OPERATION AND SERVICE MANUAL
MODEL 6920B METER CALIBRATOR MANUFACTURING CODE A

OPERATING AND SERVICE MANUAL

HEWLETT PACKARD

CERTIFICATION

The Hewlett-Packard Company certifies that this instrument was thoroughly tested and inspected and found to meet its published specifications when it was shipped from the factory. The HewlettPackard Company further certifies that its calibration measurements are traceable to the U.S. National Bureau of Standards to the extent allowed by the Bureau's calibration facility.

WARRANTY AND ASSISTANCE

Abstract

All Hewlett-Packard products are warranted against defects in materials and workmanship. This warranty applies for one year from the date of delivery, or, in the case of certain major components listed in the operating manual, for the specified period. We will repair or replace products which prove to be defective during the warranty period. No other warranty is expressed or implied. We are not liable for consequential damages.

For any assistance contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

NOTICE

These preliminary instructions are supplied to permit the earliest possible delivery of your instrument. The information is not as complete as that which will be included in the final version of the manual. The attached card is provided to make certain that the final Operating and Servicing Manual for this instrument reaches the proper person. Please mail this card immediately and we will supply you with a copy of the complete manual as soon as it becomes available.

HARRISON LABORATORIES
A DIVISION OF
HEWLETTPACKARD (hp
100 LOCuSt AVENUE - berkeley heights, NEW JERSEY 07922 464-1234 - Area Code 201 - TWX-201-464-2117
INSTRUCTION MANUAL REQUEST INSTRUCTION MANUAL REQUEST
Send complete Operating and Servicing Manual for Model No.

OPERATION AND SERVICE MANUAL MODEL 6920B
 METER CALIBRATOR MANUFACTURING CODE A

Input: 105-125 VAC, single phase, 58-62 cps.
Output: AC or DC.

$.01-1 \mathrm{~V}$	to	5 A
$.1 \mathrm{~V}-10 \mathrm{~V}$	to	1 A
$1 \mathrm{~V}-100 \mathrm{~V}$	to	100 ma
$10 \mathrm{~V}-1000 \mathrm{~V}$	to	10 ma
$1 \mu \mathrm{a}-100 \mu \mathrm{a}$	to	500 V
$10 \mu \mathrm{a}-1 \mathrm{ma}$	to	500 V
$100 \mu \mathrm{ma}-10 \mathrm{ma}$	to	500 V
$1 \mathrm{ma}-100 \mathrm{ma}$	to	50 V
$10 \mathrm{ma}-1 \mathrm{~A}$	to	5 V
$100 \mathrm{ma}-5 \mathrm{~A}$	to	.5 V

*DC only.
Line Regulation: The accuracy specifications will be met with line voltages from 105 to 125 VAC.

Output Impedance: DC - l Volt Range: Less than 0.0005 ohms.
Other Ranges: Accuracy specification is met with any load within the listed output capability.

AC - 1 Volt Rance: Less than 0.001 ohms. $100 \mu \mathrm{Range}: \quad$ Greater than 500 megohms. Other Ranges: Accuracy specification is met with any load within the listed output capability.

On 10 VAC Range -minimum load resistance 5 ohms 100 VAC Range - minimum load resistance 500 ohms 1000 VAC Range-minimum load resistance 50 K ohms

Power factor of load 0.9 to 1.0 in AC Ranges.
Operating Temperature: 0° to $50^{\circ} \mathrm{C}$.
Accuracy specification met at $25 \pm 10^{\circ} \mathrm{C}$ after 1 hour warm-up in static environment.

DC Accuracy: 0.2% of output ± 1 digit.
AC Accuracy: 0.4% of output ± 1 digit.
Overload Protection: May be shorted in voltage ranges and open-circuited in current ranges without damage.

Grounding: In voltage ranges, the negative terminal is grounded. In current ranges, both terminals are off-ground--load must be floating.

SECTION I
GENERAL INFORMATION

1-1 DESCRIPTION

1-2 The Model 6920B is a feedback-regulated power source particularly suited for calibration of meters. Ten continuously variable output ranges are provided, ranging from 1 volt to 1000 volts and from $100 \mu \mathrm{a}$ to $5 A$ full output. All ranges provide either DC or AC at the power-line frequency; however, the 100μ a range is not calibrated in AC. Power output capability is from 2.5 watts in the 10 A range to 10 watts in the 10 , 100 , and 1000 volt ranges. The AC output, while having the same waveform as the input power line, is controlled to have the correct average value. The 3 digit output dial is calibrated in terms of the RMS value of a sine wave.

1-3 The 6920B is particularly useful for production-line checking of meters for accuracy and for sticking movements. In addition, the wide range of outputs allows convenient checking of multimeters in the laboratory. Compact construction, through the use of all semiconductor circuitry, allows for easy portability.

1-4 Built-in current and voltage limiting circuits protect the 6920 from short circuit loads in voltage ranges and open-circuit loads in current ranges.

1-5 OPTIONAL EQUIPMENT

1-6 A 0.1 ohm shunt is available to extend the voltage capabilities downward to include 1 mv full output, when used in conjunction with the current ranges of the 6920B. When the shunt is used, the source impedance is 0.1 ohm.

1-7 INSTRUMENT IDENTIFICATION

1-8 This manual applies only to the Model 6920B. Change sheets will be supplied which include any differences between your instrument and this manual.

1-9 COOLING SYSTEM

1-10 This instrument is convection cooled and requires no maintenance except for occasional dusting. Adequate space should be provided around the unit to allow free circulation of cooling air.

1-11 POWER CABLE

1-12 A 5 -foot three conductor power cable is supplied with the instrument terminated in a polarized three-prong male connector recommended by the National Electrical Manufacturers Association (NEMA) . NEMA recommends that the instrument panel and cabinet be grounded. All Harrison Laboratories instruments are equipped with a power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable three-prong connector is the ground pin.

1-14 To preserve the protection feature when operating the instrument from a two-prong outlet, use a three-prong to two-prong adaptor and connect the green pigtail on the adaptor to ground.

2-1 INCOMING INSPECTION

2-2 The instrument should be unpacked and inspected both mechanically and electrically upon receipt. Observe packing method and retain packing materials until unit has been inspected. Mechanical inspection involves checking for signs of physical damage such as scratched panel surfaces, broken knobs, etc. If damage is present, file a claim with the carrier. The electrical inspection involves checking the instrument against its specifications. Section V includes a performance check which is an in-cabinet check to verify proper instrument operation. It is recommended as an incoming inspection test. Refer to the warranty page if there is any electrical malfunction.

2-3 INSTALLATION
2-4 The meter calibrator is a portable instrument requiring no permanent installation. It is only necessary to connect the power cable supplied with the instrument to the power input and the instrument is ready for operation.

2-5 This instrument is air cooled. Sufficient space to permit free flow of cooling air around the instrument should be considered when installing. It should not be used in an area where the temperature exceeds $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$. For rated accuracy, the temperature should be between $15^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right.$ to $\left.95^{\circ} \mathrm{F}\right)$.

2-6 POWER REQUIREMENTS

2-7 The 6920A operates on 115 volts 60 cps . The average input current with the output fully loaded is lampere.

2-8 REPACKAGING FOR SHIPMENT

2-9 The following list is a general guide for repackaging an instrument for shipment. If you have any questions, contact your authorized Harrison Laboratories sales office.
a. Use the original container designed for the instrument. If a new container is required, a foam pack and container can be ordered from Harrison Laboratories. The stock number is given in the table of replaceable parts under "Miscellaneous".
b. Wrap the instrument in heavy paper or plastic before placing it in the shipping carton.
c. Use plenty of packing material around all sides of the instrument and protect the panel with cardboard strips.
d. Use heavy cardboard carton or wooden box to house the instrument and use heavy tape or metal bands to seal the container.
e. Mark the packing box with "Fragile--Delicate Instrument", etc.

NOTE: If the instrument is to be shipped to Harrison Laboratories for service or repair, attach a tag to the instrument identifying the owner and indicating the service or repair to be accomplished. In any correspondence, be sure to identify the instrument by model number and serial number.

3-1 INTRODUCTION

3-2 The 6920B is ready to use as received from the factory. For maximum accuracy, allow one hour after turning on to allow the internal temperature to stabilize.

3-3 Figure 3-1 describes the operating controls and indicators.
3-4 OPERATING CONTROLS

3-5 Qutput Switch

3-6 This disconnects the output terminals when it is in the center "OFF" position. It should be "OFF" when changing loads, changing the range or function switch setting and when turning on the instrument. This insures that any voltage transients which may occur at these times do not damage the load or the operator.

3-7 When all other settings are made and the load connected, the output switch can be tipped to either the "ON TEST" or the "ON HOLD" position. In either case power is now being fed into the load. The switch will return to "OFF" from the "ON TEST" position as soon as figure pressure is removed. It will remain in the "ON HOLD" position until manually returned to "OFF".

3-8 Always return the output switch to "OFF" before removing the load. This is particularly important in the current ranges where dangerous voltages will exist if the load is removed with the output still "ON".

3-9 This switch is also used to reset the over-voltage protection circuit. See paragraph 3-28.

3-10 Output Terminals

3-11 The device to be calibrated is connected to the output terminals. In DC the Red (HI) terminal is positive (conventional current flow out of the red terminal).

3-12 In all voltage ranges the Black (LO) terminal is connected to the chassis and to earth ground through the three-wire power cord.

NOTE: In all current ranges the black terminal is connected to a point in the circuit which is as much as l volt off ground potential, depending on the output dial setting. Do not shunt the LO terminal to earth ground with the device being calibrated. Inaccurate results may be obtained or the load could be damaged. There should be no problem of this kind with non-electronic or battery-powered current meters. If line-operated instruments are to be calibrated, see paragraph 3-29.

3-13 Function Switch

CAUTION: Do not turn FUNCTION SELECTOR when OUTPUT SWITCH is on.

FIG. 3-1

1. Function Selector: Provides line power to meter calibrator when in "AC" or "DC" position. Selects AC or DC at the output terminals.
2. Power Indicator: Lights when instrument is turned on and AC source provided. Not lit if fuse is blown or missing.
3. Output Dial: Allows calibrated adjustment of output over the range selected.
4. Range Switch: Selects the voltage or current available with the output dial at its maximum setting - (1)000.
5. Output Indicator: Brightly lit when power is being delivered at output terminals. Dims if over voltage protection circuit trips. Out when output switch is "off".
6. Output Terminals: Connector for meter being calibrated. LO (-) terminal is connected to chassis ground in all voltage ranges. In current ranges the ground is inside the circuit and neither terminal should be grounded (see paragraph 3-29).
7. Output Switch: Open-circuits output terminals when in Off (reset) position. In this position the over-voltage protection circuit is also reset. In either "On" position power is delivered to the output. "On Test" will return "Off" as soon as finger pressure is removed. "On Lock" will remain on until manually returned to "Off".

$$
3-2
$$

3-14 The Function Switch is the input line switch for the meter calibrator. In the "OFF" position, input power is off. In "AC", alternating current will be delivered to the output terminals, while in "DC", direct current is available.

3-15 Range Switch

3-16 The range switch selects the current or voltage range appropriate to the meter being tested. The range indicated by the switch is the output available with the output dial fully clockwise, to (1)000.

3-17 Output Dial

3-18 The three-digit, ten turn output dial allows continuous adjustment of the calibrator output within any range.

3-19 To determine the correct decimal point placement, consider the decimal point to be immediately to the left of the left-hand digit, then multiply this number by the range switch setting. For example: 123 on the 10 ma range is $.123 \times 10 \mathrm{ma}=1.23 \mathrm{ma}$.

3-20 Output Indicator

3-21 The output indicator is lit when the meter calibrator is delivering power to the output terminals. The light is out if the output switch is in the "OFF" position. It also will be off dim when the over-voltage protection circuit is activated, which will occur if the load is removed in any of the current ranges.

3-22 If the output light is not on and output power is desired, move the output switch to the "OFF (RESET)" position. Check the load to be sure that it is within the voltage capabilities of the 6920 B , then return the output switch to "ON".

3-23 GENERAL OPERATING PROCEDURE

3-24 A brief procedure for using the Model 6920B meter calibrator, printed on the front panel, is also shown in figure 3-1.

3-25 Overload

3-26 The load should be within the current capability of the voltage range with which it is being used. If excessive current is drawn the output voltage will begin to fall, approaching zero for large overloads. Table 3-1 lists the output capabilities of the 6920 B in the various ranges.

Range	Maximum Output	Meter Resistance
1 volt DC	5 amperes	---
10 volts DC	1 ampere	---
100 volts DC	100 ma	---
1000 volts DC	l0ma	---
$100 \mu \mathrm{a}$ DC	500 volts	---
lma DC	500 volts	---
10ma DC	500 volts	---
100 ma DC	50 volts	---
1 ampere DC	5 volts	---
10 amperes DC	5 amperes/0.5 volts	---
1 volt AC	5 amperes	---
10 volts AC	1 ampere	5 ohms minimum
100 volts AC	100 ma	500 ohms minimum
1000 volts AC	10 ma	50 K ohms minimum
100~a AC	Not Calibrated	---
lma AC	500 volts	---
10ma AC	500 volts	---
100 ma AC	50 volts	---
1 ampere AC	5 volts	---
10 amperes AC	5 amperes/ 0.5 volts	---

3-27 In current ranges, it should be recalled that an open circuit is the maximum load condition and that a short circuit is minimum load. When testing current meters, the OUTPUT switch should be returned to "OFF" before removing the meter under test. If this is not done, the output voltage will momentarily exceed the full voltage capability of the current range in use, to as much as 1500 volts in the lowest three current ranges.

3-28 If a current meter is inadvertently removed with the output "ON", an over-voltage protection circuit will turn the error amplifier off - preventing further high-voltage operation. When this occurs, the OUTPUT INDICATOR light ceases to glow brightly and becomes very dim, indicating to the operator that the protection circuit has tripped. The protection circuit can also be activated when changing ranges or turning on the meter calibrator with the output switch "ON". The over-voltage protection is reset when the OUTPUT switch is placed in the "OFF (RESET)" position.

NOTE: When the over-voltage protection is energized, the output may be as high as 20% of the range switch setting in DC operation or 30% of range setting in AC, regardless of the setting of the output dial. To avoid the possibility of overloading a meter, always return the output switch "OFF" before changing ranges.

GROUNDING CONSIDERATIONS

II. TESTING CURRENT METERS FOR GROUND PROBLEMS
A)

DISCONNECT LO TERMINAL FROM CHASSIS GROUND AT A, OR IF THIS CANNOT BE DONE BREAK EXTERNAL GROUND LEAD AT B.
B)

BREAK AT A,OR IF NOT POSSIBLE BREAK LEAD AT B.

FIG. 3-3

3-30 With panel meters, multimeters, battery operated instruments and clip-on current meters which have no connection with earth ground, no grounding difficulties should be encountered in either the voltage or current ranges.

3-31 When calibrating line-operated meters which may have resistance and capacitance to earth ground and may generate currents between earth ground and the negative lead, some precautions are necessary in grounding. In voltage ranges the best procedure is to break any connection with earth ground in the meter being tested (as shown in figure 3-2), the ground connection being made through the negative terminal of the 6920B.

3-32 Line operated current meters, with the exception of clip-on models, require special care in grounding to avoid inaccurate measurements. Two quick tests, illustrated in figure 3-3, will show where problems exist.
a. Remove any connection between the low or (-) meter terminal and ground. Ground the (+) or high terminal. The meter should read zero within the desired accuracy.
b. Again with the (-) or LO meter terminal ungrounded, connect the (+), high, terminal to a +1 volt source, with respect to ground, AC for $A C$ meters, $D C$ for $D C$ meters. The 1 volt range of the $6920 B$ works well for this. To avoid possible damage to the meter, bring the voltage up slowly from zero until 1 volt is reached. If the meter still reads zero within the desired accuracy limits, no problem will be encountered in calibration if the LO (-) terminal is left ungrounded.

3-33 The above tests are accurate as long as the full-current voltage drop across the meter is small compared with 1 volt. Any guard shields present in the meter should be connected to the (-), LO, terminal but not to ground.

3-34 If the tests in 3-32 show that problems do exist, figure 3-4 shows a way of curing the problem. A (+1) amplifier such as the DY-2460A Solid State DC amplifier with DY-2461A-M4 plus-one gain plug-in is used to isolate the low-side terminal of the meter from the LO (-) terminal of the 6920B.

3-35 Calibrating True RMS AC Meters

3-36 In AC ranges the output waveform of the 6920 B will be the same as that of the input power line, which will not be perfectly sinusoidal. The AC reference of the meter calibrator insures that the average value of the output will remain correct regardless of line distortion. The output dial is calibrated in terms of the sinusoidal RMS equivalent of the average value of the output. Thus, any AC meter which is average-sensing, RMS calibrated will be correctly calibrated. Meters of this type include multimeters and most electronic and digital voltmeters.

3-37 For true-reading RMS meters an error will exist as a function of the line distortion. Table 3-2 shows the possible error in terms of second, third and fourth harmonic content of the line.

FIG. 3-4
ELIMINATING GROUND PROBLEMS WITH + I AMPLIFIER

OUTPUT ERROR DUE TO
LINE WAVEFORM DISTORTION

$\begin{gathered} \% \\ \text { HARMONIC } \\ \hline \end{gathered}$	$\begin{gathered} \text { \% ERROR } \\ \text { AVERAGE-SENSING } \\ \text { RMS CALIBRATED METER } \end{gathered}$	\% ERROR TRUE RMS METER
0	0	0
1\% Second	0	-0\% to +0.02\%
2\% Second	0	-0\% to $+0.02 \%$
5\% Second	0	-0\% to $+0.12 \%$
10\% Second	0	-0\% to +0.50\%
20\% Second	0	-0.07\% to $+1.98 \%$
1\% Third	0	-0.65\% to +0.69\%
2\% Third	0	-0.65\% to $+0.69 \%$
5\% Third	0	-1.54% to $+1.79 \%$
10\% Third	0	-3.14% to $+3.53 \%$

3-38 If greater accuracy is needed for true RMS meters, an external sine wave oscillator capable of supplying $60 \mathrm{cps}, 15$ volts $\pm 10 \%$ at 2 ma , can be used to supply the signal to the AC reference regulator. To do this, refer to figure 3-5. Disconnect the lead at terminal 2 of Transformer Tl. Connect a pair of shielded leads from the 15 volt AC source to the points shown, the low side going to Aland the high side going to A2.

NOTE: The calibrator should never be operated without the 15 volt AC being present as damage to the inverter may result.

3-39 Effects of Rapid Line Voltage Changes

3-40 In order to prevent distortion of the AC waveform in the AC reference circuit, the AC reference feedback loop has been made slow compared with 60 cps . Hence, sudden changes in line voltage will not be immediately corrected, producing a momentary shift in the AC output. If a particularly noisy line is causing excessive instability of the AC output, an external oscillator capable of supplying $60 \mathrm{cps}, 15$ volt $\pm 10 \%$ at 2 ma , can be used to replace the line-derived AC input normally used. See paragraph 3-38 and figure 3-5 for instructions on this procedure.

SECTION IV
 PRINCIPLES OF OPERATION

4-1 INTRODUCTION

4-2 The 6920 B is a multiple-range $A C / D C$ power supply which is suitable for the calibration of voltage and current meters. An inverter circuit is used following A DC series regulator transistor. This provides AC which is fed to a transformer. The various secondary windings provide current up to 5 amps and voltage to 1000 volts. The square wave output is rectified and filtered and supplied to the output terminals.

4-3 A closed-loop feedback system controls the output by comparing a reference voltage, set by the output dial, with a suitable measure of the output. The voltage difference is amplified and operates the series regulator transistor.

4-4 AC operation is similar with the exception that an AC reference is used. The rectifiers are bypassed at the secondary of the output transformer and a synchronous demodulator, in the error amplifier, keyed at the inverter frequency is used to maintain negative feedback during both halves of the inverter cycle.

4-5 Auxiliary circuits include a protective current limit, an over-voltage trip circuit, and an amplifier to maintain the inverter transformer in a state of DC balance. An output indicator lamp is used to show the state of the over-voltage trip.

4-6 BLOCK DIAGRAM

4-7 Figure 4-1 shows an over-all block diagram of the Model 6920B. The output signal is sampled by the range divider to obtain a signal which is 1 volt for full output. In the voltage ranges this is a voltage divider, for example 1000:1 in the 1000 volt range. In current ranges it is a series monitoring resistor; for example, 1000 ohms in the lma range. The range resistor configurations are shown in figure 4-2. This signal is fed back to the input amplifier where it is compared with a variable reference voltage, set by means of the output which operates R4.

4-8 The output of the error amplifier is delivered to the synchronous demodulator. In DC this demodulator is bypassed, its function being taken by the output power rectifiers. In AC, the demodulator reverses the amplifier polarity whenever the inverter switches.

4-9 The demodulator feeds a signal to the power regulator. Here the error signal is further amplified and used to control a series regulator power amplifier.

4-10 INVERTER

4-11 The output of the series regulator is applied to an inverter consisting of transistors Q14 and Q15, which is driven synchronously with the AC power line. In the DC mode of operation this produces a square wave signal which is suitable for applying to the output transformer.

4-12 In AC, because the AC reference, the synchronous demodulator and the inverter are all synchronized with the AC power line, the signal applied to the inverter appears as a full-wave rectified sinusoidal waveform. After passing through the inverter the desired sine wave is obtained on the transformer primary.

FIG. 4-I
FUNCTIONAL BLOCK DIAGRAM

FIG. 4-2
RANGE RESISTOR CONFIGURATION

4-14 The output transformer changes the power on its primary to one four impedance levels which are associated with its four secondary windings; these levels correspond to 1000 V at $10 \mathrm{ma}, 100 \mathrm{~V}$ at $100 \mathrm{ma}, 10 \mathrm{~V}$ at 1 A and 2 V at .5 A .

4-15 FUNCTION SWITCH

4-16 This switch selects whether the transformer output is to be rectified or not. In the AC mode of operation the output rectifiers are bypassed. It also selects the AC or DC reference, bypasses the synchronous demodulator in DC and changes the feedback loop equalizers.

4-17 RANGE SWITCH

4-18 The range switch selects the output windings appropriate to the selected output voltage or current range. In addition, it selects the proper divider or series resistor, in current ranges, to provide the 1 volt/full-output sample of the output signal. In figure $4-2$ the range resistor configuration for each of the ten ranges is shown.

4-19 DC REFERENCE

4-20 A 6.2 volt temperature compensated reference diode is used as the DC reference. Circuitry is used to minimize the current changes through this diode with changes in the input line. The reference circuit also supplies +12.6 volts and -9.4 volts to operate the low-level error amplifiers.

4-21 AC REFERENCE

FIG. 4-3
AC REFERENCE

4-22 The AC reference voltage is obtained by taking an AC signal derived from the AC line and controlling its amplitude with a photo-resistor. The AC so obtained is accurately converted to DC, proportional to the average AC. This signal is compared with the DC reference. A DC amplifier consisting of transistors Q1, Q3 and Q5 amplifies the error and drives an incandescent lamp which affects the photo-resistor in such a way as to restore the AC reference to the desired value. A block diagram of this circuit appears in figure 4-3.

4-23 AC to DC conversion is accomplished by an AC-coupled feedback amplifier containing diodes CR30 and CR3l which drive its feedback network. This configuration has the advantage that changes in diode resistance with voltage and temperature have little effect on the accuracy of the AC to DC conversion process.

4-24 BALANCE AMPLIFIER

4-25 An amplifier consisting of $Q 30$ and $Q 31$ is connected to sense the average $D C$ in the transformer primary by means of resistors R46 and R47 as shown in figure 4-4. If a DC unbalance exists, the amplifier output is used to make correction in the circuit to balance the primary current. In the DC mode of operation the timing of the inverter is changed in such a way as to make the "ON" time of one of the two inverter transistors slightly longer with respect to the other. In AC, the balance amplifier output changes the DC level of the AC reference signal which has the effect of balancing the transformer DC.

FIG. 4-4
TRANSFORMER DC BALANCE AMPLIFIER

4-27 The inverter consists of transistors Q14 and Q15 which are driven as switches to apply the output of the series regulator alternately to each half of the output transformer primary. This allows use of a transformer to step up the voltage or current for the output

4-28 INVERTER DRIVER

4-29 A signal obtained from the AC line is used to synchronize the switching of the inverter driver. This signal is applied at the bases of Q26 and Q27. Speed-up networks R87 and C25 and R89 and C26 make the transition from one state to the other more rapid. Transistors Q26 and Q27 drive transistors Q28 and Q29 which in turn drive the inverter transistors.

SECTION V
MAINTENANCE

5-1 INTRODUCTION

5-2 This section contains maintenance and service information for the 6920 . The section includes recommended test equipment, performance checks, replacement, repair, and adjustment procedures and troubleshooting charts.

5-3 TEST EQUIPMENT

5-4 Table 5-1 lists recommended test equipment to be used in performance checks and adjustments.

5-5 PERFORMANCE CHECKS

5-6 The performance check procedures are used to check the 6920 against its specifications. All checks are made from the front panel. Thus, the procedures are useful as incoming or outgoing quality control, periodic maintenance, or after repair checks.

5-7 Refer to the instructions printed on the front panel for general operating procedures.

5-8 GENERAL CHECK

A. Turn OUTPUT switch "OFF".
B. Pilot should light when FUNCTION switch is at "AC" or "DC".
C. Set output dial to (1)000.
D. With "RANGE" in any of the four voltage ranges, yellow "OUTPUT INDICATOR" should light when the "OUTPUT" switch is turned "ON".
E. With output terminals shorted and "RANGE" in any of the six current ranges, the yellow "OUTPUT INDICATOR" should light when the "OUTPUT" switch is turned "ON". On the 10 Amp range, the output dial should be set at 500 .

5-9 VOLTAGE CALIBRATION CHECK

A. Allow unit to warm-up one hour.
B. Connect equipment as shown in Figure 5-1.
C. Switch FUNCTION to DC and RANGE to 1 Volt.
D. Set Voltmeter range to 1 Volt DC.
E. Set output dial to (1)000.
F. Voltmeter should indicate $1.000 \mathrm{~V} \pm 0.003 \mathrm{~V}$.
G. Set output dial to 100 .
H. Voltmeter should indicate $0.100 \mathrm{~V} \pm 0.0012 \mathrm{~V}$.
I. Similarly, check the remaining three DC VOLTAGE ranges and the four AC VOLTAGE ranges, referring to Table 5-2 for dial settings and tolerances.

FIG.5-2
CHECKING CURRENT CALIBRATION

Instrument Type	Required Characteristics	Use	Suggested Test Equipment
AC Voltmeter	Accuracy of $\pm 1 \%$ 90-130 Volts Expanded Scale	Measure Input Line Voltage	$\begin{aligned} & \text { Triplett Model } \\ & 420 \mathrm{M} \end{aligned}$
Variable Transformer	100-130 Volt Ranges 5 Amp Current Capacity	Change AC Input Voltage	Superior Type Q116U
Oscilloscope	$200 \mu \mathrm{~V} / \mathrm{cm}$ Sensitivity Differential Input	Measure Ripple Transient Response	HP Model 130C
Differential VoltMeter AC/DC	1 mv Resolution Ranges IV to 1000 V	Measure Output Accuracy	$\begin{gathered} \text { HP Model } \\ 741 \mathrm{~A} \end{gathered}$
Shunt Resistors	$\begin{aligned} & .05 \% \text { Accuracy } \\ & 10 \mathrm{~K} \\ & 1 \mathrm{~K} \\ & 100 \text { ohms } \\ & 10 \text { ohms } .1 \text { watt } \\ & 1 \text { ohm } 1 \text { watt } \\ & 0.1 \text { ohm } 2.5 \text { watts } \end{aligned}$	Measure Output Current	$\begin{aligned} & \text { Gen. Radio } \\ & 500-5 \\ & 500-4 \\ & 500-D \\ & 500-B \\ & \text { Leeds \& Northrp } \\ & 4020-B \\ & 4221-B \end{aligned}$
+1 Amplifier	1 Volt rms Output Capability	Isolate ground loops in measuring setup	```Dymec DY-2460-A with DY-2461A-M4 Plug-in```
2 Resistance Deca	1\% Accuracy 10 ohms to 100 K per step	Select Value of Calibration Resistors	Precise Model 468

Range	Setting	Output	$\begin{aligned} & \% \\ & \text { Error DC } \end{aligned}$	$\begin{gathered} \% \\ \text { Error AC } \\ \hline \end{gathered}$
IV	(1) 000	1.000 V	$\pm 3 \mathrm{mv}$	$\pm 5 \mathrm{mv}$
	100	0.100 V	$\pm 1.2 \mathrm{mv}$	$\pm 1.4 \mathrm{mv}$
10 V	(1)000	10.000 V	$\pm 30 \mathrm{mv}$	$\pm 50 \mathrm{mv}$
	100	1.00 V	$\pm 12 \mathrm{mv}$	$\pm 14 \mathrm{mv}$
100 V	(1)000	100.00 V	$\pm 300 \mathrm{mv}$	$\pm 500 \mathrm{mv}$
	100	10.0 V	120 mv	140 mv
1000 V	(1)000	1000.V	$\pm 3 \mathrm{~V}$	$\pm 5 \mathrm{~V}$
	100	100.V	1.2 V	$\pm 1.4 \mathrm{~V}$
$100 \mu \mathrm{a}$	(1)000	$100.0 \mu \mathrm{a}$	$\pm 0.3 \mu \mathrm{a}$	----
	100	$10.0 \mu \mathrm{a}$	$\pm 0.12 \mu \mathrm{a}$	----
1 ma	(1)000	1.000 ma	$\pm 3 \mu \mathrm{a}$	$\pm 5 \mu \mathrm{a}$
	100	100. $\mu \mathrm{a}$	$\pm 1.2 \mu \mathrm{a}$	$\pm 1.4 \mu \mathrm{a}$
10 ma	(1)000	10.00 ma	$\pm 30 \mu \mathrm{a}$	$\pm 50 \mu \mathrm{a}$
	100	1.00 ma	$\pm 12 \mu \mathrm{a}$	$\pm 14 \mu \mathrm{a}$
100 ma	(1) 000	100.0 ma	$\pm 300 \mu \mathrm{a}$	$\pm 500 \mu \mathrm{a}$
	100	10.0 ma	$\pm 120 \mu \mathrm{a}$	$\pm 140 \mu \mathrm{a}$
1 Ampere	(1)000	1.000 Ampere	$\pm 3 \mathrm{ma}$	$\pm 5 \mathrm{ma}$
	100	0.100 Ampere	$\pm 1.2 \mathrm{ma}$	$\pm 1.4 \mathrm{ma}$
10 Amperes	500*	5.00 Amperes	$\pm 20 \mathrm{ma}$	$\pm 30 \mathrm{ma}$
	100	1.00 Ampere	$\pm 12 \mathrm{ma}$	$\pm 14 \mathrm{ma}$

In all current ranges, when using the monitoring resistor values shown in Figure 5-2, the equivalent voltage tolerance will be as shown in the 1 Volt range.
*Except $\pm 2 \mathrm{mv}$ DC, $\pm 3 \mathrm{mv}$ AC.
5-10 If the line voltage is rapidly fluctuating, some instability may be noted in the $A C$ ranges if an $A C$ meter with rapid response is used. These fluctuations are normal and are due to the slow speed of the feedback loop controlling the AC refer ence.

5-11 CURRENT CALIBRATION CHECK
A. Allow unit to warm-up 1 hour.
B. Connect equipment as shown in Figure 5-2.
C. With OUTPUT switch "OFF", switch FUNCTION to DC and RANGE to $100 \mu \mathrm{a}$.
D. Connect a 10 K ohm $\pm .05 \%$ resistor across the output terminals as in Figure 5-2.
E. With OUTPUT "ON" check calibration at (1)000 and 100 on the dial, referring to Table 5-2 for tolerances.
F. Check the remaining current ranges, using monitoring resistors as shown in Figure 5-2 and referring to the tolerances in Table 5-2.

NOTE: Do not operate the 6920 in any current range with the OUTPUT "ON" without a suitable resistor across the output terminals, as dangerous voltages can occur.

5-12 REFERENCE REGULATOR CHECK
A. Connect a variable Auto-Transformer and Line Voltage Meter ahead of the AC input of the 6920 .
B. Connect power equipment as for the 1 volt calibration check.
C. Output dial to (1)000.
D. Set the input line voltage to 105 VAC and record the output voltage.
E. Raise the line voltage to 125 VAC and again record the output voltage.
F. Repeat the measurements in the AC mode with FUNCTION at AC, recording the AC output at 105 V and 125 VAC line.
G. The measurements obtained should be within $\pm 3 \mathrm{mv}$ of 1.000 volt in DC and $\pm 5 \mathrm{mv}$ of 1.000 volts in $A C$.

5-13 ADJUSTMENTS AND CALIBRATIONS

NOTE
Before performing any adjustments or calibrations turn-on the meter calibrator and allow a one hour warmup.

5-14 Inverter Phasing
A. Set controls on meter calibrator as follows:

FUNCTION SELECTOR	-	AC
RANGE switch	-	l-volt
OUTPUT SWITCH	-	OFF (RESET)
Dial	-	(1)000

B. Direct couple vertical input of oscilloscope between test points 1 and 4 (ground). Set oscilloscope for $0,5 \mathrm{v} / \mathrm{cm}$ vertical sweep.
C. AC couple the external trigger input of the oscilloscope to the junction of R90 and the collector of Q28. (For physical convenience connect to the end of R90 that is located nearest to potentiometer R7.) Adjust the oscilloscope triggering level so that reversing the triggering polarity control of the oscilloscope causes a phase reversal of the sine wave displayed on the oscilloscope.
D. Check the position of the DC base line on the oscilloscope by shorting the vertical input probe to ground.
E. Reconnect vertical input probe to test point 1 and adjust R86 so that the sine wave display starts at the DC base line ($\pm_{0.1}$ volt tolerance.)
F. Reverse the triggering polarity control on oscilloscope (sine wave display should reverse phase) and adjust R78 so that the sine wave display starts at the DC base line (${ }^{ \pm} 0.1$ volt tolerance).

5-15 Balance Amplifier
A. Set controls on the meter calibrator as follows:

FUNCTION SELECTOR - AC
RANGE switch - l-volt
OUTPUT SWITCH - ON HOLD
B. Connect DC voltmeter between test points 11 and 12. (DC voltmeter should have at least 5 mv resolution at zero.)
C. Adjust R99 for $0 \pm 5 \mathrm{mv}$ Indication on DC voltmeter.

5-16 Dial Phasing (AC Zero)

A. Set controls on meter calibrator as follows:

FUNCTION SELECTOR	-	AC
RANGE switch	-	l-volt
OUTPUT SWITCH	-	ON HOLD
Dial	-	010

B. Connect AC voltmeter with 10 mv range and 2% accuracy across frontpanel output terminals. $A C$ voltmeter indication should be $10 \pm 0.25 \mathrm{mv}$.
C. If AC voltmeter indication is incorrect, loosen the two Allen-head setscrews that are recessed in the knob of the dial, gently push the knob inward to disengage the knob gear from the dial gear, and rotate the knob as necessary to obtain a $10 \pm 0.25 \mathrm{mv}$ indication (dial remains at 010). Gently pull the knob forward to engage the gears and then tighten the setscrews.

5-17 AC Calibration

A. Set controls on meter calibrator as follows:

FUNCTION SELECTOR	-	AC
RANGE Switch	-	1 -volt
OUTPUT SWITCH	-	ON HOLD
Dial	-	$(1) 000$

B. Connect AC voltmeter with l-volt range and 0.1% accuracy across frontpanel output terminals.
C. Adjust R69 for 1 ± 0.001 volt indication on $A C$ voltmeter.

5-18 DC Zero
A. Set controls on meter calibrator as follows:

FUNCTION SELECTOR	-	DC
RANGE switch	-	l-volt
OUTPUT SWITCH	-	ON HOLD
Dial	-	010

B. Connect DC voltmeter with $10-\mathrm{mv}$ range and 2% accuracy across frontpanel output terminals.
C. Adjust R7 for $10 \pm 0.25 \mathrm{mv}$ indication on DC voltmeter.

5-19 DC Calibration
A. Set controls on meter calibrator as follows:

FUNCTION SELECTOR	-	DC
RANGE switch	-	l-volt
OUTPUT switch	-	ON HOLD
Dial	-	(1) 000

B. Connect DC voltmeter with l-volt range and 0.05% accuracy across frontpanel output terminals.
C. Adjust Rl for $\mathbf{1}^{ \pm} 0.0005$ volt indication on DC voltmeter 5-20 0.1 MA DC Zero
A. Set controls on meter calibrator as follows:

FUNCTION SELECTOR	-	DC
RANGE switch	-	0.1 ma
OUTPUT SWITCH	-	OFF
Dial	-	010

B. Connect DC ammeter with l-ua range and 5% accuracy across front-panel output terminals. Set OUTPUT SWITCH to ON HOLD.
C. Adjust R22 for 1 ± 0.05 ua indication on DC ammeter.

SECTION VI
 REPLACEABLE PARTS

6-1 INTRODUCTION

6-2 This section contains information for ordering replacement parts.
6-3 Table 6-1 lists parts in the alpha-numerical order of the circuit designators and provides the following information:
A. Description (See list of abbreviations below).
B. Total quantity used in the instrument.
C. Manufacturer's part number.
D. Manufacturer.
E. The Manufacturer's code number as listed in the Federal Supply Code for Manufacturers $\mathrm{H} 4-1$.
F. The H-P Part Number.
G. The recommended spare parts quantity for complete maintenance during one year of isolated service. (Column A).

6-4 ORDERING INFORMATION

6-5 To order replacement parts, address order or inquiry either to your authorized Harrison Laboratories sales representative or to Customer Service, Harrison Laboratories, 100 Locust Avenue, Berkeley Heights, New Jersey.

6-6 Specify the following information for each part:
A. Model and complete serial number of instrument.
B. Circuit reference designator.
C. Description.

6-7 To order a part not listed in Table 6-1, give a complete description of the part and include its function and location.

Reference Designators

A	= assembly		$=$ relay	T	$=$ transformer
B	$=$ motor	L	$=$ inductor	V	= vacuum tube, neon
C	$=$ capacitor	M	$=$ meter		bulb, photocell, etc.
CR	$=$ diode	P	= plug	X	= socket
DS	$=$ device signaling (lamp)	Q	$=$ transistor	XF	= fuseholder
E	$=$ misc. electronic part	R	= resistor	XDS	= lampholder
F	$=$ fuse	RT	$=$ thermistor	Z	= network
J	$=$ jack	S	= switch		

ABBREVIATIONS

a	= amperes		$=$ kilo $=1000$
c	= carbon	obd	$=$ order by description
cer	= ceramic	p	= peak
coef	= coefficient	pc	$=$ printed circuit board
com	= common	pf	$=$ picofarads $=10^{-12}$ farads
comp	= composition	pp	= peak-to-peak
conn	$=$ connection	ppm	$=$ parts per million
crt	= cathode-ray tube	pos	$=$ position (s)
dep	= deposited	paly	= polystyrene
elect	= electrolytic	pot	$=$ potentiometer
encap	$=$ encapsulated	prv	= peak reverse voltage
f	$=$ farads	rect	= rectifier
fxd	$=$ fixed	rot	$=\mathrm{rotary}$
GE	= germanium	rms	= root-mean-square
grd	$=$ ground (ed)	s-b	= slow-blow
h	$=$ henries	sect	$=$ section (s)
Hg	= mercury	Si	$=$ silicon
impg	= impregnated	sil	= silver
ins	$=$ insulation (ed)	sl	= slide
lin	= linear taper	td	= time delay
\log	$=$ logarithmic taper	TiO_{2}	= titanium dioxide
m	$=$ milli $=10^{-3}$	tog	$=$ toggle
M	$=$ megohms	tol	$=$ tolerance
ma	= milliamperes	trim	= trimmer
μ	$=\mathrm{micro}=10^{-6}$	twt	$=$ traveling wave tube
mfr	$=$ manufacturer	var	$=$ variable
mtg	$=$ mounting	w/	= with
my	$=$ mylar	W	$=$ watts
NC	$=$ normally closed	ww	= wirewound
Ne	= neon	w/o	$=$ without
NO	= normally open	cmo	= cabinet mount only
nsr	$=$ not separately replaceable		

MANUFACTURERS

AB	Allen-Bradley	Kulka	Kulka Electric
B	Bendix Corporation	Mot.	Motorola, Inc.
Beede	Beede Elec. Instr. Co., Inc.	RCA	Radio Corporation of America
Buss	Bussman Mfg. Company	Reliance	Reliance Mica Corporation
Carling	Carling Electric Company	Mica	
CTS	CTS Corporation	Semcor	Semcor Corporation
Elco	Elco Corporation	Sloan	Sloan Company
GE	General Electric Company	Sprague	Sprague Electric
GI	General Instrument Company	Superior	Superior Electric
HH	Hardwick-Hindle Company	Sylv	Sylvania Electric
Hoff	Hoffman Electric Company	TI	Texas Instruments
		WL	Ward Leonard Electric

REVISION:
Note the following Changes in the 6920B Manual.

1. Add note on parts list (vacuum epoxy impregnate) on transformer T4 (HT6920T4H372A).
2. Fuse Fl to be 1A Slo Blo 125V.
3. C15 not assigned.
4. Q10 to be 2 N 3417 .
5. Q11, 12, 26, 27 to be SM9085.
6. Q28, 29 to be 853-0001.
7. Rl to be 100 ohms I, R, C. Type 100 2100-1450.
8. R7 to have locating pin $0.156 \pm .025$ from mtg. surface.
9. Add 25k Ser. 70 Pot. in series with R82 and R83.
10. Remove (short) old R86
11. R82 and R83 to be 27 k 1/2w.
12. R27 to be 500 ohm 7 w .
13. R28 and R73 to be $1 k$ 7w.
14. R69 to be 500 ohm I.R.C. Type 100 2100-0898.
15. CR8, CR9, CR10 to be G100D.
16. R40 to be $1.8 k$.
17. RI7 to be 3.6 k .
18. R97 to be 200k.
19. R8 to be 75k.
20. R75 to be 1. 5 k .
21. R39 OMII (open ckt.).
22. R82 and R83 change to $39 k 1 / 2 w$ A. B.
23. Q10 to be N272.
24. R40 to be selected (normally can be omitted completely).
25. Reverse diode CRI3 on P.C.B. and schematic
26. On P.C.Bds. use terminals USECO Type 12006-1 QNLY.

Circuit Reference \qquad Number	Description	Quantity	Mfg. Part \# or Type	Mfg.	Mfg. Code*	HP Part \#	A
CRI,2,52,53	Rect. Si. 1.5A 100PRV	4	1 N1563	Motorola	04713		8
CR3	SCR PRV 25 FBV 25	1	2N2322	GE	03508		2
$\begin{aligned} & \text { CR4, 11,14,18, } \\ & 19,24,25,26, \\ & 27,37,38,39, \\ & 40,41,48,49, \\ & 50,51 \end{aligned}$	Rect. Si. 500ma 200 PRV	18	1N3253	RCA	02735	1901-0026	36
$\begin{aligned} & \text { CR5 }, 6,7,8,9 \\ & 10,12,13,20 \\ & 21,28,29 \\ & 32.34 \end{aligned}$	Rect. Si. 200 ma 10 PRV	14	11151	Sylvania	93332		28
$\begin{array}{r} \text { CR15,16, 22, } 23, \\ 35,36,42,43 \end{array}$	Not Assigned	-					
CR17,30,31,33	Diode Si.	4	1N4858	Sulvania	93332	1901-0033	8
CR $44,45,46,47$	Rect. Si. 50 ma 1600 PRV	4	1N2359	Elect Dev	81751		8
DS1	Indicator Light Neon	1	858 R	Sloan	08717	1450-0048	2
DS1 (order with cli	ip) Indicator Light Incandescent $2.7 \mathrm{~V} .06 \mathrm{~A}$	1	$\begin{aligned} & \text { MCL-B-3 } \\ & 1738 \end{aligned}$	Tec.	07137		2
Fl	Fuse Cartridge 2A@ 250V 3AG	1	312002	Littelfuse	75915		2
Ll	Coil $100 \mu \mathrm{~h}$	1	692095	H-Lab	09182		2
Q1	Diff. Amp.	1	SA2361	Amelco	15818		2
Q2, 3, 4, 5, 6, 13,	SS NPN Sil.	14	4JX16B533	GE	03508		28
	Not Assigned	-					
Q8,9,33,34	Power PNP Ger.	4	B1217	Bendix	83298		8

Circuit Refer Number	Description	Quantity	Mfg. Part \# or Type	Mfg.	Mfg. Code*	Hp Part \#	A
R81, 84	fxd comp 6.8K ohm $\pm 5 \%$ 1/2 watt	2	EB6825	AB	01121	0686-6825	
R82,83	fxd comp 39Kohm " "	2	EB3935	"	"	0686-3935	
R86	var ww 10 ohm	1	Type 110-F4	CTS	11236		2
R87,89	fxd comp 2.2 K ohm $\pm 5 \%$ 1/2watt	2	EB2225	AB	01121	0686-2225	
R90, 91	fxd fllm 56 ohm " 2 watt	2	Type C42S	Corning	16299		4
R94, 95	fxd comp 12 K ohm " $1 / 2$ watt	2	EB1235	AB	01121	0686-1235	
R99	var ww 100 ohm	1	Type 110-F4	CTS	11236		2
R102	fxd comp 51K ohm $\pm 5 \% 1 / 2$ watt	1	EB5135	AB	01121	0686-5135	
104, 105	fxd comp 680K ohm " l watt	2	GB6845	AB	01121	0689-6845	
R106	fxd comp 20K ohm " 1 watt	1	GB2035	$A B$	01121	0689-2035	
R109	fxd ww 500 ohm $\pm 0.1 \% 2.5 \mathrm{~W}$ @ $25^{\circ} \mathrm{C}$.	1	Type Pl	Мерсо	80031		2
Rllo		1	Type Pl	Mepco	80031		2
R111	fxd ww 45 K ohm $\pm 0.1 \% 10 \mathrm{~W} @ 25^{\circ} \mathrm{C}$	1	Type P1000	Мерсо	80031		2
R112, 113	fxd ww 225 K ohm $\pm 0.1 \% 1.5 \mathrm{~W}$	2	M55	Мерсо	80031		4
Rl14	fxd ww 5 K ohm $\pm 0.1 \% 2.5 \mathrm{~W} @ 25^{\circ} \mathrm{C}$	1	Type P1	Мерсо	80031		2
R115	fxd ww 5010 ohm $\pm 0.1 \% \mathrm{l} / 4$ watt	1	Type TX154	PRC	48615		2
R116	fxd ww 1 K ohm $\pm 0 . \overline{1 \%} 2.5 \mathrm{~W} @ 25^{\circ} \mathrm{C}$	1	Type P1	Mepco	80013		2
R117	fxd ww 100 ohm 0.1\% 3.5W @ $25^{\circ} \mathrm{C}$	1	Type P3	мерсо	80013		2
R118	fxd ww 10 ohm $\pm 0.1 \% 2.5 \mathrm{~W} @ 25^{\circ} \mathrm{C}$	1	Type P1	Мерсо	80013		2
R119	fxd ww 1 ohm $\pm 0.1 \%$ 2.5W 4 lead	1	Type 24H68L8	Gen Res	05591		2
R120	fxd ww 0.1 ohm $\pm 1 \% 2.5 \mathrm{~W} 4$ lead	1	Type 24H68L8	Gen Res	05591		2
R121	fxd comp 5.1 meg ohm $\pm 5 \% \mathrm{l}$ watt	1	GB5155	$A B$	01121	0689-5155	
R122	fxd comp 510 K ohm $\pm 5 \% 2$ watt	1	Type C42S	Corning	16299		2
R123	fxd ww 50 K ohm $\pm 5 \% 10$ watt	1	Type 1AS544	HH	73978	0811-0955	2
O)R124	fxd ww 500 ohm $\pm 5 \% 10$ watt	1	Type IAS544	HH	73978	0811-0952	2
$\begin{aligned} & 10 \mathrm{O} 125 \\ & \text { ís R125 } \\ & 0 \end{aligned}$	fxd ww 5 ohm $\pm 5 \% \quad 10$ watt	1	Type IAS544	HH	73978	0811-0950	2
Sl	Function (on/off) 3 position switch	1	6920-sic	CRL	71590		2
S2	Range 10 position switch	1	6920-S2B	CRL	71590		2

Circuit Reference \qquad	Description	Quantity	Mfg. Part \# \qquad or Type	Mfg.	Mfg. Code*	$\begin{gathered} \text { HP } \\ \text { Part \# } \end{gathered}$	A
	Standoff Insulator	3	17Al-A6	Whitso	92825		6
	Insulator	8	100151-1	H-Lab	09182		8
	Insulator Transistor Pin.	8	100146-1	H-Lab	09182		8
	Mirco Dial (Spl. -all white on black)) 1	Model 1309 Special	Borg	96791		2
$A=$ Recommended spares for one year for 10 units.							

2. POSITIVE SIDES OF ALL CAPACITORS FACING TOWARDS BOTTOM OF Hown
3. UPPER PC. BOARD ALL WITCH NO'S APPLY TO SI EXCEPT 2Bl|a 2 Cl

LOWER CIRCUIT BOARD LAYOUT
HP/Harrison 6920B Meter Calibrator
sn 5K0246
Approx mfg date late 1965 per date codes

ALABAMA

Huntsville, 35801
Hewlett-Packard
Southern Sales Division
Moliday Office Ctr., Suite 18
(205) 881 -4591

TWX: 510-579.2204

ARIZONA

Scottsdale, 85251
Hewlett-Packard
Neely Sales Division
3009 No. Scottsdale Rd
(602) 945-7601

TWX: 602-949-0111
Tucson, 85716
Hewlett-Packard
Neely Sales Division
232 So. Tucson Blvd.
(602) 623-2564

TWX: 602-792-2759

CALIFORNIA

Los Angeles Area
Hewlett-Packard
Neely Sales Division
3939 Lankershim Bivd.
North Hollywood 91604
(213) 877.1282 and 766.3811

TWX: 910-499-2170
Sacramento, 95821
Hewlett-Packard
Neely Sales Division
2591 Carlsbad Ave.
(916) $482-1463$

TWX: 916-444.8683
Sап Diego, 92106
Hewlett-Packard
Neely Sales Division
1055 Shafter Street
(714) 223-8103

TWX.714-276-4263
San Francisco Area
Hewlett-Packard
Neely Sales Division
1101 Embarcadero Rd.
Palo Alto 94303
(415) 327-6500

TWX: 910-373-1280

COLORADO

Englewood, 80110
Hewlett-Packard
Neely Sales Division
7965 East Prentice
(303) 771.3455

TWX: 303-771-3056
CONNECTICUT
Middletown, 06458
Hewlett-Packard
Yewell Sales Division
589 Saybrook Rd.
1203) $346 \cdot 6611$

TWX: 710-428-2036

FLORIDA

Miami, 33125
Hewlett-Packard
Florida Sales Division 2907 Northwest 7th St.
(305) 635-6461

Orlando, 32803
Hewlett-Packard
Florida Sales Division
621 Commonwealth Ave
(305) 425.5541

TWX: 305-275.1234
St. Petersburg, 33708
Hewlett-Packard
Florida Sales Division
410-150th Ave., Madeira Beach
(813) $391-0211$

TWX: 813-391-0666

GEORGIA

Atlanta, 30305
Hewlett-Packard
Southern Sales Division
3110 Maple Drive, N. E.
(404) 233-1141

TWX: 810751-3283

ILLINOIS

Chicago, 60645
Hewlett-Packard
Crossley Sales Division
2501 West Peterson Ave
(312) 275-1600

TWX: 910-221-0277

INDIANA

Indianapolis, 46205
Hewiett-Packard
Crossley Sales Division
3919 Meadows Dr.
(317) 546-4891

TWX: 317-635-4300

KENTUCKY

Louisville, 40218
Hewlett-Packard
Southern Sales Division
Suite 4. 3411 Bardstown Rd.
(502) 459-4140

TWX: 810-535-3128

MARYLAND

Baltimore, 21207
Hewlett-Packard
Horman Sales Division 6660 Security Bivd. (301) 944.5400

Washington, D. C. Area
Hewlett-Packard
Horman Sales Division
941 Rollins Avenue
Rackville 20852
(301) 427.7560

TWX: 710-828-9684
MASSACHUSETTS
Boston Area
Hewlett-Packard
Yewell Sales Division
Middlesex Turnpike
Burlington 01804
(617) $272-9000$

TWX: 710-332-0382

MICHIGAN

Detroit, 48235
Hewlett-Packard
Crossley Sales Division
14425 West Eight Mile Road
(313) $342-5700$

TWX: 313-342-0702
MINNESOTA
St. Paul, 55114
Hewlett-Packard
Crossley Sales Division
842 Raymond Avenue
(612) $646-7881$

TWX: 910-563-3734
MISSOURI
Kansas City, 64131
Harris-Hanson Company
7916 Paseo Street
(816) 44.1-9494

TWX: 816-555-2423
St. Louis, 63144
Harris-Hanson Company
2814 South Brentwood Blvd.
(314) $647-4350$

TWX: 314-962-3933

NEW JERSEY

Asbury Park Area
Hewlett-Packard
Robinson Sales Division
Shrewsbury
(201) 747-1060

Englewood, 07631
Hewlett-Packard
RMC Sales Division
391 Grand Avenue (201) $567-3933$

NEW MEXICO

Albuquerque, 87108
Hewlett-Packard
Neely Sales Division
6501 Lomas Blvd., N. E.
(505) 255-5586

TWX: 910-989-1665
Las Cruces, 88001
Hewlett-Packard
Neely Sales Division
114 S. Water Street
(505) 526.2486

TWX: 505-524-2671

NEW YORK

New York, 10021
Hewlett-Packard
RMC Sales Division
236 East 75th Street
(212) 879-2023

TWX: 710-581-4376
Rochester, 14625
Hewlett-Packard
Syracuse Sales Division
800 Linden Avenue
(716) 381-4120

TWX: 716-221-1514
Poughkeepsie, 12601
Hewlett-Packard
Syracuse Sales Division
82 Washington St.
(914) 454-7330

TWX: 914-452-7425
Syracuse, 13211
Hewlett-Packard
Syracuse Sales Division
5858 East Molloy Rd.
(315) 454-2486

TWX: 710-541-0482

NORTH CAROLINA

High Point, 27262
Hewlett-Packard
Southern Sales Division
1923 N. Main Street
(919) 882-6873

TWX: 510-926-1516

OHIO

Cleveland, 44129
Hewlett-Packard
Crossley Sales Division
5579 Pearl Road
(216) 884-9209

TWX: 216-888-0715
Dayton, 45409
Hewlett-Packard
Crossley Sales Division
1250 W. Dorothy Lane
(513) 299-3594

TWX: 513-944-0090
PENNSYLVANIA
Camp Hill
Hewlett-Packard
Robinson Sales Division (717) 737-6791

Philadelphia Area

Hewlett-Packard
Robinson Sales Division 144 Elizabeth Street
West Conshohocken 19428
(215) 248-1600 and 828-6200

TWX: 215-828-3847

Pittsburgh Area
Hewlett-Packard
Crossley Sales Division
2545 Moss Side Blvd.
Monroeville 15146
(412) 271.5227

TWX: 710-797-3650

TEXAS

Dallas, 75209
Hewlett-Packard
Southwest Sales Division
P.O. Box 7166, 3605 Inwood Rd.
(214) 357-1881 and 332-6667

TWX: 910-861-4081
Houston, 77027
Hewlett-Packaro
Southwest Sales Division
P.O. Box 22813, 4242 Richmond Ave.
(713) $667-2407$

TWX: 713-571-1353

UTAH

Salt Lake City, 84115
Hewlett-Packard
Neely Sales Division
1482 Major St.
(801) $486-8166$

TWX: 801-521-2604

VIRGINIA

Richmand, 23230
Hewlett-Packard
Southern Sales Division
2112 Spencer Road
(703) 282.5451

TWX: 710-956-0157

WASHINGTON

Seattle Area
Hewlett-Packard
Neely Sales Division
11656 N. E. 8th St.
Bellevue 98004
(206) 454.3971

TWX: 910-443-2303

CANADA

Montreal, Quebec
Hewlett-Packard (Canada) Ltd.
8270 Mayrand Street
(514) 735-2273

TWX: 610-421.3484
Ottawa, Ontario
Hewlett-Packard (Canada) Ltd.
1762 Carling Avenue
(613) 722-4223

TWX: 610-562-1952
Toronto, Ontario
Hewlett-Packard (Canada) Ltd.
1415 Lawrence Avenue West
(416) 249-9196

TWX: 610-492-2382

GOVERNMENT

CONTRACTING OFFICES

Middletown, Pa. 17057

Hewlett-Packard
Contract Marketing Division
Olmsted Plaza
(717) 944.7401

TWX: 717-760-4816
West Conshohocken, Pa. 19428
Hewlett-Packard
Contract Marketing Division
144 Elizabeth St.
(215) 753.1811

TWX: 215-820-3847

ARGENTINA

Mauricio A. Saurez
Telecomunicaciones
Carlos Calvo 224, Buenos Aires
Tel: 30.6312
AUSTRALIA
Sample Electronics (Vic.) Pty. Ltd.
9-11 Cremorne Street
Richmond E. 1. Victoria
Tel: 42-4757 (3 lines)
Sample Electronics (N.S.W.) Pty. Ltd.
4 Grose Street, Glebe, N.S.W.
Tel: 69.6338 (6 lines)

AUSTRIA

UNILABOR H.m.b.H.
Wissenschaftliche Instrumente
Rummelhardtgasse 6/3
P. O. Box 33, Vienna $1 \times / 71$

Tel: 426181
BELGIUM
Hewlett-Packard Benelux
20-24 Rue de I'Hopital, Brussels 1
Tel: 11.22.20
BRAZIL
CIENTAL IMPORTACAO E COMERCIO LTDA
R. Cons. Crispiniano, 69, 8. ${ }^{\circ}$ Conj. 81

Sao Paulo, S.P.
Tel: 32-4332

CANADA

Hewlett-Packard (Canada) Ltd
8270 Mayrand Street
Montreal, Quebec
(514) 735-2273

Hewlett-Packard (Canada) Ltd.
1762 Carling Avenue
Ottawa, Ontario
(613) 722-4223

Hewlett-Packard (Canada) Ltd.
1415 Lawrence Avenue W.
Toronto Ontario
(416) 249-9196

CHILE
Hector Calcagni
Casilla 13942, Santiago
Tel: 6.42.26
DENMARK
Tage Olsen A/S
Ronnegade 1, Copenhagen \emptyset
Tel: 29.48.00
FINLAND
INTO $0 / Y$
P. O. Box 153

11 Meritullinkatu, Helsinki
Tel: 6.11 .33

FRANCE

Hewlett-Packard France
150 Bivd. Massena, Paris $13 e$
Tel: 707.97.19

GERMANY

Hewlett-Packard V.m.b.H.
Steindamm 35, Hamburg
Tel: 24.05.51
Hewlett-Packard V.m.b.H.
Kurhessenstrasse 95
6 Frankfurt am Main
Tel: 52.00 .36

Hewlett-Packard V.m.b.H.
Reginfriedstrasse 13
8 Munich 9
Tel: 49.51.21/22
Hewlett-Packard V m.b.H
Technisches Buro
Herrenbergerstrasse 110
703 Böblingen. Württemberg
Tel: 6971
GREECE
K. Karayannis

Klaftmonos Square, Athens 124
Tel: 230.301 (5 lines)
INDIA
The Scientific Instrument Company, Ld.
6. Tej Bahadur Sapru Road, Allahabad 1

Tel: 2451
The Scientific Instrument Company, Ld.
240, Dr. Dadabhai Naoroji Rd., Bombay 1
Tel: 26-2642
The Scientific Instrument Company, Ld
11. Esplanade East, Calcutta 1

Tel: 23-4129
The Scientific Instrument Company, Ld.
30. Mount Road, Madras 2

Tel: 86339
The Scientific Instrument Company, Ld.
B-7, Ajmeri Gate Extn., New Delhi 1
Tel: 271053

RAN

Telecom Ltd.
P. O. Box 1812, Tehran

Tel: 43850
ISRAEL
Electronics \& Engineering Ltd.
16 Kremenetski St., Tel Aviv
Tel: 35021-2-3
ITALY
Hewlett-Packard Italiana S.D.A.
Viale Lunigiana 46, Milan
Tel: $69.15 .84 / 5 / 6$
Hewlett-Packard Italiana S.p.A.
Palazzo Italia
Piazza Marconi, 25, Roma-Eur
Tel: 59.12.544/5
JAPAN
Yokogawa-Hewlett-Packard Ltd.
2270 Ishikawa-cho
Hachioji, Tokyo
Tel: Hachioji 0426-3-1231 (19 lines)
Yokogawa-Hewlett-Packard Ltd
No. 3, 6-chome, Aoyama-Kitamachi
Akasaka, Minato-ku, Tokyo
Tel: 403-0073, 403-0074, 403-0075
Yokogawa-Hewlett-Packard Ltd.
No. 8, Umeda, Kita-ku, Osaka City
Tel: 361-3084, 341-2095
Yokogawa-Hewlett-Packard Ltd.
No. 4, 3-chome, Himeikedori,
Chigusa-ku, Nagoya City
Tel: 75-8545
KOREA
American Trading Company, Korea, Ltd.
112.35 Sokong-Dong, Jung-ku

Seoul P. O. Box 1103, Seoul
Tel: 3.7049, 3.7613

NETHERLANDS

Hewlett-Packard Benelux N.V.
23 Burg Roellstraat, Amsterdam W.
Te): (020) 13.28 .98 and 13.54 .99
NEW ZEALAND
Sample Electronics (N. Z.) Ltd
8 Matipo Street
Onehunga S. E. 5, Auckland
Tel: 565-361

NORWAY

Morgenstierne \& Co. A/S
Ingeniorfirma
6 Wessels Gate, Oslo
Tel: 20 I6 35
PORTUGAL
TELECTRA
Rua Rodrigo da Fonseca 103
P. 0. Box 2531 , Lisbon 1

Tel: 686072 and 686073 and 686074
PUERTO RICO \& VIRGIN ISLANDS
San Juan Electronics, Inc.
150 Ponce de Leon, Stop 3
P. 0. Box 5167

Pta. de Tierra Sta., San Juan 00906
Tel: 722-3342, 724-4406

SPAIN

ATAIO, Ingenieros
Enrique Larreta 12. Madrid 6
Tel: 235.43.44 and 235.43.45
SOUTH AFRICA
F. H. Flanter \& Co. (Pty.), Ltd.

Rosella House
Buitencingle Street, Cape Town Tel: 3-3817
SWEDEN
H-P Instrument AB
Centralvägen 28, Solna, Centrum
Tel: 08-83.08.30 and 10-83.08.30
SWITZERLAND
Max Paul Frey
Wankdorffeldstrasse 66, Berne
Tel: (031) 42.00.78
TAIWAN (FORMOSA)
Hwa Sheng Electronic Co., Ltd.
21 Nanking West Road, Taipei
Tel: 4 6076, 45936

TURKEY

TELEKOM Engineering Bureau
P.O. Box 376-Galata, Istanbul

Tel: 49.40 .40
UNITED KINGDOM
Hewlett-Packard Ltd.
Dallas Rd., Bedford, England
Tel: Bedford 68052
VENEZUELA
Citec, C. A.
Edif. Arisañ-Of \#4
Avda. Francisco de Miranda-Chacaito
Apartado del Este 10.837, Caracas
Tel: 71.88 .05

YUGOSLAVIA

Belram S.A.
83 Avenue des Mimosas
Brussels 15, Belgium
Tel: 35.29.58

For Sales and Service Assistance in Areas Not Listed Contact:

IN EUROPE
Hewlett-Packard, S. A.
54 Route des Acacias
Geneva, Switzerland
Telephone: (022) 42.81 .50
Telex: 2.24 .86
Cable: HEWPACKSA

IN LATIN AMERICA
Hewlett-Packard Inter-Americas
1501 Page Mill Road
Palo Alto, California 94304, U.S.A.
Telephone: (415) 326.7000
TWX: 910-373-1267
Telex: 033811 Cable: HEWPACK

ELSEWHERE
Hewlett-Packard
International Marketing Department
1501 Page Mill Road
Palo Alto, California 94304, U.S.A.
Telephone: (415) 326.7000
TWX: 910.373.1267
Telex: 033811 Cable: HEWPACK

HEWLETT PACKARD he HARRISON DIVISION

The information contained in this booklet is intended for the operation and maintenance of Harrison equipment and is not to be reproduced without written consent of: Harrison Division of Hewlett-Packard Company

PATENT NOTICE

Patents have been applied for on circuits used in this power supply. Buyer is not licensed to reproduce drawings or to utilize the circuit without written permission from Harrison Division of Hewlett-Packard Company.

CLAIM FOR DAMAGE IN SHIPMENT

This equipment should be tested as soon as it is received. If it fails to operate properly or is damaged in any way, a claim should be filed with the carrier. A full report of the damage should be obtained by the claim agent, and this report should be forwarded to us. We will then advise you of the disposition which is to be made of the equipment and arrange for repair or replacement.

