HP Archive

This vintage Hewlett Packard document was preserved and distributed by
 www. hparchive.com
 Please visit us on the web!

Scanned by on-line curator: Tony Gerbic ** For FREE Distribution Only ***

OPERATING AND SERVICING MANUAL FOR

MODEL 460BR
FAST PULSE AMPLIFIER
Serial 1720 and Above

HEWLETT-PACKARD COMPANY
275 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U. S. A.

Frequency Response:	High Frequency - closely matches Gaussian curve when operating into a 200 -ohm resistive load. 3 db point is 120 mc .
	Low Frequency - off approx. 3 db at 100 kc when operating into a matched load. Off approx. 3 db at 3 kc when operating into an open circuit (i.e., CRT plates) or succeeding amplifier.
	With (4) 410B VTVM - when used with (ap) $46 \mathrm{~A}-95 \mathrm{D}$ Adapter, response $\pm 1 \mathrm{db}, 200 \mathrm{kc}$ to 200 mc .
Gain:	Approximately 15 db into 200 ohm load.
Output Impedance:	Approximately 200 ohms.
Rated Output:	Linear Amplifier - Approximately 8 volts peak into a 200 ohm load or 16 volts peak into open circuit.
Maximum Output:	Pulse Amplifier - Approximately 125 volts negative peak open circuit (unilateral) pulse operation 10% duty cycle.
Input Impedance:	200 ohms (+8 volts input required for 125 volts output).
Noise Figure:	Less than 6 db .
Delay Characteristics:	Approximately . $016 \mu \mathrm{sec}$.
Rise Time:	Approximately $0.003 \mu \mathrm{sec}$. No appreciable overshoot.
Power Supply:	$115 / 230$ volts $\pm 10 \%, 50 / 1000 \mathrm{cps}, 50$ watts.
Size:	19' relay rack panel, 5-1/4" high; 6-3/4"deep.
Weight:	12 lbs . Shipping weight 18 lbs.
Accessories Available:	(40) 46A-16A Patch Cord: 200 ohms, 2^{\prime} long. (40 46A-16B Patch Cord: 200 ohms, 6' long. (67) 46A-95A Panel Jack: For 200 ohm cables low capacitance. (50) 46A-95B Cable Plug: For 200 ohm systems. (40) 812-52 Cable: 200 ohm cable in length to specification. (40) 46A-95C 50-ohm Adapter: Type N to ${ }^{4} 49460$, 50 ohm termination. no termination. (40) 46A-95E Connector Sleeve: Joins two 46A95B Cable Plugs. (4p) 46A-95F Adapter: For connecting to 5XP CRT. (40) $46 \mathrm{~A}-95 \mathrm{H}$ Adapter: Type N to (bi 460, 200ohm termination. (50) 46A-95J Adapter: Type N to 44460 , no termination. (52) $46 \mathrm{~A}-95 \mathrm{~K}$ Adapter: (5i4) 410 VTVM to 15480 , 200 ohm termination. (40) 460B-95A Adapter: For connecting to Model 150A Oscilloscope plates.

CONTENTS

Page

Section I GENERAL DESCRIPTION
1-1 Description 1
1-2 Accessories. 1
Section II OPERATING INS TRUCTIONS
2-1 Inspection 3
2-2 Installation 3
2-3 Controls and Terminals 3
2-4 Operation 5
Section III THEORY OF OPERATION
3-1 Distributed Amplifier 7
Section IV MAINTENANCE
4-1 Cover Removal 9
4-2 Tube Replacements 9
4-3 Power Supply 9
4-4 230 Volt Operation 10
4-5 Trouble Shooting 10
4-6 Replacement of 200 ohm cable Connector 10
4-7 Test Procedure 12
Section V TABLE OF REPLACEABLE PARTS
5-1 Table of Replaceable Parts 15

Figure 1. (A) Gaussian Response
(B) Typical 460BR Amplifier Response

Figure 2. (A) $0.01 \mu \mathrm{sec}$ Pulse Through ($4 P$) 460BR Amplifier
(B) $0.02 \mu \mathrm{sec}$ Pulse Through 3 Amplifiers in Cascade

SECTION I

GENERAL DESCRIPTION

1-1 DESCRIPTION

The (9p Model 460B is a wide band distributed amplifier especially designed to amplify high speed pulses to high voltage levels with negligible overshoot. The output voltage is sufficiently high to drive the deflection plates of a cathode ray-tube. In order to retain the fast rise time and shape of high speed pulses, it is neces sary that the amplifier have a wide, reasonably flat frequency response. The frequency response of the Model 460B closely approximates the gaussian response and hence retains the characteristics of short fast pulses. Figure 1, Figure 2.

The high output of the 460 B is obtained with standard receiving tubes by designing the amplifier primarily to amplify pulses of a single polarity. Thus the Model 460B amplifies positive pulses to the maximum level of 125 volts open circuit, while negative pulses may be amplified to a maximum level of 16 volts open circuit. A phase inversion occurs within the amplifier so that a positive pulse applied to the input will be a negative pulse at the output. However, either upward or downward deflections of the CRT is possible, since either the upper or lower deflection plate may be connected to the ground terminal of the Model 460B.

1-2 ACCESSORIES AVAILABLE

A complete line of accessories, for use with the Model 460B, is available from the Hewlett-Packard Company, These accessories are listed on the Specification page and at the end of the Table of Replaceable Parts, Section V.

1-3 230 VOLT OPERATION

This instrument is normally supplied with the power transformer connected for 115 volt operation, unless otherwise specified on the order. Complete conversion information for 230 volt operation is contained in Section IV of this manual.

SECTION II

OPERATING INSTRUCTIONS

2-1 INS PECTION

This instrument has been thoroughly tested and inspected before being shipped and is ready for use when received.

After the instrument is unpacked, it should be carefully inspected for damage received in transit. If any shipping damage is found, follow the procedure outlined in the "Claim for Damage in Shipment" page at the back of this instruction manual.

2-2 INSTALLATION

No special precautions are necessary except, when several 460 Amplifiers are to be used in cascade, they must have a good common ground, i. e.: mounted in a relay rack, and the high-voltage output must be kept away from the input to avoid the possibility of feedback.

2-3 CONTROLS AND TERMINALS
ON
This toggle switch controls the a-c power supplied to the instrument from the power line.

LINEAR, PULSE
This rotary switch selects the type of amplification desired.

FUSE

The fuseholder, located on the panel, contains the power line fuse. Replacement fuses should be of the type specified in the Table of Replaceable Parts, Section V.

POWER CABLE

The three-conductor power cable supplied with this instrument is terminated in a polarized three-prong male connector. The third contact is an offset, round pin added to a standard twoblade connector which grounds the instrument chassis when used

Figure 3. Linearity Characteristics of 460BR Amplifier

Figure 4. Cascading 460 Amplifiers
with an appropriate receptacle. An adapter may be used to connect this plug to a standard two contact system. When the adapter is used, the ground connection is brought out on a short wire. This ground lead should then be connected to a suitable ground for the protection of operating personnel.

INPUT AND OUTPUT

The input and output jacks on the control panel, require special 200 -ohm connectors and cables. (See paragraph l-2).

2-4 OPERATION

Connect the Model 460B to the power line, turn on the power switch and the instrument is in operation.

To use as a linear amplifier to amplify sine waves, etc., or pulses of either polarity, set the LINEAR-PULSE switch to the LINEAR position. When the LINEAR-PULSE switch is in this position the output is limited to 16 volts peak into an open circuit or 8 volts peak into a 200 -ohm load. It must be remembered that a phase reversal between input and output is present and that a positive input pulse appears in the output as a negative pulse.

To realize the full output capabilities of the Model 460B, the LINEAR-PULSE switch must be in the PULSE position and a positive pulse of about 8 volts peak be supplied to the input.

In the PULSE position of the LINEAR-PULSE switch the amplifier tubes are operated at higher than normal supply voltages. The grid bias is increased to keep tube dissipation within ratings. Under these conditions (+8 volt input) the rated tube dissipation is reached with a duty cycle of 10%. Lower driving voltages will allow proportionally higher duty cycles, but the output voltage will be lower. See Figure 3.

In order to supply this 8 -volt positive pulse to a Model 460B, the units may be cascaded or used with one or more Model 460A Wide Band Amplifiers, see Figure 4. In general, when cascading 460 amplifiers, consideration must be given to the polarity as well as the amplitude of the pulse to be amplified. For maximum deflection, the set-up must be arranged so that the input to the last 460 BR amplifier is positive and of approximately 8 volts peak amplitude. This is easily done because the 460 BR inverts the input pulse. Hence, an additional 460 B can be used when necessary to invert pulse polarity. In most applications an input of about 4 volts is sufficient to give satisfactory deflection of a cathode-ray tube. Certain precautions must be taken when cascading several 460 Amplifiers, see Paragraph 2-2, INSTALLATION.

Figure 5. Basic Circuit of a Distributed Amplifier

THEORY OF OPERATION

3-1 DISTRIBUTED AMPLIFIER

The extremely rapid rise time of the 460 B is obtained through the use of the distributed amplifier;* the operation of which is explained as follows. See Figure 5.

In the distributed amplifier, the tubes are connected at fixed intervals between two artificial transmission lines that have equal propagation velocities. A signal applied to the input terminals passes down the grid line and appears on each grid in turn. The resulting plate signal currents flow in the plate line, half in one direction and half in the other. Since the paths from the input through any tube to the output are the same length in terms of line sections traversed, the individual plate signal currents will arrive at the output termination in phase, thus adding together in the load. The plate signal currents flowing in the reverse direction are absorbed without reflection in the reverse plate line termination. The output voltage of a distributed amplifier is given by the relation
$E_{o}=\frac{n Z p}{Z}$ ip where n is the number of tubes in the stage, ip is the plate signal current, and Z_{p} is the plate line impedance.

The number of tubes that can be used in a single stage is limited by grid loading which occurs at high frequencies because of the increased input conductance of the amplifier tubes. This effect reduces the high frequency gain and in effect restricts the frequency range of the amplifier.

When amplifiers are cascaded, the rise time will be greater than that of a single unit in accordance with the relation:

$$
\begin{aligned}
& T=t(n)^{1 / 2} \\
& \text { where: } \quad T \text { is total rise time } \\
& t \text { is the rise time of a single } \\
& \text { unit (2.6X10-9 sec.) } \\
& n \text { is the number of } 460 \text { units. }
\end{aligned}
$$

In addition to the rise time of the amplifiers, the rise time of the RC combination formed by the capacitance of the deflection plates
and the internal resistance of the 460B (200 ohms) should be considered.

In any case, the total rise time of any number of 460 Amplifiers in conjunction with any load may be found approximately by the following relation:

$$
\left.\mathrm{T}=\left[\mathrm{nt}^{2}+(440 \mathrm{C})^{2}\right]\right]^{1 / 2}
$$

where: $\quad n=$ number of 460 Amplifiers
$t=$ rise time of one $460=$ 2. $6 \times 10-9 \mathrm{sec}$.
$C=$ total shunt capacitance on the output of the 460 in farads. $T=$ total rise time.

SECTION IV

MAINTENANCE

4-1 COVER REMOVAL

You will be able to slide the one-piece cover off the instrument after removing the four screws in the rear of the cover.

4-2 TUBE REPLACEMENTS

In many cases instrument malfunction can be corrected by replacing a weak or defective tube. Before making any internal adjustment or component replacement, check the tubes. Adjustments made in an attempt to compensate for a defective tube will often complicate the repair problem.

It is good practice to check tubes by substitution rather than by the use of a "tube checker". The results obtained from the "tube checker" can be misleading. Mark original tubes to insure return to the same socket. Replace only tubes proved to be weak or defective.

Any tube with corresponding standard EIA (JEDEC) characteristics can be used as a replacement.

4-3 POWER SUPPLY

The 460B power supply delivers two output voltages depending upon the setting of PULSE-LINEAR switch Sl.

With Sl in the PULSE position, selenium rectifiers CR-1 and CR-2 are connected in a voltage doubler circuit. The dc output voltage between ground and the common junction of capacitor C22, filter choke L28, and fuse F2 with the line voltage set to 115 volts will be 270 ± 15 volts. Ripple voltage can be quite high without affecting instrument performance.

When switch Sl is in the LINEAR position, rectifiers CR-1 and CR-2 are connected in parallel as half-wave rectifiers. The dc output voltage between ground and the point described above will be 110 volts when the line voltage is set to 115 volts. Ripple voltage is again not critical.

Low power supply voltages are generally caused by weak selenium rectifiers, leaky filter capacitors, shorted tubes or off-value resistors.

4-4 230 VOLT OPERATION

The (5) Model 460B can be quickly and easily converted to operate from a nominal 230 volt $50 / 1000 \mathrm{cps}$ power source. The instrument is normally supplied with the dual primary windings of the power transformer connected in parallel for 115 volt operation. To convert for 230 volt operation, reconnect the primary windings in series as shown on the schematic diagram. The line fuse Fl must also be changed from 0.8 amp slow-blow to 0.4 amp slowblow.

4-5 TROUBLE SHOOTING

Low gain, low output, and impaired frequency response are all directly related to tube mutual conductance and power supply output voltage. Consequently, should any of the above symptoms appear, the power supply output voltages should be checked (para. 4-3) and the tubes should be checked (para. 4-2).

Impaired frequency response, low gain, and/or excessive hum can also be caused by open or shorted coils and by defective terminating resistors or screen resistors.

If B+ fuse F2 blows, look for a B+ short, loss of bias, or a shorted 5654 tube. If a 5654 tube was responsible for the blown fuse, check the appropriate screen resistor and resistor Rl for possible damage.

Resistor R1 is made up of five 980 ohms resistors connected in parallel. Any one of these resistors could open without greatly affecting the operating voltages.

The cans of electrolytic capacitors C22, C23, and C24 are insulated from the chassis. If these capacitors are shorted to the chassis the bias voltage will also be shorted. The bias voltage is normally not more than about 10 volts and is not dangerous to personnel, but tube damage can result if this voltage is removed.

4-6 REPLACEMENT OF 200 OHM CABLE CONNECTOR

1. Cut 200 ohm cable to length desired. Trim end of cable to a point where shielding and outer insulation are even with the end of a center conductor support bead. After assembly, cable length to tip of banana plug will be approximately $1 / 4^{\prime \prime}$ shorter than trimmed cable length.

Fig. 6 Exploded View of the 46A-95B Assembly
2. Remove outer cable insulation for a distance of 2 " from cable end.
3. Remove three support beads from center conductor. To do this, upset shielding just enough to release beads.
4. Slide the following parts over the cable shielding in order given: rear retainer cap, large washer(s), rubber " 0 " ring. Either one or two washers are included with the connector parts at the factory. Use all of the large 512134 washers supplied. Purpose of additional washer is given in step 9.
5. Slide rear plug body over shielding. Hold rear plug body against end of outer insulation and cut off shielding 3/16" from beveled end of rear plug body.
6. Fan shielding out and bend back over rear plug body. Trim off any shield wire protruding beyond beveled edge.
7. Place conical washer over shielding with flat side toward end of plug.
8. Insert center conductor through hole in center of front plug assembly, slide assembly back over conical washer. Thread rear retainer cap on front plug assembly. Plug must be firmly tightened so that it cannot be rotated on
end of cable. The use of strap wrenches is recommended.
9. Measure distance between front edge of rear retainer cap and front edge of front plug assembly. This distance must not be less than 31/32". Additional washers installed as in step d will increase this distance.
10. Wrap and solder the center conductor to the base of the banana plug. Do not pull center conductor excessively tight when connecting to banana plug.
11. Resistance between outer connectors must be less than one ohm. Resistance between center connectors must be less than one ohm. Resistance between outer connectors and center connectors must be greater than 500 megohms.

4-7 TEST PROCEDURE

Testing of the 460 B is a long tedious procedure, and is not often needed. However, anyone with the necessary equipment for making the several somewhat complex test set-ups can complete the procedure. The following (5p instruments or their equivalent will be required.

Signal Sources. . . Models 212A, 608C, and 650A. Voltmeters Models 410B and 400D/H/L. Oscilloscope Model 150A. Attenuators Models 355A and 355B. Miscellaneous Cable Adapters

The complete Test Procedure is available from the $\frac{10}{5}$ Factory as a Service Note. Perhaps your most convenient source for these Service Notes is your local (ap Representative who will be pleased to supply you with copies on request.

Your local (ap Representative also maintains complete facilities and specially trained personnel to assist you with any engineering, application, test, or repair problems you may have with 40 Instruments.

Figure 7. Top View of \hbar Model 460 B Fast Pulse Amplifier

Figure 8. Bottom View of $\$ \nmid p$ Model 460B Fast Pulse Amplifier

SECTION V

table of replaceable parts

NOTE

Any changes in the Table of Replaceable Parts will be

 listed on a Production Change sheet at the front of this manual.When ordering parts from the factory always include the following information:

> Instrument model number Serial number
> -hp-stock number of part
> Description of part

TABLE OF REPLACEABLE PARTS

[^0]TABLE OF REPLACEABLE PARTS

[^1]TABLE OF REPLACEABLE PARTS

[^2]| $\begin{aligned} & \text { CODE } \\ & \text { LETTER } \end{aligned}$ | MANUFACTURER |
| :---: | :---: |
| A | Aerovox Corp. |
| B | Allen-Bradley Co. |
| C | Amperite Co. |
| D | Arrow, Hart \& Hegeman |
| E | Bussman Manufacturing Co. |
| F | Carborundum Co. |
| G | Centralab |
| H | Cinch-Jones Mfg. Co. |
| HP | Hewlett-Packard Co. |
| 1 | Clarostat Mfg. Co. |
| J | Cornell Dubilier Elec. Co. |
| K | Hi-Q Division of Aerovox |
| L | Erie Resistor Corp. |
| M | Fed. Telephone \& Radio Corp. |
| N | General Electric Co. |
| 0 | General Electric Supply Corp. |
| P | Girard-Hopkins |
| Q | Industrial Products Co. |
| R | International Resistance Co. |
| S | Lectrohm Inc. |
| T | Littlefuse Inc. |
| U | Maguire Industries Inc. |
| v | Micamold Radio Corp. |
| w | Oak Manufacturing Co. |
| X | P. R. Mallory Co., Inc. |
| Y | Radio Corp. of America |
| Z | Sangamo Electric Co. |
| AA | Sarkes Tarzian |
| BB | Signal Indicator Co. |
| CC | Sprague Electric Co. |
| DD | Stackpole Carbon Co. |
| EE | Sylvania Electric Products Co. |
| FF | Western Electric Co. |
| GG | Wilkor Products, Inc. |
| HH | Amphenol |
| 11 | Dial Light Co. of America |
| JJ | Leecraft Manufacturing Co. |
| KK | Switcheraft, Inc. |
| LL | Gremar Manufacturing Co. |
| MM | Carad Corp. |
| NN | Electra Manufacturing Co. |
| OO | Acro Manufacturing Co. |
| PP | Alliance Manufacturing Co. |
| QQ | Arco Electronics, Inc. |
| RR | Astron Corp. |
| SS | Axel Brothers Inc. |
| TT | Belden Manufacturing Co. |
| UU | Bird Electronics Corp. |
| vV | Barber Colman Co. |
| Ww | Bud Radio Inc. |
| XX | Allen D. Cardwell Mfg. Co. |
| YY | Cinema Engineering Co. |
| ZZ | Any brand tube meeting |
| | RETMA standards. |
| AB | Corning Glass Works |
| AC | Dale Products, Inc. |
| AD | The Drake Mfg. Co. |
| AE | Elco Corp. |
| AF | Hugh H. Eby Co. |
| AG | Thomas A. Edison, Inc. |
| AH | Fansteel Metallurgical Corp. |
| AI | General Ceramics \& Steatite |
| AJ | The Gudeman Co. |

ADDRESS	$\begin{aligned} & \text { CODE } \\ & \text { LETTER } \end{aligned}$	MANUFACTURER
New Bedford, Mass.	AK	Hammerlund Mfg. Co., Inc.
Milwaukee 4, Wis.	AL	Industrial Condenser Corp.
New York, N. Y.	AM	Insuline Corp. of America
Hartford, Conn.	AN	Jennings Radio Mfg. Corp.
St. Louis, Mo.	AO	E. F. Johnson Co.
Niagara Falls, N. Y.	AP	Lenz Electric Mfg. Co.
Milwaukee I, Wis.	AQ	Micro-Switch
Chicago 24, III.	AR	Mechanical Industries Prod. Co.
Palo Alto, Calif.	AS	Model Eng. \& Mfg., Inc.
Dover, N. H.	AT	The Muter Co.
South Plainfield, N. J.	AU	Ohmite Mfg. Co.
Olean, N. Y.	AV	Resistance Products Co.
Erie 6, Pa.	AW	Radio Condenser Co.
Clifton, N. J.	AX	Shalleross Manufacturing Co.
Schenectady 5, N. Y.	AY	Solar Manufacturing Co.
San Francisco, Calif.	AZ	Sealectro Corp.
Oakland, Calif.	BA	Spencer Thermostat
Danbury, Conn.	BC	Stevens Manufacturing Co.
Philadelphia 8, Pa.	BD	Torrington Manufacturing Co.
Chicago 20, III.	BE	Vector Electronic Co.
Des Plaines, III.	BF	Weston Electrical Inst. Corp.
Greenwich, Conn.	BG	Advance Electric \& Relay Co.
Brooklyn 37, N. Y.	BH	E. I. DuPont
Chicago 10, III.	BI	Electronics Tube Corp.
Indianapolis, Ind.	BJ	Aircraft Radio Corp.
Harrison, N. J.	BK	Allied Control Co., Inc.
Marion, III.	BL	Augat Brothers, Inc.
Bloomington, Ind.	BM	Carter Radio Division
Brooklyn 37, N. Y.	BN	CBS Hytron Radio \& Electric
North Adams, Mass.	BO	Chicago Telephone Supply
St. Marys, Pa.	BP	Henry L. Crowley Co., Inc.
Warren, Pa.	BQ	Curtiss-Wright Corp.
New York 5, N. Y.	BR	Allen B. DuMont Labs
Cleveland, Ohio	BS	Excel Transformer Co.
Chicago 50, III.	BT	General Radio Co.
Brooklyn 37, N. Y.	BU	Hughes Aircraft Co.
New York, N. Y.	BV	International Rectifier Corp.
Chicago 22, III.	BW	James Knights Co.
Wakefield, Mass.	BX	Mueller Electric Co.
Redwood City, Calif.	BY	Precision Thermometer \& Inst. Co.
Kansas City, Mo.	BZ	Radio Essentials Inc.
Columbus 16, Ohio	CA	Raytheon Manufacturing Co.
Alliance, Ohio	CB	Tung-Sol Lamp Works, Inc.
New York 13, N. Y.	$C D$	Varian Associates
East Newark, N. J.	CE	Victory Engineering Corp.
Long Island City, N. Y.	CF	Weckesser Co.
Chicago 44, III.	CG	Wilco Corporation
Cleveland 14, Ohio	CH	Winchester Electronics, Inc.
Rockford, III.	Cl	Malco Tool \& Die
Cleveland 3, Ohio	CJ	Oxford Electric Corp.
Plainville, Conn.	CK	Camloc-Fastener Corp.
Burbank, Calif.	CL	George K. Garrett
	CM	Union Switch \& Signal
	CN	Radio Receptor
Corning, N. Y.	CO	Automatic \& Precision Mfg. Co.
Columbus, Neb .	CP	Bassick Co.
Chicago 22, III.	CQ	Birnbach Radio Co.
Philadelphia 24, Pa.	CR	Fischer Specialties
Philadelphia 44, Pa.	CS	Telefunken ($\mathrm{c} /$ ¢ MVM, Inc.)
West Orange, N. J.	CT	Potter-Brumfield Co.
North Chicago, III.	Cu	Cannon Electric Co.
Keasbey, N. J.	CV	Dynac, Inc.
Sunnyvale, Calif.	cW	Good-All Electric Mfg. Co.

ADDRESS

New York I, N. Y.
Chicago 18, III.
Manchester, N. H.
San Jose, Calif.
Waseca, Minn.
Chicago 47, III.
Freeport, III.
Akron 8, Ohio
Huntington, Ind.
Chicago 5, III.
Skokie, III.
Harrisburg, Pa.
Camden 3, N. J.
Collingdale, Pa.
Los Angeles 58, Calif.
New Rochelle, N. Y.
Attleboro, Mass.
Mansfield, Ohio
Van Nuys, Calif.
Los Angeles 65, Calif.
Newark 5, N. J.
Burbank, Calif.
San Francisco, Calif.
Philadelphia 18, Pa.
Boonton, N. J.
New York 21, N. Y.
Attleboro, Mass.
Chicago, III.
Danvers, Mass.
Elkhart, Ind.
West Orange, N. J.
Carlstadt, N. J.
Clifton, N. J.
Oakland, Calif.
Cambridge 39, Mass.
Culver City, Calif.
El Segundo, Calif.
Sandwich, III.
Cleveland, Ohio
Philadelphia 30, Pa.
M + . Vernon, N. Y.
Newton, Mass.
Newark 4, N. J.
Palo Alto, Calif.
Union, N. J.
Chicago 30, III.
Indianapolis, Ind.
Santa Monica, Calif.
Los Angeles 42, Calif.
Chicago 15, III.
Paramus, N. J.
Philadelph:a 34, Pa.
Swissvale, Pa.
New York II, N. Y.
Yonkers, N. Y.
Bridgeport 2, Conn.
New York 13, N. Y.
Cincinnati 6, Ohio
New York, N. Y.
Princeton, Ind.
Los Angeles, Calif.
Palo Alto, Calif.
Ogallala, Nebr.

(18)
 MANUAL CHANGES

MODEL 460BR
FAST PULSE AMPLIFIER

Serial 2438 and above:

C22 Change to capacitor, fixed, electrolytic, 2 sections, thru 20uf/section, 450 vdew; -hp- Stock No. 18-109, Mfr., CC C24:

II: Change to lamp, incandescent, $6-8 \mathrm{~V}, 2$ pin base, GE \#12; -hp-Stock No. 211-78, Mfr., N

Pl: Change to power cord; -hp-Stock No. 812-106, Mfr., TT
R20: Delete
MISC: Change to lampholder -hp-Stock No. 145-25, Mfr., HP Change jewel, pilot lamp, to -hp- Stock No. 145-23A, Mfr., HP

For instruments with Serials Prefixed: 003-, the manual for Serial 1720 and above applies with all corrections listed above. For instruments with Serials Prefixed: 04l-, include the following changes in addition to those previously listed:

C5,19: Change to capacitor, fixed, ceramic, . Oluf $+20 \%$, 100 vdew; -hp-Stock No. 0150-0098, Mfr., RM्̄C

C20: Change to capacitor: fixed, ceramic, .05uf $\pm 20 \%$, 400 vdew; -hp-Stock No. 15-161, Mfr., NN

造（ficion
 20 4

等
 － 10

[^0]: * See "List of Manufacturers Code Letters For Replaceable Parts Table". \# Total quantity used in the instrument.

[^1]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^2]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

