HP Archive

This vintage Hewlett Packard document was preserved and distributed by
www. hparchive.com
Please visit us on the web !

Scanned by on-line curator: Tony Gerbic ** For FREE Distribution Only ***

MODEL 450A

```
SERIALS PREFIXED: 010 -
```


AMPLIFIER

Section Page Section PageI GENERAL INFORMATION1-1
1-1. Description 1-1
1-5. Applicable Literature 1-1
II OPERATING INSTRUCTIONS 2-1
2-1. Incoming Inspection 2-1
2-4. Installation 2-1
2-10. Operating Procedure 2-2
III THEORY OF OPERATION 3-1
3-1. Amplifier Circuit Operation 3-1
3-4. Regulated Power Supply Operation 3-1
3-6. DC Heater Supply 3-1
IV SERVICE INSTRUCTIONS 4-1
4-1. Warnings and Cautions 4-1
4-4. Equipment Required for Maintenance 4-1
4-6. Troubleshooting 4-2
4-8. Tube Replacement 4-2
4-10. Locating Shorts in Power Circuits 4-2
4-12. Testing Power Supply Operation. 4-2
4-15. Measuring Amplifier Stage Gain 4-3
4-17. Amplifier Adjustments 4-3
4-19. Adjusting V1 and V2 Heater Voltage 4-3
4-21. Adjusting Amplifier Gain 4-3
4-23. Noise and Distortion Measurement 4-4
V REPLACEABLE PARTS 5-1
5-1. Introduction 5-1
$5-3$. Ordering Information 5-1

LIST OF ILLUSTRATIONS

Number Page
1-1. Table of Specifications 1-0
1-2. Model 450A Amplifier 1-0
4-1. Test Setup for Measuring Amplifier
Gain 4-3
4-2. Test Serup for Measuring Amplifier Distortion and Noise 4-4
Number Page
4-3. Top View of Model 450A 4-6
4-4. Bottom View of Model 450A 4-7
4-5. Voltages and Resistances on Tube Sockets and Terminal Boards 4-8
4-6. Schematic Diagram Model 450A 4-9

GAIN: $\quad 40 \pm 1 / 8 \mathrm{db}(100 \mathrm{X}), 20 \pm 1 / 8 \mathrm{db}(10 \mathrm{X})$ at 1000 cps .
FREQUENCY RESPONSE: For 40 db gain (open circuit): 5 cps to 2 megacycles, within $\pm 1 \mathrm{db}$; 10 cps to 1 megacycle, within $\pm 1 / 2 \mathrm{db}$.

For 20 db gain (open circuit): 2 cps to 1.2 megacycles, within $\pm 1 \mathrm{db}$; 5 cps to 1 megacycle, within $\pm 1 / 2 \mathrm{db}$.

STABILITY: $\pm 2 \%$ with line voltage changes ($115 / 230$ volts $\pm 10 \%$) and normal changes in tube characteristics.

IMPEDANCE: Input: 1 megohm shunted by approximately 15 pf. Output: 150 ohms maximum over full frequency range.

OUTPUT LEVEL: $\quad 10$ volts maximum into 3000 ohms or higher resistive load.
DISTORTION: Less than 1% distortion from 2 cps to 100 kc at rated output and load resistance; less than 2% above 100 kc .

NOISE: For 40 db gain: Equivalent to 40 microvolts at input terminals. For 20 db gain: Equivalent to 250 microvolts at input terminals.

POWER: $\quad 115 / 230$ volts $\pm 10 \%, 50$ to 1000 cps ac, 50 watts.
DIMENSIONS: Cabinet Mount: $\dot{8}-5 / 8$ in. wide, $5-1 / 2 \mathrm{in}$. high, 10-3/4 in. deep. Rack Mount: 19 in . wide, 5-7/32 in. high, 10-9/16 in. deep.

WEIGHT: Cabinet Mount: Net 10 lbs ; shipping 14 lbs. Rack Mount: Net 11 lbs; shipping 24 lbs.

ACCESSORIES AVAILABLE: AC-16A Cable Assembly (terminates in dual banana plugs 44 in. long). AC-16B Cable Assembly (dual banana plug to BNC male 45 in . long).

Figure 1-1. Table of Specifications

Figure 1-2. Model 450A Amplifier

SECTION I
 GENERAL INFORMATION

1-1. DESCRIPTION.

1-2. The Model 450A is a general-purpose, stabilized, fixed-gain amplifier for use with low-level signals from 2 cps to 2 mc . It provides two calibrated gain factors, 10X (20 db) and 100X (40 db), selectable by a toggle switch on the front panel. Each gain factor is accurate to within $\pm 1 / 8 \mathrm{db}$ in the audio frequency range; frequency response is given in the table of specifications (figure 1-1). Principal characteristics: stable gain with smooth attenuation beyond rated frequency range, wide frequency range, low distortion.
1-3. Typical uses include increasing the sensitivity of ac test equipment (voltmeters, oscilloscopes, bridges, etc), obtaining larger signals across lower impedances in test bench setups and permanent system installations. An electronically-regulated power supply and large amounts of degenerative feedback around the entire amplifier circuit provide very reliable and stable operation in case of changing line voltage, load resistance, or tube characteristics.

1-4. The amplifier is constructed on a single chassis with removable cover and bottom plate. A leather carrying handle is provided on the left side of the cabinet model. The front panel is finished in light grey enamel; the rest of the cabinet is finished in dark grey wrinkle paint. Operating controls and terminals consist of toggle-type power and gain switches and binding post type input and output terminals on the front panel. Binding posts are spaced $3 / 4$ inch on-centers to receive dual banana-plug connectors. The power cable is permanently attached to the rear of the amplifier and is terminated in a 3 -prong, grounding-type plug. A fuse is provided on the rear and can be replaced externally.

1-5. APPLICABLE LITERATURE.

$1-6$. This handbook contains complete operating and servicing instructions for the 450A Amplifier and conforms to the format specified in MIL-M-5474C.

SECTION II
 OPERATING INSTRUCTIONS

2-1. INCOMING INSPECTION.

2-2. MECHANICAL. When unpacking the amplifier, inspect it for any sign of physical damage. If the cabinet is damaged, remove cover and bottom plate and inspect chassis parts for further damage. Report all damage to the carrier and keep amplifier intact for inspection by carrier and insurer. All instruments shipped by the Hewlett-Packard Company are insured against shipping damage. See Warranty at rear of manual.

2-3. ELECTRICAL. Electrical inspection consists of testing certain electrical characteristics of the amplifier to determine that it functions normally after having been stored or transported. Only one test is required; full instructions are given in paragraph $4-20$ steps a through f .

2-4. INSTALLATION.

2-5. INPUT CONNECTIONS. The amplifier can be connected to a signal source through either twisted pair leads or shielded cable. Keep input leads as short as possible to avoid excessive capacitive shunting of the signal source. If necessary, use coaxial cable to prevent unwanted signal pickup from stray electric and magnetic fields. DO NOT connect the amplifier input to circuit potentials greater than

400 volts unless an external $1-\mu \mathrm{f}$ capacitor having sufficient voltage rating is used in series with the input terminals.

2-6. OUTPUT CONNECTIONS. The amplifier output can be connected through any convenient lead set or cable. The low output impedance of 150 ohms permits shielded cable to be used freely without capacitive loading in the audio range and permits twisted pair leads to be used with much less effect from stray fields. The amplifier is designed to be used with resistive loads of 3000 ohms or more. Loads below 3000 ohms reduce amplifier gain bandwidth, and maximum output voltage available. For higher frequencies, the load must have small capacitive reactance to preserve full output signal quality and stability. DO NOT connect the output terminals to dc potential of more than +50 or -300 volts, or output capacitor ratings will be exceeded.

2-7. CONSIDERATION FOR LOW SIGNAL LEVELS. When amplifying low-level signals it may be necessary to eliminate an electrical ground loop formed by the power cable ground lead and signal ground lead between two instruments. If this electrical path is completed (typically a combination of the signal ground and power line ground leads do), line frequency currents flow in the signal ground lead and develop voltages across the leads which are in series with the desired signal. To
avoid this situation, select one ground path from a group of instruments connected together, and permit no other ground path to the power line ground. Grounding one of the instruments may give less ripple trouble than grounding any other; or ungrounding all instruments may give lowest line-frequency modulation of the desired signal.
2-8. POWER CABLE. The plug on the power cable has a round grounding terminal combined with standard, 2 -prong plug. If the ac outlet will not accommodate this plug, an adapter must be used. The round pin on this plug grounds the amplifici chassis. When the adapter is used, the chassis connection is a pigtail lead extending from the adapter, which should be connected to a grounded ac outlet mounting box to ground the chassis.
2-9. POWER LINE VOLTAGE. The amplifier is shipped from the factory for operation on 115-volt
ac power, unless otherwise specified. The power transformer can be reconnected for use on 230 -volt power by connecting its dual primary windings in series as shown on the schematic diagram, note 1. After such conversion, replace the 0.8 -ampere fuse with an 0.4-ampere slow-blow fuse.

2-10. OPERATING PROCEDURE.

2-11. The only operating precaution to be kept in mind are the instructions in paragraphs 2-5 and 2-6 regarding excessive dc voltages. For operation in undesirable atmospheric conditions, provide any physical protection possible to prevent mechanical damage, and operate amplifier as usual. Do not obstruct ventilating louvers. The power cord may be left connected to the power source during periods of non-operation.

SECTION III
 THEORY OF OPERATION

3-1. AMPLIFIER CIRCUIT OPERATION.

3-2. The amplifier circuit consists of two stages of high-gain voltage amplification and a cathode follower output stage connected as shown in the schematic diagram. Pentode tubes are used in all three stages for wide bandwidth with low noise. The triode connected cathode follower presents a relatively low source impedance at the OUTPUT terminals. Degenerative feedback is carried around the entire amplifier to stabilize gain. The amount of degenerative feedback is adjusted by the GAIN switch to obtain 20 or 40 db amplification. The resistive feedback circuit is shunted by a small adjustable capacitor for gain compensation at high frequencies. Resistancecapacitance coupling is used between each stage. Cathode bias is used at each stage.

3-3. Degenerative feedback is taken from the amplifier output through a resistive divider consisting of R3 and R6 to the cathode of the first stage V1. The R3A portion of the divider is shorted by the GAIN switch S1 to decrease feedback and increase gain to 40 db . Resistor R6 provides fine adjustment of gain for calibration purposes. Capacitors C11 and C12 provide gain compensation at high frequencies.

3-4. REGULATED POWER SUPPLY OPERATION.

$3-5$. The power supply for the amplifier is electronically regulated to stabilize operation during changes in line voltage and to minimize line frequency modulation of the output signal. The regulated supply consists of power transformer T 1 , rectifier V 4 , series regulator tube V5, regulator amplifier V6 and
voltage reference V7. The series regulator is a cathode follower whose cathode supplies the regulated voltage to the load consisting of V1, V2 and V3. The series regulator serves as an adjustable impedance controlled by amplified feedback from V6. Amplifier V6 samples the regulated voltage and amplifies any difference between it and the reference voltage provided by V7. Voltage comparison is accomplished by applying the sample voltage to V6 grid and the reference voltage to V6 cathode. If the regulated voltage tends to rise, V6 amplifies this increase and applies it to the grid of V5 causing the impedance of V5 to increase, thus instantly and exactly counteracting the original tendency to increase. This grid control automatically holds the series regulator cathode voltage constant. The high plate resistance of the series regulator tube assisted by amplifier feedback attenuates ripple and stabilizes the output voltage during changes in line voltage and rectifier output. The high transconductance of V5, assisted by the same feedback, stabilizes the cathode voltage during changes in load current. The sample of the regulated output is obtained from resistive divider R24 and R26. Resistor R25 is selected to adjust the value of the regulated voltage to +210 volts.

3-6. DC HEATER SUPPLY.

$3-7$. DC voltage is supplies to the heaters of V1, V2 and V3 to prevent line-frequency modulation of the output signal through heater-cathode leakage in the tubes. This voltage is obtained from a 9 -volt winding on the transformer rectified by a full-wave bridge rectifier CR1. The rectified voltage is filtered by C7. Resistor R27 provides adjustment of the heater voltage to accommodate aging changes in rectifier resistance.

SECTION IV SERVICE INSTRUCTIONS

4-1. WARNINGS AND CAUTIONS.

4-2. The amplifier contains a selenium rectifier. When selenium rectifiers burn out due to overheating, poisonous fumes are released. Ventilate immediately, and do not inhale these fumes. Do not handle the rectifier until it has cooled.

4-3. Do not remove V1 or V2 with the amplifier turned on. These tubes are supplied with unregulated dc heater voltage. If V1 or V2 is removed with the amplifier operating, the heater voltage on the remaining tube will rise sharply and possibly damage it.

4-4. EQUIPMENT REQUIRED FOR MAINTENANCE.

4-5. General troubleshooting requires an electronic multimeter such as the Hewlett-Packard Model 410B. Other multimeters can be used if they have 20,000 ohm/volt sensitivity or greater. To calibrate the gain of the amplifier requires an ac signal source and an accurate ac voltmeter of the required frequency range, such as the Hewlett-Packard Model 650A Oscillator and 400D Voltmeter. Other test instruments can be used if they provide the necessary frequency range and accuracy. To measure distortion from the amplifier requires a signal source producing a signal with
less than 0.5% distortion and a distortion meter such as the Hewlett-Packard Model 202C Oscillator and 330B Distortion Analyzer. The frequency range of the 330 B is considered adequate for this application. Measurement of distortion at higher and lower frequencies requires rejection filters not readily available. A variable line transformer is required to produce line voltages from 100 to 130 volts.

4-6. TROUBLESHOOTING.

$4-7$. The first step in servicing a defective amplifier is to inspect for any sign of overheating, physical damage, or wear. The second step is to attempt operation to see if the fuse blows, pilot lamp lights, and if the amplifier can be operated without damage. There are two sets of operational tests: power supply checks (see paragraphs 4-10, 4-12 and 4-18) and amplifier checks (see paragraphs 4-15, 4-20 and 4-22). Suspect electron tube failure first, then associated circuitry. Look for intermittent and marginal malfunctions. These types of failures can sometimes be found while troubleshooting, by physical shock and by applying low and high line voltages while making the tests.

4-8. TUBE REPLACEMENT.

4-9. The best way to test a tube is to replace it with a new one, noting any change in amplifier performance while measuring noise and distortion in the amplifier output. If the replacement tube does not improve performance, return original tube to socket to avoid complicating the troubleshooting procedure. Make the test at low and high line voltage to see if malfunction is marginal. If a tube tester is used to check tubes, consider its indication semi-final if it shows "good", final if it shows "bad". Tube testers do not measure second order effects such as excessive change in transconductance, plate current and grid current with changes in heater voltage, noise, microphonics, heater-cathode leakage, etc, which may be important in certain circuits. Remember that most tube failures occur during the first hundred hours of operation. After this period tubes age slowly and should not be replaced prematurely as part of routine maintenance.

4-10. LOCATING SHORTS IN POWER CIRCUITS.

4-11. Check the amplifier for shorts whenever application of line power causes the fuse to burn out, or whenever operation causes the power transformer or other part to overheat. Proceed as follows:
a. Replace blown fuse, remove V5 and again attempt operation. If the amplifier no longer blows fuses, the trouble is located in the circuits which follow the regulated power supply; check C8C, C8D, C2 and C4.
b. If amplifier continues to blow fuses with V5 removed, remove V4 also and again attempt operation. If the amplifier no longer blows fuses, the trouble is located in the power supply filter; check C8A and C8B.
c. If the amplifier continues to blow fuses with V4 removed, the trouble lies either in the tube filament
circuit, power transformer windings, or in the transformer primary circuit. The resistance of each transformer winding is as follows:

WINDING	COLOR	
Pri. \#1		Rlacs-Black/yellow

4-12. TESTING POWER SUPPLY OPERATION.

4-13. The amplifier employs an electronically-regulated power supply with very low line-frequency ripple. To test operation of the supply, proceed as follows:
a. Connect the amplifier to an adjustable line transformer which can supply from 100 to 130 volts.
b. Remove the amplifier bottom plate and connect the negative leads of the multimeter and ac voltmeter to the amplifier chassis.
c. Set the line voltage to 115 , turn amplifier on and allow 3-minute warmup.
d. Measure the ac and dc volts at V5 pin 5. The dc voltage must be about 15 volts less than that measured in step g ; the ac voltage must be about $1 / 10$ that measured in step g. Excessive dc voltage drop indicates excessive current being drawn by the amplifier circuits or filter capacitors. Insufficient attenuation of ripple indicates filter capacitors low in capacity.
e. Measure ac and dc voltage at V5 pin 8. The dc voltage must be between 205 and 215 volts; the ac voltage must be less than 3 millivolts. The value of R25 can be selected to obtain exactly +210 volts.
f. Increase the line voltage to 127 volts; the dc voltage must remain within 1 volt of that read in step d; the ac voltage must not increase above that in step d.
g. Decrease line voltage to 103 volts; the dc voltage must remain within 1 volt of that read in step d; the ac voltage must not increase.
h. With line voltage set to 115 volts, measure the ac and dc volts at $V 4$ pin 8 . The dc voltage must be close to +390 , the ac voltage less than 3 volts.

4-14. Possible trouble symptoms in electronic voltage regulators include rectifier tube which does not deliver full voltage to the series regulator tube, which in turn prevents good regulation at low line voltages. The same symptom may be observed with a weak series regulator tube. Another indication of this same trouble
is increasing line-frequency ripple as the line voltage is decreased. Incorrect or unstable voltage level can be due to incorrect or unstable reference voltage obtained from V7. High ripple at all line voltages is an indication of poor electrolytic filters or weak V6.

4-15. MEASURING AMPLIFIER STAGE GAIN.

4-16. The typical amplification factor for each stage in the amplifier is given below. Gain is measured by applying 0.01 rms volts at 1000 cps to the amplifier INPUT terminals with the amplifier GAIN switch set to 40 DB . The 400 D Voltmeter is then used to measure the resultant signal level at the input and output of each stage, each time dividing the output by the input voltage.

V1			V2			V3		
$\mathrm{E}_{\text {in }}$	$\mathrm{E}_{\text {out }}$	Gain	$\mathrm{E}_{\text {in }}$	$\mathrm{E}_{\text {out }}$	Gain	$\mathrm{E}_{\text {in }}$	$\mathrm{E}_{\text {out }}$	Gain
0.01	0.043	4.3	0.43	1.1	25.6	1.1	1.0	0.91

4-17. AMPLIFIER ADJUSTMENTS.

4-18. The amplifier contains three adjustable components which are used to obtain specified amplifier performance with the normal variations in replacement tubes and parts values. Resistor R27 adjusts the dc heater voltage applied to V1 and V2. Resistor R6 adjusts amplifier gain at middle frequencies. Capacitor Cll adjusts amplifier gain at high frequencies. Instructions for making each adjustment are given in the following paragraphs.

4-19. ADJUSTING V1 \& V2 HEATER VOLTAGE.

$4-20$. The heater of V1 and V2 are supplied with dc power to reduce line-frequency ripple in the amplifier output. The power is obtained from a full-wave selenium rectifier bridge through an adjustable series resistor, R27. Resistor R27 permits resetting the
heater voltage as the rectifier ages and its internal resistance increases. The adjustment must be made at six-month intervals and when the rectifier is replaced. To adjust R27 proceed as follows:
a. Remove amplifier bottom plate; connect amplifier to power source, turn on and allow 3-minute warmup.
b. Measure the dc voltage from the positive terminal of C7 to chassis. This voltage must be 6.3 volts when the line voltage is 115 volts.
c. If necessary, adjust R27 to obtain 6.3 volts. After a 24 -hour run-in, recheck voltage to see that it has settled.
d. Measure the ac voltage across C7. If it is greater than 150 millivolts, check the capacity of C 7 .
e. The adjustment is completed; replace amplifier bottom plate and return amplifier to normal service.

4-21. ADJUSTING AMPLIFIER GAIN.

4-22. Amplifier gain at low and middle frequencies for both the 20 and 40 db positions of the GAIN switch is set by a potentiometer on top of the amplifier chassis. The adjustment permits setting the gain of either range exactly, or dividing any small error equally between the two ranges. Amplifier gain at high frequencies for both the 20 and 40 db settings is set by a trimmer capacitor on the bottom of the amplifier chassis. This adjustment permits setting the gain of either range at some selected high frequency to equal the low-frequency gain, or permits dividing any small error between the ranges, and frequencies. Both adjustments are required after replacement or aging of V1, V2, V3, R3 or C12. To adjust the gain of the amplifier proceed as follows:
a. Connect amplifier and test equipment as shown in figure 4-1 using the 400D Voltmeter to alternately measure the input and output signal voltage levels from the amplifier.

Figure 4-1. Test Setup for Measuring Amplifier Gain
b. Set the oscillator output to any convenient frequency between 100 and $10,000 \mathrm{cps}$ and the output voltage to exactly -20 db as read on the 400 D Voltmeter connected to the oscillator output.
c. Set the amplifier to 40 DB and measure the opencircuit output signal level with the 400D Voltmeter.
d. If necessary adjust $R 6$ to obtain a reading of exactly +20 db on the voltmetex. Vary line voltage between 104 and 127 volts to be sure gain remains within specifications.
e. Set the amplifier to 20 DB and increase the oscillator output voltage to 0 db as read on the 400D Voltmeter connected to the amplifier input.
f. Measure the open-circuit output level from the amplifier which must be within $1 / 4 \mathrm{db}$ of the reading obtained in step d.
g. Adjust R6 so that the difference between the 20 and 40 db gains is divided equally about +20 db on the voltmeter scale. The gain tolerance is $\pm 1 / 8 \mathrm{db}$ on each range. If the gain difference is greater than the specified tolerance, R3 in the amplifier or the voltage range switch in the voltmeter is inaccurate, or V1 or V2 may be defective.
h. Repeat steps band c using an oscillator frequency of 2 mc .
i. If necessary adjust Cll to obtain an output voltage within $\pm 1 \mathrm{db}$ of +20 db . Vary line voltage from 104 to 127 volts to be sure gain remains within specifications.
j. Set the amplifier to 20 DB , set the oscillator frequency to 1 mc and increase the oscillator output voltage to 0 db as read on the 400D Voltmeter connected to the amplifier input.
k. Measure the open-circuit output voltage from the amplifier. If necessary refine the adjustment of C11 so the output level is within $\pm 1 / 2 \mathrm{db}$ of +20 db on the voltmeter.
m . Recheck the 40 db gain at 2 mc . If a satisfactory compromise cannot be reached for these high frequency gain measurements, the value of C12 may require adjustment. Increasing C12 increases the gain of the amplifier at high frequency.
n. In the same manner, amplifier gain at low frequency may be checked using a voltmeter such as the Model 403A. If the low-frequency gain is below that specified, check the coupling capacitors and tubes.
p. The gain adjustment is completed; replace amplifier cover and return amplifier to normal service.

4-23. NOISE AND DISTORTION MEASUREMENT.

4-24. Distortion in the amplifier output is measured by applying a pure sine-wave signal to the amplifier input and measuring the harmonics of this signal in the amplifier output after rejecting the fundamental frequency. The Model 330B Distortion Analyzer is an electronic ac voltmeter preceded by an electronic frequency-rejection filter which is adjustable from 20 cps to $20,000 \mathrm{cps}$. After the fundamental frequency is rejected by the filter, the total level of all remaining signals is measured by the voltmeter. This level consists of random noise, line-frequency ripple, and all harmonics of the applied signal frequency including those in the applied signal. To measure distortion and noise, proceed as follows:
a. Connect the test equipment as shown in figure 4-2, turn on and allow a ten-minute warmup of all instruments.

Figure 4-2. Test Setup for Measuring Amplifier Distortion and Noise
b. Set the front-panel controls on the amplifier as follows:
POWER switch ON
GAIN switch 40 DB
c. Set the front-panel controls on the oscillator asfollows:
FREQUENCY dial 20
FREQUENCY range XI
OUTPUT ATTENUATOR (upper) 30
OUTPUT ATTENUATOR (lower) 5
AMPLITUDE 0
IMPEDANCE 600
POWER - - - - - - - - - - - - - - ON
LOAD - OFF
d. Set the front-panel controls on the distortion analyzer as follows:
INPUT SENSITIVITY- - - - - - . - - - - MIN
FREQUENCY range - - - - - - - - - - . X1
FREQUENCY dial - - - . - . - . - - - - - 20
Function switch - - . - . - . - . - - - - METER
Meter Range switch - - - - - - - - - . 10 VOLT
AF-RF selector - . - . - - . - - AF
Power switch - - - - . - . - . . - - - - ON
e. After a 10 -minute warmup connect the amplifier INPUT terminals to the METER INPUT terminals on the analyzer, and adjust the AMPLITUDE CONTROL on the oscillator to obtain exactly 0.1 volt on the analyzer.
f. Set the analyzer function switch to SET LEEVEL; meter range switch to 100% (10 VOLT) and connect the analyzer AF INPUT terminals to the amplifier OUTPUT terminals. Adjust the analyzer INPUT sensitivity control to obtain a full scale reading on the $0-1$ scale on the analyzer meter.
g. Set the analyzer function selector to DISTORTION and tune FREQUENCY dial for a dip. Reduce setting of the meter range switch as necessary and tune analyzer FREQUENCY and BALANCE controls for a minimum reading. The final reading in distortion must be less than 1%. If it is higher than this, measure the distortion in the oscillator output alone which should be less than 0.5%.
h. Repeat above procedure using an oscillator frequency of $20,000 \mathrm{cps}$. Again, distortion must be below 1%.
i. Disconnect oscillator from amplifier INPUT terminals, and short the input terminals together with a wire jumper.
j. Set the analyzer function switch to SET LEVEL and set the INPUT sensitivity control to MAX; set the meter range switch to the 0.03 range. The actual voltage input is now only 0.1 that indicated on the meter scale. The input voltage must not exceed. 4 millivolts.
k. Set the amplifier GAIN switch to 20 DB . The analyzer voltmeter should indicate less than 2.5 millivolts using the same X10 factor used in step j.

Figure 4-3. Top View of Model 450A

Figure 4-4. Bottom View of Model 450A
4-8

NOTES
UNLESS OTHERWISE NOTED, VOLTAGES ARE DC, MEASURED TO GROUND BY A VTVM WITH 100 MEGOHM INOUT IMPEDANCE.
line voltage set to
115 VOLTS, 60 CPS INPUT TERMINALS SHORTED GAIN SET TO 400 OB .

RO

Figure 4-5. Voltages and Resistances on Tube Sockets and Terminal Boards

NOTE I. FOR OPERATION ON 230 VOLT LINES, REMOVE
115 VOLT JUMPERS AND ADD 230 VOLT JUMPER
NOTE 2. UNLESS OTHERWISE INDICATED, RESISTANCE
IS IN OHMS, CAPACITY IN UUF
note 3. electrical value selecteo for best high frequency response.
NOTE 4. ELECTRICAL VALUE SELECTED FOR $+210 \mathrm{~V} \pm 5 \mathrm{~V}$

SECTION V
 REPLACEABLE PARTS

5-1. INTRODUCTION.

$5-2$. This section contains information for ordering replacement parts for the Model 450A Amplifier.

5-3. ORDERING INFORMATION.

5-4. To order a replacement part, address order or inquiry either to your local Hewlett-Packard representative or to

CUSTOMER SERVICE
Hewlett-Packard Company
395 Page Mill Road
Palo Alto, California

5-5. Specify the following information on the part:
a. Model and serial number of instrument.
b. Hewlett-Packard stock number.
c. Circuit reference designator.
d. Description.

5-6. Parts not listed in table $5-1$ can be ordered by giving a complete description of part including its function and location in the circuit.

5-7. Recommended spare parts for complete maintenance during one year of isolated service are listed in the "RS" column of the parts list.

Circuit Ref.	Description	Mfr.*	Stock No.	TQ	RS	
C1	$\begin{aligned} & \text { Capacitor: fixed, paper, } \\ & \quad .22 \mu \mathrm{f} \pm 10 \%, 400 \mathrm{vdcw}, 125^{\circ} \mathrm{C} \end{aligned}$	56289	0160-0018	1	1	
C2ABC	Capacitor: fixed, electrolytic, 3 sections, $10 \mu \mathrm{f} /$ sect. , 450 vdcw	00656	0180-0016	2	1	
C3	Capacitor: fixed, paper, $.22 \mu \mathrm{f} \pm 20 \%, 400 \mathrm{vdcw}$	56289	0160-0017	2	1	
C4ABC	Same as C2					
C5	Same as C3					
C6	Capacitor: fixed, electrolytic, $20 \mu \mathrm{f}, 450 \mathrm{vdcw}$	56289	0180-0011	1	1	
C7	Capacitor: fixed, electrolytic, 2 sections, $1500 \mu \mathrm{f} /$ sect., 15 vdcw	56289	0180-0028	1	1	
C8ABCD	Capacitor: fixed, electrolytic, 4 sections, $20 \mu \mathrm{f} /$ sect. , 450 vdcw	56289	0180-0025	1	1	
C9, 10	Not assigned					
C11	Capacitor: variable, ceramic, 1.5-7 pf, 500 vdcw	72982	0130-0003	1	1	
C12	Capacitor: fixed, mica, $390 \mathrm{pf} \pm 5 \%, 500 \mathrm{vdcw}$	00853	0140-0016	1	1	
* Refer to "List of Manufacturers". TQ Total Quantity used in the instrument.			Recommended spares for one year isolated service for one instrument.			

Figure 5-1. Replaceable Parts (Sheet 1 of 4)

Figure 5-1. Replaceable Parts (Sheet 2 of 4)

Circuit Ref.	Description	Mfr.*	Stock No.	TQ	RS	
R17	Same as R1					
R18	Resistor: fixed, composition, 10,000 ohms $\pm 10 \%, 2 \mathrm{~W}$	01121	0693-1031	2	1	
R19	Resistor: fixed, composition, 56,000 ohms $\pm 10 \%, 1 \mathrm{~W}$	01121	0690-5631	1	1	
R20	Not assigned					
R21	Resistor: fixed, wirewound, 500 ohms $\pm 10 \%, 10 \mathrm{~W}$	35434	0816-0003	1	1	
R22	Resistor: fixed, composition, 560,000 ohms $\pm 10 \%, 1 \mathrm{~W}$	01121	0690-5641	1	1	
R23	Same as R18					
R24	Resistor: fixed, composition, 33,000 ohms $\pm 10 \%, 1 \mathrm{~W}$	01121	0690-3331	1	1	
R25	Resistor: Optimum value selected at factory.					
R26	Resistor: fixed, composition, $82,000 \mathrm{ohms} \pm 10 \%, 1 \mathrm{~W}$	01121	0690-8231	1	1	
R27	Resistor: variable, wirewound, linear taper, 10 ohms	28480	M-77	1	1	
R28	Resistor: fixed, composition, 680 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	01121	0687-6811	1	1	
R29	Resistor: fixed, composition, 150 ohms $\pm 10 \%, 1 \mathrm{~W}$	01121	0690-1511	1	1	
S1, 2	Switch, toggle	04009	3101-0001	2	1	
T1	Transformer, power	28480	9100-0016	1	1	
V1, 2, 3	Tube, electron: 5654	86684	1923-0001	3	3	
V4	Tube, electron: 5Y3GT	86684	1930-0010	1	1	
V5	Tube, electron: 6AU5GT	33173	1923-0020	1	1	
V6	Tube, electron: 6AV6	82219	1939-0001	1	1	
V7	Tube, electron: OA2	97966	1940-0004	1	1	
$\begin{aligned} * & \text { Refer to " List of Manufacturers" } \\ \text { TQ } & \text { Total Quantity used in the instrument. }\end{aligned} \quad$ RS $\begin{aligned} & \text { Recommended spares for one year } \\ & \text { isolated service for one instrument. }\end{aligned}$						

Figure 5-1. Replaceable Parts (Sheet 3 of 4)

Figure 5-1. Replaceable Parts (Sheet 4 of 4)

LIST OF MANUFACTURERS

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and $\mathrm{H} 4-2$ (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H 4 handbooks.

CODE

	MANUFACTURER	ADDRESS
72619	Dialight Corp.	Brook
72656	General Ceramics Corp.	Kea
58	Girard-Hopkins	akland, Calif.
2765	Drake Mfg. Co.	Chicago
72825	Hugh H. Eby Inc.	iladelph
72928	Gudeman Co.	Chica
82	Erie Resistor Co	
73061	Hansen Mfg. Co., Inc.	inceton, Ind
73138	Helipot Div. of Beckman Instruments, Inc.	Fullerton, Calif.
3293	Hughos Products Div. of Hughes Aircraft Newpo	Co. port Beach, Calif.
3445	erex Electronic Co., orth Amarican Phillips	of
3506	ley Semiconduc	onn.
73559	Carling Electric, Inc.	Hartford, Conn.
82		Philadelphia, Pa.
3743	Fischer Special Mfg. Co.	incinnati, Ohio
93	The General Industries Co.	Elyria, Ohio
05	Jennings Radio Mfg. Co.	San Jose, Calif.
55	J. H. Winns, and Sons	Winchester, Mass.
	dustrial Condenser Corp.	Chicago, III.
8	dustrial Products Co.	Danbury, Conn.
	hnson Co.	inn
75042	Frnational Resistance Co.	Philadelphia, Pa.
	mes Knights Co.	Sandwich, III.
2	a Electric	

75818 Lenz Electric Mfg. Co. Chicago, III,
75915 Littlefuse Inc. Des Plaines, III.
76005 Lord Mfg. Co. Eria, Pa

76210 C. W. Marwedel San Francisco, Calif. 76433 Micamold Electronic Mig. Corp.

76487 James Millen Mfg. Co., Inc. Malden, Mass. 76530 Monadnock Mills San Leandro, Calif. 76545 Mueller Electric Co. Cleveland, Ohio 76854 Oak Manufacturing Co. Chicago, III
77068 Bendix Corp., Bendix Pacific Div.

No. Hollywood, Calif.
77221 Phaostron Instrument and Elestronic Co. South Pasadena, Callif 77342 Potter and Brumfield, Inc. Princeton, Ind.
77630 Radio Condenser Co. Camden, N.J.
77634 Radio Essentials Inc. Mt. Vernon, N.Y.
77638 Radio Receptor Co., Inc. Brooklyn, N.Y.
77764 Resistance Products Co. Harrisburg, Pa.
78283 Signal Indicator Corp. New York, N.Y. 78471 Tillay Mfg. Co. San Francisco, Calif.
78488 Sfackpole Carbon Co. St. Marys, Pa.
79142 Veeder Root, Inc. Hartford, Conn.
79251 Wenco Mfq. Co.
79963 Zierick Mfg. Corp.
80130 Times Facsimile Corp.
New Rochelle, N.Y.
New York, N.Y
80248 Oxford Electric Corp. Chicago, III.
80411 Acro Manufacturing Co. Columbus, Ohio
80486 All Star Products Inc.
Defiance, Ohio
80583 Hammerlund Co., Inc. New York, N.Y
80640 Stevens, Arnold, Co., Inc.
Boston, Mass
81030 International Instruments, Inc.
81415 Wilkor Products, Inc. Cleveland, Ohio 81453 Raytheon Mfg. Co., Industrial

Tube Division

Quincy, Mass.

00015-1

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	MANUFACTURER ADDRESS
81483	International Rectifier Corp. El Segundo, Calif.
82042	Carter Parts Co. Skokie, III.
82170	Allen B. DuMont Labs., Inc. Clifton, N.J.
82209	Maguire Industries, Inc. Greenwich, Conn.
82219	Sylvania Electric Prod. Inc. Electronic Tube Div. Emporium, Pa.
82376	Astron Co. East Newark, N.J.
82389	Switeheraft, Inc. Chicago, III.
82647	Spencer Thermostat, Div. of Texas Instruments, Inc. Attleboro, Mass.
82866	Research Products Corp. Madison, Wis.
82893	Vector Electronic Co. Glendale, Calif.
83148	Electro Cords Co, Los Angeles, Calif.
83186	Victory Engineering Corp. Union, N.J.
83298	Bendix Corp. Red Bank Div. Red Bank, N.J.
83594	Burroughs Corp., Electronic Tube Div. Plainfield, N.J.
83777	Model Eng, and Mfg., Inc. Huntington, Ind.
83821	Loyd Scruggs Co. Festus, Mo.
84171	Arco Electronics, Inc. New York, N.Y.
84396	A. J. Glasener Co., Inc. San Francisco, Calif.
84411	Good All Electric Mig. Co. Ogallala, Neb.
84970	Sarkes Tarzian, Inc. Bloomington, Ind.
85474	R. M. Bracamonte \& Co. San Francisco, Calif.
85660	Koiled Kords, Inc. Now Haven, Conn.
86684	Radio Corp. of America, RCA Electron Tube Div. Harrison, N.J.
88140	Cutler-Hammer, Inc. Lincoln, Ill.
89473	General Electric Distributing Corp. Schenectady, N.Y.
90179	U.S. Rubber Co., Mechanical Goods Div. Passaic, N.J.
90970	Bearing Engineering Co. San Francisco, Calif.
91418	Radio Materials Co. Chicago, III.

CODE
NO. MANUFACTURER
ADDRESS
91506 Augat Brothers, Inc.
91637 Dale Products, Inc.
91662 Elco Corp.
91737 Gremar Mfg. Co., Inc.
91929 Micro-Switch Div. of Minneapolis
Honeywelf Regulator Co.
$93332 \begin{gathered}\text { Sylvania Electric Prod. Inc., } \\ \text { Semiconductor Div. }\end{gathered}$
93410 Stavens Mfg. Co., Inc.
93983 Insuline-Van Norman Ind., Inc.
Electronic Division Manchester, N.H.
94144 Raytheon Mfg. Co., Receiving Tube Div. Co. Semi-
$94145 \begin{aligned} & \text { Raytheon Mig. Co., Semi- } \\ & \text { conductor Div. }\end{aligned}$
94154 Tung-Sal Electric, Inc.
Quiney, Mass.
Newton, Mass.
94197 Curtiss-Wright Corp., Electronics Div.
Caristadt, N.J.
94310 Tru Ohm Prod. Div, of Model Engineering and Mfg. Co. Chicago, lif.
95236 Allies Products Corp. Miami, Fla.
95238 Continental Connector Corp
95263 Leecraft Mfg Co. Inc. New York N.Y 95265 National Coil Co. Sheridan, Wyo.
95987 Weckesser Co. Chicago, III.
96067 Huggins Laboratories Sunnyvale, Calif.
96095 Hi-Q Division of Aerovox Olean, N.Y.
96296 Solar Manufacturing Co. Los Angeles, Calif. 96341 Microwave Associates, Inc. Burlington, Mass.
96501 Excel Transformer Co. Oakland, Calif.
97539 Automatic and Precision Mfg. Co.

Yonkers, N.Y.
97966 CBS Electronics, Div, of C.B.S., Inc.
98141 Axel Brothers Inc.
98220 Francis L. Mosley 98291 Sealectro Corp. 98405 Carad Corp.

CODE
NO. MANUFACTURER
ADDRESS
98734 Palo Alto Enginearing Co., Inc.

Palo Alto, Calif.
98925 Clevite Transistor Prod.
Div. of Clevite Corp. Waltham, Mass.

99313 Varian Associates
Palo Alto, Calif.
99800 Delevan Electronics Corp. East Aurora, N.Y.
99848 Wilco Corporation Indianapolis, Ind.
99934 Renbrandt, Inc. Boston, Mass.
99957 Technology Instruments Corp. of Calif. No. Hollywood, Calif.

IHE FOLLOWING H-P VENDORS HAVE NO NUM
GER ASSIGNED IN THE LATEST SUPPLEMENT TO
THE FEDERAL SUPPLY CODE FOR MANUFACTURERS HANDBOOK.

0000 A Amp, lnc. Hawthorne, Calif.
0000 B Chicago Telephone of Calif
. Pasadena Calif.
0000 C Connor Spring Mig. Co.
San Francisco, Calif.
0000 D Connex Corp. Oakland, Calif.
0000 E Fisher Switches, Inc. San Francisco, Calif.
$0000 F$ Malco Tool and Die Los Angeles, Calif.
0000 G Microwave Engineering Co. Palo Alto, Calif.
0000 H Philco Corp. (Lansdale
Tube Division)
Lansdale, Pa.
00001 Telefunken (c/o American Elite)

Now York, N.Y.
0000 J Ti Tal, Inc.
0000 K Transitron Electronic Sales Corp.
Wakafield, Mass.
0000 L Winchester Electronics, Inc.
Santa Monica, Calif.
000 M Western Coil Div. of Automatic
Ind., Inc.
Redwood City, Calif.
0000 N Nahm-Bros. Spring Co. San Leandro, Calif.
0000 P Ty-Car Mig. Co., Inc. Holliston, Mass.

CLAIM FOR DAMAGE IN SHIPMENT

The instrument should be tested as soon as it is received. If it fails to operate properly, or is damaged in any way, a claim should be filed with the carrier. A full report of the damage should be obtained by the claim agent, and this report should be forwarded to us. We will then advise you of the disposition to be made of the equipment and arrange for repair or replacement. Include model number and serial number when referring to this instrument for any reason.

WARRANTY

Hewlett-Packard Company warrants each instrument manufactured by them to be free from defects in material and workmanship. Our liability under this warranty is limited to servicing or adjusting any instrument returned to the factory for that purpose and to replace any defective parts thereof. Klystron tubes as well as other electron tubes, fuses and batteries are specifically excluded from any liability. This warranty is effective for one year after delivery to the original purchaser when the instrument is returned, transportation charges prepaid by the original purchaser, and when upon our examination it is disclosed to our satisfaction to be defective. If the fault has been caused by misuse or abnormal conditions of operation, repairs will be billed at cost. In this case, an estimate will be submitted before the work is started.

If any fault develops, the following steps should be taken:

1. Notify us, giving full details of the difficulty, and include the model number and serial number. On receipt of this information, we will give you service data or shipping instructions.
2. On receipt of shipping instructions, forward the instrument prepaid, to the factory or to the authorized repair station indicated on the instructions. If requested, an estimate of the charges will be made before the work begins provided the instrument is not covered by the warranty.

SHIPPING

All shipments of Hewlett-Packard instruments should be made via Truck or Railway Express. The instruments should be packed in a strong exterior container and surrounded by two or three inches of excelsior or similar shock-absorbing material.

DO NOT HESITATE TO CALL ON US

