HP Archive

This vintage Hewlett Packard document was preserved and distributed by
www. hparchive.com
Please visit us on the web !

Scanned by on-line curator: Tony Gerbic ** For FREE Distribution Only ***

MODEL 561B DIGITAL RECORDER

SERIALS PREFIXED: 334-

This manual applies directly to standard 11-column and special 12-column HP Model 561B Digital Recorders with serial number prefix 334-. Appendix I lists the changes required to adapt this manual to older instruments with serial prefix 241- or 038-.

CONTENTS

SECTION I DESCRIPTION AND INSTALLATION1-1 General DescriptionI-1
1-2 Power Cable 1-1
1-3 Unpacking and Power Connection I - 1
1-4 50-Cycle Operation 1-2
1-5 Input Cable (Supplied) and Connectors I - 2
1-6 Connecting to the Digital Voltmeter I - 2
1-7 Connecting to (40) Electronic Counters I - 3
1-8 Cable Fabrication I - 3
1-9 Special Data Sources I - 5
1-10 Multiple Inputs l-6
SECTION II OPERATION
2-1 Operating Controls II - 1
2-2 Paper Tape II - 1
2-3 Inked Ribbon II - 1
2-4 Tape Duplicates II - 4
2-5 Operator Maintenance II - 4
2-6 Digital Voltmeter Readout Il - 4
SECTION 1 II THEORY OF OPERATION
3-1 Print Wheel Positioning III - 1
3-2 Timing Sequence III - 1
3-. 3 The Print Command Circuit IIl - 4
3-4 Power Supply III - 4
SECTION IV MAINTENANCE
4-1 Cabinet Removal IV - 1
4-2 Printer Mechanism Removal IV - 1
4-3 Periodic Maintenance IV - 1
4-4 Trouble Shooting IV - 3
SECTION V TABLE OF REPLACEABLE PARTS
5-1 Table of Replaceable Parts V-1
APPENDIX I MANUAL CHANGES IA - 0

notice

THIS INSTRUMENT IS PARTLY MECHANICAL AND REQUIRES PERIODIC CLEANING AND LUBRICATION FOR DEPENDABLE SERVICE. THE PRINTER MECHANISM SHOULD BE GIVEN A LIGHT CLEANING AFTER FOUR PADS OF PAPER HAVE BEEN PRINTED; REFER TO PARAGRAPH 2-5 OF THIS MANUAL. LUBRICATION IS REQUIRED AFTERIOO HOURSCONTINUOUSOPERATION OR TWO MONTHS INTERMITTENT OPERATION; FOR COMPLETE INSTRUCTIONS REFER TO YOUR PRINTER MECHANISM MANUAL.

SPECIFICATIONS

COLUMN CAPACITY: 11 columns. (12 available on special order).
PRINT RATE: 5 lines per second.
PRINT WHEELS: 12 positions having numerals 0 through 9 , a minus (-), and a blank. Other symbols are available on special order.

INPUT: Decimal code, 10 lines plus 2 lines for blank and asterisk for each column.

DRIVING SOURCE: (50) Electronic Counters (Models 521D, 521E, 523C, 524C) with recorder kits and (tap) Digital Voltmeters (Model 405), stepping switches, relays, beam switching tubes, contact closures, or -15 to -100 volts connected to appropriate input wire.

HOLD-OFF CONTROL: SPDT relay to prevent external equipment from changing input signal while wheels are being positioned.

INPUT IMPEDANCE: Approximately 270 K ohms.
PRINT COMMAND: ± 15 volts peak or more, $10 \mu \mathrm{sec}$ minimum width, 1 volt $/ \mu \mathrm{sec}$ minimum slope, or external contact closure. Manual control by a momentary-contact switch.

PAPER REQUIRED: 印 $560 \mathrm{~A}-131 \mathrm{~A}$ (24 packets of HP 9281-0018) folded paper tape (15,000 prints with single spacing) or standard $3^{\prime \prime}$ roll tape.

LINE SPACING: Zero, single or double. In "ZERO', does not print.
POWER: $\quad 115 / 230 \pm 10 \%$ volts, 60 cps . Approximately 75 watts. 50 to 60 cps (4 prints/second, maximum at 50 cps). 50 cps model available which retains 5 prints/second capability (spec. no. H03-561B).
DIMENSIONS: Cabinet Mount: 20-3/4 in. wide, 12-3/4in. high, 18-1/2in. deep. Rack Mount: $\quad 19 \mathrm{in}$. wide, 10-1/2 in. high, 16-1/2 in. deep behind panel. Required rack depth is 20 in .

WEIGHT: Cabinet Mount: Net 35 lbs., shipping 70 lbs. Rack Mount: Net 30 lbs., shipping 65 lbs.

ACCESSORIES FURNISHED:
One 561B-16A Cable, 6 ft . long, connects 561 B with $\mathrm{H}_{\mathrm{p}} \mathrm{p}$ equipment providing a 10 -line code. Accommodates 6 columns.
9281-0018 Folded Paper Tape, one packet 9283-0002 Inked Ribbon 560A-95N Digital Recorder service kit 560A-37M Pin for paper tape roll
ACCESSORIES AVAILABLE: (40) 560A-131A 24 packet carton of (\$9 9281-0018 (40) 9283-0002 Inked Ribbon folded paper tape.
(54) 560A-95N Service Kit
(40) 561B-16A Cable
(40) 561 B Digital recorder kits for field installation in 40 Electronic Counters: $\frac{\hbar \overline{\mathrm{c}} \text { Counter Model }}{521 \mathrm{D} 521 \mathrm{E}} \quad \frac{\hbar 0 \text { Kit Number }}{521 \mathrm{D}-95 \mathrm{~B}}$ $521 \mathrm{D}, 521 \mathrm{E}$
523 C
$521 \mathrm{D}-95 \mathrm{~B}$
$523 \mathrm{C}-95 \mathrm{~B}$ $524 \mathrm{C} \quad 524 \mathrm{C}-95 \mathrm{~B}$

1-1 GENERAL DESCRIPTION

The Hewlett-Packard Model 561B Digital Recorder is an electro-mechanical printer with parallel entry to all columns which prints up to eleven columns of data (12 columns available on special order) at rates up to five lines per second. This printing rate makes the 561 B ideal for recording rapidly changing data in digital form. Model 561B makes a permanent printed record of data from the ${ }^{\text {F }}$ Model $405 C R$ Digital Voltmeter and from $\%$ in-line display vacuum tube electronic counters having modification kits installed. The basic design allows the 561 B to be operated from beam switching tubes, stepping switches, relay matrices, and other data gathering systems using a $10-\mathrm{line}$ code. Numerals 0 through 9 , a minus (-) sign and a blank may be programmed in any column.

The Model 561 B is supplied with a cable for operating directly with ${ }_{\text {tip }}$ Model 405AR Digital Voltmeter or with modified (44) Electronic Counters such as Models 521D, 521E, 523CR and 524 C which have an in-line display. These counters may be furnished with internal circuitry and receptacle for connecting to Model 561B Digital Recorder, or kits may be obtained at a later date for field installation.

Data entry to the 561 B is through a separate wire for each print wheel symbol. The input wires and two control lines, called COMMON and BIAS are brought out to connectors at the rear of the instrument. Both control lines are isolated from the 561 chassis, allowing either line to be grounded or connected to any voltage from -600 to +600 , thus facilitating control from off-ground number selecting sources, such as beam-switching tubes.

In addition to this manual, the following items are included with your 561 в Digital Recorder:

1) Printer Mechanism Service Manual (covers the mechanical portion of 561B).
2) $561 \mathrm{~B}-16 \mathrm{~A} 100$ conductor cable, 6 feet long.
3) $560 \mathrm{~A}-95 \mathrm{~N}$ Service Kit (packed in paper compartment).
4) 9281-0018 Folded Paper Tape (packed in paper compartment).
5) 560A-37M Pin for use with rolled paper tape (taped to bottom of paper compartment).
6) 9283-0002 Inked ribbon (installed).

1-2 POWER CABLE

The power cable of the 561B consists of three conductors and is terminated in a three-prong male connector recommended by the National Electrical Manufacturers' Association. The third contact is an offset round pin added to a standard two-blade connector which grounds the instrument chassis when used with an appropriate receptacle. To use the NEMA connector in a two-contact receptacle, a three-prong to two-prong adapter should be used. When the adapter is used, the third contact is terminated in a short green lead which should be grounded.

1-3 UNPACKING AND POWER CONNECTION

If the shipping carton is damaged, ask that the carrier's agent be present when the instrument is unpacked. Inspect the instrument for damage (scratches, dents, broken knobs, etc). If the instrument is damaged or fails to meet specifications notify the carrier and the nearest HewlettPackard field office immediately (field offices are listed at the back of this manual). Retain the shipping carton and the padding material for the carrier's inspection. The field office will arrange for the repair or replacement of your instrument without waiting for the claim against the carrier to be settled.

The Model 561 B can be operated from either $115-$ or 230 -volt 60 cps power lines. Slide switch S1 01 on the instrument rear panel permits quick conversion for operation from either voltage. Insert a narrow-blade screwdriver in the switch slot and slide the switch to the right for 230 -volt operation (" 230 " marking exposed) and to the left (" 115 " marking exposed) for 115-volt operation. Fuse F1 should be a 1.25 ampere, slow-blow type for 115volt operation or a 0.6 ampere, slow-blow type for 230 -volt operation.

1-4 50-CYCLE OPERATION

The 561 B will operate from a 50 -cycle source at slightly reduced speed. The normal maximum of five prints per second will be reduced to four. A special moror pinion gear is available which corrects for the reduced motor speed to provide five prints per second from a 50 -cycle source. Refer to your Printer Mechanism Manual for pinion gear information.

1-5 INPUT CABLE (SUPPLIED) AND CONNECTORS

The 100 -conductor cable supplied with the 561 B is used to conveniently connect the 561 B with the (50) Model 405 CR Digital Voltmeter or (tap) electronic counters equipped with a modification kit. Connectors on each end of the cable are identical so either end of the cable may be connected to the 561 B .

Cable wiring consists of a connection between each pin in one connector and the identically numbered pin in the other connector. Pins 48 and 49 of the upper connector (print command input) a re shielded; the shield is connected to pin 50 (ground).

External number selecting circuitry is connected to the 561B through two 100-pin connectors, J101 and J102, located on the rear of the chassis. Printing in columns one through six (the six columns on the right when facing the front of the instrument) is controlled through J101; printing in columns seven through eleven (the five columns on the left) is controlled through J102. An input from a six column source normally would be connected to J101, but may be connected to J102 with the loss of the most significant digit (i.e. the digit in the left hand column).

The PRINT COMMAND switch, located between J101 and J102, must be operated toward the connector which supplies print commands.

1-6 CONNECTING TO THE DIGITAL VOLTMETER

Data from the Model 405CR Digital Voltmeter may be recorded by connecting the 405 CR to the 561 B with the 100 -conductor cable supplied with the 561B. Connect one end of the cable to J3 on the Model 405 CR . Connect the other end of the cable to either J 101 or J 102 on the 561B. If J 101 is used, the 561 B will print on columns one through six (the six right-hand columns). If J 102 is used, the 561 B will print on columns seven through eleven. Be sure to operate the PRINT COMMAND switch on the connector mounting plate toward the input jack connected to the Digital Voltmeter.

CAUTION

THE COMMON LINE OF THE 561B IS A FLOATING GROUND. IT ASSUMES THE POTENTIAL OF ANY SOURCE TO WHICH IT IS CONNECTED. WHEN THE DIGITAL VOLTMETER OR AN ELECTRONIC COUNTER IS USED WITH THE 561B, A POTENTIAL OF ABOUT + 115 VOLTS IS ESTABLISHED ON THE COMMON LINE.

If a supplementary programming device is connected to COMMON, its ground return must be at the potential determined by the counter or digital voltmeter. Avoid low impedance circuits to chassis ground which may upset indicating circuits in the counter or voltmeter. See Figure 1-1.

Figure 1-1. COMMON at Potential Determined by Data Source

1-7 CONNECTING TO $\$ \nmid \rho$ ELECTRONIC COUNTERS

The 561 B may be uperated directly from electronic counters having an in-line display such as (40) Models 521D, 521E, 523C, and 524C. These counters can have the necessary kits installed at the factory or kits may be obtained for field installation.

To record data from a modified (p_{P}) electronic counter, simply connect an $\$^{\hbar}$ 100-conductor cable between the 100 -pin output connector on the counter and J101 or J102 on the 561 B . The (1 mp Model 523C provides a six-digit output and normally would be connected to J 101 . The 524 C provides an eightdigit output requiring the use of two 100 -conductor cables and both input connectors on the 561 B .

Be sure to operate the PRINT COMMAND switch toward the appropriate input connector.

Read CAUTION notice in paragraph l-6. Refer to Figure 1-1.

1-8 CABLE FABRICATION

Connection of the 561 B to data sources other than the (${ }^{(p)}$) Model 405CR Digital Voltmeter or modified (4) counters may require construction of a cable terminated with a connector which will mate with J101 or J102. Procurement instructions for cables and connectors are given in Section V, Table of Replaceable Parts.

Use small gage telephone-type wire. Number 26 gage wire meeting MIL-B-76A, with 7 strands \#34 gage wire, tinned after stranding, with $105^{\circ} \mathrm{C}$ plastic insulation, has been found satisfactory. Print command input wires should be shielded.

Select a systematic color code for wires to avoid errors. Use care in soldering. Repairing faulty connections after all wires are connected is very difficult.

A piece of \#14 gage wire makes an excellent soldering tip for use on closely-spaced connector terminals. See Figure 1-2.

Figure 1-2. Wire Soldering Tip

Figure 1-3. External Programming Systems

1-9 SPECIAL DATA SOURCES

This paragraph discusses the following important factors which must be considered when connecting the 561 B to a data source other than 有 digitalindicating equipment:
a) Input connections must be made to deliver print wheel positioning data to the 561 B .
b) Print wheels with no input are automatically programmed to the BLANK position. External jumper must be installed to prevent print wheels from locking in the BLANK position.
c) External number selecting system must provide a print command signal each time a number is to be printed. When positive print command is less than +115 volts, install $.01 \mu \mathrm{f}$ capacitor in series with this input. Negative print command possible by switching this input to ground or to 43 V line.
d) The external system must be connected to the 561 B disable relay or counter disable pulse (see Table 1-2) so that the number selection will not be changed while the relay is energized.

A. PROGRAMMING

One means of programming a print wheel symbol is to externally connect the BIAS line (-43 v) to the appropriate input terminal as indicated
in the Tables $1-1$ and l-2. This method may be used with relay matrices, stepping switches, and other contact closure systems.

Another programming method is to connect -15 to -100 volts between the COMMON BUS and the input terminal of the number to be printed. For example, to print data from a beam-switching tube, connect its $B+$ to the COMMON BUS and its targets to the appropriate input terminal. Refer to Figure 1-3.
B. BLANK

A 22 K resistor is internally connected between the BIAS line and the BLANK input. This programs unused print wheels to the no-print or BLANK position, preventing random printing by wheels which are not connected to an external number selecting circuit. To program symbols other than BLANK, a shorting jumper must be installed between the BLANK input and COMMON. The jumper may be installed on the external connector at the 561 B , or if the BLANK input terminal is connected to the output of the driving equipment, the shorting jumper may be installed there. Refer to Figure 1-3.

A print wheel which has had the BLANK position disabled by an external jumper may be programmed to any position except BLANK. To enable external circuitry to program BLANK, remove the BLANK

TABLE 1-1. PRINT WHEEL CONNECTIONS

	J102B		J102A			J101B			J101A			<CONNECTOR COLUMN KPRINT WHEEL
	11	10	9	8	7	6	5	4	3	2	1	
0	25	1	26	25	1	26	25	1	26	25	1	
1	24	2	27	24	2	27	24	2	27	2t	2	
2	23	3	28	23	3	28	23	3	28	23	3	
3	22	4	29	22	4	29	22	4	29	22	4	
4	21	5	30	21	5	30	21	5	30	21	5	
5	20	6	31	20	6	31	20	6	31	20	6	PIN NUMBER
6	19	7	32	19	7	32	19	7	32	19	7	
7	18	8	33	18	8	33	18	8	33	18	8	
8	17	9	34	17	9	34	17	9	34	17	9	
9	16	10	35	16	10	35	16	10	35	16	10	
-	15	11	36	15	11	36	15	11	36	15	11	
BLANK	14	12	37	14	12	37	14	12	37	14	12	\square

00165-2
disabling jumper and disconnect the appropriate 22 K resistor. The 22 K resistors are located on a resistor board on the connector mounting plate at the rear of the 561 B chassis. The wheel which a given resistor affects may be identified by the last two digits of the designation printed on the resistor board. For example, R107 programs BLANK in column seven (seventh wheel from the right as viewed from the front of the instrument).

TABLE 1-2. CONTROL CONNECTIONS

Description	Pin Number	Connector
COMMON (Floating ground)	13,38	$\begin{aligned} & \text { J101A, J101B } \\ & \text { J102A, J102B } \end{aligned}$
CHASSIS (Power line ground)	50	J101A, J102A
BIAS	39, 41, 44	J101A, J102A
(-43 volts)	48, 49, 50	J101B, J102B
PRINT COMMAND NEGATIVE POSITIVE	$\begin{aligned} & 48 \\ & 49 \end{aligned}$	$\prod_{\text {J101A }}$
RELAY Kl		
NORM CLOSED	45	
COMMON ARM	46	
NORM OPEN	42	
COUNTER DISABLE	47	-

C. PRINT COMMAND

The external system must provide a print command pulse to initiate a printing cycle each time a number is to be printed. This pulse may be either positive or negative, and it must be at least 15 volts in amplitude and 10 microseconds in duration. Rise time of the pulse should be at least one volt per microsecond. The pulse may be obtained from an external pulse circuit or by momentarily shorting the BIAS line to the NEGATIVE PRINT COMMAND input. See Figure 1-3.

To prevent noise pickup from starting unwanted printing cycles, terminate the unused print command input with a resistor whose value is approximately equal to the source impedance of the print command circuit. For example, if a negative pulse generator with an output impedance of $200,000 \mathrm{ohms}$ supplies the print command pulse to pin 48 of J101A, connect a 200,000 -ohm resistor between pins 49 and 38 of J101A.

D. SOURCE DISABLE

Accurate print wheel positioning requires that the data source be prevented from changing number selections during the printing cycle. Relay K1 is included to disable external number selecting circuits. The relay is energized at the beginning of the printing cycle. The external number selecting circuit can be disabled during the printing cycle by connecting its supply voltage through the normally closed contacts of the relay. Maximum potential across open contacts: 200 volts. Maximum current through relay contacts: 50 milliamperes. It may be necessary to add a resistor in series with the contacts to prevent excessive cablecapacity charging currents.

The counter disable pulse (see Table l-2) may also be used to disable special data sources. The pulse is about 160 milliseconds in duration, rises from zero to an open-circuit voltage of +240 volts (internal impedance 100 K).

1-10 MULTIPLE INPUTS

Successful data recording from two or more sources requires that the data sources be timed or synchronized in such a way that data from each source is ready for printing when the 561 B receives a print command signal.

It is important that the entire system external to the 561 B selects and holds data which is fed to the 561 B . Each source must continue to hold its data output until the completion of the 561 B printing cycle.

After all data has been presented to the 561 B , some element of the external system must provide a print command signal to the 561 B .

CAUTION

THE COMMON LINE OF THE 561B IS A FLOATING GROUND. IT ASSUMES THE POTENTIAL OF ANY SOURCE TO WHICH IT IS CONNECTED. USE CAUTION WHEN CONNECTING SEVERAL DATA SOURCES TO THE COMMON LINE.

The details of every multiple-source recording system will naturally be different for each application. If complex systems are contemplated, contact your (ap) representative for assistance.

SECTION OPERATING INSTRUCTIONS

2-1 OPERATING CONTROLS

Operation of front panel controls of the 561 B is shown in Figure 2-1.

The PRINT COMMAND switch (S101) is mounted between J101 and Jl02 on the connector mounting plate at the rear of the 561 B chassis. Operating the switch toward J101 supplies the 561 B with print command signals from the data source connected to J101. Operating the switch toward J102 supplies the $561 B$ with print command signals from the data source connected to J102.

2-2 PAPER TAPE

Special 6 folded tape is recommended for use with your recorder. High-quality standard 3 -inch rolled adding machine type may also be used.

Folded tape permits convenient take-up in the paper drawer and allows easy inspection of any portion of the tape. It is perforated at each fold to allow neat separation of portions of recorded data. Folded tape may be reversed and re-run to use both sides. With single spacing, about 15,000 prints can be made on one side of a folded pad. One pad will last about 40 minutes at maximum print rate.

Follow the instructions in Figure 2-2 to load folded paper tape. Follow these additional instructions if roll tape is used:

1) Insert spindle through roll. Spindle is taped to bottom of paper compartment when instrument is shipped from the factory.
2) Hang roll by ends of spindle from ledges on both sides of paper compartment.
3) Paper must feed out from the bottom of the roll.
4) Continue with loading as shown in Figure 2-2.

To feed paper rapidly use the PAPER ADVANCE thumb wheel. To manually feed paper backward, set the SPACE SELECTOR to " 0 " and roll the PAPER ADVANCE wheel in the reverse (up) direction. Paper feed may be reversed only with the SPACE SELECTOR set to " 0 "'.

Be sure paper is inserted squarely in the paper feed mechanism to prevent jamming. If paper does not feed smoothly, place the RECORD switch in the center position, and remove all paper from the feed mechanism. Use tweezers to pick out torn bits of paper. Re-thread paper as shown in Figure 2-2 and resume printing.

2-3 INKED RIBBON

All models of the printer mechanism use a special heavily-inked silk ribbon available from the Hewlett-Packard Company. Standard typewriter ribbon on an Underwood spool, with reversing rivets near the ribbon ends, may also be used; however, impressions will be lighter than with the Hewlett-Packard ribbon.

To install new ribbon, proceed as follows:

1) Open the hinged front panel to gain access to the printer mechanism.
2) Loosen the two printer mechanism retaining screws located on the lower front corners of the mechanism by turning $1 / 4$ turn counterclockwise.
3) Slide mechanism out of cabinet until ribbon spools a re readily accessible.
4) Wind all the ribbon onto one spool.
5) Shift the two ribbon spool retaining springs away from the spools, and remove spools.

FRONT PANEL CONTROLS

1. POWER switch turns on line power to all circuits.
2. PANEL HANDLE is used to open hinged front panel for paper tape or inked ribbon replacement.
3. RECORD switch controls printer mechanism.

Center position: Printer is in standby operation.

Up Position (ON): Printer will print one line for each print command pulse received.
Down position (momentary): Printer will print at maximum rate (print command pulse not required).
4. SPACE SELECTOR thumb wheel selects line spacing.
" 0 " or no-print position allows paper to be rolled forward or backward.
"1" or single space position advances paper one space for each printed line.
" 2 " or double space position advances paper two spaces for each printed line.
5. PAPER DRAWER is used to collect folded paper tape after printing.
6. PAPER ADVANCE thumb wheel allows manual paper advance. Paper can be moved backward if SPACE SELECTOR is set at "0".

Figure 2-1

LOADING PAPER TAPE

1. Open front panel.
2. Load paper in compartment.
3. Fold paper back one inch and crease. Insert paper between roller and guide plate.
4. Manually advance paper. Paper will feed easier and can be reversed with SPACE SELECTOR set to " 0 ".
5. Feed paper under inked ribbon.
6. Feed paper through slot. Close front panel.
7. Collect printed paper in drawer.

Figure 2-2
6) Take the ribbon out of the mechanism. Save the empty spool.
7) Hook end of new ribbon on empty spool. Wind about 10 inches of ribbon on the spool so that the reversing rivet is on the spool.
8) Install new ribbon by feeding it over the ribbon rollers and between the print wheels and paper tape.
9) Feed ribbon through the slots in the reversing arms and around the lower guides. Ribbon must be twisted 90° between the ribbon roller and the slot in the reversing arm.
10) Place ribbon spools on their shafts. Fasten spools in place with the spool retaining springs. Ribbon must feed out from the bottom of each spool.
11) Replace printer mechanism in cabinet and tighten retaining screws.

2-4 TAPE DUPLICATES

You may have a need for duplicate tape records. Contact print duplicating methods, such as the Ozalid process, can be used by printing directly from the original tape records. For Ozalid (Diazo) copies, HP 560A-131B (24-packet carton) translucent paper is recommended.

Quality of copies is greatly improved by treating the original tape record to increase its translucency. Use a compound such as "Transparentizer" made by the Technifax Corporation, Holyoke, Mass.

2-5 OPERATOR MAINTENANCE

Inspect print wheels frequently when the printer is in use. Print wheels should be cleaned when an accumulation of ink and dust builds up on the type faces. It is good practice to clean the print wheels after every fourth pad of paper has been printed. Failure to clean ink from the print wheels may let ink get onto the print wheel pawls and commutator contact surfaces, resulting in sluggish pawl operation and misprinting.

Place a four inch piece of paper under the print wheels during cleaning to prevent dirt from falling into the mechanism. Clean the print wheels with plastic type cleaner only. Suitable type cleaner is included in your service kit. Press the type cleaner against the print wheels. Clean the type cleaner by folding dirty portions to the center of the cleaner.

WARNING

DO NOT USE SOLVENT TO CLEAN PRINT WHEELS. DO NOT USE A BRUSH TO CLEAN TYPE FACES. DAMAGE TO THE PRINT WHEEL MECHANISM MAY RESULT.

Give the printer mechanism a light cleaning each time the paper is changed. Simply wipe out paper dust which has accumulated in the paper compartment and on other accessible parts of the mechanism.

NOTICE

LUBRICATION OF THE PRINTER MECHANISM IS REQUIRED AFTER 100 HOURS OF CONTINUOUS OPERATION OR TWO MONTHS OF INTERMITTENT OPERATION. FOR COMPLETE INSTRUCTIONS REFER TO YOUR PRINTER MECHANISM MANUAL.

2-6 DIGITAL VOLTMETER READOUT

Five columns are used to record data from the (50) Model 405AR Digital Voltmeter. Three significant figures are recorded. Polarity is indicated by a minus sign for a negative voltage and a blank for a positive voltage. Decimal position is indicated by a code number giving the number of digits to the right of the decimal.

The following examples indicate proper interpretation of recorded information from the Model 405AR Digital Voltmeter:

$284-1$	$=$	-28.4 volts
5802	$=$	+5.80 volts
8420	$=$	+842 volts
$101-3$	$=$	-0.101 volts

SECTION III THEORY OF OPERATION

3-1 PRINT WHEEL POSITIONING

Each print wheel has 12 printing positions, including the digits 0 to 9 , a minus sign and a noprint or BLANK position. Each print wheel is rotared by the print wheel shaft through a friction clutch. A locking pawl associated with each wheel normally keeps the wheel locked in place with one type face in printing position. The pawl is lifted at the beginning of a printing cycle, allowing the wheel to rotate with the shaft. The pawl is dropped into a notch in the print wheel when the desired type-face is in printing position, locking the wheel in the desired position while the shaft continues to rotate. At the end of the printing cycle, the paper tape and inked ribbon are pressed against the type face, printing the desired character on the paper. Refer to Figure 3-1.

3-2 TIMING SEQUENCE

The following conditions exist before the printing cycle begins. Refer to Figures 3-2 and 3-3.

- The drive motor runs continuously after power is turned on.
- The clutch is disengaged.
- Switch S302 is in the position shown. The RECORD switch is operated to the ON position as shown.
- Pawl magnets are de-energized; print wheels are locked by their pawls.

The printing cycle is started when a print command pulse is applied to the appropriate PRINT

Figure 3-1. Print Wheel Operation

COMMAND input terminal. The pulse may be supplied by external pulse circuitry or generated by momentarily shorting the NEGATIVE PRINT COMMAND input to the BIAS line.

The print command pulse is amplified, and a positive triggering pulse is sent to the thyratron control grid.

The thyratron is triggered into conduction, energizing the clutch solenoid. Notice that the clutch solenoid may be energized and a printing cycle initiated in absence of a print command pulse by operating the RECORD switch to the momentary position.

The clutch is engaged, and the cam shaft and print wheel shaft begin to turn. The clutch is constructed so that it will remain engaged for only one revolution per print command.

After 20° of clutch rotation, S302 is operated by the switch cam:
a) The normally closed contacts open, halting thyratron conduction and de-energizing the clutch solenoid. The clutch remains engaged until the completion of the printing cycle.
b) The normally open contacts of S302 close, supplying $\mathrm{B}+$ to control tubes and energizing pawl magnets for all print wheels not in proper position. The pawls are lifted, and the print wheels are free to turn.

If the initial position of the print wheel is correct, the brush applies cut-off bias to the control tube at the beginning of the printing cycle. The pawl magnet will not energize, and the print wheel will not rotate.
c) The closing of the normally open contacts also energizes the disable relay. External number

Figure 3-2. Simplified Recorder Diagram

Figure 3-3. Timing Sequence
selecting circuitry has been connected to the relay contacts, to prevent number selections from being changed while the relay is energized.

The print wheels rotate on the print wheel shaft, seeking the position selected by the external circuitry. Each wheel carries a brush which makes contact with segments on an adjacent commutator.

External programming circuitry has previously connected the Blas line to the desired input segment of each commutator. The desired type-face is in printing position when the brush makes contact with the segment to which the BIAS line has been connected.

When brush contact is made with the segment connected to the BIAS line, -43 volts is applied to the grid of the control tube. Plate current is cut off, and the pawl magnet is de-energized, allowing the pawl to drop into a notch on the print wheel. The print wheel is now locked in the correct position. The clutch between the wheel and the print wheel shaft slips until completion of the printing cycle. Each wheel is locked independently in the above manner.

Print wheels which have no input are automatically programmed to the BLANK position. A 22 K resistor is internally connected between the BLANK input of each wheel and the BIAS line. Cut-off bias is delivered through the commutator to the print wheel magnet control tube when the print
wheel is in the BLANK position, locking the print wheel. When a print wheel is connected to an external data source, a shorting jumper must be installed externally between the BLANK input and the COMMON line, preventing BLANK programming.

All print wheels are correctly positioned after the print wheel shaft has made one revolution. The cam shaft continues to turn while the following events occur:
a) The switch cam operates S 302 to its original position. The print wheel magnet circuits are opened, preventing the pawl from being raised between printing cycles. The disable relay is deenergized. The thyratron (V8) plate circuit is closed, arming the clutch for the next printing cycle.
b) The print bar operates upward, pressing the paper against the inked ribbon and print wheels. An impression is made of all print wheel characters in the printing position. Note: The inked ribbon was advanced slightly to expose fresh ribbon while the print wheels were being positioned.
c) The paper tape is advanced for display.
d) Unless another print command is received, the clutch disengages after one revolution, ending the printing cycle.
Refer to your Printer Mechanism Manual for a complete discussion of the details of mechanical operation.

3-3 THE PRINT COMMAND CIRCUIT

The print command circuit energizes the clutch solenoid when a print command pulse is received. The circuit may be triggered either by a positive or a negative pulse, 15 volts or more in amplitude and 10 microseconds or more in duration. The pulse may be supplied by an external pulse circuit or by momentarily shorting the NEGATIVE PRINT COMMAND input to the Blas line. The PRINT COMMAND switch (S 101) permits the print command signal to be selected from the external system connected to either J101 or Jl02. Refer to the schematic diagram Figure 4-5.

If a negative print command pulse is used, it is applied to the grid of V7B, where it is amplified and inverted. The positive output pulse is coupled to the grid of V8.

If a positive print command pulse is used, it is applied to the grid of V7A, cathode coupled to V7B, and amplified without inversion. Again a positive output is sent to the grid of V8.

The positive input pulse causes thyratron V8 to fire. Thyratron plate current energizes the clutch solenoid (L312) to begin the printing cycle. Camoperated switch S 302 removes $\mathrm{B}+$ from the plate circuit and extinguishes the thyratron (V8) shortly after the cam shaft begins to turn. Before the end of the printing cycle, contacts on S302 close and supply $\mathrm{B}+$ to the thyratron plate, readying it for the next print command.

3-4 POWER SUPPLY

The power supply uses a conventional bridge rectifier to supply +240 volts to all circuits. Refer to the schemaric diagram, Figure 4-5. Note that the negative return is the COMMON line and is not grounded to the chassis. The silicon rectifiers are protected from overload by fuse F2.

The BIAS line is supplied with -43 volts from half-wave rectifier CR5. A resistive voltage divider, R3 and R4, supplies -20 volts fixed bias to thyratron V8.

SECTION IV MAINTENANCE

4-1 CABINET REMOVAL

Recorders which are mounted in a cabinet may be removed for servicing as follows:

1) Remove the four screws holding the back cover on the cabinet.
2) Remove the back cover.
3) Place the instrument on its back (front panel up).
4) Loosen the two large set screws in the bottom of the front panel bezel.
5) Lift the cabinet up and off the chassis.

Replace cabinet in reverse order.

4-2 PRINTER MECHANISM REMOVAL

To remove the printer mechanism from the main recorder chassis, proceed as follows:

1) Open the hinged front panel.
2) Loosen the two captive screws located on the lower corners of the printer mechanism.
3) Pull the entire mechanism out through the front panel.
4) To completely remove the mechanism, (a) detach the connector mounting plate $\sqrt{\text { at }}$ the rear of the main recorder chassis (six screws), (b) unplug the 8 -pin connector near the connector mounting plate, and (c) unplug the connector on the printer mechanism frame. See Figure 4-1.

Figure 4-1. Printer Mechanism Removal

4-3 PERIODIC MAINTENANCE

A. LIGHT CLEANING

The recorder operator should give the printer mechanism a light cleaning each time the paper is changed. Print wheels should becleaned at least after every fourth pad of paper has been printed. Refer to paragraph 2-5, Operator Maintenance, for details.

WARNING

DO NOT USE SOLVENT TO CLEAN PRINT WHEELS. DO NOT USE A BRUSH TO CLEAN TYPE FACES. DAMAGE TO THE PRINT WHEEL MECHANISM MAY RESULT.

Figure 4-2. Trouble-Shooting Chart

B. LUBRICATION

The printer mechanism requires periodic cleaning and lubrication for dependable service. Lubricate after 100 hours of continuous operation or two months of intermittent operation. For complete lubrication instructions refer either to the instruction sheet included with your service kit or see your Printer Mechanism Manual.

C. COMPLETE CLEANING

Normally, the printer mechanism will operate for a long period of time without any maintenance other than light cleaning and lubrication discussed above. However, to assure maximum reliability in critical applications the printer mechanism should be disassembled and thoroughly cleaned
after about 50 pads of paper have been printed. Refer to your Printer Mechanism Manual for complete instructions.

4-4 TROUBLE SHOOTING

Use the Trouble-Shooting Chart, Figure 4-2, to assist with trouble localization. Misprinting may be caused either by an electrical or a mechanical malfunction. Always check electrical circuits first. Refer to your Printer Mechanism Manual only after logical test procedures lead you to the printer mechanism.

Always check your recorder for correct operation after maintenance. Use the electronic counter or other data source which is regularly used with the recorder, for this check.

Figure 4-3. Connector Mounting Plate

은 in $\dot{\omega}$

Standard components have been used in this instrument, whenever possible. Special components may be obtained from your local Hewlett-Packard representative or from the factory.

When ordering parts always include:

1. (19) Stock Number.
2. Complete description of part including circuit reference.
3. Model number and serial number of instrument.
4. If part is not listed, give complete description, function and location of part.

Corrections to the Table of Replaceable Parts are listed on an Instruction Manual Change sheet at the front of this manual.

TABLE OF REPLACEABLE PARTS

[^0]TABLE OF REPLACEABLE PARTS

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

TQ - Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

[^1]TABLE OF REPLACEABLE PARTS

[^2]TQ - Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

[^3]
LIST OF MANUFACTURERS CODES

CODE LETTER	MANUFACTURER	ADDRESS
A	Aerovox Corp.	New Bedford, Mass.
B	Allen-Bradley Co.	Milwaukee 4, Wis.
C	Amperite Co.	New York, N. Y.
D	Arrow, Hart \& Hegeman	Hartford, Conn.
E	Bussman Manufacturing Co.	St. Louis, Mo.
F	Carborundum Co.	Niagara Falls, N. Y.
G	Centralab	Milwaukee I, Wis.
H	Cinch-Jones Mfg. Co.	Chicago 24, III.
HP	Hewlett-Packard Co.	Palo Alto, Calif.
I	Clarostat Mfg. Co.	Dover, N. H.
J	Cornell Dubilier Elec. Co.	South Plainfield, N, J.
k	Hi-Q Division of Aerovox	Olean, N. Y.
L	Erie Resistor Corp.	Erie 6, Pa.
M	Fed. Telephone \& Radio Corp.	Clifton, N. J.
N	General Electric Co.	Schenectady 5, N. Y.
0	General Electric Supply Corp.	San Francisco, Calif.
P	Girard-Hapkins	Oakland, Calif.
Q	Industrial Products Co.	Danbury, Conn.
R	International Resistance Co .	Philadelphia 8, Pa.
S	Lectrohm Inc.	Chicago 20, III.
T	Littlefuse Inc.	Des Plaines, III.
U	Maguire Industries Inc.	Greenwich, Conn.
V	Micamold Radio Corp.	Brooklyn 37, N. Y.
W	Oak Monufacturing Co.	Chicago 10, III.
X	P. R. Mallory Co., Inc,	Indianapolis, Ind.
Y	Radio Corp. of America	Harrison, N. J.
Z	Sangamo Electric Co.	Marion, Ill.
AA	Sarkes Tarzion	Bloomington, Ind.
BB	Signal Indicator Co.	Brooklyn 37, N, Y.
CC	Spraque Electric Co.	North Adoms, Mass.
DD	Stackpole Carbon Co.	St. Marys, Pa.
EE	Sylvania Electric Products Co.	Warren, Pa,
FF	Western Electric Co.	New York 5, N. Y.
GG	Wilkor Products, Inc.	Cleveland, Ohio
HH	Amphenol	Chieago 50, III.
11	Dial Light Co. of America	Brooklyn 37, N. Y.
JJ	Leecraft Manufacturing Co.	New York, N. Y.
KK	Switcheraft, Ine.	Chicago 22, III.
LL	Gremar Manufacturing Co.	Wakefield, Mass.
MM	Carad Corp.	Redwood City, Calif.
NN	Electra Manufacturing Co.	Kansas City, Mo.
00	Acro Manufacturing Co.	Columbus 16, Ohio
PP	Alliance Manufacturing Co.	Alliance, Ohio
QQ	Arco Electronies, Inc.	New York 13, N. Y.
RR	Astran Corp.	East Newark, N. J.
SS	Axel Brothers Inc.	Long Island City, N. Y.
TT	Belden Manufacturing Co.	Chicago 44, III.
UU	Bird Electronics Corp.	Cleveland 14, Ohio
VV	Barber Colman Co.	Rockford, III.
WW	Bud Radio Inc.	Cleveland 3, Ohio
$X X$	Allen D. Cardwell Mfg. Co.	Plainville, Conn.
YY	Cinema Engineering Co.	Burbank, Calif.
ZZ	Any brand tube meeting RETMA stondards.	
$A B$	Corning Glass Works	Corning, N. Y.
$A C$	Dale Products, Inc.	Columbus, Neb.
$A D$	The Drake Mfg. Co.	Chicago 22, III.
$A E$	Elco Corp.	Philadelphia 24, Pa.
AF	Hugh H. Eby Co.	Philadelphia 44, Pa.
AG	Thomas A. Edison, Inc.	West Orange, N. J.
AH	Fansteel Metallurgical Corp.	North Chicago, Ill.
AI	General Ceramics \& Steatite Corp.	Keasbey, N. J.
AJ	The Gudeman Co.	Sunnyvale, Calif.
0016	-2	

CODE LETTER	MANUFACTURER
AK	Hammerlund Mfg. Co., Inc.
AL	Industrial Condenser Corp.
AM	Insuline Corp, of America
AN	Jennings Radio Mig. Corp.
$A O$	E. F. Johnson Co.
$A P$	Lenz Electric Mfg. Co.
$A Q$	Micro-Switch
AR	Mechanical Industries Prad. Co.
AS	Model Eng. \& Mfg., Inc.
AT	The Muter Co.
$A \cup$	Ohmite Mfg. Co.
AV	Resistance Products Co.
$A W$	Radio Condenser Co.
$A X$	Shalleross Manufacturing Co.
AY	Solar Manufacturing Co.
AZ	Sealectro Corp.
BA	Spencer Thermostat
BC	Stevens Manufacturing Co.
BD	Torrington Manufacturing Co.
BE	Vector Electronic Co.
BF	Weston Electrical Inst. Corp.
BG	Advance Electric \& Relay Co.
BH	E. I. DuPont
BI	Electronics Tube Corp.
BJ	Aireraft Radio Corp.
BK	Allied Control Co., Inc.
BL	Augat Brothers, Inc.
BM	Carter Radio Division
BN	CBS Hytron Radio \& Electric
BO	Chicago Telephone Supply
BP	Henry L. Crowley Co., Inc.
$B Q$	Curtiss-Wright Corp.
BR	Allen B. DuMont Labs
BS	Excel Transformer Co.
BT	General Radio Co.
8 U	Hughes Aircraft Co.
BV	International Rectifier Corp.
BW	James Knights Co.
$B X$	Mueller Electric Co.
BY	Precision Thermometer \& Inst. Co.
BZ	Radio Essentials Inc.
CA	Raytheon Manufacturing Co.
$C B$	Tung-Sol Lamp Works, Inc.
$C D$	Varian Associates
$C E$	Victory Engineering Corp.
CF	Weckesser Co.
CG	Wilco Corporation
CH	Winchester Electronics, Inc.
Cl	Malco Tool \& Die
CJ	Oxford Electric Corp.
CK	Camloc-Fastener Corp.
CL	George K. Garrett
CM	Union Switch \& Signal
CN	Radio Receptor
CO	Automatic \& Precision Mfg. Co.
CP	Bassick Co.
$C Q$	Birnbach Radio Co.
$C R$	Fischer Specialties
CS	Telefunken (c / o MVM, Inc.)
CT	Potter-Brumfield Co.
CU	Cannon Electric Co.
CV	Dynac, Inc.
CW	Good-All Electric Mfg. Co.

ADDRESS

New York 1, N. Y.
Chicago 18, III.
Manchester, N. H.
San Jose, Calif
Waseca, Minn.
Chicago 47, III.
Freeport, III.
Akron 8, Ohio
Huntington, Ind.
Chicago 5, III.
Skokie, III.
Harrisburg, Pa.
Camden 3, N. J.
Collingdale, Pa.
Los Angeles 58, Calif.
New Rochelle, N. Y.
Attleboro, Mass.
Mansfield, Ohio
Van Nuys, Calif.
Los Angeles 65, Calif.
Newark 5, N. J.
Burbank, Calif.
San Francisco, Calif.
Philadelphia 18, Pa.
Boonton, N. J.
New York 2!, N. Y.
Attleboro, Mass.
Chicago, III.
Danvers, Mass,
Elkhart, Ind.
West Orange, N. J.
Carlstadt, N. J.
Clifton, N. J.
Oakland, Calif. Cambridge 39, Mass.
Culver City, Calif. El Segundo, Calif. Sandwich, III.
Cleveland, Ohio Philadelphia 30, Pa. Mt. Vernon, N. Y. Newton, Mass.
Newark 4, N. J.
Palo Alto, Colif.
Union, N. J.
Chicaga 30, III.
Indianapolis, Ind.
Santa Monica, Calif.
Los Angeles 42, Calif.
Chicago 15, III.
Paramus, N. J.
Philadelph:a 34, Pa.
Swissvale, Pa.
New York II, N. Y.
Yonkers, N. Y.
8ridgeport 2, Conn.
New York 13, N. Y.
Cincinnati 6, Ohio
New York, N. Y.
Princeton, Ind.
Los Angeles, Calif.
Palo Alto, Calif.
Ogallala, Nebr.

APPENDIXI - MANUAL CHANGES

This manual applies directly to Ch_{j} Model $561 \mathrm{~B} / \mathrm{BR}$ Digital Recorders with serial number prefix 334 . This manual with the following changes also applies to older Recorders with serial prefix unber 241 or 038 . To adapt this manual to these older Recorders, make changes as follows:

Serial Number Prefix
241
Make Change

241
038
1
2

CHANGE 1: Section IV, Page 5, Figure 4-4 (Control Circuits), (241) Revise diagram as shown in Figure 1 below.

Section V, Page 6, Table of Replaceable Parts, Change S301 to read: "S301, Switch, toggle, DPDT, \$q Stock No. 3101-0033".

Figure 1. Changes for prefix 241

CHANGE 2: (038)

Section IV, Page 5, Figure 4-4,(Control Circuits), Revise diagram as shown in Figure 2 below.

Section V, Page 6, Table of Replaceable Parts, Delete S301.

Figure 2. Changes for prefix 038

UNITED STATES

alabama
P．O．Box 4207
2003 Byrd Spring Road S．W
huntsville 35802
TWX：510－579．2204
Tel：（205）881－4591

ARIZONA

3009 North Scottsdale Road Scottsdale 85251
Tel：（602）945－7601
TWX：910－950－1282
232 South Tucson Boulevard

Tucson 85716

Tel：（602）623－2564
TWX：910－952－1162
CALIFORNIA
3939 Lankershim Boulevard
North Hollywood 91604
Tel：（213）877－1282
TWX：910－499－2170
1101 Embarcadero Road
Palo．Alto 94303
Tel：（415） 327.6500
TWX：910－373－1280
2591 Carlsbad Avenue
Sacramento 95821
Tel：（916） $482 \cdot 1463$
IWX：910－367－2092
1055 Shafter Street
San Diego 92106
Tel：（714）223－8103
TWX：910－335－2000

COLORADO

7965 East Prentice
Englewood 80110
Tel：（303）771－3455
TWX：910－935．0705
CONNECTICUT
508 Tolland Street
East Hartford 06108
Tel：（203） 289.9394
TWX 710－425－3416
111 East Avenue
Norwalk 06851
Tel：（203）853－1251
TWX：710－468－3750
DELAWARE
3941 Kennett Pike
Wilmington 19807
Tel：（302） $655-6161$
TWX：510－666－2214
florida
Suite 106
9999 N．E．2nd Avenue
Miami Shores 33138
Tel：（305） 758.3626
TWX：810．848－7262
P． 0.80×20007
Herndon Station 32814
621 Commonwealth Avenue
Orlando
「el：（305）841－3970
TWX： $810.850 \cdot 0113$
P．O．Box 8128
Madeira Beach 33708
410 150th Avenue
St．Petersburg
Tel：（813） 391.0211
TWX：810－863－0366

GEORGIA

3110 Maple Drive N．E．
Atlanta 30305
Tel：（404）233－1141
TWX：810－751－3283
ILLINOIS
5500 Howard Street
Skokie 60076
Tel：（3！2）677－0400
TWX：910－223－3613

indiana

4002 Meadows Drive
Indianapolis 46205
Tel：（317）546－4891
TWX：810－341－3263
LOUISIANA
P．O．Box 856
1942 Williamis Boulevard
Kenner 70062
Tel：（504）721－6201
TWX：810－955－5524

MARYLAND

6707 Whitestone Road
Baltimore 21207
Tel：（301） 944.5400
TWX：710－862．0850
P．0．Box 727
Twinbrook Station 20851
12303 Twinbrook Parkway
Rockville
Tel：（301） 427.7560
TWX：710－828－9684

MASSACHUSETTS
Middlesex Turnpike
Burlington 01803
Tel：（617）272－9000
TWX：710．332－0382

MICHIGAN

24315 Northwestern Highway Southfield 48076
rel：（313）353－9100
TWX：810－232－1532
minnesota
2459 University Avenue
St．Paul 55114
Tel：（612）646－7881
TWX： $910-563.3734$
MISSOURI
9208 Wyoming Place
Kansas City 64114
Tel：（816）333－2445
TWX：910－771－2087
2812 South Brentwood Blyd．
St．Louis 63144
Tel：（314）644－0220
TWX：910－760－1670
NEW JERSEY
Crystal Brook Prof．Bldg．
Route 35
Eatontown
Tel：（201）747．1060
391 Grand Avenue
Englewood 07631
Tel：（201）567－3933
TWX：710－991－9707
NEW MEXICO
P．O．Box 8366
Station C 87108
6501 Lomas Boulevard N．E．

Albuquerque

Tel：（505）255－5586
TWX：910－989－1665
156 Wyatt Drive
Las Cruces 88001
Tel：（505）526－2486
TWX：910－983－0550

CANADA

BRITISH COLUMBIA

Hewlett－Packard（Canada）Lid． 2184 West Broadway Vancouver
Tel：（604） 738.7520
rwx：610－922－5050

ONTARIO

Hewlett－Packard（Canada）Ltd． 880 Lady Ellen Place Ottawa 3
Tel：（613）722－4223
rwx：610－562－1952

Hewlett－Packard（Canada）Lid． 1415 Lawrence Avenue West Toronto
Tel：（416） 249.9196
TWX：610．492－2382

CENTRAL AND SOUTH AMERICA

argentina

Mauricio A．Suárez
Telecomunicaciones
Carlos Calvo 224
Buenos Aires
Tel：30－6312，34－9087
BRAZIL
Ciental，Importacảo e
Comércio Itda．
Rua Cleto Campelo，44－5 5° andar
Recife
Ciental，Importacăo e Comércio Ltda．
Avenida 13 de Maio， $13-22^{\circ}$ andar
Rio de Janeiro C B
Ciental，importacão e Comércióo Ltda．
Rua Des．Eliseu Guilherme， 62
Säo Paulo 8
Tel：70－2318
chile
Héctor Calcagni
Casilla 13942
Santiago
Tel：490．505， 393.119
costa rica
Lic．Alfredo Gallegos Gurdián Apartado 3243
San José
Tel：21－86－13
EL SALVADOR
Electrónica
Apartado Postal 1589
San Salyador
Tel： 4683

Olander Associates Latin America Apartado 1226
7a．Calle，0－22，Zona 1
Guatemala city
Tel： 22812

MEXICO

Hewlett－Packard Mexicana，
S．A．de C．V
Eugenia 408，Dept． 1
Mexico 12，D．F．

NICARAGUA

Roberlo Terán G
Edificio Terán
Apartado Postal 689
Managua
Tel：3451， 3452

PANAMA

Electrórico Balboa，S．A．
P．O．Box 4929
Panama City
Te！：3－0833

PERU

Fernando Ezeta B．
Av．Petit Thouars 4719
Casilla 3061
Lima
Tel： 50346
PUERTO RICO
San Juan Electronics，Inc．
Ponce de León No．150，Stop 3
Pta．de Tierra Sta．
San Juan
Tel：（809）725－3342

QUEBEC

Hewlett－Packard（Canada）Ltd．
275 Hymus Boulevard
Pointe Claire
Tel：（514） 697.4232
TWX：610－422－3022
Telex：01－2819

NEW YORK
ndicott 13760
Tel：

York 10021
1）
W者

Tel． $510-258.0012$
TW：510－2
Rosar
隹新 14623
le：（716）473－9500

5 Northern Boulevard
Roslyn，Long Island 11576
（516）889－8400

88 East Molloy Road
yracuse 13211
el：（315）454－2486

NORTH CAROLINA
．O．Box 5187
streel
Hig

Monroe Complex
Moss Side Boulevard
Monroevilie 15146
Tel：（412） 271.0724
TWX：710．797－3650
144 Elizabeth Street
West Conshohocken 19428
Tel：（215）248－1600，828－6200
TWX：510－660－8715

TEXAS

P．O．Box 7166
3605 Inwood Road
Dallas 75209
Tel：（214）357－1881
TWX：910．861－4081
P．O．Box 22813
4242 Richmond Avenue
Houston 77027
Tel：（713） 667.2407
TWX：910－881－2645
GOVERNMENT CONTRACT OFFICE
225 Billy Mitchell Road
San Antonio 78226
Tel：（512） 434.4171
TWX：910－871－1170
UTAH
2890 South Main Street
Salt Lake City 84115
Tel：（801） 486.8166
TWX：910－925－5681
VIRGINIA
P．O．Box 6514
2111 Spencer Road
Richmond 23230
Tel：（703）282－5451
TWX：710．956－0157
WASHINGTON
11656 N．E．Eighth Street
Bellevve 98004
Tel：（206）454－3971
TWX：910－443－2303
FOR AREAS NOT
LISTED，CONTACT：
Hewlett－Packard
1501 Page Mill Road
Palo Alto，California 94304
Tel：（415）326－7000
TWX：910－373－1267
Telex：34－8461

FOR AREAS NOT
LISTED，CONTACT：
Hewletl－Packard Inter－Americas
1501 Page Mill Road
Palo Alto，California 94304
Tel：（415） 326.7000
Tel：（415） 326.7000
Twx： 910.373 .1267
TWX： $910 \cdot 373.126$
Telex： $034-8461$
Cable：HEWPACK Palo Alto

VENEZUELA

Citec，C．A．
Edif．Arisan－0f．∓ 4
Avda．Francisco de Miranda
Apartado del Este 10934 Chacaito
Caracas
Tel： 71.88 .05
FOR AREAS NOT
LISTED，CONTACT．
Hewlett－Packard Inter－Americas
150I Page Mill Road
Palo Alto，California 94304
Tel：（415）326－7000
TWX：910－373－1267
Telex：034．8461
Cable：HEWPACK Palo Alto

HEWLETT hP PACKARD

[^0]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".

 TQ - Total quantity used in the instrument.

[^1]: * See "List of Manufacturers Code Letters For Replaceable Parts Table". TQ - Total quantity used in the instrument.

[^2]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".

[^3]: *See "List of Manufacturers Code Letters For Replaceable Parts Table".
 TQ - Total quantity used in the instrument.

