## HP Archive

This vintage Hewlett Packard document was preserved and distributed by
www. hparchive.com
Please visit us on the web !

Scanned by on-line curator: Tony Gerbic ** For FREE Distribution Only ***

HEWLETT-PACKARD COMPANY
OPERATING AND SERVICE MANUAL

## 722A/AR <br> DG POWER <br> SUPPLY

## MODEL 722A/AR

## SERIALS PREFIXED: 105-

## DC POWER SUPPLY

## TABLE OF CONTENTS

Section Page
I GENERAL INFORMATION ..... 1-1
1-1. Introduction ..... 1-1
1-4. Description ..... 1-1
1-8. Differences in Equipment ..... 1-1
1-10. Equipment Supplied ..... 1-1
1-12. Other Modes of Operation ..... 1-1
II PREPARATION FOR USE ..... 2-1
2-1. Unpacking and Mechanical Inspection ..... 2-1
2-4. Site Selection and Installation ..... 2-1
2-6. Line Power ..... 2-1
2-8. Operation from 230-Volt Supply ..... 2-1
2-11. Preparation for Storage and Shipment ..... 2-1
2-14. Storage ..... 2-1
2-16. Incoming Inspection \&Perform. Test ..... 2-1
III OPERATING INSTRUCTIONS ..... 3-1
3-1. Operation ..... 3-1
3-3. Current Limiting ..... 3-1
3-6. Remote Sensing ..... 3-1
IV PRINCIPLES OF OPERATION ..... 4-1
4-1. Overall Block Diagram ..... 4-1
4-3. Rectifying and Filtering Circuits ..... 4-1
4-6. Series Regulator ..... 4-2
4-8. Output Circuit ..... 4-2
4-10. Voltage Regulating Circuit ..... 4-2
4-14. Current-Power Limiter ..... 4-2
4-18. Protection Circuits ..... 4-3
Section PageV MAINTENANCE5-1
5-1. Introduction ..... 5-1
5-3. Maintenance Procedures ..... 5-1
5-4. Dustcover Removal ..... 5-1
5-6. Zero-Setting the Meter ..... 5-1
5-8. Printed Circuit Board Removal ..... 5-1
5-10. Test Equipment Required ..... 5-1
5-12. Performance Check ..... 5-1
5-14. Troubleshooting ..... 5-1
5-15. Introduction ..... 5-1
5-17. Trouble Analysis ..... 5-1
5-20. Detailed Test Procedure ..... 5-5
5-23. Reference Voltage Adjustment ..... 5-6
5-25. Monitoring ..... 5-6
5-27. Voltage Range ..... 5-6
5-29. Current Limit ..... 5-6
5-32. Performance Test ..... 5-6
5-34. Voltage Range ..... 5-6
5-36. Current Limiting ..... 5-7
5-38. Operation Characteristics ..... 5-7
5-39. Ripple Characteristics ..... 5-7
5-40. Load Regulation ..... 5-7
$5-41$. Line Regulation ..... 5-8
VI REPLACEABLE PARTS ..... 6-1
6-1. Introduction ..... 6-1
6-5. Ordering Information ..... 6-1

## LIST OF ILLUSTRATIONS

| Number |  | Page |
| :---: | :---: | :---: |
| 1-1. | Model 722AR DC Power Supply . | 1-1 |
| 3-1. | Operating Controls | 3-0 |
| 3-2. | Remote Sensing. | 3-1 |
| 3-3. | Charging Batteries | 3-1 |
| 3-4. | Parallel Operation | 3-1 |
| 4-1. | Simplified Schematic | 4-0 |
| 4-2. | Block Diagram | 4-1 |
| 4-3. | Current Power Limiter | 4-3 |
| 5-1. | Model 722A Bottom View | 5-2 |
| 5-2. | Model 722A Top View | 5-3 |
| 5-3. | Servicing Etched Circuit Boards | 5-4 |
| 5~4. | Reference Power Supply (Schematic) | 5-9 |
| 5-5. | Power Supply (Schematic) | 5-10 |

## LIST OF TABLES



Table 1-1. Specifications

RATED OUTPUT: 0 to 60 volts dc; 0 to 2 amperes dc

LINE REGULATION: Less than 2.5 mv change for $\pm 10 \%$ line voltage change; output set between 0 to 60 volts

LOAD REGULATION: Less than 5 mv change at output terminals for 0 to 2 amperes change; output set between 0 and 60 volts

TRANSIENT RECOVERY TIME:
Less than $200 \mu \mathrm{sec}$ for recovery within 5 mv for a change from 0 to full load or full load to 0 at any rated output or line voltage

NOISE AND RIPPLE: Less than $250 \mu \mathrm{v} \mathrm{rms}$
TEMPERATURE STABILITY: Better than $0.02 \% /{ }^{\circ} \mathrm{C}$ or $5 \mathrm{mv} /{ }^{\circ} \mathrm{C}$, whichever is larger
TEMPERATURE RANGE: 0 to $55^{\circ}$ for operation within specifications

OUTPUT IMPEDANCE:
DC: Less than 2.5 milliohms
AC: Less than 5 milliohms in series with $10 \mu \mathrm{~h}$

OUTPUT METERS: Voltage: 0 to 60 volts, one range
Current: 0 to 2.5 amp , one range

PROTECTION: Output current limiter continuously adjustable from 100 ma to 2.2 a

COOLING: Forced air

DIMENSIONS:
Rack Mount:


WEIGHT: Rack Mount: Net 34 lb

POWER: 115 or 230 volts $\pm 10 \%, 50$ to $60 \mathrm{cps}, 40$ to 250 watts depending on line and load conditions

# SECTION I <br> GENERAL INFORMATION 

## 1-1. INTRODUCTION.

1-2. This is an operating and service manual for the Model 722A DC Power Supply. This manual is applicable only to instruments with the prefix shown on the front cover except as modified by change sheets.

1-3. Hewlett-Packard instruments use a two-section eight-digit serial number, that is, 000-00000. The first three digits are an identification number; the last five digits are the instrument serial number. If the identification number on the instrument does not agree with the identification number shown on the manual title page, there are differences between the manual and instrument. These differences are described in manual change sheets having the proper identification number.

## 1-4. DESCRIPTION.

1-5. The 迆 Model 722A DC Power Supply is a completely transistorized, regulated power supply. It will supply up to 60 volts at 2 amperes with continuous adjustment of voltage and current limiting. The current limit can be set at any current between 100 ma and 2 amperes to protect circuit elements, such as transistors, under test.

1-6. Two meters measure both current and voltage drawn by the load continuously so that you may monitor power supply drain conveniently. The output impedance is low for both dc and ac so that a minimum of decoupling is required in cascaded circuits. Terminals
for remote sensing are provided on the rear of the chassis so that the ohmic resistance of the supply leads is minimized.

1-7. The usefulness of the Model 722A is not limited to transistor applications, but is useful wherever high stability is required. For instance, Model 722A is an excellent source for regulating the filament voltage of vacuum tubes.

## 1-8. DIFFERENCES IN EQUIPMENT.

1-9. This manual has been written and illustrated for the Model 722AR (rack-mounted instrument) since this is the only style of instrument available at the time of writing. A cabinet-mount model may become available in the future. This manual will also apply to the electrical details of the cabinet-mounted model even though the physical configuration may be different.

## 1-10. EQUIPMENT SUPPLIED.

1-11. The equipment supplied consists of only the Model 722A DC Power Supply as this supply is complete in itself.

## 1-12. OTHER MODES OF OPERATION.

1-13. Two Model 722A's may be connected in series for greater voltage. Do not connect more than two 722A's in series. Refer to section III for instructions before attempting to operate these supplies in parallel.


Figure 1-1. Model 722AR DC Power Supply

# SECTION II <br> PREPARATION FOR USE 

## 2-1. UNPACKING \& MECHANICAL INSPECTION.

$2-2$. Inspect instrument for signs of damage incurred in shipment. This instrument should be tested as soon as it is received. If it fails to operate properly, or is damaged in any way, a claim should be filed with the carrier. A full report of the damage should be obtained by the claim agent, and this report should be forwarded to us. We will then advise you of the disposition to be made of the equipment and arrange for repair or replacement. Include model number and serial number when referring to this instrument for any reason.
2-3. Hewlett-Packard Company warrants each instrument manufactured by them to be free from defects in material and workmanship. Our liability under this warranty is limited to servicing or adjusting any instrument returned to the factory for that purpose and to replace any defective parts thereof. Any damage to the instrument upon receipt is due to the carrier. File a claim with the carrier as instructed in the preceding paragraph.

## 2-4. SITE SELECTION AND INSTALLATION.

$2-5$. The Model 722A should be mounted securely in a rack. In environments of severe vibration the rear of the chassis should also be fastened securely. There should be sufficient space to the rear and along the sides of the instrument to permit free flow of cool air for cooling. This instrument will fit any standard 19 -inch rack which has a space 5-1/4 inches high. If the rack is not accessible from the rear, plug the power cable in before sliding instrument into rack. Also make any connections to the rear terminal strip. If the rack is accessible from the rear, these connections may be made at any time. Secure the instrument to the rack with screws and cup-washers. Connect the power cable and connections, if any, to the rear terminals. Connect the power cable to the power source.

## 2-6. LINE POWER.

2-7. The three-conductor power cable supplied with the instrument is terminated in a polarized, threeprong male connector recommended by the National Electrical Manufacturers' Association (NEMA).

## WARNING

The third conductor grounds the instrument chassis for the PROTECTION OF OPERATING PERSONNEL. When using a threeprong to two-prong adapter ground third lead (green wire) externally.

## 2-8. OPERATION FROM 230-VOLT SUPPLY.

$2-9$. This instrument may be used with either a 115volt or 230 -volt supply with a frequency from 50 to 60 cps , single-phase. This instrument is shipped
from the factory ready for operation from a 115 -volt source unless otherwise indicated. Operation from a 230 -volt supply is possible by changing jumper connections or by flipping a switch if the instrument is equipped with the 115 -volt to 230 -volt switch option. To change the jumpers refer to the schematic for details (see also figure 5-5).

## WARNING

Remove the power cable from the wall receptacle before removing the dust cover. Dangerous potentials are exposed inside the instrument.

Replace the fuse with the one called out for 230 -volt operation in the table of replaceable parts (section VI).
$2-10$. If your instrument has the 115 -volt to 230 -volt switch option the input voltage may be changed without removing the instrument from the rack. First turn the instrument off or remove the power cable. Then with a pointed tool, such as the point of a pencil, flip the 115 -volt to 230 -volt switch on the rear apron of the instrument to 230 volts. Replace the fuse with the one called out for 230 -volt operation in the table of replaceable parts (section VI).

## 2-11. PREPARATION FOR STORAGE AND SHIPMENT.

2-12. The best method of packing the instrument is in the original shipping carton with the original fillers packed in the same manner as when received from the factory. Therefore, when unpacking note carefully the method of packing and save the original packing materiai for possible future re-use.
$2-13$. If the original packing material is not available and it is desired to package the instrument for storage or shipment, first wrap the instrument in heavy kraft paper to avoid scratching the paint. Then pack in a cardboard carton with a bursting strength of at least 150 lb per square inch. Pad the instrument on all sides with at least 2 inches of rubberized hair or at least 4 inches of tightly packed excelsior.

## 2-14. STORAGE.

$2-15$. No special precautions are necessary in storage except the usual protection against mechanical damage, salt air, etc.

## 2-16. INCOMING INSPECTION AND PERFORMANCE TEST.

$2-17$. This instrument should be checked as soon as it is received to determine that its electrical characteristics have not been damaged in shipment. Refer to paragraphs 5-32 through 5-41.


1. Turn AC POWER switch ON.
2. Adjust COARSE and FINE VOLTAGE controls until the voltage on the OUTPUT VOLTAGE meter is of the desired value.
3. Adjust CURRENT LIMIT control until the pointer indicates a current value somewhat greater than the expected value.
4. Turn DC POWER switch ON.

If the OUTPUT VOLTAGE drops when DC POWER is turned on, the current limit is probably being exceeded.

# SECTION III OPERATING INSTRUCTIONS 

## 3-1. OPERATION.

$3-2$. Refer to figure 3-1 for a complete illustrated description of all operating controls. No preliminary adjustments are necessary before turning on this instrument. Connect the wires from the load to the output terminals either in the front or back of the instrument. If these leads are long or run past a source of interference, twist them if they are open-wire leads or run a shielded cable. Figure 3-1 explains step by step how to operate this instrument.

## 3-3. CURRENT LIMITING.

$3-4$. The maximum current delivered by this supply may be set to any value between 0.1 and 2 amperes. This will limit the current to the set value and protect the equipment under test in addition to protecting the transistors in the Model 722A from dissipating too much power.
$3-5$. Occasionally when the current-limit control is set to maximum current and maximum current is drawn, the instrument will not adjust down later to a smaller current limit. In this case switch the power switch to OFF-RESET position momentarily and then back ON. The instrument will now be reset and will limit at lower levels of current limit.

## 3-6. REMOTE SENSING.

$3-7$. When the Remote-Local switch on the rear of the instrument is in the Local position the voltage for regulation control (sensing voltage) is taken off the output of the supply at the front panel. This is not always the best point to obtain this voltage because there is a drop in the supply leads between the load and the supply.

3-8. To minimize this effect a separate set of terminals for the sensing voltage is provided on the rear of the instrument. These terminals permit a separate pair of leads to connect at the load to supply the sensing voltage. These leads carry no load current but are actually inside the regulating loop of the amplifier.
$3-9$. To use remote sensing run a separate set of leads from the load to the supply. These leads do not need to be as heavy as the supply leads but they must be protected from hum pick-up. Run either twisted pair open-wire leads or shielded leads if hum pick-up is severe. Connect the leads to the terminals marked REM + and REM- on the terminal strip on the rear of the instrument. At the load connect these leads to the load (see figure 3-2).

## CAUTION

Be sure to observe polarity when making these connections. Wrong connections may damage the supply.


Figure 3-2. Remote Sensing
$3-10$. If the load must be removed with the supply on be careful where you break the leads going to the load. Referring to figure 3-2 you may break the circuit at the point(s) marked SW. Do NOT break the circuit at the point(s) marked X as the supply will be damaged.


Figure 3-3. Charging Batteries
$3-11$. If this supply is to be connected to an active load (one which supplies voltage) further precautions must be taken. The load must not be allowed to run current through the supply in the reverse direction. WHEN CONNECTING THIS SUPPLY TO AN ACTIVE LOAD ALWAYS MAKE SURE THAT THE VOLTAGE OF THE MODEL 722A SUPPLY IS GREATER THAN THE VOLTAGE ON THE TERMINALS WHERE THE SUPPLY IS TO BE CONNECTED. The recommended way of protecting the supply is to use diodes. Figures 3-3 and 3-4 illustrate the proper way to connect these diodes when connecting this supply to a battery or when connecting two supplies in parallel. These diodes must be able to carry 2 amperes current and have a peak inverse voltage greater than 50 volts. A suitable diode may be ordered from Hewlett-Packard as stock number 1901-0019.


Figure 3-4. Parallel Operation


Figure 4-1. Simplified Schematic

## SECTION IV <br> PRINCIPLES OF OPERATION

## 4-1. OVERALL BLOCK DIAGRAM.

4-2. Referring to figure 4-2, block diagram, note that the power-line voltage passes through a power transformer, a variable transformer, and then to a bridge rectifier circuit. The COARSE VOLTAGE control varies the voltage from the variable voltage transformer delivered to the bridge rectifier. The rectified ac from the rectifier is filtered and supplied to the series regulator. The current goes through the series regulator to the load. A voltmeter across the output and an ammeter in series with the output monitors the direct voltage and current fed to the load. Current and voltage sampling circuits feed the current limiter. The current limiter enables the operator to set the maximum current the Model 722A will deliver to the load to any value between 0.1 amp and 2.0 amps . The current limiter also serves to limit the maximum power dissipated in the series regulator to a safe value. The amplified dc voltage change at the output is applied as a voltage to the series regulators which tends to counteract the change in output voltage. The reference power supply furnishes constant voltages which are used throughout the instrument for
reference and supply purposes. Terminals are provided for remote sensing so the sensing voltage can be connected to the output externally.

## Note

In discussions that follow, the positive side of the output voltage is considered circuit ground.

## 4-3. RECTIFYING AND FILTERING CIRCUITS.

4-4. Referring to figure 4-1 note that alternating current is fed through a conventional power transformer T1 into a variable autotransformer T2. The purpose of T2 is to keep the voltage across the series regulators Q1 and Q2 more or less constant regardless of the output voltage. Transformer T2 is ganged with the output voltage control (COARSE VOLTAGE) R25. If the output voltage were reduced to a low value without reducing the input voltage to the voltage regulator, excessive power would have to be dissipated in the transistors of the series regulator at maximum output current. By the use of a variable autotransformer. this dissipation is kept to acceptable values.


Figure 4-2. Block Diagram
$4-5$. Alternating current from the autotransformer is rectified in a bridge rectifier CRl-4. The output of the bridge is a full-wave rectified ac voltage. This voltage is filtered by the large capacitor C1. Thus the voltage supplied to the series regulator is almost pure direct current.

## 4-6. SERIES REGULATOR.

4-7. The series regulator consists of two transistors in series, one of which is driven by the series regulator driver Q3. The other transistor is driven by Q11, the third stage in the amplifier. The action of these circuits is explained in paragraphs under these titles.

## 4-8. OUTPUT CIRCUIT.

$4-9$. Resistor R18 is connected between the output of the series regulator and the negative output terminal. An ammeter connected across R18 is calibrated to read the current to the load. Voltmeter M2 is connected across the output and reads the output voltage. The output is available on the front panel terminals and on the rear terminal strip for remote application.

## 4-10. VOLTAGE REGULATING CIRCUIT.

4-11. The voltage regulating circuit consists of the FINE VOLTAGE adjustment R24 (refer to figure 4-1), the COARSE VOLTAGE adjustment R25, the amplifier circuit (Q13, Q12 and Q11 and associated circuitry) and the series regulator Q2. The diode limiters, CR20 and CR21, limit the input to the amplifier in both the positive and negative directions. Consider what happens when the output voltage drops. This drop may be a slow shift in output voltage or an ac signal on the output. AC signals are fed to the amplifier through C5 and R40. This low-impedance path increases the loop gain for ac signals. When the voltage on the base of Q13 (see figure 4-3) becomes more positive (less negative as when the output of the supply drops) Q13 draws more base current since the emitter-base bias is increased (Q13 is a npn-type transistor). This signal is amplified and reversed in phase. When coupled to Q12, this reversed signal again causes more current to flow since the forward bias is again increased (Q12 is a pnp-type transistor).

4-12. Diodes CR18 and CR19 are zener diodes which provide direct coupling between the stages in the amplifier and maintain proper collector voltages on the transistor elements. These diodes are kept in the zener breakdown condition by the currents flowing in resistors R35, R36, R38, and R39. The signal is amplified and inverted in Q12. Capacitor C15, inductance L1 and resistor R31 in the emitter circuit of Q12 help stabilize the loop. The emitter of Q12 is connected through these components to a point which is separated from the positive output terminal by resistor R33. Load current through this resistor in jects current feedback into the loop which improves the load regulation. The inverted signal from Q12 tends to
reduce the base current in Q11 (a pnp-type transistor). The signal is amplified and inverted in Q11 and fed to the base of Q2. This signal tends to increase the current through Q2 (another pnp-type transistor). Increasing the current through Q2 increases the voltage out of the supply. Since the original action was a decrease in voltage this action will tend to restore the original conditions, regulating the supply.

4-13. The dc output voltage is set by varying the COARSE and FINE VOLTAGE controls R24 and R25. In explaining this circuit, resistor R51 can be thought of as a constant-current source. Most of this current normally flows out through R24 and R25 to the series regulator with only an insignificant amount going to the base of Q13. Thus as the resistance of R24 and R25 is increased the voltage on the negative output lead will go further negative since the constant current through these resistors will develop a greater voltage drop.

## 4-14. CURRENT-POWER LIMITER.

4-15. Transistor Q4 plus associated circuitry forms a protective circuit which limits the current and power dissipation in the series regulators and load. Referring to figure $4-3$, no current flows through Q4 under normal conditions since the base is biased positive with respect to the emitter. The maximum current available for the base of Q 2 is fixed by the resistors R10 and R11 and the reference supply. Normally, the current not used by the base of Q2 to supply a certain load current passes through the collector of Q11.

4-16. When the instrument is in the current-limiting condition, it is essentially a constant-current supply rather than a voltage supply. The voltage derived across R18 is coupled to the base of Q4 through CR8 and R14. As the load current increases, this voltage increases to a level where Q4 begins to conduct. Any attempt to increase the load current further merely turns Q4 on harder, depriving Q2 of the necessary base current to sustain this larger load current. This action tends to keep the load current constant. Since the output voltage is below the desired output voltage in the current-limiting condition, the amplifier turns off Q11. With Q11 turned off the only paths for the current through R10 and R11 are into the base of Q2 and the collector of Q4.

4-17. Referring to figure $4-3$, as the load resistance is further decreased the output voltage decreases since the current is held constant. This tends to increase the voltage across the series regulator. When this voltage reaches a certain value, the zener diode CR6 will start to conduct. This current appears to Q4 to be due to increasing load current and Q4 tends to conduct more current away from the base of Q2 thus decreasing the load current and limiting the maximum dissipation in the series elements. Diode CR8 acts as a 0.7 volt battery since it is forward biased at all times by the current through R12. Resistor R14 adjusts the lower limit of the current limit range while R20 adjusts the upper limit. The CURRENT LIMIT potentiometer R5 adjusts the current limit to any value between the upper and lower current limits.


Figure 4-3. Current Power Limiter

## 4-18. PROTECTION CIRCUITS.

4-19. Referring to the schematic in the back of the manual, note that relay K 1 is shown in the normal energized position. When the instrument is turned off, or if the power fails, the relay will return to the opposite position immediately. The center contacts of the relay Kl on the schematic then apply a fixed positive bias to the base of Q 2 tending to turn it off. If this were not done the output voltage would have a transient impressed upon it due to the fact that the amplifier loses control of the series elements faster than the large input capacitor Cl can be discharged through R3. Note that the relay switches R3 across Cl when a power failure occurs to help discharge C1.

4-20. When the instrument is first turned on the relay K 1 is in the opposite position to that shown in the schematic at the end of this manual. The voltage applied
to the coil of Kl must first charge capacitors C13 and C14 through R31 before the relay coil becomes energized. When these capacitors charge up, the relay coil will become energized and the relay contacts will switch, providing a time-delay in turn-on. The top set of contacts switch R2 out of the circuit. This resistance is used during the initial time-delay period to limit the in-rush of current through the bridge rectifiers CR1-4. The middle set of contacts switch the base of Q2 from a fixed positive voltage to its normal operating condition. This positive voltage keeps Q2 turned off during the initial turn-on delay, giving the amplifier time so its voltages can reach their operating levels and gain control of the feedback loop. This action will prevent output voltage transients which could exceed the desired output voltage. The bottom set of contacts discharge the capacitors C13 and C14 through R32, preparing the circuit for the next turn-on cycle.

Table 5-1. Recommended Test Equipment

| Instrument Type | Required Characteristics | Use | Instrument Recommended |
| :---: | :---: | :---: | :---: |
| DC Voltmeter | Accuracy of $\pm 1 \%$ | Measure voltages | Analog, 匂 Model 412A/AR <br> Digital, (ip) Model 405A/B/C |
| AC Voltmeter | Accuracy of $\pm 3 \%$ <br> Floating input <br> Battery operated | Measure ripple | 50. Model 403A |
| Oscilloscope | $5 \mathrm{mv}-\mathrm{cm}$ sensitivity | Measure ripple peaks | Model 130B, 150A with <br> Model 151B <br> (4) Model 160B/170A with Model 162D |
| Variable Transformer | Monitor meter 1 volt resolution and $\pm 1 \%$ accuracy | Change ac input voltage | Superior type UC1M |
| Low-Heat Soldering Iron | 23-1/2 watt element | Solder printed circuit boards ( comnect iron to 75 volt line) | Ungar Model 776 <br> Soldering Iron Handle <br> Ungar Model 535 <br> Heater Element <br> Ungar Model PL333 <br> Soldering Iron Tip |
| Stable Voltage Source | Noise and ripple less than 250 microvolt at 60 volts | Reference voltage to test regulation | Another ( 4 p Model 722A; 45 volt and 7 volt battery connected in series |
| Load | 25 ohms at 150 watts | Load for measuring ripple, regulation, etc. | Any resistor or combination of resistors of suitable value (may use wirewound resistors, supply not affected by inductive load) |
| Precision Resistor | 1 ohm $\pm 1 \%, 5$ watt resistor | Measure current with voltmeter | (50) stock number 0811-0040 |

# SECTION V <br> MAINTENANCE 

## 5-I. INTRODUCTION.

$5-2$. This section contains maintenance and service information for the Model 722A DC Power Supply. A performance check is included at the end of this section to be used to verify instrument operation. This check can be made with the instrument in its cabinet and is a good test as part of preventive maintenance and incoming quality control inspection.

## 5-3. MAINTENANCE PROCEDURES.

## 5-4. DUSTCOVER REMOVAL.

$5-5$. Remove the eight screws (four on top and four below) holding the dustcover on the instrument. Pull the dustcover from the instrument.

## 5-6. ZERO-SETTING THE METER.

5-7. The meter pointer must rest on the zero calibration mark on the meter scale when the instrument is at normal operating temperature, resting in its normal operating position, and the instrument is turned off. To zero-set the meter proceed as follows:
a. Turn on instrument and allow it to come up to normal operating temperature (about 20 minutes).
b. Turn the instrument off. Wait two minutes for power-supply capacitors to discharge completely.
c. Rotate adjustment screw on front of meter clockwise until the meter pointer is to the left of zero and further clockwise rotation will move the pointer upscale towards zero.
d. Turn the adjustment screw clockwise until the pointer is exactly over the zero mark on the scale. If the screw is turned too far, repeat steps $c$ and d.
e. Turn meter adjustment screw counterclockwise about 15 degrees to break contact between adjustment screw and pointer mounting yoke, but not far enough to move the pointer back downscale. If screw is turned too far, as shown by the needle moving, repeat the procedure. The meter is now zero-set for best accuracy and mechanical stability.

## 5-8. PRINTED CIRCUIT BOARD REMOVAL. CAUTION

Be sure to turn off the instrument and allow time for the capacitors to discharge before changing the printed circuit boards. Do not: attempt to operate this instrument with any of the printed circuit board missing.
$5-9$. The printed circuit boards are held in by being plugged into sockets. Since these sockets have many
contacts the board is held in quite firmly without being fastened in any other way. To remove these boards some additional help may be needed. Place a screwdriver (right-angle screwdriver with boards A \& B) under the end of the board nearest the chassis and pry up.

## 5-10. TEST EQUIPMENT REQUIRED.

5-11. Test equipment required to test this instrument is listed in table $5-1$. The necessary specifications required to test this instrument are listed so that other equipment with equivalent specifications may be used.

## 5-12. PERFORMANCE CHECK.

$5-13$. Before attempting to troubleshoot this instrument make sure the fault is with the instrument and not with the associated circuit under test. The performance check will enable you to determine this without having to remove the instrument from the cabinet. BE SURE TO PERFORM THIS TEST BEFORE DISTURBING ANY OF THE INTERNAL ADJUSTMENTS OF THE INSTRUMENT. This test may also be used as an incoming inspection test to make sure the instrument has not been damaged in shipment, for periodic maintenance, or to check operation of the instrument after repairs. The performance test will be found in paragraph 5-32.

## 5-14. TROUBLESHOOTING.

## 5-15. INTRODUCTION.

5-16. Components within Hewlett-Packard instruments are conservatively operated to provide maximurn instrument reliability. In spite of this, parts within an instrument may fail. Usually, the instrument must be immediately repaired with a minimum of "down time". A systematic approach, such as is given later in this section, can greatly simplify and thereby speed up the repair.

## CAUTION

Be careful not to short voltages across the transistors. Small bias changes may ruin a transistor due to excessive dissipation. BE SURE TO TURN THE INSTRUMENT OFF BEFORE DOING ANY SOLDERING. A small leakage current from the soldering iron applied at the input being amplified may exceed ratings on the output transistors.

## 5-17. TROUBLE ANALYSIS.

$5-18$. Some systematic troubleshooting can be done with this instrument. For instance, if there is no voltage throughout the instrument check the fuse and


Figure 5-1. Model 722A Bottom View


Figure 5-2. Model 722A Top View

## SERVICING ETCHED CIRCUIT BOARDS

Excessive heat or pressure can lift the copper strip from the board. Avoid damage by using a low power soldering iron (50 watts maximum) and following these instructions. Copper that lifts off the board should be cemented in place with a quick drying acetate base cement having good electrical insulating properties.

A break in the copper should be repaired by soldering a short length of tinned copper wire across the break.
Use only high quality rosin core solder when repairing etched circuit boards. NEVER USE PASTE FLUX. After soldering, clean off any excess flux and coat the repaired area with a high quality electrical varnish or lacquer.

When replacing components with multiple mounting pins such as tube sockets, electrolytic capacitors, and potentiometers, it will be necessary to lift each pin slightly, working around the components several times until it is free.

WARNING: If the specific instructions outlined in the steps below regarding etched circuit boards without eyelets are not followed, extensive damage to the etched circuit board will result.

1. Apply heat sparingly to lead of component to be replaced. If lead of component passes through an eyelet in the circuit board, apply heat on component side of board. If lead of component does not pass through an eyelet, apply heat to conductor side of board.

2. Bend clean tinned leads on new part and carefully insert through eyelets or holes in board.
3. Reheat solder in vacant eyelet and quickly insert a small awl to clean inside of hole. If hole does not have an eyelet, insert awl or a \#57 drill from conductor side of board.

4. Hold part against board (avoid overheating) and solder leads. Apply heat to component leads on correct side of board as explained in step 1 .


In the event that either the circuit board has been damaged or the conventional method is impractical, use method shown below. This is especially applicable for circuit boards without eyelets.

1. Clip lead as shown below.

2. Bend protruding leads upward. Bend lead of new component around protruding lead. Apply solder using a pair of long nose pliers as a heat sink.


This procedure is used in the field only as an alternate means of repair. It is not used within the factory.

Figure 5-3. Servicing Etched Circuit Boards
primary circuit. Transistors Q1-3 should share the output voltage (a voltage drop should appear across each of these transistors). If there is no voltage drop across one of these transistors, it is most likely shorted. If some component on an etched circuit board is suspected and you have another instrument that is functioning properly, substitute the board containing that component from the good instrument.

5-19. The circuit consisting of the series regulators and amplifiers presents a difficult problem for systematic trouble analysis. This is a feedback circuit in which a faulty component anywhere will affect the entire loop. In this case symptomatic trouble analysis may be easier. Refer to the symptom column in table 5-2, Troubleshooting Guide and test the corresponding transistor or diode. If you have to replace any transistors or diodes refer also to table $5-3$, Replacement Guide for additional tests which may be necessary.

Table 5-2. Troubleshooting Guide

| Symptom | Check |
| :--- | :--- |
| Blown line fuse | CR1, CR2, CR3, CR4, CR12, <br> CR13, CR14, CR15, CR16, <br> CR22, CR23, shorted winding <br> on T1, or brush and winding <br> on T2. |
| Poor load <br> regulation <br> Poor current <br> limiting | CR5, CR11, CR17, Q2, Q4, Q11, <br> Q12, Q13, R33 and S3 |
| CR6, CR8, CR17, Q4, R9 |  |

See table 5-3, Replacement Guide, for additional tests which may be necessary if you replace the above components. See figure 5-3, Servicing Etched Circuit Boards.

## Note

Q1 and Q2 are located on the fan heat-sink. To remove these transistors proceed as follows:

1) Loosen fan by removing four allen-head screws holding fan to spacers. Slide fan to one side.
2) Unsolder wires going to transistor. Note that the heavy wire goes to the emitter and the finer wire goes to the base (collector is connected to case).
3) With a wrench remove the screw holding the transistor. Remove transistor.

Installation of a new transistor is the reverse of the above procedure. Be sure to note which is the emitter and which is the base pin before mounting the transistor.

Table 5-3. Replacement Guide

## CAUTION

All transistors and diodes on the chassis have an anodized aluminum washer and silicon grease between the transistor and the chassis. The transistors on the fan heat-sink have grease only. When replacing transistors or diodes be sure to replace the insulating washer (if any) and the silicon grease so that these components will have good heat conduction to the chassis. Use a good grade of heat-conducting grease, such as Dow Corning silicon grease \#3 or Compound 5.

| If you change: | Check these items: |
| :---: | :---: |
| CR1, 2, 3, or 4 | Line fuse, brush and winding on T2 |
| CR5 | Regulation |
| CR6 | Current limiting |
| CR7 | Voltage CR7 (should be about 0.8 volts) |
| CR8 | Current limiting, recalibrate current limits |
| CR9 | Current limiting |
| CR10 | Output C6 |
| CR11 | Load regulation and transients with de switching |
| CR12-16 | Ripple, voltage output, maximum current, relay operation |
| CR17 | Current limiting, transient response to loading |
| CR18, 19 | Collector voltage on Q12 and Q13 |
| Q1, 2, or 3 | Check for voltage drop across transistors; regulation at 103 volts in, 60 volt to 2 amp out |
| Q4 | Current limiting, R14, R20 |
| Q11 | CR17, Q4, output voltage; regulation at 127 volts in, low output voltage |
| Q12, 13 | Voltage control and regulation |

## 5-20. DETAILED TEST PROCEDURE.

5-21. The following test procedure should be performed only after the performance test (paragraph $5-32$ ) has shown that this instrument is faulty. DO NOT PERFORM THIS PROCEDURE AS AN INCOMING INSPECTION OR PROOF OF PERFORMANCE CHECK. The specifications for your instrument are given in
the front of this manual (table 1-1). The following test procedure contains extra checks to help you analyze the troubles in this instrument. These extra checks and the data they contain cannot be considered as specifications.
$5-22$. Do not perform all the tests in this procedure. Do only those tests associated with the particular sections of the instrument shown to be faulty by the performance test. Indiscriminate adjustment of the internal controls to "refine" the settings may actually cause trouble.

## 5-23. REFERENCE VOLTAGE ADJUSTMENT.

5-24. To set the reference voltage proceed as follows:
a. Connect a voltmeter, such as the (40) Model 405A/ B/C across C24 (reference supply filter capacitor on board A).
b. Adjust R48 (Reference Voltage Adjust potentiometer) until the meter reads $13.2 \pm 0.2$ volts.

## c. Remove meter.

## 5-25. MONITORING.

5-26. For all following tests (subparagraphs 5-27 and $5-29$ ) the output voltage should be monitored. The positive output terminal of the Model 722A is considered circuit ground. To monitor the output connect a voltmeter, such as the ( $(\mathrm{p})$ Model $405 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ as follows:
a. Turn AC and DC switches to OFF. RemoteLocal switch on Local.
b. Turn COARSE VOLTAGE potentiometer R25 fully counterclockwise.
c. Attach voltmeter to the output terminals (front or rear) of the Model 722A with the black terminal of the voltmeter connected to the red (positive) terminal of the Model 722A. (In this test procedure the positive side of the Model 722A output is considered circuit ground.)

## 5-27. VOLTAGE RANGE.

$5-28$. To check the voltage range of the Model 722A proceed as follows:
a. Turn the $A C$ and DC POWER switches to ON.
b. Turn the COARSE and FINE VOLTAGE controls on the front panel fully clockwise. The voltmeter across the output should indicate 60.1 to 60.3 volts. If not, adjust R48.
c. Turn the COARSE and FINE VOLTAGE controls on the front panel fully counterclockwise. The voltmeter across the output should indicate 0.05 to 0.02 volt (positive terminal on the Model 722A is considered ground).

## 5-29. CURRENT LIMIT.

5-30. A simple way to measure current with a voltmeter is to use a load made up of a 25 ohm, 150 watt resistor in series with a precision $1 \%, 1$ ohm, 5 watt resistor, (ap stock number 0811-0040. Connect a voltmeter in shunt with this precision resistor. In the following procedure the term shunt volmeter will be used to distinguish this voltmeter from other voltmeters.

## 5-31. To adjust the current limiting proceed as follows:

a. Turn the DC POWER switch to OFF.
b. Connect the load mentioned above the OUTPUT terminals.
c. Connect the shunt voltmeter across the 1 ohm precision resistor.
d. Turn the DC POWER switch to ON.
e. Turn the CURRENT LIMIT potentiometer on the front panel fully clockwise and the COARSE VOLTAGE control fully counterclockwise.
f. Turn the COARSE VOLTAGE control slowly clockwise until the current appears to limit (voltmeter on panel stops rising). The voltage on the shunt voltmeter should be 2.3 volts. If not, adjust R 20 .
g. Adjust the COARSE and FINE VOLTAGE control until the shunt voltmeter reads exactly 2.00 volts (indicating 2 amps current).
h. The OUTPUT CURRENT meter should read exactly 2.00 amps . If not, adjust Ammeter Calibrate potentiometer (R16) until the OUTPUT CURRENT meter does read exactly 2.00 amps .
i. Turn COARSE VOLTAGE control until the output voltage is about 10 volts and turn CURRENT LIMIT control fully counterclockwise.
j. The voltage on the shunt voltmeter should be 0.08 volts ( 0.08 amp ) or less. If not, pad R13.

## 5-32. PERFORMANCE TEST.

5-33. Before attempting to troubleshoot this instrument make sure the fault is with the instrument and not in the associated circuit under test. This procedure will enable you to determine this without having to remove the instrument from the cabinet. BE SURE TO PERFORM THIS TEST BEFORE DISTURBING ANY OF THE INTERNAL ADJUSTMENTS OF THE INSTRUMENT. This test may also be used as in incoming inspection test to make sure the instrument has not been damaged in shipment, for periodic maintenance, or to check operation of the instrument after repairs.

5-34. VOLTAGE RANGE.
5-35. To check the voltage range proceed as follows:
a. Connect voltmeter across output of power supply.
b. Turn COARSE and FINE VOLTAGE controls fully clockwise. Voltage out should be greater than 60.0 volts.
c. Turn COARSE and FINE VOLTAGE controls fully counterclockwise. Output voltage should go through zero to 0.05 to 0.2 volts positive (positive terminal on Model 722A is considered ground).

5-36. CURRENT LIMITING.
5-37. To check current limiting proceed as follows:
a. Connect 25 ohm, 150 watt load in series with a precision $1 \%, 1$ ohm, 5 watt resistor, to the output of the Model 722A.
b. Connect a voltmeter in shunt with the precision 1 ohm resistor. This voltmeter will be called the shunt voltmeter.

## c. Turn CURRENT LIMIT control fully clockwise.

d. Turn COARSE VOLTAGE control clockwise until current appears to limit (voltmeter on front panel stops rising). Shunt voltmeter should read 2.3 volts.
e. Adjust the COARSE and FINE VOLTAGE controls until shunt voltmeter reads 2.00 volts. The OUTPUT CURRENT meter should read 2 amperes.
f. Turn COARSE VOLTAGE control for 10 volts out and CURRENT LIMIT control fully counterclockwise. The output voltage should be 0.08 volt or less.

## 5-38. OPERATION CHARACTERISTICS.

a. With the DC POWER switch turned off, attach a well-shielded coaxial cable between the OUTPUT terminals of the Model 722A and an oscilloscope, such as the ( 0 ) Models $130 \mathrm{~B} / 150 \mathrm{~A}$ with 151 B plug-in, 160 B or 170 A with 162 D plug-in. It is absolutely essential that this lead be as well-shielded and as short as possible. Not only must this lead be well shielded but it also must be connected to the OUTPUT terminals as close to the instrument as possible. Unscrew the plastic ferrules on the OUTPUT connectors and connect bare wire or clip-leads tightly.
b. Connect a voltmeter and load as instructed in paragraph 5-36, Current Limiting. This voltmeter will be called the shunt voltmeter.
c. Turn DC POWER to ON and adjust CURRENT controls for 2 amperes current ( 2 volts on shunt voltmeter).
d. Set oscilloscope for $5 \mathrm{mv} / \mathrm{cm}$ sensitivity and a sweep speed of $5 \mathrm{~ms} / \mathrm{cm}$.
e. Plug the Model 722A into a variable transformer and reduce the input voltage until the output ripple reaches at least 5 mv peak-to-peak. This voltage should be less than 102 volts ac.

## 5-39. RIPPLE CHARACTERISTICS.

 NoteThe instrument under test must not be lying on magnetic material for this test.
a. Connect a voltmeter and load as instructed in paragraph 5-36, Current Limiting. This voltmeter will be called the shunt voltmeter.
b. Connect an oscilloscope as instructed in paragraph 5-38, Operation Characteristics.
c. Connect a floating, battery-operated voltmeter, such as the (bp Model 403A, to the OUTPUT terminals of the Model 722A with a short shielded lead.
d. Turn up the COARSE VOLTAGE control until the shunt voltmeter reads 2 volts ( 2 amps current).
e. Read the ripple voltage on the Model 403A. This voltage should be less than 150 microvolts rms. The peak-to-peak voltage measured on the oscilloscope should be less than 1.0 millivolt. If not, make sure the REMOTE-LOCAL switch on the rear of the instrument is on LOCAL.

## 5-40. LOAD REGULATION.

a. With the Model 722A connected as in paragraph 5-39, Ripple Characteristics, turn the DC POWER switch off and disconnect the load.

## Note

In this test we wish to measure voltages within 3 millivolts. The resolution of the Model 405 Voltmeter is not sufficient to measure this small a voltage at the full output voltage. For this reason we will buck-out almost all of the output voltage with a stable voltage source, such as another Model 722A, and then measure only the difference voltage with high resolution.
b. Connect the load as indicated in paragraphs 5-38, Operation Characteristics. Unscrew the plastic insulated ferrules on the two OUTPUT binding posts of the Model 722A. Attach one end of an alligator cliplead to the main body of the negative terminal binding post in the vicinity of the crosshole. Attach the other end of this clip-lead to the negative terminal of the reference voltage supply. Attach one of the alligator clips of an (bp) AC-16S (shielded dual banana plug to alligator clips) to the main body of the positive terminal binding post in the vicinity of the cross hole. Attach the other alligator clip of the $\mathrm{AC}-16 \mathrm{~S}$ to the positive terminal binding post of the reference voltage supply.
c. Attach the dual banana plug of the AC-16S to the Model 405 Voltmeter.
d. Turn the CURRENT LIMIT control on the front panel fully clockwise.
e. Adjust the output current of the Model 722 A under test to 2 amperes on the meter on the front panel. Adjust the voltage on the reference Model 722A such
that the reading on the Model 405 Voltmeter is less than one volt (difference between the 722's).
f. WARNING: Be careful: Disconnect one end of the load but leave load in such a position that the load may be connected with the aid of an insulated tool.
g. Reconnect load with an insulted tool while watching change in voltage on Model 405 Voltmeter. The change in voltage should be less than 3 millivolts. If not, turn both supplies off and tighten connections. If the change in voltage is still too great check the LOCAL-REMOTE switch to be sure it is in the LOCAL position.

## 5-41. LINE REGULATION.

a. With the two Model 722's connected as in paragraph 5-40, Load Regulation, connect the 722 under test to a variable power supply.
b. Change the line voltage from 115 volts to 103.5 volts and note the change in the output voltage. The change should be 2 millivolts or less.
c. Increase the line voltage to 126.5 volts and note the output voltage change. This change should be 2.5 millivolts or less.

## SCHEMATIC DIAGRAM NOTES

1. Heavy solid line shows main signal path; heavy dashed line shows control, secondary signal, or feedback path.
2. Heavy box indicates front-panel engraving; light box indicates chassis marking.
3. Arrows on potentiometers indicate clockwise rotation as viewed from the round shaft end, counterclockwise from the rectangular shaft end.
4. Resistance values in ohms, inductance in microhenries, and capacitance in picofarads unless otherwise specified.
5. Rotary switch schematics are electrical representations; for exact switching details refer to the switch assembly drawings.
6. Relays shown in condition prevailing during normal instrument operation.
7. Connections between the etched circuit board and the chassis wiring are indicated by the usual arrowhead-arrowtail combination. The arrowhead indicates the connections on the board which plugs into the socket on the chassis (indicated by the arrowtail). The board and connection is indicated by the letter-number combination, e.g. A2 indicates a connection on board A at pin 2 .


## COPYRIGHT 1964 BY HEWLETT.PACKARD COMPANY

This drawing is intended for the operation
and maintenance of Hewlett-Packard equip.
ment and is not to be used otherwise or
reproduced without written consent of the
Howlett-Packard Company.
722A-REF ps - TiOS B

Figure 5-4. Reference Power Supply


Figure 5-5. Power Supply (sheet 1 of 2)


# SECTION VI <br> REPLACEABLE PARTS 

## 6-1. INTRODUCTION.

$6-2$. This section contains information for ordering replacement parts for the Model 722A DC Power Supply.

6-3. Table 6-1 lists parts in alpha-numerical order of their reference designators and indicates the description and thap stock number of each part, together with any applicable notes. Table 6-2 lists parts in alpha-numerical order of their ( 7 p stock numbers and provides the following information on each part:
a. Description of the part (see list of abbreviations below).
b. Manufacturer of the part in a five-digit code; see list of manufacturers in appendix.
c. Typical manufacturer's stock number.
d. Total quantity used in the instrument (TQ column).
e. Recommended spare part quantity for complete maintenance during one year of isolated service (RS column).

6-4. Miscellaneous parts not indexed in table 6-1 are listed at the end of table 6-2.

## 6-5. ORDERING INFORMATION.

6-6. To order a replacement part, address order or inquiry either to your authorized Hewlett-Packard sales representative or to

CUSTOMER SERVICE<br>Hewlett-Packard Company<br>395 Page Mill Road Palo Alto, California,

or, in Western Europe, to
Hewlett-Packard S.A.
Rue du Vieux Billard No. 1
Geneva, Switzerland.
6-7. Specify the following information for each part:
a. Model and complete serial number of instrument.
b. Hewlett-Packard stock number.
c. Circuit reference designator.
d. Description.

6-8. To order a part not listed in tables 6-1, 6-2, give a complete description of the part and include its function and location.

REFERENCE DESIGNATORS

| A | = assembly | F | = fuse | P | $\pm$ plug | V | = vacuum tube, neon |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | $=$ motor | FL | = filter | Q | $=$ transistor |  | bulb, photocell, etc. |
| C | = capacitor | J | = jack | R | = resistor | W | = cable |
| CR | = diode | K | = relay | RT | = thermistor | X | = socket |
| DL | = delay line |  | = relay | RT | $=$ thermistor | XF | $=$ fuseholder |
| DS | $=$ device signaling |  | = inductor | S | = Switch | XV | = tube socket |
|  | (lamp) |  | $=$ meter | T | $=$ trangformer | XDS | = lampholder |
| ABBREVIATIONS |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { bp } \\ & \text { bwo } \end{aligned}$ | $\begin{aligned} = & \text { bandpass } \\ = & \text { backward wave } \\ & \text { oscillator } \end{aligned}$ | elect $=$ electrolytic <br> encap $=$ encapsulated |  | mtg | $=$ mounting | rot | $=$ rotary |
|  |  |  |  | my | $=$ mylar | rms | = root-mean-square |
|  |  |  |  |  |  | rmo | $=$ rack mount only |
|  |  |  | = farads | NC | = normally closed |  |  |
| c | $=$ carbon |  | $=\mathrm{fixed}$ | Ne | = neon | $\mathrm{s}-\mathrm{b}=\text { slow - blow }$ |  |
| cer = ceramic |  |  |  | $\begin{aligned} & \text { NO } \\ & \text { NPO } \end{aligned}$ | = normally open | Se | $=\text { selenium }$ |
| cmo | $=$ cabinet mount only | $\begin{aligned} & \mathrm{Ge}=\text { germanium } \\ & \text { grd }=\text { ground (ed) } \end{aligned}$ |  |  | $=$ negative positive | $\begin{array}{ll} \text { sect } & =\text { section }(s) \\ \mathrm{Si} & =\text { silicon } \\ \text { sl } & =\text { slide } \end{array}$ |  |
| coef | = coefficient |  |  | zero-zero tem- |  |  |
| com | = common |  |  |  | perature coefficient |  |  |
| comp | $=$ composition |  | $=$ henries |  | nsr | $=\text { not separately }$ | $\begin{aligned} \mathrm{td} & =\text { time delay } \\ \mathrm{TiO}_{2} & =\text { titanium dioxide } \end{aligned}$ |  |
| conn | = connection |  | = mercury |  | replaceable |  |  |  |  |
| crt | $=$ cathode - ray tube |  |  | obd | $=$ order by description |  |  |  |  |
| dep | = deposited |  | $=\text { incandescent }$ |  |  | ```tog}=\mathrm{ toggle tol = tolerance trim = trimmer``` |  |
| det | = detector |  | = insulation (ed) |  |  |  |  |  |  |
|  |  |  |  | p | = peak |  |  |  |  |
| EIA | = Tubes and transistors selected for best | K | : $=$ kilohms | pc | $\begin{aligned} & =\text { printed circuit } \\ & \text { board } \end{aligned}$ | twt = traveling wave tube |  |
|  | performance will be |  | $=$ linear taper | pf |  | var | = variable |
|  | supplied if ordered |  | $=10 g a r i t h m i c ~ t a p e r ~$ |  | 10-12 farads | w/ | $=$ with$=$ watts |
|  | by (4) stock numbers; |  |  | pp | = peak-to-peak | W |  |
|  | tubes or transistors |  | $=\mathrm{milli}=10^{-3}$ |  | = peak inverse |  | $\begin{aligned} & =\text { wirewound } \\ & =\text { without } \end{aligned}$ |
|  | meeting Electronic |  | $=$ megohms |  | voltage |  |  |
|  | Industries' Associa- |  | $=$ milliamperes | pos | $=$ position(s) | * | $=$ optimum value selected at factory, average value shown (part may be omitted) |
|  | tion standards will | mina | = miniature | poly | = polystyrene |  |  |
|  | normally result in | mfg | $=$ metal film on |  | $=$ potentiometer |  |  |
|  | instrument operating |  | glass |  |  |  |  |
|  | within specifications | mfr | $=$ manufacturer | rect | $=$ rectifier |  |  |

Table 6-1. Reference Designation Index

| Circuit Reference | (40) Stock No. | Description | Note |
| :---: | :---: | :---: | :---: |
| C1 | 0180-0096 | fxd, elect, 3500 uf, 100 vdcw |  |
| C2 | 0170-0040 | fxd, my, 0.047 uf $\pm 10 \%, 200$ vdcw |  |
| C3 | 0180-0064 | fxd, elect, 35 uf $+100 \%-10 \%$, 6 vdew |  |
| C4 | 0170-0055 | fxd, my, 0.1 uf $\pm 20 \%, 100 \mathrm{vdcw}$ |  |
| C5 | 0180-0093 | fxd, elect, 20 uf, 150 vdcw |  |
| C6 | 0180-0047 | fxd, elect, 500 uf, 75 vdcw |  |
| C7 thru C10 |  | Not Assigned |  |
| C11 | 0180-0095 | fxd, elect, 100 uf, 100 vdew |  |
| C12 |  | Same as C5 |  |
| C13, 14 | 0180-0094 | fxd, elect, 100 uf, 25 vdcw |  |
| C15 | 0170-0017 | $\mathrm{fxd}, \mathrm{my}, 0.01$ uf $\pm 5 \%, 400 \mathrm{vdcw}$ |  |
| C16 thru C20 |  | Not Assigned |  |
| C21 |  | Same as C5 |  |
| C22 |  | Same as C11 |  |
| C23, 24 | 0180-0045 | fxd, elect, 20 uf, 25 vdew |  |
| CR1 thru CR4 | 1901-0019 | Diode, si: 1N1344 |  |
| CR5 | 1901-0007 | Diode, si: $500 \mathrm{ma}, 400$ PIV |  |
| CR6 | (-29G-53 | Diode, si |  |
| CR7 |  | Same as CR1 |  |
| CR8 | G-29A-74 | Diode, si |  |
| CR9 | G-31G-33L | Diode, si |  |
| CR10, 11 | 1901-0008 | Diode, si: 500 ma 100 PIV |  |
| CR12 thru CR16 |  | Same as CR5 |  |
| CR17 |  | Same as CR10 |  |
| CR18 | G-31A-7L | Diode, si |  |
| CR19 |  | Same as CR8 |  |
| CR20, 21 | 1901-0020 | Diode, si: 1N2069 |  |
| CR22, 23 |  | Same as CR5 |  |
| CR24, 25 | G-31H-22H | Diode, si |  |
| CR26 | G-29G-54 | Diode, si |  |
| CR27 | G-31G-10L | Diode, si |  |
| CR2 8 | G-29A-10 | Diode, si |  |
| CR29 | G-29A-26 | Diode, si |  |
| DS1, 2 | 1450-0025 | Lamp, neon: indicator, clear lens |  |
| F1 | 2110-0015 | Fuse, cartridge: 2.5 amp , slow blow (for 115 V operation) |  |
|  | 2110-0021 | Fuse, cartridge: 1.25 amp , slow blow (for 230 V operation) |  |
| J1 | 0360-0079 | Board, terminal: 5 terminal |  |
| K1 | 0490-0032 | Relay, inductor: 2500 ohms $\pm 10 \%$ |  |

Table 6-1. Reference Designation Index (Cont'd)

| Circuit Reference | (4p) Stock No. | Description | Note |
| :---: | :---: | :---: | :---: |
| L1 | 9140-0037 | Inductor, fixed: 5.0 mh |  |
| M1 | 1120-0104 | Meter: 0-2.5 amps |  |
| M2 | 1120-0103 | Meter: 0-60 volts |  |
| P1 | 8120-0050 | Cord, power |  |
| Q1 | 1850-0058 | Transistor: 2N443 |  |
| Q2 | 1850-0059 | Transistor: 2N173 |  |
| Q3 | 1850-0057 | Transistor: 2N1159 |  |
| Q4 | 1850-0048 | Transistor: 2N650 |  |
| Q5 thru Q10 |  | Not Assigned |  |
| Q11 |  | Same as Q3 |  |
| Q12 | 1850-0037 | Transistor: 2N274 |  |
| Q13 | 1851-0001 | Transistor: 2N169 |  |
| Q14, 15 |  | Same as Q4 |  |
| R.1 | 0687-1041 | fxd, comp, 100 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R2 | 0813-0021 | fxd, ww, 2 ohms $\pm 10 \%, 5 \mathrm{~W}$ |  |
| R3 | 0813-0022 | fxd, ww, 200 ohms $\pm 10 \%, 5 \mathrm{~W}$ |  |
| R4 | 0813-0027 | fxd, ww, 1 K ohms $\pm 10 \%, 5 \mathrm{~W}$ |  |
| R5A, B | 2100-0263 | var, ww, dual ganged; front sect-5K ohms $\pm 10 \%, 2 \mathrm{~W}$; rear sect, lin, 300 ohms $\pm 10 \%, 2 \mathrm{~W}$ |  |
| R. 6 | 0693-5621 | fxd , comp, 5600 ohms $\pm 10 \%$, 2 W |  |
| R7 | 0813-0026 | fxd , ww, 800 ohms $\pm 10 \%$, 5 W |  |
| R8 |  | Same as R4 |  |
| R9 | 0687-4731 | fxd, comp, 47 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R10, 11 | 0813-0025 | fxd, ww, 600 ohms $\pm 10 \%, 5 \mathrm{~W}$ |  |
| R12 | 0690-8221 | fxd, comp, 8200 ohms $\pm 10 \%$, 1 W |  |
| R13 | 0687-4701 | fxd, comp, $47 \mathrm{ohms} \pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R14 | 2100-0118 | var, comp, 100 ohms $\pm 20 \%, 0.2 \mathrm{~W}$ |  |
| R15 | 0727-0110 | fxd, dep c, 1500 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R16 | 2100-0078 | var, ww, lin, $500 \mathrm{ohms} \pm 30 \%, 3 / 10 \mathrm{~W}$ |  |
| R17 | 0687-2721 | fxd , comp, $2700 \mathrm{ohms} \pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R18 | 0812-0013 | fxd, ww, 0.7 ohm $\pm 3 \%, 5 \mathrm{~W}$ |  |
| R19 | 0687-5621 | fxd, comp, 5600 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R20 | 2100-0261 | var, comp, 2000 ohms $\pm 20 \%, 0.3 \mathrm{~W}$ |  |
| R21, 22 |  | Not A.ssigned |  |
| R23 | 0690-2'72 1 | fxd, comp, 2700 ohms $\pm 10 \%$, 1 W |  |
| R24 | 2100-0003 | var, ww, 100 ohms $\pm 10 \%, 2 \mathrm{~W}$ |  |
| R25 | 2100-0262 | var, ww, 5 K ohms $\pm 5 \%, 4.5 \mathrm{~W}$ |  |
| R26 | 0727-0327 | fxd, dep c, 59,950 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |

Table 6-1. Reference Designation Index (Cont'd)

| Circuit Reference | (40) Stock No. | Description | Note |
| :---: | :---: | :---: | :---: |
| R27 |  | Same as R9 |  |
| R28 | 0699-0002 | fxd, comp, 6.8 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R29, 30 | 0687-1011 | fxd, comp, 100 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R31 |  | Same as R7 |  |
| R32 | 0690-1001 | fxd, comp, 10 ohms $\pm 10 \%, 1 \mathrm{~W}$ |  |
| R33 |  | Consists of approximately 11 inches of stranded \# 22 wire; adjusted at factory |  |
| R34 | 0687-2211 | fxd, comp, 220 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R35 | 0686-3625 | fxd, comp, 3600 ohms $\pm 5 \%, 1 / 2 \mathrm{~W}$ |  |
| R36 | 0687-5611 | fxd, comp, 560 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R37 | 0687-2711 | fxd, comp, 270 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R38 | 0687-1231 | fxd, comp, 12000 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R39 |  | Same as R17 |  |
| R40 | 0687-1001 | fxd , comp, $10 \mathrm{ohms} \pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R41, 42 | 0813-0023 | fxd, ww, 350 ohms $\pm 10 \%, 5 \mathrm{~W}$ |  |
| R43 | 0813-0024 | fxd, ww, 450 ohms $\pm 10 \%, 5 \mathrm{~W}$ |  |
| R44 | 0687-1031 | fxd, comp, 10 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R45 | 0727-0196 | fxd, dep c, 52,600 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R46 | 0687-3921 | fxd, comp, 3900 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R47 | 0727-0091 | fxd, dep c, 790 ohms $\pm 1 / 2 \%, 1 / 2 \mathrm{~W}$ |  |
| R48 | 2100-0038 | var, ww, 300 ohms |  |
| R49 |  | Not Assigned |  |
| $\text { R50, } 51$ | $0757-0021$ | fxd, $\mathrm{mfg}, 1 \mathrm{~K}$ ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| S1 | 3101-0031 | Switch, toggle: 3PDT |  |
|  | 3101-0033 | Switch, slide: DPDT |  |
| S2 | 3101-0017 | Switc h, toggle: DPDT |  |
| S3 | 3101-0011 | Switch, slide: DPDT |  |
| S4. |  | Same as S1 (3101-0033) |  |
| T1 | 9100-0132 | Transformer, power |  |
| T2 | 9100-0133 | Transformer, variable: 115 V input <br>  $0-115 \mathrm{~V}$ output <br>  $0-135 \mathrm{~V}$ output |  |

Table 6-1. Reference Designation Index (Cont'd)

| Circuit Reference | (tap Stock No. | Description | Note |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \mathrm{AC}-10 \mathrm{C} \\ & \mathrm{AC}-54 \mathrm{C} \\ & \mathrm{G}-10 \mathrm{G} \\ & \mathrm{G}-32 \mathrm{R} \\ & \mathrm{G}-74 \mathrm{BB} \\ & \mathrm{G}-74 \mathrm{D} \\ & \mathrm{G}-110 \mathrm{D} \\ & 712 \mathrm{~A}-12 \mathrm{C} \\ & 722 \mathrm{~A}-65 \mathrm{~A} \\ & 722 \mathrm{~A}-65 \mathrm{~B} \\ & 722 \mathrm{~A}-65 \mathrm{C} \\ & 722 \mathrm{~A}-85 \mathrm{~A} \\ & 1200-0043 \\ & 1200-0044 \\ & 1251-0140 \\ & 1251-0141 \\ & 3150-0017 \\ & 3160-0026 \end{aligned}$ | MISCELLANEOUS <br> Binding post, black: output terminal <br> Insulator, binding post, 3 hole black, output <br> Binding post, red: output terminal <br> Coupler-bellows: $1 / 4^{\prime \prime}$ to $3 / 8^{\prime \prime}$ shaft <br> Knob, black: 2 3/4', COARSE VOLTAGE <br> Knob, black: $3 / 4^{\prime \prime} \mathrm{w} /$ pointer, CURRENT LIMIT, FINE VOLTAGE <br> Guide, printed circuit <br> Clamp-stop (coarse voltage) <br> Assembly, circuit board "A" <br> Assembly, circuit board "B" <br> Assembly, circuit board "C" <br> Holder, air filter <br> Insulator, transistor mounting <br> Socket, transistor mounting <br> Connector, printed circuit: 15 pin <br> Connector, printed circuit: 18 pin <br> Filter, air <br> Fan: 100 CFU, 115 VAC $\pm 10 \%, 50 / 60$ cycles, 14 W |  |

Table 6-2. Replaceable Parts (Cont'd)


Table 6-2. Replaceable Parts (Cont'd)

| (50) Stock No. | Description | Mfr. | Mfr. Part No. | TQ | RS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0690-8221 | fxd, comp, 8200 ohms $\pm 10 \%$, 1 W | 01121 | GB 8221 | 1 | 1 |  |
| 0693-5621 | fxd, comp, 5600 ohms $\pm 10 \%, 2 \mathrm{~W}$ | 01121 | HB 5621 | 1 | 1 |  |
| 0699-0002 | fxd, comp, 6.8 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ | 01121 | EB 68G1 | 1 | 1 |  |
| 0727-0091 | fxd, dep c, 790 ohms $\pm 1 / 2 \%, 1 / 2 \mathrm{~W}$ | 19701 | DC-1/2C special, order by description | 1 | 1 |  |
| 0727-0110 | fxd, dep c, 1500 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 19701 | DC1/2CR5, order by description | 1 | 1 |  |
| 0727-0196 | fxd , dep $\mathrm{c}, 52,600$ ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 19701 | DC-1/2CR5, order by description | 1 | 1 |  |
| 0727-0327 | fxd, dep c, 59, 950 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 19701 | DC-1/2R5, order by description | 1 | 1 |  |
| 0757-0021 | fxd, $\mathrm{mfg}, 1 \mathrm{~K}$ ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 19701 | MF1/2T-2, order by description | 2 | 1 |  |
| 0812-0013 | fxd, ww, 0.7 ohm $+3 \%, 5 \mathrm{~W}$ | 91637 | RS5 | 1 | 1 |  |
| 0813-0021 | fxd, ww, 2 ohms $\pm 10 \%, 5 \mathrm{~W}$ | 35434 | CN5, order by description | 1 | 1 |  |
| 0813-0022 | fxd, ww, 200 ohms $\pm 10 \%, 5 \mathrm{~W}$ | 35434 | CN5, order by description | 1 | 1 |  |
| 0813-0023 | fxd, ww, 350 ohms $\pm 10 \%, 5 \mathrm{~W}$ | 35434 | CN5, order by description | 2 | 1 |  |
| 0813-0024 | fxd, ww, 450 ohms $\pm 10 \%, 5 \mathrm{~W}$ | 35434 | CN5, order by description | 1 | 1 |  |
| 0813-0025 | fxd, ww, 600 ohms $\pm 10 \%, 5 \mathrm{~W}$ | 35434 | CN5, order by description | 2 | 1 |  |
| 0813-0026 | fxd, ww, 800 ohms $\pm 10 \%, 5 \mathrm{~W}$ | 35434 | CN5, order by description | 2 | 1 |  |
| 0813-0027 | fxd, ww, 1 K ohms $\pm 10 \%, 5 \mathrm{~W}$ | 35434 | CN5, order by description | 2 | 1 |  |
| 1120-0103 | Meter: 0-60 volts | 06555 | type 2PL order by description | 1 | 1 |  |
| 1120-0104 | Meter: 0-2.5 amps | 06555 | type 2 PL, order by description | 1 | 1 |  |
| 1450-0025 | Lamp, neon: indicator, clear lens | 03797 | E-lite 1AG1-1369 | 2 | 2 |  |
| 1850-0037 | Transistor: 2N274 | 02735 | 2N274 | 1 | 1 |  |
| 1850-0048 | Transistor: 2N650 | 04713 | 2N650 | 3 | 3 |  |
| 1850-0057 | Transistor: 2N1159 | 16758 | 2N1159 | 2 | 2 |  |
| 1850-0058 | Transistor: 2N443 | 16758 | 2N443 | 1 | 1 |  |
| 1850-0059 | Transistor: 2N173 | 16758 | 2N173 | 1 | 1 |  |
| 1851-0001 | Transistor: 2N169 | 03508 | 2N169 | 1 | 1 |  |
| 1901-9007 | Diode, silicon: $500 \mathrm{ma}, 400 \mathrm{PIV}$ | 81483 | Order by description | 8 | 8 |  |
| 1901-0008 | Diode, silicon: 500 mn , 100 PIV | 81483 | SD91A | 3 | 3 |  |
| 1901-0019 | Diode, silicon: 1N1344 | 05277 | 1N1344 | 5 | 5 |  |

\# See introduction to this section

Table 6-2. Replaceable Parts (Cont'd)

\# See introduction to this section

Table 6-2. Replaceable Parts


## APPENDIX <br> CODE LIST OF MANUFACTURERS (Sheet 1 of 2)

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and $\mathrm{H} 4-2$ (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H 4 handbooks.


## APPENDIX

CODE LIST OF MANUFACTURERS (Sheet 2 of 2)

| $\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$ | MANUFACTURER ADDRESS | $\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$ | MANUFACTURER | ADDRESS |
| :---: | :---: | :---: | :---: | :---: |
| 73905 | Jennings Radio Mfg. Co. San Jose, | 82647 |  |  |
| 74455 | J. H. Winns, and Sons Winchester, M |  | Metals and |  |
| 74861 | Industrial Condenser Corp. Chicago, | 82866 | Re | s. |
| 74868 | Industrial Products Co. Dambury, Con | 828 |  |  |
| 74970 | E. F. Johnson Co. Waseca, |  |  |  |
| 75042 | International Resistance Co. Philadel | 82893 | Vector Electronic | f. |
| 75173 |  | 83148 | Electro Cords Co. | Angeles, Calif. |
| 7517 | of Cinch Mfg. Corp. Chicaga, | 83186 | Victory Engineering Corp. | J. |
| 75378 | James Knights Co. Sandwich, II | 83298 | Bendix Corp. | d Bank, N.J. |
| 75382 | Kulka Electric Mfg. Co., Inc. Mt. V | 83501 | Gavitt Wire and Cable Diy. of Amerace Corp. | Brookfield, Mass. |
| 75818 | Lenz Electric Mfg. Co. Chicago, III. | 83594 |  |  |
| 75915 | Littelfuse Ine. Des Plain |  |  |  |
| 76005 | Lord Mfg. Co. Eri | 83777 | Model Eng. and Mfg., Inc. |  |
| 76210 | C. W. Marwedel San Francisco, Cali | 83821 | L |  |
| 76433 | Micamold Electronic Mfg. Corp. | 84171 | Arco Electronics, | New York, N.Y. |
| 76487 | James Millen Mig. Co., nc. Malde |  |  |  |
| 76530 | Monadnock Mills San Leandro, Calit | 84 | G | gallala, Neb. |
| 76545 | Mueller Electric Co. Cleveland, Ohis | 84970 | Sarkes Tarzian, Ine. | mington, Ind. |
| 76854 | Oak Manufacturing Co. Chicago, III | 85454 | Boonton Molding Compan | Boonton, N.J. |
| 77068 | Bendix Corp., Bendix Pacific Div. <br> No. Hollywood | Q 5 | R. M. Bracamonte \& Co. |  |
| 77221 | Phaostron Instrument and Electronic Co. <br> South Pasad | $\begin{aligned} & 85660 \\ & 85911 \end{aligned}$ | iled Kords, Ine. mless Rubber Co. | ew Haven, Conn. Chicago, III. |
| 77342 | Potter and Erumfield, inc. Princetcher | 86684 | dio Corp. of America, |  |
| 7763 | Radio Condenser Co. | 87 | ern Fibrous Glass | cts Co. |
| 77638 | Rad |  |  | Francis |
| 77764 | Resistance Products Co. Harris |  | C |  |
| 78283 | Signal Indicator Corp. New York, N. |  |  |  |
| 784 | Tilley Mig. Co. San Francisco, Calif. | 89636 | Carter Parts Div. of Eco | y Baler Co. |
| 78 | Stackpole Carbon Co. St. Marys, Pa |  |  | Chicago, Ill. |
| 78553 | Tinnerman Products, Inc. Cleveland, Ohio | 89665 | nited Transformer | hicago, III. |
| 78790 | Transformer Engineers Pasadena, Calit | 90179 | S. Rubber Goods Div. |  |
| 78947 | Ucinite Co. Newtonville, Mass | 90970 |  |  |
| 79142 | Veeder Root, Inc. Hartford, | 91 | Radio Materials Co. |  |
| 79251 | Wenco Mfg. Co. Chicago, llt. | 91506 | gat Brot | s. |
| 79727 | Continental-Wirt Electronics Corp. | 91 | Dale Products, In | lumbus, Neb. |
| 79 | Zierick Mfg. Corp. New Rochelle, N.Y | 91662 | Elco Corp. | ladelphia, Pa. |
| 80031 |  | 91737 | remar Mfg. Co., Inc. <br> F Development Co. | Wakefield, Mass. wood City, Calif. |
| 80 | Times Facsimile Corp. New York, N.Y. | 91929 | icro-Swifch Div. of Min | olis |
| 80131 | Electronic Industries Association Any brand tube meeting E!A standards | 92196 | Honeywell Regulator Co. niversal Metal Products, Bas | Freeport, III. <br> c. <br> eft Puente, Calif. |
| 80207 | Unimax Switch, Div. of W. L. Maxson Corp. | 93332 | Sylvania Electric Prod. Inc Serniconductor Div. | Woburn, Mass. |
| 80 | Oxferd Electric Corp. Chi | 93 | Robbins and Myers, Inc. | New York, N.Y. |
| 804 | Acro Manufacturing Co. Columbus, Ohio | 93 | Stevens Mfg. Co., Inc. | d, Ohio |
| 80486 | All Star Products Inc. Defiance. Ohio | 93983 | suline-Van Norman Ind., Electronic Division | Manchester, N.H |
| 80583 | Hammerlund Co., Ine. New York, N.Y. |  |  | chester, N.H |
| 80640 | Stevens, Arnold, Co., Ine. Boston, Mass. |  | Tube Div. | Quincy, Mass. |
| 81030 | International Instruments, Inc. New Haven, Conn. | 94145 | Raytheon Mfg. Co., Semiconductor Div. | Newtoñ, Mass. |
| 81415 | Wilkar Products, Inc. Cleveland, Ohio | 94148 | Scienti |  |
| 81453 | Raytheon Mfg. Co., Industrial <br> Tube Division | 4 | Tung-Sol Electric, Inc. | Loveland, Colo Newark, N.J. |
| 81483 | International Rectifier Corp.el Sequndo | 94197 |  | nics Div. Carlstadt N.J. |
| 81860 | Barry Controls, Inc. Watertown, Mass. | 94310 | , Ohm Prod. Div. of |  |
| 82042 | Carter Parts Co. Skokie, Ill. |  | Engineering and Mig. C | o. Chicago, III. |
| 82142 | Jeffers Electronics Division of Speer Carbon Co. | 94682 | orcester Pressed Aluminu | Corp. Worcester, Mass. |
| 82170 | Allen B. DuMont Labs., Inc. Clifton, N.J. | 95236 | Allies Products Corp. | Miami, Fla. |
| 82209 | Maģuire Industries, Inc. Greenwich, Conn. | 95238 | al Connector Cor | Woodside, N.Y. |
| 82219 | Sylvania Electric Prod. Inc., <br> Electronic Tube Div. <br> Emporium, Pa | 95263 | Leecraft Mfg. Co., Inc. Lerco Electronics, Inc. | New Yock, N.Y. <br> Burbank, Calif |
| 82376 | Astron Co. East Newark, N.J. | 95265 | Nationa! Coil Co. | Sheridan, Wyo. |
| 82389 | Switcheraft, Inc. Chicago, Ill. | 95275 | Vitramon, Inc. | Bridgeport, Con |



## (40) MANUAL CHANGES

MODEL 722A/AR
DC POWER SUPPLY

## Manual Serial Prefixed: 105- <br> Manual Printed 11-61

To adapt this manual to instruments with other serial prefixes check for errata below, and make changes shown in tables.

| Instrument Serial Prefix | Make Manual Changes | Instrument Serial Prefix | Make Manual Changes |
| :---: | :---: | :---: | :---: |
| 105- | 1,2 |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

```
CHANGE #l. Figure 4-3
    Change reference designator Rl3 to Rl4
    Figure 5-4, 5-5
    Change reference supply voltage to +13.8 \pm0.2 volts
    Paragraph 5-23 step b,
    Change to read: ". . . until the meter reads
    +13.8 +0.2 volts"
CHANGE #2 Figure 5-5
    Change Amplifier Q12 from 2N247 to 2N274
```

(40)

