0111		3	TSTR: Ge PNP 2N404A	01295	2N404A
$\begin{aligned} & \text { Q3 thru } \\ & \text { Q5 } \end{aligned}$	1853-0039			TSTR: Si PNP 2N3638A	07263	obd
Q6	1854-0066			TSTR: Si NPN 2N2925	24446	obd
Q7	1853-0001			TSTR: Si PNP	07263	S-3251
R1	0686-2725		1	R: fxd comp $2700 \Omega \pm 5 \% 1 / 2 \mathrm{~W}$	01121	EB2725
R2	0684-3911		1	R : fxd comp $390 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB3911
R3	0687-1521		1	R : fxd comp $1500 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB1521
R4	0684-1031			R : fxd comp $10 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1031
R5	0686-4725		1	R : fxd comp $4700 \Omega \pm 5 \% 1 / 2 \mathrm{~W}$	78488	RC-20 obd
R6, R7	0687-1221		2	R: fxd comp $1200 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB1221
R8	0683-5135		1	R : fxd comp $51 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB5135
R9	0687-5621		1	R: fxd comp $5600 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	-hp-	
R10	0684-1031			R : fxd comp $10 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1031
R11	0684-1021			R: fxd comp $1000 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1021
R12, R13	0683-0365		2	$\mathrm{R}:$ fxd comp $3.6 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB36G5
R14	0812-0066		1	R : fxd ww $0.33 \Omega \pm 5 \% 2 \mathrm{~W}$	75042	BWH
R15	0684-2231			R : fxd comp $22 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2231
R16	0683-4725		1	R: fxd comp $4700 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB4725
R17	0684-2241			R : fxd comp $220 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2241
R18	0687-1821		2	R: fxd comp $1800 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	78488	RC-20 obd
R19	0684-1041			R : fxd comp $100 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1041
R20, R21	0684-4721			R : fxd comp $4700 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB4721
					ana	Naramensmancuase
A 6	00740-66526		1	Assembly: Includes all mounted parts	-hp-	
C1	0180-0061		4	C: fxd Al elect $100 \mu \mathrm{~F}+75 \%-10 \% 15 \mathrm{vdcw}$	56289	$\begin{gathered} \text { 30D107G015 } \\ \text { DC2-DSM } \end{gathered}$
C2	0180-0059		2	C: fxd Al elect $10 \mu \mathrm{~F}+75 \%-10 \% 25 \mathrm{vdcw}$	56289	$\begin{gathered} 30 \mathrm{D} 106 \mathrm{G} 025 \\ \text { BB2-DSM } \end{gathered}$
C3	0180-0061			C: fxd Al elect $100 \mu \mathrm{~F}+75 \%-10 \% 15 \mathrm{vdcw}$	56289	$\begin{gathered} \text { 30D107G015 } \\ \text { DC2-DSM } \end{gathered}$
C4	0160-0162		3	C: fxd my $0.022 \mu \mathrm{~F} \pm 10 \% 200 \mathrm{vdcw}$	56289	192P22392-PTS
C5	0180-0284		2	C: fxd Al elect $200 \mu \mathrm{~F}+75 \%-10 \% 30 \mathrm{vdcw}$	56289	(Type 34D) D39070
C6 C 7	0180-0061			Not Assigned C: fxd Al elect $100 \mu \mathrm{~F}+75 \%-10 \% 15 \mathrm{vdcw}$	56289	30D107G015
						DC2-DSM

Table 6-2. Replaceable Parts (Cont'd)

Table 6-2. Replaceable Parts (Cont'd)

REFERENCE DESIGNATOR	-hp- PART NO.		TQ	DESCRIPTION	MFR.	MFR. PART NO.
A7 Cont'd						
Q1	1853-0039		1	TSTR: Si PNP 2N3638A	07263	obd
Q2	1851-0017		1	TSTR: GE NPN 2N1304	01295	2N1304
Q3	1854-0039			TSTR: Si NPN 2N3053	01295	obd
Q4	1850-0111			TSTR: Ge PNP 2N404A	01295	2N404A
Q5	1854-0039			TSTR: Si NPN 2N3053	01295	obd
R1	0684-1811		1	RL fxd comp $180 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1811
R2	0690-2701		1	R : fxd C comp $27 \Omega \pm 10 \% 1 \mathrm{~W}$	01121	GB2701
R3	0690-6801		1	R : fxd C comp $68 \Omega \pm 10 \% 1 \mathrm{~W}$	01121	GB6801
R4	0686-5125		1	R : fxd comp $5100 \Omega \pm 5 \% 1 / 2 \mathrm{~W}$	78488	RC-20 obd
R5	0687-2211		1	R : fxd comp $220 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB2211
R6	0687-5611		2	R: fxd comp $560 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB5611
R7	0690-4701		1	$\mathrm{R}:$ fxd $\mathrm{C} \operatorname{comp} 47 \Omega \pm 10 \% 1 \mathrm{~W}$	01121	GB4701
E8	0687-1011		1	R : fxd comp $100 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB1011
R9	0687-1501		1	R: fxd comp $15 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB1501
R10	0684-1011			R: fxd comp $100 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1011
R11	0684-1031			R: fxd comp $10 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1031
R12	0684-4711			R : fxd comp $470 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB4711
R13	0684-1031			R : fxd comp $10 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1031
R14	0684-1021			$\mathrm{R}:$ fxd comp $1000 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1021
R15	0687-1821			R R: fxd comp $1800 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	78488	RC-20 obd
R16	0684-2231			R: fxd comp $22 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2231
R17	0684-2221			R : fxd comp $2200 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2221
R18	0687-1021		1	R: fxd comp $1000 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB1021
R19	0684-2221			R : fxd comp $2200 \Omega \pm 10{ }^{\text {e }} 1 / 4 \mathrm{~W}$	01121	CB2221
A						
A 8	00740-66528		1	Assembly: Includes all mounted parts	-hp-	
C1, C2	0180-0282			C: fxd Al elect $35 \mu \mathrm{~F}+75 \%-10 \% 250 \mathrm{vdcw}$	56289	D38270
C3	0180-0091		1	C: fxd Al elect $10 \mu \mathrm{~F}+50 \%-10 \% 100 \mathrm{vdcw}$	56289	30D106F100 DC2-DSM
$\begin{aligned} & \text { C4 thru } \\ & \text { C } 6 \end{aligned}$	0160-0168			C: fxd my $0.1 \mu \mathrm{~F} \pm 10 \% 200 \mathrm{vdcw}$	56289	192P10492-PTS
C7, C8	0160-0207		2	C: fxd my $0.01 \mu \mathrm{~F} \pm 5 \% 200 \mathrm{vdcw}$	56289	192P10352-PTS
C9, C10	0160-0162			C: fxd my $0.022 \mu \mathrm{~F} \pm 10 \% 200 \mathrm{vdcw}$	56289	192P22392-PTS
CR1, CR2	1901-0029		2	Diode: Si 600 piv		
CR3 thru CR10	1901-0025			Diode: Si 100 mA 12 pF 100 wiv	03877	SG817
CR11	1902-3259		1	Diode: Si breakdown $24.3 \mathrm{~V} \pm 5 \% 400 \mathrm{~mW}$	07910	obd
CR12	1902-3179		1	Diode: Si breakdown 11.8 V $\pm 5 \%$	07910	CD35727
Q1, Q2	1854-0039			TSTR: Si NPN 2N3053	01295	obd
Q3, Q4	1854-0033			TSTR: Si NPN 2N3391	24446	2N3391
Q5, Q6	1854-0022		2	TSTR:	01295	SG1294
R1	0687-2741		1	R: fxd comp $270 \mathrm{k} \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	78488	RC-20 obd
R2	0767-0011		1	R: fxd met ox $20 \mathrm{k} \Omega \pm 5 \% 3 \mathrm{~W}$	75042	PMF-3
R3	2100-1410		1	R : var comp lin $20 \mathrm{k} \Omega \pm 20 \% 1 / 8 \mathrm{~W}$	71450	XQS-200
R4 thru R7	0687-1531		4	R: fxd comp $15 \mathrm{k} \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB1531
R8*, R9*				See Paragraph 5-99 for Replacement Instructions		
R10, R11	0684-1051			R : fxd comp $1 \mathrm{M} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1051
R12, R13	0684-2231			R : fxd comp $22 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB2231
R14, R15	0686-9135		2	R: fxd comp $91 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}$	78488	RC-20 obd
R16	0683-3335		2	R : fxd comp $33 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB3335
R17, R18	0683-5645		2	R: fxd comp $560 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB5645

Table 6-2. Replaceable Parts (Cont'd)

REFERENCE DESIGNATOR	$\begin{gathered} \text {-hp- } \\ \text { PART NO. } \end{gathered}$		TQ	DESCRIPTION	MFR.	MFR. PART NO.
A8 Cont'd						
R19	0683-3335			$\mathrm{R}: ~ \mathrm{fxd}$ comp $33 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB3335
R20	2100-1795			R : var comp lin $250 \mathrm{k} \Omega \pm 20 \% 1 / 8 \mathrm{~W}$	71450	QS200
R21, R22	0683-6825		2	$\mathrm{R}:$ fxd comp $6800 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB6825
R23	0684-8231		3	R : fxd comp $82 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB8231
R24, R25	0684-1051			R : fxd comp $1 \mathrm{M} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1051
R26	0684-8231			$\mathrm{R}: \mathrm{fxd}$ comp $82 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB8231
R27	0761-0019		1	R : fxd met ox $39 \mathrm{k} \Omega \pm 5 \% 1 \mathrm{~W}$	75042	L32
R28	0757-0765		1	R: fxd C flm $36.5 \mathrm{k} \Omega \pm 1 \% 1 / 2 \mathrm{~W}$	19701	MF6C T-O obd
R29	0684-1031			R : fxd comp $10 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1031
R30, R31	0684-1051			R : fxd comp $1 \mathrm{M} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1051
R32	0684-1011			R: fxd comp $100 \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1011
R33	0757-0786		1	R : fxd met flm $365 \mathrm{k} \Omega \pm 1 \% 1 / 4 \mathrm{~W}$	19701	MF6C T-O obd
		Thex	10,		Suenurs	
A 9	00740-66529		1	Assembly: Includes all mounted parts	-hp-	
DS1	2140-0015		2	Lamp: neon T-2 bulb	24446	obd
DS2	2140-0213		1	Lamp: incandescent 28 V 40 mA	71744	CM7-387
DS3	2140-0015			Lamp: noen T-2 bulb	24446	obd
Q1	1853-0001			TSTR: Si PNP	07263	S3251
R1	0684-4731			R : fxd comp $47 \mathrm{kS} \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB4731
R2	0757-0815		1	R : fxd met flm $562 \Omega \pm 1 \% 1 / 2 \mathrm{~W}$	75042	CEC T-O obd
R3	0690-1051		1	R : fxd C comp $1 \mathrm{M} \Omega \pm 10 \% 1 \mathrm{~W}$	01121	GB1051
R4 thru R9	0811-1519		1	R: matched set 6 resistors	-hp-	
R10	2100-1800		1	$\mathrm{R}: \operatorname{var}$ ww $20 \Omega \pm 10 \% 3 / 4 \mathrm{~W} 11$ turn	12697	Series 76 Type 3
R11	2100-1483		1	R : var ww lin $200 \Omega \pm 5 \% 3 / 4 \mathrm{~W} 11$ turn	12697	76JA3CM32466
R12	2100-1643		1	R : var ww $2000 \Omega \pm 5 \% 3 / 4 \mathrm{~W} 10$ turn	12697	Series 76 Type 3
V1	1990-0021		1	Photocell	-hp-	
V2	1990-0022		1	Photocell	-hp-	
	Shatcie	$0 \cdot 3$		Wemarninu	,	
A10	00740-66530		1	Assembly: Includes all mounted parts	-hp-	
BT1	1420-0018		2	Battery: Mercury 1.34 V	37942	PX-13T2
R1	0687-1201		1	$\mathrm{R}: ~ \mathrm{fxd}$ comp $12 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB1201
R2	0687-5611			R : fxd comp $560 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB5611
R3	0698-3202		1	R : fxd met flm $1740 \Omega \pm 1 \% 1 / 8 \mathrm{~W}$	000LM	obd
R4	0687-8241		1	R : fxd comp $820 \mathrm{k} \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	78488	RC-20 obd
R5	0687-2261		1	R: fxd comp $22 \mathrm{M} \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB2261
R6, R7	0687-1051		2	R : fxd comp $1 \mathrm{M} \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB1051
R8	2100-0388		1	R: var ww $20 \Omega \pm 20 \% 2 \mathrm{~W}$	08984	HHH2XYZ
R9	2100-0151		1	R: var C comp lin $500 \Omega \pm 20 \% 2 \mathrm{~W}$	71450	UPM70RE (hp) obd
R10	2100-0128		1	R : var C comp lin $250 \Omega \pm 20 \% 1 / 15 \mathrm{~W}$	71450	UPM70RE (hp) obd
R11	2100-0102		1	R : var C comp lin $500 \mathrm{k} \Omega \pm 30 \% 1 / 10 \mathrm{~W}$	71450	UPM70RE(hp) obd
R12	2100-0096		1	R : var C comp lin $1 \mathrm{M} \Omega \pm 30 \% 1 / 10 \mathrm{~W}$	71450	UPM70RE(hp) obd
R13	0687-6851		1	$\mathrm{R}:$ fxd comp $6.8 \mathrm{M} \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB6851
				ntmokntuntur	7xack	
All	00740-66531		1	Assembly: Includes all mounted parts	-hp-	
BT1	1420-0018			Battery: Mercury 1.34 V	37942	PX-13T2
C1	0180-0305		1	C: fxd Al elect $1000 \mu \mathrm{~F}+75 \%-10 \% 2.5 \mathrm{vdcw}$	56289	$\begin{gathered} \text { 34D108G2R5 } \\ \text { FJ4-DSB } \end{gathered}$

Table 6-2. Replaceable Parts (Cont'd)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline REFERENCE DESIGNATOR \& $$
\begin{gathered}
\text {-hp- } \\
\text { PART NO. }
\end{gathered}
$$ \& \& TQ \& DESCRIPTION \& MFR. \& MFR. PART NO.

\hline \multicolumn{7}{|l|}{A11 Cont'd}

\hline CR1 \& 1901-0172 \& \& 1 \& Diode Assembly: Si 3000 piv \& 14099 \& SA1173

\hline CR2 \& 1901-0028 \& \& 6 \& Diode: Si 400 piv \& 04713 \& obd

\hline L1 \& 9100-1344 \& \& 3 \& Coil: RF $400 \mu \mathrm{H} \pm 100 \mu \mathrm{H}$ \& -hp- \&

\hline R1 \& 0770-0008 \& \& 1 \& R: fxd met ox $1000 \Omega \pm 5 \% 4 \mathrm{~W}$ \& 07115 \& FP-4

\hline R2 \& 0815-0042 \& \& 1 \& R : fxd prec ww $200 \mathrm{k} \Omega \pm 5 \% 10 \mathrm{~W}$ \& 91637 \& RS-10

\hline R3 \& \& \& \& Not Assigned \& \&

\hline R4 \& 0690-1061 \& \& 1 \& R : fxd comp $10 \mathrm{M} \Omega \pm 10 \% 1 \mathrm{~W}$ \& 01121 \& GB1061

\hline A12 \& \& \& \& Not Assigned \& \&

\hline \& \& \multirow[t]{3}{*}{20} \& 74083 \& \& atraxera \& Wasam:

\hline \multirow[t]{2}{*}{A13

A14} \& \multirow[t]{2}{*}{00740-66901} \& \& \multirow[t]{2}{*}{1} \& \multirow[t]{2}{*}{| Oven Assembly: Diode selected (individual components not separately replaceable) |
| :--- |
| Not Assigned |} \& \multirow[t]{2}{*}{-hp-} \&

\hline \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{Al 5} \& \multirow[t]{2}{*}{$$
00740-65202
$$} \& [5 간 \& 765 \& \& Maxamel \& -

\hline \& \& \& 1 \& Holding Assembly: Includes DS1 thru DS9, R1 thru R6 \& -hp- \&

\hline DS1 thru \& 1970-0009 \& \& 5 \& Tube: indicator 10 digit \& 83594 \& B5991

\hline DS6 thru DS9 \& 2140-0028 \& \& 4 \& Lamp: neon breakdown 65 Vac 90 Vdc \& 24446 \& NE2E4

\hline R1 thru R5 \& 0757-0367 \& \& 5 \& R: fxd met flm $100 \mathrm{k} \Omega \pm 1 \% 1 / 2 \mathrm{~W}$ \& 19701 \& MF7C T-O obd

\hline R6 \& 0686-1645 \& \& 2 \& $\mathrm{R}: \operatorname{fxd} \operatorname{comp} 160 \mathrm{k} \Omega \pm 5 \% \mathrm{l} / 2 \mathrm{~W}$ \& 78488 \& RC-20 obd

\hline \multirow[t]{2}{*}{Al6} \& \& \multirow[t]{2}{*}{} \& \& \& 5xata \&

\hline \& 1990-0217 \& \& 1 \& Photochopper Assembly: Meter Loop \& -hp- \&

\hline W.... esmasker \& \& \multirow[t]{2}{*}{} \& Ta3ses \& \& Fembusaze \&

\hline \multirow[t]{2}{*}{A17} \& 1990-0216 \& \& 1 \& Photochopper Assembly: Main Loop \& -hp- \&

\hline \& \& \multirow[t]{18}{*}{$1 \times$} \& Haxe \& \multirow[t]{2}{*}{Input Cable Assembly} \& -1, meater \&

\hline A18 \& 11054A \& \& 1 \& \& -hp- \&

\hline C1 \& 0150-0023 \& \& 1 \& C: fxd cer $0.002 \mu \mathrm{~F} \pm 20 \% 1000$ vdcw \& 56289 \& 19C203A

\hline J1 \& 1510-0026 \& \& 3 \& Binding post assembly: red w/solder turret \& -hp- \&

\hline J2 \& 1510-0027 \& \& 3 \& Binding post assembly: black w/solder turret \& -hp- \&

\hline J3 \& 5060-0626 \& \& 1 \& Binding post assembly: black \& -hp- \&

\hline J4 \& 1510-0009 \& \& 5 \& Binding post: black \& -hp- \&

\hline R1 \& 0689-2255 \& \& 1 \& R : fxd comp 2.2 M $\Omega \pm 5 \% 1 \mathrm{~W}$ \& 01121 \& GB2255

\hline \multirow[t]{10}{*}{S1} \& 3101-0110 \& \& 1 \& Switch: slide DPDT non-shorting 0.5 amp 125 vdc 3 amp 125 vac \& 42190 \& 11304 obd

\hline \& \multirow[t]{5}{*}{$$
\begin{aligned}
& 1251-0468 \\
& 1251-0470 \\
& 8120-0283 \\
& 81150-0005 \\
& 8150-0007
\end{aligned}
$$} \& \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
1 \\
10 \\
1 \\
1 \\
1
\end{array}
$$

\]} \& \multirow[t]{5}{*}{| Connector: plug quick disconnect 7 contact |
| :--- |
| Contact: male snap-in type crimp-on |
| Cable: special purpose $3-1 / 2$ feet long |
| Wire: elect 22 ga black $1 / 4$ foot long |
| Wire: elect 22 ga black $1 / 4$ foot long |} \& OOOL N \& MDR07-7P-090

\hline \& \& \& \& \& 000 LN \& $$
800-20 / 32-1
$$

\hline \& \& \& \& \& -hp- \&

\hline \& \& \& \& \& 83501 \& BT Type C/U obd

\hline \& \& \& \& \& 83501 \& BT Type C/U obd

\hline \& \multirow[t]{4}{*}{$$
\begin{aligned}
& 11054-44401 \\
& 11054-44402 \\
& 11054-48301 \\
& 11054-48302
\end{aligned}
$$} \& \& \multirow[t]{4}{*}{2

2
2

2} \& \multirow[t]{4}{*}{| Cabinet: molded |
| :--- |
| Base: molded |
| Boot assembly: cable |
| Boot assembly: cable |} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& \text {-hp- } \\
& \text {-hp- } \\
& \text {-hp- } \\
& \text {-hp- }
\end{aligned}
$$
\]} \&

\hline \& \& \& \& \& \&

\hline \& \& \& \& \& \&

\hline \& \& \& \& \& \&

\hline
\end{tabular}

Table 6-2. Replaceable Parts (Cont'd)

Table 6-2. Replaceable Parts (Cont'd)

REFERENCE DESIGNATOR	$- \text {-hp- }$ PART NO		TQ	DESCRIPTION	MiFR.	IVIFR. PART NO.
				Chassis Mounted Components Cont'd		
L1	9110-0106		1	Inductor: filter	-hp-	
L2	9110-0107		1	Inductor: input filter	-hp-	
L3	9140-0041		1	Coil: R. F. $2.5 \mathrm{mH} \pm 10 \%$	95265	SA-2500-I
L4, L5	9100-1332		2	Choke: R. F. $400 \mu \mathrm{H} \pm 100 \mu \mathrm{H}$	-hp-	
L6, L7	9100-1344			Choke: R. F. $400 \mu \mathrm{H} \pm 100 \mu \mathrm{H}$	-hp-	
M1	1120-0916		1	Meter: calibrated	-hp-	
Q1	1850-0189		1	TSTR: Ge PNP	16758	7297086
Q2	1850-0160		1	TSTR: Ge PNP 2N2147	86684	2N2147
Q3	1850-0098		1	TSTR: Ge PNP	77068	B-1493
R1, R2				Not Assigned		
R3	0816-0001		1	R: fxd ww $250 \Omega \pm 5 \% 10 \mathrm{~W}$	91637	HLW-12-11W (SP1)
R4	0811-0390		1	R: fxd prec ww $0.549 \Omega \pm 1 \% 5 \mathrm{~W}$	91637	RS-5
R5	0816-0004		1	R: fxd ww $800 \Omega \pm 5 \% 10 \mathrm{~W}$	91637	HLW-12-11W (SP1)
R6	0684-1041			R : fxd comp $100 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1041
R7 thru R9				Not Assigned		
R10	0687-8231		1	R: fxd comp $82 \mathrm{k} \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB8231
R11.	0687-6831 $2100-0937$		1	R: fxd comp $68 \mathrm{k} \Omega \pm 10 \% 1 / 2 \mathrm{~W}$ R: $v a r$ comp $250 \Omega \pm 10 \% 1.12 \mathrm{~W}$	01121 01121	EB6831 Type J
R12	2100-0937		1	R: var comp $250 \Omega \pm 10 \% 1.12 \mathrm{~W}$ (CURRENT LIMIT)	01121	Type J
R13	2100-1780		1	R: var prec ww lin $100 \mathrm{k} \Omega \pm 5 \% 2 \mathrm{~W}$ 10 turn (ZERO)	12697	Series 62
R14	2100-0067		1	R: $\operatorname{var} \operatorname{lin} 2500 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$ (RECORDER OUTPUT)	11237	Series 45
R15	0687-3311		1	R: fxd comp $330 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	78488	RC-20 obd
S1	00740-61907		1	Switch assembly: RANGE and FUNCTION Includes all mounted parts	-hp-	
S1C1	0160-0168			C: fxd my $0.1 \mu \mathrm{~F} \pm 10 \% 200 \mathrm{vdcw}$	56289	192P10492-PTS
S1C2	0150-0098			C: fxd cer $0.01 \mu \mathrm{~F} \pm 20 \% 1000 \mathrm{vdcw}$	-hp-	
S1R1	0686-1645			R: fxd comp $160 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}$	78488	RC-20 obd
S1R2	0686-1655		1	$\mathrm{R}:$ fxd comp $1.6 \mathrm{M} \Omega \pm 5 \% 1 / 2 \mathrm{~W}$	78488	RC-20 obd
S1R3	0686-1635		1	R: fxd comp $16 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}$	01121	EB1635
S1R4	0686-1625		1	$R:$ fxd comp $1600 \Omega \pm 5 \% 1 / 2 \mathrm{~W}$	01121	EB1625
$\begin{aligned} & \text { S1R5, } \\ & \text { S1R6 } \end{aligned}$				Not Assigned		
S1R7	0684-1041			R: fxd comp $100 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB1041
$\begin{aligned} & \text { S1R8, } \\ & \text { S1189 } \end{aligned}$	0687-2251		2	R : fxd comp 2.2 M $\Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	CB2251
S1R10	0687-8221		1	R: fxd comp $8200 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB6821
S1R11	0758-0006		1	R: fxd met ox $10 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}$	07115	C5 obd
S1R12	0758-0053		1	R: fxd met ox $100 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}$	07115	C5 obd
S1R13	0761-0102		1	R : fxd met ox $560 \mathrm{k} \Omega \pm 5 \% 1 \mathrm{~W}$	07115	C32
S1R14	0761-0099		1	R : fxd met ox $430 \mathrm{k} \Omega \pm 5 \% 1 \mathrm{~W}$	75042	L32
S1R15	0687-1801		1	R : fxd comp $18 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB1801
S1R16	0690-1811		1	R : fxd comp $180 \Omega \pm 10 \% 1 \mathrm{~W}$	01121	GB1811
S1R17	0687-4721		1	R : fxd comp $4700 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB4721
S1R18	0687-1831		1	R : fxd comp $18 \mathrm{k} \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	01121	EB1831
S1R19	0693-1211		1	$\mathrm{R}:$ fxd C comp $120 \Omega \pm 10 \% 2 \mathrm{~W}$	01121	HB1211
S1R20	0687-1001		1	R: fxd comp $10 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$ (S1R20 not present on instruments before Serial No. 610-00376)	01121	EB1001
S2 thru S8	00740-61906		1	Switch assembly: VOLTAGE SET, SENSITIVITY and INTERNAL ALIGNMENT (Includes all mounted parts)	-hp-	

Table 6-2. Replaceable Parts (Cont'd)

REFERENCE DESIGNATOR	$\stackrel{\text {-hp- }}{\text { PART NO. }}$	$T Q$	DESCRIPTION	MFR.	MFR. PAR	NO.
S2	3101-0814	1	Switch: pushbutton (SENSITIVITY) Does not include mounted parts.	76854	29C214A3 obd	
S2C1	0150-0012		C: fxd cer $0.01 \mu \mathrm{~F} \pm 20 \% 1000 \mathrm{vdcw}$	56289		
S2CR1	1901-0028		Diode: Si 400 piv	04713		
S2R1	0811-1745	1	R: fxd prec ww $202.5 \mathrm{k} \Omega \pm 0.1 \% 1 / 8 \mathrm{~W}$	15909		obd
S2R2	00740-82604	1	R: fxd ww $20.250 \mathrm{k} \Omega$	-hp-		
S2R3	00740-82603	1	R: fxd ww $2.025 \mathrm{k} \Omega$	-hp-		
S2R4	00740-82602	1	R: fxd ww 202.5Ω	-hp-		
S2R5	0811-2095	1	R : fxd prec ww $22.75 \Omega \pm 0.1 \% 1 / 8 \mathrm{~W}$	15909		obd
S3	3100-0740	1	Switch: rotary (INTERNAL ALIGNMENT)	76854	JKN	
S3R1, R2	0811-1110	1	R: matched set 7 resistors (also includes S4R1 thru S4R5)	-hp-		
S4	3100-1723	1	Switch: rotary (X1 VOLTAGE SET) Does not include mounted parts.	76854	obd	
S4R1 thru R5	0811-1110	1	R: matched set 7 resistors (also includes S3R1 and S3R2)	-hp-		
S5 thru S8	3100-1724	4	Switch: rotary (VOLTAGE SET) Does not include mounted parts.	76854	obd	
S5R1 thru R5	0811-1111	1	R: matched set 5 resistors (2 nd decade)	-hp-		
S6R1 thru R5	0811-1109	1	R : matched set 5 resistors ww (3 rd decade)	-hp-		
S7R1	0811-1737	1	R: fxd prec ww $1000 \Omega \pm 0.025 \% 1 / 20 \mathrm{~W}$	15909		obd
S7R2, R3	0811-1741	2	$\mathrm{R}:$ fxd prec ww $2000 \Omega \pm 0.025 \% 1 / 20 \mathrm{~W}$	01686	R344	
S7R4	0811-1743	1	R : fxd prec ww $4000 \Omega \pm 0.025 \% 1 / 20 \mathrm{~W}$	01686	R344	
S7R5	0811-1739	1	R : fxd prec ww $1111 \Omega \pm 0.025 \% 1 / 20 \mathrm{~W}$	15909		obd
S8R1	0811-1738	1	R: fxd prec ww $1000 \Omega \pm 0.05 \% 1 / 20 \mathrm{~W}$	01686	R344	obd
S8R2, R3	0811-1742	2	R: fxd prec ww $2000 \Omega \pm 0.05 \% 1 / 20 \mathrm{~W}$	01686	R344	obd
S8R4	0811-1744	1	R: fxd prec ww $4000 \Omega \pm 0.05 \% 1 / 20 \mathrm{~W}$	01686	R344	obd
S9	00740-61904	1	Switch assembly: (STANDARD VERNIER) Includes all mounted parts.	-hp-		
S9R1 thru R10	0683-1025	10	$\mathrm{R}:$ fxd comp $1000 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$	01121	CB1025	
$\begin{aligned} & \text { S9R11 thru } \\ & \text { R20 } \end{aligned}$	0757-0280	10	R: fxd met flm $1000 \Omega \pm 1 \% 1 / 8 \mathrm{~W}$	19701	MF5C T-O	obd
S9R21	0811-1740	1	R: fxd prec ww $1111 \Omega \pm 0.05 \% 1 / 20 \mathrm{~W}$	01686	R344	obd
S10	3101-0014	1	Switch: pushbutton (GAIN CHECK)	82389	4S-1106	
S11	3101-1071	2	Switch: pushbutton SPST (OUTPUT)	000LO	54-61681-26-A1G	
$\begin{aligned} & \text { S11C1 } \\ & \text { S11DS1 } \end{aligned}$	$\begin{aligned} & 0150-0098 \\ & 1450-0106 \end{aligned}$	2	C: fxd cer $0.01 \mu \mathrm{~F} \pm 20 \% 1000 \mathrm{vdcw}$ Lamp: neon (A1G)	-hp-	A1G	
S11R1	0684-8231		R : fxd comp $82 \mathrm{k} \Omega \pm 10 \% 1 / 4 \mathrm{~W}$	01121	CB8231	
S12	3101-1071		Switch: pushbutton SPST (POWER)	000LO	54-61681-26-A1G	
S12DS1	1450-0106		Lamp: neon (A1G)		A1G	
S13	3101-0033	1	Switch: slide 115-230 V DPDT	-hp-		
T1	9100-0305	1	Transformer: power	-hp-		
T2	9100-0306	1	Transformer: power	-hp-		
T3	9100-1320	1	Transformer: pulse coupling	-hp-		
T4	9130-0037	1	Transformer: pulse output	-hp-		
W1	8120-0078	1	Assembly: cable power cord black 3 pin	70903	$\begin{aligned} & \text { KH-4147 } \\ & \text { SDA } 10047 \end{aligned}$	
Z1	1901-0161	1	Diode:assembly: Si 100 piv 10 A bridge	04713		

Table 6-2. Replaceable Parts (Cont'd)

SECTION VII

CIRCUIT DIAGRAMS

7-1. INTRODUCTION.

7-2. This section contains the circuit diagrams necessary for the operation and maintenance of the Model 740B. Included are block, functional, schematic, and component location diagrams.

7-3. BLOCK DIAGRAMS.

7-4. The block diagrams shows the relationshipbetween the basic circuits in the Model 740B in the different modes of operation.

7-5. FUNCTIONAL DIAGRAM.

7-6. The overall operation of the Model 740B is shown on the functional diagram. Assemblies and significant portions of assemblies such as amplifiers and power supplies are not shown in schematic form, but are shown as triangles and blocks. Circuit elements
which do not lend themselves to a simplified presentation, such as relays and switches, are shown in schematic form. Controls and adjustment points related to maintenance are identified on this diagram.

7-7. SCHEMATIC DIAGRAMS.

$7-8$. The circuits contained within individual replaceable assemblies are shown in the schematic diagrams. Circuits external to the assembly are shown to show the completefunction of the assembly. The schematic diagrams are arranged in ascending order of reference designation.

7-9. COMPONENT LOCATION DIAGRAMS.

7-10. Each component in the Model 740B is located by reference designation. The component location diagramsadjacent to the schematic diagrams show the physical location of each component.

GENERAL NOTES

1. PARTLAL REFERENCE DESIGNATIONS ARE SHOWN. PREFIX WITH ASSEMBLY OR SUBASSEMBLY DESIGNATION(S) OR BOTH FOR COM PLETE DESIGNATION.
2. COMPONEN'T VALUES ARE SHOWN AS FOLLOWS UNLESS OTHERWISE NOTED.

RESISTANCE IN OHMS
CAPACITANCE IN MICROFARADS
3. - - DENOTES ASSEMBLY.
4. DENOTES MAIN SIGNAL PATH.
5. - DENOTES DC FEEDBACK PATH.
6. \longrightarrow DENOTES AC FEEDBACK PATH.
7. \square DENOTES FRONT PANEL MARKING.
8. $\vdash^{-}-\cdots$, DENOTES REAR PANEL MARKING.

- DENOTES SCREWDRIVER ADJUST.

10. ODENOTES FRONT PANEL CONTROL.
11. 924 DENOTES WIRE COLOR: COLOR CODE SAME AS RESISTOR COLOR CODE. FIRST NUMBER DENTIFIES BASE COLOR, SECOND NUMBER DEENTIFIES W DDER STRIP, THIRD NUM BER IDENTIFIES NARROWER STRIP.
(e.g. $924=$ WHITE, RED, YELLOW.)
12. * DENOTES FACTORY SELECTED VALUE. SEE REPLACEMENT OF FACTORY SELECTED COMPONENTS, SECTION V. FOR REPLACEMENT INSTRUCTIONS.
13. SYSTEM GROUNDS ARE AS FOLLOWS:

14. VOLTAGES INDICATED IN RED ARE MEASURED WITH A HIGH YM PEDANCE FLOATING VOLTMETER. SEE CORRESPONDING SCHEMATIC NOTES FOR VOLTAGE GROUND REFERENCE POINT. INDICATED VOLTAGES ARE TYPICAL AND WILL VARY SLIGHTLY FROM INSTIRUMENT TO INSTRUMENT.
15. Denotes waveshape; see waveshape drawing. waveSHAPES SHOULD BE OBSERVED WITH A WIDE BANDWIDTH FLOATING OSCILIOSCOPE. SEE CORRESPONDING SCHEMATIC FLOATING OSCILLOSCOPE. SEE CORRESPONDING SCHEMATIC
NOTES FOR WAVESHAPE GROUND REFERENCE POINT. WAVENOTES FOR WAVESHAPE GROUND REFERENCE POINT. WAV
SHAPES ARE TYPICAL AND WILL VARY SLIGHTLY FROM INSTRUMENT TO INSTRUMENT.

hp Part no. 00740-66531

Figure 7-3. Functional and Component Location

Figure 7-4. Input and Output Cable Assemblies Schematic Diagram

$4 \rightarrow$ frovi of

 \checkmark and 当 are blectrically common n sto mone.

13 components ARE facropy servern
 3.

APPENDIX C

BUILDING A DC CALIBRATION SYSTEM

C-1. BUILDING A PRECISION VOLTAGE DIVIDER.

C-2. Some of the Performance Tests presented in Section V require using a precision voltage divider. Dividers are available with the requiredaccuracy at full scale (1:1 ratio). However, division accuracy generally decreases as the division ratio increases.

C-3. The following paragraphs outline a method of constructing a divider that achieves an accuracy of 1 to 2 ppm division accuracy at all points on the divider. The matching technique used compares resistors in a resistive matching bridge. The bridge is initially adjustedfor null with a reference resistor at R_{X} (Figure $C-1$). The reference resistor is then replaced with an unmatched resistor. Adjusting the unmatched resistor for bridge null matches it to the reference resistor it replaced. Decade matching is achieved by using a series string of ten resistors in place of the reference resistor. The series string is equal in total resistance to a single resistor of the next higher decade.

C-4. Self heating effects of the resistors are greatly reduced by placing them in a temperature-controlled, stirred-oil bath. The resistors are calibrated at their later intended working voltage which further reduces the chances of thermal error.

C-5. The following equipment andmaterials are required for setting up and calibrating the divider:

Table C-1. Materials for Building a Decade Divider

ITEM	QUANTITY
Constant temperature oil bath (American Instrument Co.)	1
DC Null Voltmeter (-hp- Model 419A)	1
DC power supply (-hp- Model 740B)	1
$1 \mathrm{k} \Omega$ Adjustable Transfer Resistors (-hp- Model $11103 A)$	10
$10 \mathrm{k} \Omega$ Adjustable Transfer Resistors (-hp- Model $11104 \mathrm{~A})$	9
$100 \mathrm{k} \Omega$ Adjustable Transfer Resistors (-hp- Model $11105 \mathrm{~A})$	9
Insulated solid copper wire (20 gauge or larger)	as needed

C-6. SETTING UP THE CONSTANT TEMPERATURE BATH.

a. Turn on oil bath heater and adjust regulating temperature to approximately $2^{\circ} \mathrm{C}$ above am bient room temperature.
b. Place the set of 28 resistors in the oil and allow resistor temperatures to stabilize for at least 8 hours.

C-7. MATCHING THE $1 \mathrm{k} \Omega$ RESISTORS.

a. Construct the matching bridge shown in Figure C-1, making all external connections to the bridge with insulated, solid copper wire, 20 gauge or larger. Select R_{X} to be a recently calibrated $1 \mathrm{k} \Omega$ resistor.
b. Apply 2 Vdc from the Model 740 B to the bridge.
c. Adjust R3 for a null on the Null Voltmeter, $3 \mu \mathrm{~V}$ range. Do not adjust R_{x}. If adjusting R3 does not produce null, adjust R1 or R2 until null is achieved. The bridge is now balanced.

$\{$ CAUTION\}

ALWAYS DE-ENERGIZE THE MODEL 740B OUTPUT WHEN MAKING CHANGES IN THE MATCHING BRIDGE SETUP.
d. Replace R_{x} with one of the six remaining $1 \mathrm{k} \Omega$ resistors. Do not disturb R1, R2 or R3.
e. Adjust R_{X} for null on the Null Voltmeter. $3 \mu \mathrm{~V}$ range. This matches R_{X} to the selected $1 \mathrm{k} \Omega$ resistor formerly used ad R_{X}.
f. Repeat steps d and e for the remaining five $1 \mathrm{k} \Omega$ resistors. This matches the remaining five resistors to the original R_{X}.
g. Rebuild the bridge using any three of the matched $1 \mathrm{k} \Omega$ resistors for R1, R2 and R3. Do not adjust the matched resistors. Use one of the three remaining unmatched $1 \mathrm{k} \Omega$ resistors of R_{x}.
h. Adjust R_{x} for null on the null voltmeter, $3 \mu \mathrm{~V}$ range.
i. Replace R_{X} with one of the two remaining unmatched $1 \mathrm{k} \Omega$ resistors.
j. Adjust R_{X} for null on the null voltmeter.

Figure C-1. $1 \mathrm{k} \Omega$ Matching Bridge
k. Repeat steps i and j for the remaining unmatched $1 \mathrm{k} \Omega$ resistor. All of the $1 \mathrm{k} \Omega \mathrm{re}-$ sistors are now matched to each other and to the original reference resistor, R_{x}.

C-8. MATCHING THE $10 \mathrm{k} \Omega$ RESISTORS.

a. Rebuild the matching bridge as shown in Figure C-2. R_{x} is a series string of the 10 matched $1 \mathrm{k} \Omega$ resistors.
b. Set null voltmeter to the $30 \mu \mathrm{~V}$ range and check meter zero.
c. Apply 20 Vdc to the bridge from the Model 740B.
d. Adjust R3 for a null indication on the Null Voltmeter, $30 \mu \mathrm{~V}$ range. Do not adjust any of the 10 matched $1 \mathrm{k} \Omega$ resistors. If adjusting R3 does not produce null, adjust R1 or R2 until null is achieved.

$\{C A U T I O N\}$
 EMuルus

ALWAYS DE-ENERGIZE THE 740B OUTPUT WHEN MAKING CHANGES IN THE MATCHING BRIDGE SETUP.
e. Replace R_{X} ($10-1 \mathrm{k} \Omega$ resistors) with one of the six remaining $10 \mathrm{k} \Omega$ resistors.

Figure C-2. $10 \mathrm{k} \Omega$ Matching Bridge

Figure C-3. Assembling the Divider
f. Adjust R_{X} for a null indication on the Null Voltmeter, $30 \mu \mathrm{~V}$ range. This matches R_{X} to the series string of 10 previously matched $1 \mathrm{k} \Omega$ resistors.
g. Repeat steps e and f for the five remaining $10 \mathrm{k} \Omega$ resistors. Thismatches the remaining five resistors to the original R_{x} (series string of 10 matched $1 \mathrm{k} \Omega$ resistors).
h. Rebuild the matching bridge using any three of the matched $10 \mathrm{k} \Omega$ resistors for R1, R2 and R3. Do not adjust the matched resistors. Use one of the three remaining unmatched $10 \mathrm{k} \Omega$ resistors for R_{x}.
i. Adjust $\mathrm{R}_{\mathbf{X}}$ for null on the Null Voltmeter, 30 $\mu \mathrm{V}$ range.
j. Repeat steps h and i for the two remaining unmatched $10 \mathrm{k} \Omega$ resistors. All of the $10 \mathrm{k} \Omega$ resistors are now matched to each other and to the series string of 10 matched $1 \mathrm{k} \Omega \mathrm{re}-$ sistors.

C-9. MATCHING THE $100 \mathrm{k} \Omega$ RESISTORS.

$\mathrm{C}-10$. The $100 \mathrm{k} \Omega$ resistors can be matched using the $10 \mathrm{k} \Omega$ matching procedure with the following exceptions:

1. Use 200 Vdc to drive the matching bridge.
2. Set null voltmeter to the $300 \mu \mathrm{~V}$ range to read null.
3. Use a series string of 10 matched $1 \mathrm{k} \Omega$ resistors and 9 matched $10 \mathrm{k} \Omega$ resistors (total $100 \mathrm{k} \Omega$) for the initial R_{x}.

C-11. ASSEMBLING AND USING THE DIVIDER.
a. Connect the matched resistors as shown in Figure C-3.
b. The divider is now ready for use. Maintain constant oil temperature whenever using the divider.

C-12. CALIBRATING THE
 -hp-MODEL 735 TO1V 2 PPM

$\mathrm{C}-13$. The following procedure can be used to calibrate a Model 735A DC Transfer Standard to $1 \mathrm{~V} \pm 2$ ppm . Table C-2 lists the required test equipment.
a. Turn on the Transfer Standard and allow it to warm up for at least 30 minutes.
b. Construct the calibration setup shown in Figure C-4. Make connections with insulated solid copper wire, 20 gauge or larger. Omit one connection to the standard cell.
c. Zero the Null Voltmeter on the $3 \mu \mathrm{~V}$ range. Return range to $300 \mu \mathrm{~V}$.
d. Set Transfer Standard Function switch to 1.018 $+\Delta$ for saturated or $1.019+\Delta$ for unsaturated

Table C-2. Required Test Equipment

ITEM	REQUIRED CHARACTERISTICS	$\begin{aligned} & \text { RECOMMENDED } \\ & \text { MODEL } \end{aligned}$
Standard Cell	NBS Calibrated	Eppley Laboratory, Inc. MIN type
6 Dial Kelvin-Varley Divider	Accuracy: 0.0001% full scale Resistance: $100 \mathrm{k} \Omega$	Julie Research Laboratories Model VDR106
DC Null Voltmeter	Range: $3 \mu \mathrm{~V}$ full scale	-hp-Model 419A
Fixed Resistors	$1000 \Omega \pm 0.05 \% 1 / 4 \mathrm{~W}$ low TC wirewound $8543.5 \Omega \pm 0.1 \% 1 / 4 \mathrm{~W}$ low TC wirewound	$\begin{aligned} & \text {-hp- Part No. 0811-0936 } \\ & \text {-hp- Part No. 0811-0125 } \end{aligned}$
Power Supply	Output: 8 to 10 V adjustable Resolution: 1 ppm of range Noise: < 1 ppm of range	-hp- Model 740B

Figure C-4. Transferring the Standard Cell Voltage
standard cell. Adjust MICROVOLTS control so that the Function switch position plus MICROVOLTS setting is exactly equal to the certified voltage of the standard cell. Lock MICROVOLTS knob.
e. Connect remaining lead to the standard cell.
f. Adjust CAL control on the Transfer Standard and reduce Null Voltmeter range until null is obtained on the $3 \mu \mathrm{~V}$ range. This calibrates the Transfer Standard to the standard cell voltage.
g. Construct the calibration setup shown in Figure C-5.
h. Set the Kelvin-Varley divider for a 1:1 ratio. Set the 740 B Range to 10 V and adjust output voltage for a null on the Null Voltmeter, $3 \mu \mathrm{~V}$ range. Make final adjustment for null using ZERO Control on the Model 740B. Model 740B output will be approximately 9.63 V .

Self heating of R1 and R2 may cause slight changes in the ratio of R1:R2. Periodically readjust Model 740B out put to maintain null. The resistors should stabilize after 10 to 15 minutes.
i. Set the Kelvin-Varley divider for a ratio equal to

1
 $\overline{\text { transfer standard setting }}$

j. Set the Transfer Standard to 1.000 V position and adjust the CAL control for a null on the Null Voltmeter $3 \mu \mathrm{~V}$ range. The Transfer Standard is now calibrated to $1 \mathrm{~V} \pm 2 \mathrm{ppm}$ referenced to the standard cell used in steps a through f .

Figure C-5. Calibrating the Transfer Standard to 1 V

APPENDIX

CODE LIST OF MANUFACTURERS (Sheet 1 of 2)

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks $\mathrm{H} 4-1$ (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H 4 handbooks.

Cod.		Code		Code		ode		
\%.	Manufacturer Addres:	No.	Monufocruer Address	No.	Monufacturer Address	No.	Monuiactures	Address
000	U.S.A. Cormmon Any supgliet of U.S.	0715	Corming Glass Works	55	General Radio Co. West Concord, Mass,	73293	Hughes Producls Division of	
36	McCoy Elestronics Mount Holty Springs, Pa.		Electioarc Components Depl. Siadiord, Pa.	26365	Grres Reproducer Corp. New Rockelle, N.Y.		Hughes Aireratl Co. Ne	Newport Beach. Calii.
00213	Sage Eiectronics Corp. Rochester, N. Y.	07126	Oıgitran Co. Pasadena. Calit.	26	Grobet File Co. of America, Inc. Caristadt, N.J.	13445	Amperex Electronic Co. . Div.	of North
00334	Humidari Co . Colton, Calit.	01137	Itansistor Electronics Corp. Minneapolis. Minn.	26992	Hamilton Watch Co. Lancaster, Pa.		American Phillips Co, lne.	C. Hicksville, N.Y.
335	Westiex Corp. New York, N,Y.	138	Westinghouse Electic Cora.	28480	Hewletl. Packard Co. Palo Alto. Calit,	73490	Beckman Helinot Corp. So.	So. Pasadena, Calit.
00373	Garlock Packing Co. Electronic Producls Dis. Canden, N.J.	07149	Electionic Tube Div. Elmia, N.Y. Filmokn Coip.	$\begin{aligned} & 33173 \\ & 35434 \end{aligned}$	G. E. Receiving Tube Dept. Owensboro. Ky. Lecliohm Int. Chicaro. III	$\begin{aligned} & 73506 \\ & 73559 \end{aligned}$	Bradey Semiconductor Corp. Carling Electric, Inc.	Hamden, Cono. Hartford, Conn.
00656	Aeroyox Colp. New Bedford, Mass.	07233	Cinch-Graphik Co. City of Industry, Calif.	36195	Stanwy ck Corb. Hawkesbury, Ontalio, Canada	736	George K. Gartett Co., Inc.	Miladelohia, Pa.
00779	Amp, Inc. Horrisburg, Pa.	07261	Aunet Corp. Los Angeles, Calif.	37942	P.R. Mallory \& Co., Inc. Indianapolis, Ind.	737	Federal Screm Piod. Co.	Chicago, III.
00781	Alcialt Radio Cord. Boonton, M.J.	07263	Fairchild Semiconductor Corp.	39543	Mechanical Industries Piod. Co. Akron, Onio	73743	Fischer Special Mig. Co.	Cincinnati, Ohio
00815	Nothern Engineering Laboratories, Inc.	073	Minnesota Rubber Co. Mountain View, Calif.	40920	Miniature Precision Bearings, linc. Kene, N.H.	$\begin{aligned} & 73793 \\ & 73846 \end{aligned}$	The General Industries Co.	Elyira, Ohio Goshen, Ind.
00853	Sangamo Electric Company,	073	The Birtcher Corp. Los Angeles. Calit.	43990	C.A. Norgien Co. Englewood	73899	JFD Electronics Corp.	rooklyn, N. Y.
	Ordill Division (Capacitors) Marion, III.	07700	Technical Wrie Products Springtield, N.J.	44655	Ohmite thg. Co. Skokie, III.	73905	Jennings Radio Mlg. Co.	
00866	Goe Engineeting C O. Los Angeles, Calit.	07910	Continental Device Corp. Hawlhorne, Calit.	41904	Polaroid Corp. Cambridge, Mass.	74276	Signalite Inc.	Heptune, N.J.
891	Carl E. Holmes Corp. Los Angeles, Caiil.	07933	Rheem Semiconducler Corp. Mountan View, Calif.	48620	Precision Thermometer and	74455	J. H. Winns, and Sans	Winchester, Mass.
21	Allen Bradley Co. Milwaukee, wis.	07966	Shockiey Semi-Conductor		Inst. Co. Philadeloha, Pa.	74861	Industrat Condenser Corp.	Chitago, III.
255	Litton Industies, inc. Beverly Hills, Calif.		Laboratores \quad Palo Alto, Calit.	49956	Raytheon Company Lexington, Mass.	74868	R.F. Piobucls Division of Amp	mphenol-
21	IRW Semiconductors Inc. Lawndate, Catil.	07980	Roonton Radio Coid. Boonton, N.J.	52090	Rowan Contioller Co. Baltmore, Md.		Boig Electronics Corp.	Danbuty, Comm.
01295	Yexas lastiunents, inc. Transistor Products Div. Dallas, Texas	$\begin{aligned} & 08145 \\ & 08289 \end{aligned}$	U.S. Engineering Co. Los Angeles, Calif. Bitm, Delbert, Co.	63743 54294	Ward Leonard Electric mt. Vernon, N.Y. Shalleross Mig. Co. Selma, N.C.	$\begin{aligned} & 74970 \\ & 75042 \end{aligned}$	E. F. Johnson Co. International Resistance Co.	Waseca, Minn. Philadelphia, Pa.
01349	The Alliance Mlg. Co. Alliance, Oho	9358	Burgess Batteiy Co.	55026	Simpson Electuc Co. Chicago, III.	75173	Jones. Howard B., Division	
01561	Chassi-Tiak Corp. Indianapolis, ind.		Niagara Falls, Onlario. Canada.	55933	Sonotone Corb. Elmstord, A.Y.		ol Crach Mig. Corp.	Chicaro. III.
01589	Pacilic Relays, inc. Van Nuys, Calif.	08717	Sloan Company Burbank. Catil.	5593	Sorenson \& Co., Inc. So. Norwalk, Conn.	75378	James Knights Co.	Sandwich, III.
01930	A terock Corp Rocklord, ill.	08118	Cannon Electric Co., Phoenix Div. Phoenix. Aire.	56137	Spaulding Fibre Co., Inc. Tonawanda, N.Y.	75382	Kulka Electric Corpo	Vernon, $\mathrm{N} . \mathrm{Y}$.
01961	Pulse Engineering Co. Santa Clara, Calii.	88792	CES Electronics Semiconductor	56239	Sprague Electric Co. Noith Adams. Mass.	75818	Lenz Electric Mfg. Co.	III.
02114	Ferroxcube Colp. ol America Saugeties, N.Y.		Operations, Div.ol C. B. S., Inc. Lowell, Mass.	59446	Telex, Inc. St. Paul, Mina.	75915	Littlefuse inc.	Planes, Ill.
02286	Cole mi'g. Co. Palo Alto, Calif.	08984	Mel-Rain Indiana dofis, Ind.	59730	Thomas \& Betts Co. Elizabelh 1, N. J.	76005	Lord MIg. Co.	Pa .
02660	Amphenol-Borg Electronics Cors. Chicago. III.	09026	Babcock Relays, lic. Cosis Mesa, Calit.	60741	Tripplett Electrical lic. Blufton, Ohio	76210	C.W. Marwedel Sa	San Francisco, Calie.
02735	Radio Corp. al America, Semiconducior and Materials Div. Someiville, N. J.	$\begin{aligned} & 09134 \\ & 00145 \end{aligned}$	Texas Capacitor Co. Houston, Texas Alohn Electionics Sun Valley, Catif.	61775	Union Switch and Signal, Div. of Westinghouse Air Brake Co.	76433 76487	Micamold Electronic Mig. Corp lames millen Mfg. Co., Inc.	io. Brooklyn, N. Y. Malden, Mass.
02711	Vocaline Co. of America, lnc.	09250 09569	Electio Assemblies, Inc. Chicaro, III.	62119	Universal Electric Co. Owosso, Mich.	76493	J. W. Miller Co.	Los Angeles, Casif.
	Old Saybrook, Conn.	09569	Mallory Battery Co. ol	63743	Ward-Leonard Electic Co. Mt. Vernon, N.Y.	76530	Monadnock M	San Leandro, Calif.
0277	Hopkins Engneering CO . San Fernando, Calif.		Canada. Lid. Tolonto, Ontario, Canada	495	Western Electric Co., Inc. New York, N,Y.	76545	Mueller Electric Co	eveland, Ohio.
03508	G. E. Semiconductor Producls Dept. Syracuse, N.Y.	09664	The Bristal Co. Waterbury. Conn.	65092	Weston Insi. Div. of Daystiom, Inc. Newark, N.J.	76854	Oak Manulacturing Co.	Crystal Lake, III.
03705	Apex Machine \& Tool Co. Dayton, Ohio	10214	General Yransistor Western Coip.	66295	Wittex Manulacluring Co. Clucago 23. LII.	17068	Bendix Pacific Division of	
03797	Eldema Corp. El Monte, Calit.		Los Angeles. Calif.	66346	Woliensax Oplical co, Rochester, M,Y.		Bendix Carp. No.	No. Hollywood, Calif.
03811	Tiansition Electronic Corp. Wakefield, Mass.	10411	Ti-Tal, Inc. Berkeley. Calif.	70276	Allen M/g. Co. Hatlord, Conn.	77075	Pacilic Wetals Co. Sa	San Francisco, Caly.
888	Pyrohilm Resistor Co. Morristown, N.J.	10646	Carboundum Co. Niazara Falis. N. Y.	30309	Allied Control Co., inc. New York, N.Y	17221	Phaostran instument and	
954	Air Marine Motors, linc, Los Angeles, Calii.	112	CTS ot Berne, lnc. Beine. Ind.	70319	Allmeial Serew Piod. Co., Inc.		Electionit Co. Sout	South Pasadena. Calit.
04009	Arow, Hatt and Hegeman Elect. Co.	11237	Chicago Telephone of Califorma, inc.		Carden Cily, N, Y.	77250	Phae I\| Mig. Co .	Chicago, III.
	Hattord, Conn.		So. Pasadena, Calif.	70485	Allantic India Rubber Works, Inc. Chicago, III.	77252	Philadelphia Steel and wire Cor	
013	Taurus Corp. Lambertville, N. J.	11312	Microwave Electroncs Corp. Palo Allo, Calif.	10563	Amperite Co., Inc. New York, N,Y.			Philadelphia, Pa.
04062	Elitenco Producls Co. New York, N.Y.	11534	Duncan Electronic, Inc. Santa Ana, Calif.	70903	Beiden MIg. Co. Chicago, III.	71342	Potter and Biumbield, Div. of A	American
04222	H. Q Diviston of Aetovox myrtie Beach, S.C.	11711	General Instrument Corgoration	1099	Bird Electronic Cord. Cleveland. Ohie		Machune and Foundy	Psinceton, Ind.
04298	Elgin National Waren Co., Electionics Division \quad Burbank, Calif.	11717	Semiconductor Division Newark, N.J. Imperial Electionic, Inc. \quad Buena Park, Calid.	71002	Birnbach Radio Co. New York. N,Y.	$\begin{aligned} & 17630 \\ & 77638 \end{aligned}$	Rado Condenser C_{0}. Radio Receptar Co., inc.	Camden, N.J. Brooklyn, N.Y.
04354	Precision Paper Tube Co. Chitago. III.	11820	Melabs. Inc. Palo Allo. Calif.		Murfay Co. of rexas Quincy, Mass.	77764	Resistance Producis Co.	Harissburg. Pa.
04404	Dymec Division of Hewlett-Packard Co.	$\begin{aligned} & 12136 \\ & 12697 \end{aligned}$	Philadelphia Handle Co. Camder, N. J.	11218	Bud Radio Inc. Cleverand, Ohio	77969	Rubbercraft Corp. ol Calif.	Torrance, Calit.
04651	Sylvania Electric Prods., lac. Palo Ato,	12859	Nippon Electioc Co.. Lid. Tokyo, Japan	71286	Camloc Fastener Corp. Paramus, N.J.	78189	Shake proof Division of Illinors Tool Works	Elgın, III.
	Electionic Tube Div. Mounlan View, Calı. grola, Inc, , Semiconductor Piod. Div,	$\begin{aligned} & 12930 \\ & 13103 \end{aligned}$			Proó. Corp. Plainville, Conn.	78283	Signal Indecator Corg. Stuthers-Dunn Inc.	New Yotk, N. Y. Pitman, N. J.
	Phoenix, Afizona	13395	Teletunken (G.M.B.H.) Hannover, Germany			52	Thompson-Bremer 8 Co.	Chicago, III.
132	Filtron Co., Inc., Westesm Div. Culver City, Calit.	13835	Midand M/g. Co. Kansas City, Kansas	11436	Chicago Condenser Corp. Chicago, III.	78471	Tilley Mfg. Co.	an Francisco, Calit.
08773	Automalic Electric Co. Northlake, III.	140	Sem. Tech Newbuly Paik. Caltt.	71450	CTS Corp. Elkhart, Ind.	78488	Stackpote Carbon Co.	Sl. Marys, Pa.
04777	Automalic Electric Saies Corp. Northiake. IIl.	141	Calif. Resistor Cord. Santa Monica, Calit.	${ }_{11668}$	Cannon Eiectric Co. Los Angeles, Calit.	3	Standard Thomson Corp.	Waltham, Mass.
04796	Sequola wre \& Cable Co. Redwood City. Calif.	14298	American Components, inc. Conshohocken, Pa.	71871	Cinema Engineering Co. Burbank, Calil.	78553	Tinneiman Products, Inc.	Cleveland, Ohio
04811	Precision Cont Spring Co. El monte, Calit.	13655	Cornell Dubiler Elec. Corp. So. Plainheld, N.J.	71482	C. P. Clare \& Co. Chicago, III.	0	Translormet Engneers	Pasadena. Calit.
04970	P. M. Motor Company Chicaso 44. III.	14960	Williams mifg. Co. San Jose, Calif.	71590	Centialab dive of Globe Union Inc. Cicago, It.	78947	Ueinite co.	ewtonville, Mass.
05006	Twenlieth Centuly Plastics. Inc. Los Angeles, Calif.	$\begin{aligned} & 15203 \\ & 15291 \end{aligned}$	WebsteI Electionics Co. Inc. Brooklyn, N. Y. Adjustable Bushing Co. N. Hollywood, Calit.	71616	commercal Plastics Co. Milwaukee, wis. Chicago, Ili.	79142 79251	Veeder Root, Inc. Wenco MIg. Co.	Hatlford. Cons. Chicago, III.
05271	Westinghouse Electuc Corp. Sera \cdot Conductor Dept. Youngwoor, Pa.	377	Iwentieth Century Corl Spring Co. Santa Clara, Calit.	71700	The Cornish whe Co. New Yoik, N, Y.	79721	Continenla -wirl Electionics	Cosp.
05347	Ulitomax, Inc. San Mateo, Calil.	15909	The Daven Co. Livingtion. N.J.	71744	Chicago Minature Lamp Works Chicaro, Ill.			
05593	Illumilionic Enganeering Co. Sunnyvale, Calit.	16037	Spruce Pine Mica Co. Spruce Pine, N. C.	71753	A.0. Smith Corb.. Crowley div.	80031		
05615	Cosmo Plastic ${ }_{\text {(c o Electical Spec. Co.) Clevelano. Onio }}$	16352 16888	Computer bliode Corp. Lodi, N. 1. De Jur-Amsco Coldoration	71785	Cinch Mtg. Corp. West Orange, N.J. Chicago, Ill.	80120	Clock Co. Sehnizel Alloy Products	Morrislown, N.J. Elizabeth, N. J.
05624	Earber Colman Co . Rocktord, III.		Long Is land City I. N, Y.	71984 72092	Dow Corning Coip. Eitel-McCulloush, Ine Midiand, mich. San Bruns, Calil	80130	Times Facsimile Corp.	New York, N.Y.
05728	Tillen Oplical Co. Roslyn Kerghts, Long island, N.Y.	$\begin{aligned} & 16758 \\ & 17109 \end{aligned}$	Oelco Radio Div. al G.M. Cots. Kokomo. Ind, Thermonetics inc. Canoga Park, Calif.	72136	Electio Motive mlg. Co., inc. willmanic, Conn,	80131	Electronic Industries As sociat lube meeting EIA standards	tion. Any brand Is Washington, D.C.
05729	Meliopolitan Telecommunicalions Coip., Metio Cap. Division Brookiyn, N. Y.	17474 18486	Yianex Company Mountain View, Caliif. Radio Industotes Des Plaines. III.	31707		80207	Unimax Switch, Div, of W. L. Maxson Coro.	Wallinpoord Conn.
05783	Slewat Engreering Co. Santa Cruz, Calit.	18583	Cuitis instrument Inc. Mt. Kisco, R.Y.	72619		80223	ited Yranslormer Corp.	New York. N.Y.
05870	Wakelield Engrneerng lnc. Wakefield, Mass.	188	E.I. DuPont and Co., Inc. Wimington, Del.	72656	General Ceramics Corp. \quad Keasbey. N. ${ }^{\text {a }}$,	80248	lord Electric Co	Chicaro, III.
06004	The Bassick Co. Burgeport, Conn.	19315	Eclipse Proneer, Div. of	$\begin{aligned} & 72656 \\ & 72699 \end{aligned}$	General Instiument Corp.	80294	Bourns Laboralories, Inc.	Riveiside. Calit.
$061 / 3$	Bausch and Lomb 0pucat Co, Rochester, M. Y, E. Y A Producis Co. of Amenca Chicago. III.		8endix Aviation Corp. Telerboro, N.J.		Semiconductor Div. Newaik, N.J.	80411	Acto Div. of Robeilshaw	
06402	E. T A Producis Co. of America Chicago. III.	19500	Yhomas A. Edison Induslises,	21758	Glard-Hopkins Oakiand, Calif.		Fulton Contiols Co.	Columbus 16. Onio
06540	Western Devices, inc. Inglewood, Catit. Amatom Electionic	19701	Electia Manulactusting Co. Kansas City, Mo.	22765	Diake Mig. Co. Chicago, ItI,	80486		Deliance, Ohia
	Haldware Co. Inc. New Rochelle. N. Y.	20183	Elestionic Tube Corp. Philadelohia, Pa.	72825	Huph H. Eby Inc. Philadelohia, Pa,	$\begin{aligned} & 80509 \\ & 80583 \end{aligned}$	Avery Adhesive Label Corp. Hammerlund Co., lac.	Monioyia, Calif. New York, N.Y.
06555	Beede Electucal instiument Co. , Inc.	21226	Execulive, Inc. New York, N.Y,	72928	Gudenan Co.	80640		
	Penacook. N.H.	21520	Fansteel Metallurical Card. Ro. Chicaro. Iil.	72964	Robert M. Hadiey Co. Los Anretes. Calif.	81030		
06751	U. S. Semeor Division or Nuclear Corp.	21335	The Fatnir Bearng Co. New Britain, Conn,	72982	Erre Resistor Corp. Erie. Pa. Hansen ulg. Co. Inc.			New Haven, Conn.
	of Amenca Phoenix. Alizona	21984	Fed. Telephone and Rado Cord. Clifton. N.J.			81073		
06812	Tollington Mtg. Co., West Div. Van Nuys, Caiil.	2446	General Electic Co. Schenectady, N. Y.	73016		81095	Triad Transtormer Corp.	venice, Calif.
01088	Kelvin Eleclicic Co. Van Nuys Calit.	24455	G.E., Lamp division Nela Park. Cleveland. Ohio	73138	helipot Civ. of Beckman lnstuments, mo.	81312	Winchestel Electionics Co., inc.	Inc. Norwalk, Conn.

APPENDIX

CODE LIST OF MANUFACTURERS (Sheet 2 of 2)

	Code												
No.	Manufocture	Addresz	No.	Manufacturer	Addres:	No.	Manufacturer	Addres*	No.	Manufacturas	Addres		
81349	Military Specification		85474	R.M. Bracamonte \& Co.	San Francisco, Cali	93929	G. V. Contiols	Livingston, N .	98220	L.	sa,		
81415	Wiker Products, Inc.	Cleveland, Ohio	85660	Koiled Xords, inc.	Haven, Comn.	93983	Insuline-Van Norman Ind. , Inc.		98778	Microda.	sadena, Calif		
81453	Raytheon MIf. Co., Industrial Components		85911	Seamiess Rubber Co	chicago. III.		Electronic Division	Manchester, M.H.	98291	Sealectio Cor	maroneck,		
	Div., Industr. Tube Opeiations Newlon, Mass.		${ }^{86197}$	Clifton Precis ion Producis	Clifton Heights, Ps,	94137	General Cable Corp.	Bayonne, A.J	98405	Carad Cor	wood City,		
8148	International Rectifier Corp.	El Segundo, Csiif.	86579	Precision Rubber Products Corp. Dayton, Ohio		91144	Raytheon MIg. Co., Industrial Components		98	General mi	inneapolis, Minn		
81591	The Allpax Products Co.	Cambitide, M	86684	Radio Cord. of America, RCA			Div., Receiving Tube Operatro	tron Quincy, Mass.	98821	North Hills Ele	Mineola, K.Y.		
81850	Barry Controls, Inc.	tertown,		Election Yube Div.	Harrison, N.J.	94145	Raytheon Mfg. Co.. Semiconduct	ctor Div.	98925	Clevite Transistor Prom			
82012	Catte Pats Co.		87216	Philco Corporalion (Lansdale			Califonia Street Plant	Newion, Mass.		Div. of Clevide Cor	Walthan, Mass.		
82142	Jelfgrs Electronics Division of Speer Carbon Co.	of Du Bors, Pa,	87473	slern Fibrous Glass Products Co.		94148	Scientitic Radio Products, In	Loveland. Colo	9897	International Electionic Reseach Corp.	tit.		
82170	Allen B. DuMont Labs, Inc.	Clifton,				94154	p -Sol Electic.	Newa	99109	echn	York, M.Y.		
8220	Magure Industries, Inc.	Greenwich, Conn.	87664	Van Walers \& Rogers inc.	Seattle,	94197	Cutiss-Wight Corg.		99313	Varian Associates			
82219	Sylvania Electric Prod. Inc. Electionic Tude Div.		88140	Cutler-Hammer, Inc. Gould-Natonal gatleres, Inc.	Lincoln, III.	94	Electronics Div. East Palerson, N.J.Lester, Pa.		9951	Marshall Industries. Electron Ploducts Division	Pasadena, Calit,		
8237	Astion Co.	East Newark, N.J.	8820	Gould-National Batieries, Inc. General Mills, Inc.	c. St. Paul, Minn. Bulfalo, M. Y	9310	Itu Ohs Prod. Div. of Model		9970	Control Switch Division, Contu of America	iols Co. El Segundo, Calit		
82389 83647	Melals and Contiols. Inc.. Div. of		88698 89231	General Mills, Inc. Graybar Electric Co.	Bulfalo, N. Y. Oakland, Calif.	30	Engineering and Mig. Co. Wire Cloth Producis Inc.	Chicago, III. Chicago, III.	99800	of America Delevan Electionics Coro.	El Segunde, Calif. East Aurora, N. Y.		
8264				Waldes Kohingor, Inc, Cambridge, Mass.		91682	Worcesler Pressed Aluminum Corp.		998	wilco Corporation	diana polis, Ind.		
	Spencer Prods.	Alleboro, Mass.		Genetal Electric Distubuting	Corp.		Worcester, Mass.		99934	Renbrandt, Inc.	Boston, Mass.		
82866	Research Products Corp.	Madison, wis.	89636	Canter Parts Div. of Economy Baler Co.		${ }_{9} 95023$	Philbrick Researchers, Inc.	Miami, Fla.	99962	Holfman Semiconduclor Div. of	vanston, III.		
82871	Rotion Manulacturing Co., Ine	c. Woodstock, M.Y.				${ }^{95236}$	Allies Products Cord.		99957	Holfman Electonics Coro			
82893	Vector Electronic Co.	Glendale, Calif.			Chicalo	95238	Continental Connector Cord.	Woodside, N.Y.		Technology Instrument CorD of Calif.			
83053	Western Washer MIt. Co.	Los Angeles, Calif.	89865	United Yransformer Co. Cnicafo.		95263	Letcralt Mig. Co. . Inc.	Kew York, M.Y.		of Calit.	Wbury Park,		
83058	Carr Fastener Co.	Cambrioge, Mass.	90179	U. S. Aubber Co., Mechanical		95754	Lerco Electionics, Inc. Burbank, Calit.		the following h-p vendors have no num-		E NO NUM		
83086	New Hampshire Ball Bearing, Inc.			Bearing Engineering Co. San Francisco, Calif.		95775	Vitramon, Inc. Bridgedot. Conn.		IN THE LATEST SUPPLEMENT TO				
		Pelerberough, N.H.	91250										
83125 83148	Pyramid Electric Co_{0}	Darlington, S.C.		Connor Spring Mig. Co. Sor	El Monte, Calif.	95378	Methode Mlg. Co. Chicago, HII.		E FEDERAL SUPPLY COOE FOR MANUF				
83148 83136	Electro Cerds Co.	Los Angeles, Calit. Springlield, N.J.	91345	Miller Dial \& Nameplate Co.	Chicago, III.	95712			TURERS HANOBOOK.				
831	Vistary Engineering Corp.	Springlield, N.J.	93506	Augal Brothers', Inc.	Atleboro, Mass.	95987	Weckesser Co.	Chicago,	10000	chaster El			
83315	Hubbell Corp.	Mundel	91631	Dale	Columbus, Nebr.	96067	Ruggins Laboratories	Sunnyyate, Calit.			In		
330	Snilh, Herrazan. . Inc.	Brooklyn, M, Y.	9166	Elco Corp.	Philadelohis, Pa,	96095	Hi-Q Division of Aerovox	Olean, N.	000	Malco Tool and Die	Rel		
83385	Central Screw Co. Gavilt Wire and Cable Co. . Div. of Anerace Corp.	Chicago, III.	91737	Gremar Mig. Co., lisc.	Wakefield, Mass.	\%256	Thordarson-Meis sner Div. of		0000 m	Western Coil Div. of Automati			
83501		Grooktield, Mass.	91929	K F Development Co. Redwood City, Calif. Minneapolis-Honeywell Regulator Co. .			Maguife industries, Inc. Soíar Manufacturing Co.	Mi. Camel, III. Los Angeles, Catif.		Ind. . Inc.	Redwood City, Calif. Holliston, Mass.		
83594	Butroughs Corp. Electionic Tube Div.		91961	Mictoswitch Div. Nahm-Bros. Sprine Co.	Freeport, 111.Oakland, Catif.	$\begin{aligned} & 96330 \\ & 96341 \end{aligned}$	Carlton Screw Co. Mictowave Associates, Inc.	Chicago. III.	00002	Willow Leather Products Corp. British Radio Electronics Ltd.	Newark, N. J. Washinglon, D.C.		
		Planitield,						Burlington, Mass.	000AA				
8374	Eveready Batiery	York, N. Y.	92180	Tru-Connector Corp.	Peabody, Mass.	96501	Excel Thanstormer Co.	Oakland, Calit.	000 AB	ETA	England		
8371	Model Eng. and Mrg., Inc. Loyd Scruges Co.	Huntington, Ind. Festus, Mo.	92196	Univer sal Metal Prod., Inc. Bassett Puente, Calif.		97464	Industrial Retaining Ring Co. Aulonatic and Precision Mitg. Co	livington. N.J.	0000 C	Indiana General Corp., Elect. Div. Indiana			
8382			92367	Elgeet Optical co., Inc. Tinsolite insulated wre Co.	Rochester, N.Y. Tarrytown, N. Y.	97539		O. Yonkers, N.Y.	00088 Precision Instrument Components Co.Van Nuys, Calif.				
841	Arco Electronis, Ine. A. J. Glesenes Co., Inc. Good All Electric Mig. Co. Sarkes Tarzian, lnc. Boonton Molding Company A.B. Boyd Co.	Hew York, M.Y.	92607				Aulonatic and Precision Mif. Co.						
396		San Fiancisco, Calii.	93332	Sywania Electric Prod. Inc. . Semiconductor Div.		97966	CBS Electionics,		000 MM OOONN	Rubber Eng. \& Development Hayward, Calif. A "in" D Manufacturng Co. San Jose 27. Calif.			
84411		Opallals, Neb.			Moburn,			Danvers, Mass					
84970		Bloonmaton, Ind.	93369	Robbins and Myers, Inc.	Hew York, H. Y	97979	Reon 8	Oonkers.	00009		and Calit		
85454		Boonton, N.J.	93410	Howard J . Smith inc.	Mansfield, Onio	98141	Axel Brolhers Inc.	Jamaica, N.Y.	0005	Control of Elgin Walch Co.	urbank, Calif.		
85411		San Ftancisco, Calif.	93788		Poit Monmouth, A. J.	98159	Rubber Teck, Inc.	Gardena, Calii.	$\begin{aligned} & 000 \mathrm{WW} \\ & \text { 000YY } \end{aligned}$	Calitornia Eastern Lab. Burlingame, Calif. S.K. Smith Co. Los Angeles 45, Calit.			

ELECTRONIC INSTRUMENTATION SALES AND SERVICE UNITED STATES, CANADA, CENTRAL AND SOUTH AMERICA

UNITED STATES

ALABAMA
P.0. Box 4207

2003 Byrd Spring Road S.W.
Huntsville 35802
TWX: 510-579-2204
Tel: (205) 88 I-4591
ARIZONA
3009 North Scottsdale Road Scottsdale 85251 Tel: (602) $945-7601$
TWX: 910-950-1282
232 South Tucson Boulevard
Tucson 85716
Tel: (602) 623-2564
TWX: 910-952-1162
CALIFORNIA
3939 Lankershim Boulevard North Hollywood 91604 Tel: (213) 877-1282 TWX: 910-499-2170
1101 Embarcadero Road Palo Alto 94303 Tel: (415) 327-6500 TWX: 910-373-1280

2591 Carlsbad Avenue
Sacramento 95821
Tel: (916) 482-1463
TWX: 910-367-2092
1055 Shafter Street
San Diego 92106
Tel: (714) 223-8103
TWX: 910-335-2000
COLORADO
7965 East Prentice
Englewood 80110
Tel: (303) 771-3455
TWX: 910-935-0705
CONNECTICUT
508 Tolland Street East Hartford 06108
Tel: (203) 289-9394
TWX 710-425-3416
111 East Avenue
Norwalk 06851
Tel: (203) 853-1251
TWX: 710-468-3750
DELAWARE
3941 Kennett Pike
Wilmington 1980
Tel: (302) 655-6161
TWX: 510-666-2214

FLORIDA
Suite 106
9999 N.E. 2nd Avenue
Miami Shores 33138 Tel: (305) 758-3626
TWX: 810-848-7262
P.O. Box 20007 Herndon Station 32814 621 Commonwealth Avenue Orlando
Tel: (305) 841-3970
TWX; 810-850-0113
P.O. Box 8128

Madeira Beach 33708
410 150th Avenue
St. Petersburg
Tel: (813) 391-0211
TWX: 810-863-0366

GEORGIA

3110 Maple Drive N.E.
Atlanta 30305
Tel: (404) 233-1141
TWX: 810-751-3283
ILLINOIS
5500 Howard Street
Skokie 60076
Tel: (312) 677-0400
TWX: 910-223.3613

INDIANA

4002 Meadows Drive
Indianapolis 46205
Tel: (317) 546-4891
TWX: 810-341-3263
LOUISIANA
P.O. Box 856

1942 Williams Boulevar
1942 Williams
Kenner 70062
Tel: (504) 721-6201
Tel: (504) 721-6201
TWX: 810-955-5524
MARYLAND
6707 Whitestone Road Baltimore 21207 Tel. (301) $944-5400$ TWX: 710-862-0850
P.O. Box 727

Twinbrook Station 20851 12303 Iwinbrook Parkway Rockville
Tel: (301) 427-7560 TWX: 710-828-9684

MASSACHUSETTS
Middlesex Yurnpike
Burlíngton 01803
Tel: (617) 272.9000
TWX: 710-332-0382
MICHIGAN
24315 Northwestern Highway
Southfield 48076
Tel: (313) 353-9100
TWX: $810-232-1532$
TWX: 810-232-153
2459 University Avenue
\$t. Paul 55114
Tel: (612) 646-7881
TWX: 910-563-3734
MISSOURI
9208 Wyoming Place
Kansas City 64114
Tel: (816) 333.2445
Te: (816) $333-2445$
TWX: $910-771-2087$
2812 South Brentwood Blvd. St. Louis 63144 Tel: (314) 644-0220 TWX: 910-760-1670
NEW JERSEY
Crystal Brook Prof. Bldg. Route 35
Eatontown
Tel: (201) 747-1060
391 Grand Avenue
Englewood 07631
Tel: (201) 567-3933
TWX: 710-991-9707
NEW MEXICO
P.O. Box 8366

Station C 87108
6501 Lomas Bouievard N.E.
Albuquerque
Tel: (505) 255-5586
TWX: 910-989-1665
156 Wyatt Drive
Las Cruces 88001
Tel: (505) 526-2486
JWX: 910-983-0550

NEW YORK	Monroe Complex
1219 Campville Road	Moss Side Boulevard
Endicott 13760	Monroeville 15146
Tel: (607) 754-0050	Tel: (412) 271-0724
TWX: 510-252-0890	TWX: 710-797-3650
236 East 75th Street	144 Elizabeth Street
New York 10021	West Conshohocken 19428
Tel: (212) 879-2023	Tel: (215) 248-1600, 828-6200
TWX: 710-581-4376	TWX: 510-660-8715
82 Washington Street	TEXAS
Poughkeepsie 12601	P.O. Box 7166
Tel: (914) 454-7330	3605 Inwood Road
TWX: 510-248-0012	Dallas 75209
39 Saginaw Drive	Tel: (214) 357-1881
Rochester 14623	TWX: 910-861-4081
Tel: (716) 473-9500	P.O. Box 22813
TWX: 510-253-5981	4242 Richmond Avenue
1025 Northern Boulevard	Houston 77027
Rosiyn, Lang Island 11576	Tel: (713) 667-2407
Tel: (516) 869-8400	TWX: 910-881-2645
TWX: 510-223-0811	GOVERNMENT CONTRACT OFFICE
5858 East Molloy Road	225 Billy Mitchell Road
Syracuse 13211	San Antonio 78226
	Tel: (512) 434-4171
Tel: (315) 454-2486 TWX: 710-541-0482	TWX: 910-871-1170
NORTH CARO	UTAH
	2890 South Main Street
P.O. Box 5187	Salt Lake City 84115
1923 North Main Street	Tel: (801) 486-8166
High Point 27262	TWX: 910-925-5681
Tel: (919) 882-6873	
TWX: 510-926-1516	VIRGINIA
	P.O. Box 6514
5579 Pearl Road	2111 Spencer Road
Cleveland 44129	Richmend 23230
	Tel: (703) 282-5451
Tel: (216) 884-9209 TWX: 810-421-8500	TWX: 710-956-0157
1250 West Dorothy Lane	WASHINGTON
Dayton 45409	11656 N.E. Eighth Street
Tel: (513) 298-0351	Bellevue 98004
TWX: 810-459-1925	Tel: (206) 454-3971
	TWX: 910-443-2303
OREGON	
2737 S.W. Corbett Avenue Portland 97201	FOR AREAS NOT LISTED, CONTACT:
Portland 97201 Tel: (503) 228.5107	Hewlett-Packard
	1501 Page Mill Road
PENNSYLVANIA	Palo Alto, California 94304
Park Place Office Building	Tel: (415) 326-7000
Camp Hill	TWX: 910-373-1267
Tel: (717) 737-6791	Telex: 34-8461

CANADA
BRITISH COLUMBIA

ONTARIO

Hewlett-Packard (Canada) Ltd 880 Lady Ellen Place Ottawa 3
Tel: (613) 722-4223
TWX: 610-562-1952

Hewieft-Packard (Canada) Ltd. 1415 Lawrence Avenue West Toranto
Tel: (416) 249-9196 TWX: 610-492-2382

CENTRAL AND SOUTH AMERICA

ARGENTINA
Mauricio A. Suárez
Telecomunicaciones
Carlos Calvo 224
Buenos Aires
Tel. $30-6312$
BRAZIL
Ciental, Importacảo e
Comércio Ltda.
Rua Cleto Campelo, 44-5 andar Recife
Ciental, Importacão e Comércio Ltda.
Avenida 13 de Maio, $13-22^{\circ}$ andar
Rio de Janeiro, G.B.
Clental, Importacão e
Comercio Ltda.
Rua Des. Eliseu Guilherme, 62
Sảo Paulo 8
Tel: $70-2318$

CHILE

Héctor Calcagni
Casilla 13942
Santiago
Tel: 490.505, 393.119
COSTA RICA
Lic. Alfredo Gallegos Gurdián Apartado 3243 San José
Tel: 21-86-13
EL SALVADOR
Electrónica
Apartado Postal 1589
San Salvador
Tel: 4683

GUATEMALA
Olander Associates Latin America
Apartado 1226
7a. Calle 0.22 Zona
Guatemala City
Tel: 22812
MEXICO
Hewlett-Packard Mexicana,
S.A. de C.V.

Eugenia 408, Dept. 1
Mexico 12, D.F.
Nicaragua
Roberto Terán G.
Edificio Terán
Apartado Postal 689
Managua
Tel: 3451, 3452

PANAMA
Electrónico Balboa, S.A
P.O. Box 4929

Panama City
Tel: 3-0833
PERU
Fernando Ezeta B.
Av. Petit Thouars 4719
Casilla 3061
Lima
Tel: 50346
pUERTO RICO
San Juan Electronics, Inc.
Ponce de León No. 150, Stop 3
Pta. de Tierra Sta.
San Juan
Tel: (809) 725-3342

QUEBEC
Hewlett-Packard (Canada) Ltd
275 Hymus Boulevard
Pointe Claire
Pointe Claire
Tel: (514) $697-4232$
Tel: (514) 697.4232
TWX: 610-422-30
Telex: 01-2819

FOR AREAS NOT
LISTED, CONTACT:
Hewlett-Packard Inter-Americas
1501 Page Mill Road
Palo Alto California 94304
Tel: (415) 326-7000
Twx. (415) $326 \cdot 7000$
Telex: 034-8461
Cable: HEWPACK Palo Alto

VENEZUELA

Citec, C.A.
Edif. Arisan-Of. \#4
Avda. Francisco de Miranda
Apartado del Este 10934 Chacaito
Caracas
Caracas
Tel: $71,88.05$
FOR AREAS NOT
LISTED, CONTACT:
Hewlett-Packard Inter-Americas
1501 Page Mill Road
Palo Alto, California 94304
Tel: (415) 326-7000
Te:: (415) $326-7000$
TWX: $910-373-1267$
Telex: 034-8461
Cable: HEWPACK Palo Alto

ELECTRONIC INSTRUMENTATION SALES AND SERVICE EUROPE, AFRICA, ASIA, AUSTRALIA

EUROPE

AUSTRIA
Unilabor HmbH
Wissenschaftliche Instrumente
Rummelhardtgasse 6/3
P.O. Box 33

Vienna $1 \mathrm{X} / 71$
Vienna $1 \times / 71$
Tel. $426 \quad 181$

BELGIUM

Hewlett-Packard Benelux S.A.
20-24 rue de l'Hôpital
Brussels
Tel: 112220
DENMARK
Tage Olsen A/S
Ronnegade 1
Cophenhagen (0)
rel: 294800
FINLAND
INTO O/Y
Meritullinkatu 11
P.O. Box 10153

Helsinki 10
Tel: 61133
FRANCE
Hewlett-Packard France
2 rue Tête d'or
Lyon, 6 - Rhôn
Tel: 523566
Hewlett-Packard France
150 Boulevard Massena
Paris lue
Tel: 7079719

Hewlett-Packard Vertriebs-GmbH Lietzenburger Strasse 30
1 Berlin W 30
Tel: 248636
Hewlett-Packard Vertriebs-GmbH Herrenberger Strasse 110 703 Böblingen, Wüurttemberg Tel: 6971
Hewlett-Packard Vertriebs-GmbH
Achenbachstrasse 15
4 Düsseldorf 1
Tel: 685258
Hewlett-Packard Vertriebs-GmbH
Kurhessenstrasse 95
6 Frankfurt 50
6 Frankfurt 50
Hewlett-Packard Vertriebs-GmbH
Beim Strohhause 26
2 Hamburg 1
Tel: 240552
Hewlett-Packard Vertriebs-GmbH
Reginfriedstrasse 13
8 Munich 9
Tel: 495121
GREECE
Kostos Karayannis
18, Ermou Street
Athens 126
rel: 230301

RELAND
Hewlett-Packard Lto.
224 Bath Road
Slough, Bucks, England Tel: Slough 28406-9, 29486-9
italy
Hewlett-Packard Italiana S, p.A.
Viale Lunigiana 46
Milan
Tel: 691584
Hewlett-Packard Italiana S.p.A.
Palazzo Italia
Piazza Marconi 25
Rome - Eur
Tel: 5912544
NETHERLANDS
Hewlett-Packard Benelux, N.V.
de Boelelaan 1043
Amsterdam, 2.2
Amsterdam, 2.2
Tel: 427777
NORWAY
Morgenstierne \& Co. A/S
Ingenidfirma
6 Wessels Gate
Oslo
Tel: 201635

PORTUGAL

Telectra
Rua Rodrigo da Fonseca 103
P.O. Box 2531

Lisbon 1
Tel: 686072
SPAIN
Ataio Ingerieros
Urgel, 259
Barcelona, 11
Tel: 230-69-88
Ataio Ingenieros
Enrique Larreta 12
Madrid, 16
Tel: 2354344
SWEDEN
HP Instrument AB
Hagakersgatan 7
Mälndal
Tel: 031-276800
HP Instrument A8
Centralvägen 28
Solna
Tel: 08 - 830830

AFRICA, ASIA, AUSTRALIA

AUSTRALIA
Sample Electronics (Vic) Pty., Ltd.
22-26 Weir Street
Glen Iris S.E. 6
Melbourne, Victoria
Tel: 20-1371 (4 lines)
Sample Electronics (N.S.W.) Pty. Ltd.

4 Grose Street
Glebe, New South Wales
Glebe, New So
Tel: $69-6338$

ETHIOPIA

African Salespower \& Agency
Private Ltd., Co.
P. O. Box 718

Addis Ababa

INDIA

The Scientific Instrument Co., Ld
6, Tej Bahadur Sapru Road
Allahabad 1
Tel: 2451
The Scientific Instrument $C 0$ Id
240, Dr Dadabhai Naoroji Road
Bombay 1
Bombay 1
Tel: 26-264

The Scientific Instr. Co., Ld.
11, Esplanade East
Calcutta 1
Tel: 23-4129
The Scientific Instrument Co., Lo.
30, Mount Road

Madras 2

The Scientific Instrument Co., Ld
The Scientific Instrum
B-7, Ajmeri Gate Extn
B-7, Ajmeri Ga
New Delhi I
New Delhi I
Tel: 27-1053
IRAN
Telecom, Ltd.
Telecom, Ltd.
P. O. Box 1812
P. O. Box
Teheran

Teheran
Tel: 43850,48111

ISRAEL

Electronics \& Engineering
Division of Motorola Israel Ltd.
16, Kremenetski Street
Tel-Aviv
Tel-Aviv
Tel: $35021 / 2 / 3$

JAPAN	LEBANON
Yokogawa-Hewlett-Packard Ltd.	Constantin E. Macridis
Shinhankyu Building	Clemenceau Street
No. 8, Umeda	Clemenceau Center
Kita-ku, Osaka City	Beirut
Tel: 313-0091	Tel: 220846
Yokogawa-Hewlett-Packard Ltd.	NEW ZEALAND
Ito Building	Sample Electronics (N.Z.) Ltd.
No. 59, Kotori-cho	8 Matipo Street
Nakamura-ku, Nagoya City	Onehunga S.E. 5
Tel: 551-0215	Auckland
Yokgawa-Hewlett-Packard Ltd.	Tel: 667-356
Ohashi Building	PAKISTAN (EAST)
No. 59, 1-chome, Yoyogi	Mushko \& Company, Ltd.
Shibuya-ku, Tokyo	Zirat Chambers
Tel: 370-2281	31, Jinnah Avenue
KENYA	Dacca
R. J. Tilbury Ltd.	Tel: 80058
P. O. Box 2754	PAKISTAN (WEST)
Suite 517/518	Mushko \& Company, Ltd.
Hotel Ambassadeur	Oosman Chambers
Nairobi	Victoria Road
Tel: 25670, 26803, 68206	Karachi 3
KOREA	Tel: 51027, 52927
American Trading Co., Korea, Ltd.	SOUTH AFRICA
Seoul P. O. 80×1103	F. H. Flanter \& Co. (Pty.), Ltd.
112-35 Sokong-Dong	Rosella House
Jung-ku, Seoul	Buitencingle Street
Tel: 3.7049, 3.7613	Cape Town

F. H. Flanter \& Co. (Pty.), Ltd 104 Pharmacy House 80 Jorissen Street Braamfontein, Johanneshurg Tel: 724-4172

TAIWAN

Hwa Sheng Electronic Co., Ltd.
P. O. Box 1558

21 Nanking West Road
Taipei
Tel: 46076, 45936
THAILAND
The International
Engineering Co., Ltd.
P. 0.80×39

614 Sukhumvit Road
Bangkok
Tel: 913460-1-2
FOR AREAS NOT
Hewlett-Packard Export Marketing
Hewlett-Packard Export
1501 Page Mill Road
1501 Page Mill Road
Palo Alto, California 94304
Palo Alto, California
Tel: (415) 326.7000
Tel: (415) 326-7
Telex: $034-8461$
Cable: HEWPACK Palo Alto

