## HP Archive

This vintage Hewlett Packard document was preserved and distributed by
www. hparchive.com
Please visit us on the web !

Scanned by on-line curator: Tony Gerbic ** For FREE Distribution Only ***

# 428B <br> CLIP-ON DC MILLIAMMETER 

## OPERATING AND SERVICE MANUAL

# OPERATING AND SERVICE MANUAL <br> (HP PART NO. 00428-90002) <br> MODEL 428B <br> CLIP-ON DC MILLIAMMETER 

SERIALS PREFIXED: 131-, 601-
P. O. Box 301, Loveland, Colorado, 80537 U.S.A.

## TABLE OF CONTENTS



## LIST OF ILLUSTRATIONS



## LIST OF TABLES



Table 1-1. Specifications

## CURRENT RANGE:

.1 ma to 10 amperes. Nine full scale ranges from 1 ma to 10 amperes in a $1,3,10,30 \ldots$ sequence.

## ACCURACY:

$\pm 3 \%$ of full scale from $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C} \pm 0.1 \mathrm{ma}$

## PROBE INDUCTANCE:

Less than $0.5 \mu \mathrm{~h}$. No noticeable loading, even up to 1 mc .

## PROBE INDUCED VOLTAGE:

Less than 15 mv peak (at 20 kc and harmonics)

## OUTPUT:

Approximately 1.5 volts and 1 ma max for full scale; 100 -ohm source. Variable linear output level with switch provision for calibrated 1 volt (corresponds to full scale deflection). Bandwidth dc to 400 cps .

NOISE LEVEL:
Less than $\pm 0.015 \mathrm{ma}$

## AC REJECTION:

AC with peak value less than full scale affects meter accuracy less than $2 \%$ at frequencies above 5 cps and different from the carrier ( 40 kc ) and its harmonics, (on 10 ampere range ac is limited to 4 amperes peak).

Below 5 cps total instantaneous current must not exceed full scale.

## PROBE INSULATION:

300 volts maximum, dc or peak

## POWER:

115 or 230 volts $\pm 10 \%, 50$ to 60 cps , approximately 70 watts

## PROBE TIP SIZE:

Approximately $1 / 2$ in. by $21 / 32$ in. Aperture diameter 5/32 in.


DIMENSIONS:

$$
L D-S-507
$$

Cabinet Mount: 7-1/2 in. wide, 11-1/2 in. high, 14-1/4 in. deep.


WEIGHT: Cabinet Mount: Net 19 lbs Rack Mount: Net 24 lbs

ACCESSORIES AVAILABLE:
(5p)Model 3528A Large Aperture Probe
(5p) Model 3529A Magnetometer Probe

## OPTIONS:

1. 5PModel 3528A Current Probe (Aperture, $2-9 / 16$ in. ) in lieu of Model 428A-21A Probe normally supplied
2. © Model 3529A Magnetometer Probe in lieu of Model 428A-21A Probe

## SECTION I GENERAL

## 1-1. INTRODUCTION.

1-2. The (bip) Model 428B Clip-On Milliammeter measures the magnetic field, which exists around the wire carrying dc current. Operating the instrument is simple. After zero setting, the two jaws of the probe are clamped around wire (arrow on probe head indicates direction of conventional current flow) and the meter will indicate the current.

1-3. There are nine current ranges starting from 1 ma to 10 amp full scale deflection. The sensitivity can be increased even further by looping the wire several times through the opening in the probe. The current indication is virtually insensitive to superimposed ac signals and the series loading of the circuit is less than $0.5 \mu \mathrm{~h}$. A large amount of feedback provides great stability. With the Model 428B currents can be measured as easily as measuring voltages with a voltmeter.

## 1-4. OTHER PROBE HEADS.

$1-5$. Other probe heads are available to extend the usefulness of your Clip-On DC Milliammeter. Write to the factory for further information. At the time of publication of this manual the following accessory probe heads were available:
a. (tp) Model 3528A Large Aperture (2-1/2 inch probe head).
b. (4p) Model 3529A Magnetometer (1 gauss = 1 amp).

1-6. Write the factory stating your complete requirements for information concerning special applications.

## 1-7. INSTRUMENT IDENTIFICATION.

1-8. Hewlett-Packard uses a two-section eight-digit serial number (000-00000). If the first three digits
of the serial number on your instrument do not agree with those on the title page of this manual, change sheets supplied with the manual will define differences between your instrument and the Model 428 B described in this manual.


Figure 1-1. (tp) Model 428乃 Clip-()n Milliammeter


Usual clip-on voltmeter measurement of voltage without breaking circuit

$10-5-512$
Clip-on measurement of current with te, Model 428B without breaking circuit

# SECTION II PREPARATION FOR USE 

## 2-1. UNPACKING AND MECHANICAL INSPECTION.

$2-2$. Inspect instrument for signs of damage incurred in shipment. This instrument should be tested as soon as it is received. If it fails to operate properly, or is damaged in any way, a claim should be filed with the carrier. A full report of the damage should be obtained by the claim agent, and this report should be forwarded to us. We will then advise you of the disposition to be made of the equipment and arrange for repair or replacement. Include model number and serial number when referring to this instrument for any reason.

2-3. Hewlett-Packard Company warrants each instrument manufactured by them to be free from defects in material and workmanship. Our liability under this warranty is limited to servicing or adjusting any instrument returned to the factory for that purpose and to replace any defective parts thereof. Any damage to the instrument upon receipt is due to the carrier. File a claim with the carrier as instructed in the preceding paragraph.

## 2-4. OPERATION CHECK.

$2-5$. This instrument should be checked as soon as it is received to determine that its electrical characteristics have not been damaged in shipment. Refer to the FINAL CHECK, paragraph 5-37 at the end of this manual.

## 2-6. INSTALLATION.

$2-7$. The 屃 Model 428B depends on natural air convection cooling. Therefore it is advisable to place the instrument on the table or work bench so that the air can circulate freely through the instrument.

## CAUTION

The current probe should not be exposed to temperatures exceeding $55^{\circ} \mathrm{C}$ ( $131^{\circ} \mathrm{F}$ ) as high temperatures seriously affect the head of the probe, resulting in unbalance and eventual damage to the probe. Do not leave probe on top of the Model 428B (or any other hot place).

## 2-8. POWER REQUIREMENTS.

$2-9$. Power requirements are given in Specifications table at the front of this manual.

## 2-10. OPERATION ON 115 OR 230 VOLTS.

2-11. This instrument may be used with either a 115 -volt or 230 -volt supply with a frequency of 50 to

60 cps , single phase. This instrument is shipped from the factory ready for operation from a 115 -volt source unless otherwise indicated.

2-12. To operate from a 230 -volt source the $115-230$ switch on the rear apron must be flipped to 230. First turn the instrument off or pull the power cable from the socket. Place a pointed tool, such as the sharpened end of a pencil, in the slot of the switch and pull down. Replace the fuse with the one given in table $6-1$ for 230 -volt operation.

## 2-13. THREE CONDUCTOR POWER CABLE.

$2-14$. The three-conductor power cable supplied with the instrument is terminated in a polarized, threeprong male connector recommended by the National Electrical Manufacturers' Association (NEMA). The third conductor grounds the instrument chassis for the PROTECTION OF THE OPERATING PERSONNEL. When using a three-prong to two-prong adapter ground third lead (green wire) externally.

## 2-15. RACK-MOUNT MODEL.

$2-16$. This instrument is also available in a rackmount version in addition to the cabinet model shown in this manual. The rack-mount version is identical electrically and similar physically except that the Degausser has been moved to the front panel for greater convenience.

## 2-I7. PREPARATION FOR STORAGE AND SHIPMENT.

$2-18$. The best method for packing this instrument is in the original shipping carton with the original fillers packed in the same manner as when received from the factory. Therefore, when unpacking note carefully the method of packing and save the original packing material for possible future re-use.
$2-19$. If the original packing material is not available and it is desired to package the instrument for storage or shipment, first wrap the instrument in heavy kraft paper to avoid scratching the paint. Then pack in a cardboard carton with a bursting strength of at least 150 lb per square inch. Pad the instrument on all sides with at least 2 inches of rubberized hair or at least 4 inches of tightly packed excelsior.

## 2-20. STORAGE.

2-21. No special precautions are necessary in storage except the usual protection against mechanical damage, salt air, etc.


1. Turn on power and allow approximately 2 minutes warmup time.
2. Check closure of probe jaws. Incomplete closure of the jaws is indicated by excessive zero-shift on the 1 ma current range when probe is rotated in earth's magnetic field. Clean probe jaws if necessary (see paragraph 5-9, Cleaning Probe Jaws).
3. Set RANGE switch to 1 ma . Zero-set instrument with ZERO control.
4. Set RANGE switch to a range that is higher than the anticipated current to be read.
5. Clip probe jaws around wire carrying dc current, pointing the arrow on the probe in the direction of conventional current (see arrows in figure above).
6. Read current on meter.

## NOTE

After use of the Model 428B on the 1 thru 10 AMP RANGE degauss the probe head (Paragraph 3-10) if zero set cannot be accomplished.

Figure 3-1. Measurement Procedure

# SECTION III <br> OPERATION 

## 3-1. TURN-ON PROCEDURE.

$3-2$. Before operating the instrument, check the mechanical zero position of the meter. For the mechanical zero setting of the meter movement, refer to paragraph 5-7.

## CAUTION

Be sure the RANGE switch is on 1 AMP or less before turning on this instrument. Otherwise the probe may become magnetized and need degaussing before using.

3-3. Figure 3-1 illustrates the measurement procedure for the instrument.

## Note

Read paragraph 3-13, Measurement Precautions, before operating the instrument for the first time.

## 3-4. MECHANICAL OPERATION OF PROBE.

$3-5$. The probe jaws are opened by simply squeezing together the two flanges on the probe body. An internal spring returns the jaws to their proper position when the flanges are released.

## CAUTION

Do NOT release the flanges abruptly so that the jaws snap together. This may cause binding and zero-shift.

## 3-6. ELECTRICAL ZERO SET.

$3-7$. If the instrument cannot be zero set electrically (with ZERO control) there are two probable causes: 1) Incomplete closure of probe jaws, 2) Magnetization of probe head.

3-8. INCOMPLETE CLOSURE OF PROBE JAWS. Dust deposits on the lapped surfaces of the probe jaws create an air gap. If the jaws are not completely closed the earth's magnetic field will affect the reading. With the RANGE switch at 1 ma , rotation of the closed probe should not vary the zeroset more than 0.1 ma . Cleaning of the jaws will restore proper operation conditions (see paragraph 5-9, Cleaning of Probe Jaws).

3-9. MAGNETIZATION OF PROBE HEAD. Magnetic shields protect the probe head from stray magnetic fields. However, excessive dc currents (such as short circuit discharge currents from electrolytic capacitors, etc.) will magnetize the probe. For demagnetization of probe head, see paragraph 3-10, Degaussing of Probe Head.

## 3-10. DEGAUSSING OF PROBE HEAD.

3-11. For demagnetizing the probe proceed as follows:
a. Insert probe into degausser at the rear of the instrument (located on front panel of rack-mount models) with arrow on probe in same position as arrow marked on chassis.
b. Depress degausser switch S3 to energize degausser.
c. Withdraw probe very slowly for the first few inches while depressing the degausser switch until probe is removed approximately one foot.
d. Zero instrument on 1 ma range with ZERO control.
$3-12$. Under normal operating conditions degaussing may be necessary after measuring current on the 1 thru 10 AMP RANGE.

## CAUTION

The degausser is designed for intermittent operation only. It may be operated for periods up to three minutes continuously without excessive heating. Normal degaussing takes only about 10 seconds.

## 3-13. MEASUREMENT PRECAUTIONS.

3-14. It is recommended that this paragraph be read carefully before operating the Model 428B Clip-On Milliammeter for the first time. In general, currents can be measured with the Model 428B as conveniently as voltages with a vacuum tube voltmeter. However, there are situations that can cause inaccurate current readings. These situations are described as follows:

> Handling of Probe
> Magnetic Fields
> AC Fields and Superimposed AC Currents
> Effect of Instrument on Circuit
> Effect of Circuit on Instrument

3-15. HANDLING OF PROBE.
3-16. MECHANICAL HANDLING OF PROBE. Do not close the jaws by letting go of the probe flanges abruptly (snapping), as this may magnetize the head. Also, do not drop the probe. The jaws are made from an alkyd plastic material, which is very durable under normal use, but is not made to withstand the shock of dropping.
$3-17$. For the cleaning of the probe jaws, refer to paragraph 5-9.

3-18. EXPOSURE TO HIGH TEMPERATURE. The probe must not be subjected totemperatures exceeding $131^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$, as higher temperatures affect the calibration and permanently increase the susceptibility to stray fields. Do not lay the probe on top of the cabinet, as hot air from the instrument can heat the probe.

3-19. VOLTAGE INSULATION. It is preferable to clip the probe around insulated wire. However, the probe is insulated to make current measurements on bare wire at potentials up to 300 volts maximum, with respect to ground.

## CAUTION

Do not use this probe on bare wire with over 300 volts peak on it.

3-20. INTERCHANGING PROBE HEADS. Each probe is calibrated at the factory with a particular instrument and carries the serial number of that instrument (serial number appears on probe connector). If a probe has to be replaced, a realignment and re-calibration of the instrument is necessary (see also section V Maintenance).

## 3-21. MAGNETIC FIELDS.

3-22. If the jaws of the probe are incompletely closed, the magnetic shielding and the magnetic circuit will have an air gap. The result is, that dc fields, not associated with the dc current being measured, will cause a shift in the meter reading.

3-23. However, there will be an indication of a strong external dc field even with the jaws perfectly closed. Usually zero setting with the ZERO control compensates such residual readings for a particular probe location.

3-24. EARTH'S MAGNETIC FIELD. The earth's magnetic field will affect the reading if the jaws of the probe are not completely shielded (jaws partially open). The effect of this field is relatively strong-comparable to deflection due to about 500 ma of current. Complete closure of the jaws can be checked by switching to the 1 ma range with no dc current input. If the jaws mate properly, the zero set should stay within 0.1 ma while rotating the probe head with respect to the earth's magnetic field.
$3-25$. If the zero shift is greater, the mating surfaces of the jaws need to be cleaned (see paragraph 5-9), or the probe wiring may be open (see paragraph 5-25).

3-26. FIELDS OF PERMANENT MAGNETS. Meter magnets have strong stray fields, which can cause shift in the current indication. Such fields are detected by bringing the closed probe in the area where the measurement is to be made and observing the zero shift ( 1 ma range).

3-27. FERROUS WIRE. Wires made out of magnetic materials can cause a current reading of $2-3 \mathrm{ma}$ without any connection to the wire. This fact is important as leads of most transistors are made out of magnetic material.

3-28. AC FIELDS \& SUPERIMPOSED AC CURRENT.
3-29. AC WITH DC BEING MEASURED. The instrument is designed to allow a high amount of ac ripple in the dc being measured. The presence of ac whose peak value equals full-scale reading (limited to 4 amperes peak on 10-ampere range) will cause less
than $2 \%$ error in the dc reading. Examples of such high ac currents are found in the input of dc filter sections of power supplies.

## CAUTION

Do not use this probe to measuredc in a wire carrying more ac than full-scale reading on meter.


Figure 3-2. Typical Power Supply
3-30. 40 KC WITH DC BEING MEASURED. AC currents having frequency components of 40 kc or harmonics thereof will cause error, as such signals will interfere with the 40 kc output signal of the probe. The meter will indicate a beat reading if the interfering frequency is within approximately 15 cycles of 40 kc or its harmonics. Although this situation is very improbable, accurate dc current readings can be obtained by shifting the frequency of the external ac signal slightly.

3-31. STRAY AC FIELDS. The instrument as well as the probe head should not be used in strong ac stray fields. Such fields may exist in the vicinity of open core power transformers, or large dc filter chokes, etc.

CAUTION: Do not use this probe in the presence of strong rf fields.

## 3-32. EFFECT OF INSTRUMENT ON CIRCUIT.

3-33. REFLECTED IMPEI)ANCE. The probe will add a small inductance to the circuit of less than 0.5 microhenries due to the magnetic core and magnetic shicld. This makes it ideal for measuring current in very low impedance paths such as ground loops where other instruments would disturb the circuit.

3-34. INDUCED VOLTAGE. The gating signal, driving the core in and out of saturation, will induce a voltage in the wire carrying the dc current. This induced voltage is less than 15 millivolts peak. If more than one loop is passed through the probe the induced voltage will be multiplied by the number of loops.

## $3-35$. EFFECT OF CIRCUIT ON INSTRUMENT.

$3-36$. The impedance of the circuit being measured has practically no effect on the dc current measurement. A shorted loop inserted along with a wire carrying dc current will decrease the reading by only $0.2 \%$ of full scale.

## 3-37. MEASUREMENT PRACTICES.

## 3-38. POLARITY OF CURRENT.

3-39. The arrow on the probe head indicates the direction of the conventional current flow for upscale reading. Reversal of the current flow direction will reverse the indication on the meter (see figure 3-3).

## 3-40. INCREASING THE ABSOLUTE SENSITIVITY.

$3-41$. The sensitivity of the instrument can be increased by looping the wire (carrying the dc current) several times through the opening of the probe (see figure 3-4). For example, three turns increase the sensitivity three times. With an increased sensitivity however, the induced voltage between the probe and the circuit under measurements will increase also.

## 3-42. CURRENT CHECK LOOPS.

3-43. In restricted situations such as printed circuit boards, wire loops for the probe can be built into the circuit to allow convenient current measurements with the Model 428B. Here, currents can then be measured under operating conditions with the same ease as voltage measurement.

## 3-44. USE OF OUTPUT JACK.

3-45. The OUTPUT jack enables you to use the Model 428 B as a dc amplifier (up to 400 cps ). As such, it is the ideal instrument for measuring and viewing such quantities as surge currents through transformers, etc. The meter on the Model 428B measures the average dc (ignoring the ac). The output at the OUTPUT jack contains both the dc and the ac component of the signal being measured. Thus the ac


Figure 3-3. Clip Probe Around Wire with Arrow Pointing in Direction of Conventional Current
component may be measured (within the band-pass limitations of the amplifier) with a suitable oscilloscope or meter, as follows:
a. Clip the probe around the wire carrying the signal to be amplified.
b. Plug the recording device into the OUTPUT jack. Use a BNC cable connector and wire the + terminal to the center pin and - terminal to the shell.
c. Adjust the RANGE switch until the meter on the Model 428B indicates on scale so the amplifier will not be overloaded.

3-46. The Model 428B can also be operated with a graphic recorder. Either a high-impedance or lowimpedance recorder may be used. Recommended types are the Sanborn 299, the Moseley Autograph 3, the Varian G11, or the Esterline-Angus AW. With high impedance (greater than 100 K ohms) recorders, 1 volt $\pm 3 \%$ appears at the OUTPUT jack, when the OUTPUT LEVEL control is in the CAL (fully counterclockwise) position. For lower impedance (down to 1400 ohms) 1 ma recorders, the recorder must be calibrated. To calibrate a recorder proceed as follows:
a. Connect the recorder to the Model 428B by means of a BNC cable connector. The positive terminal of the recorder should be wired to the center pin and the negative terminal to the shell.
b. Calibrate the recorder:

1) High impedance recorders will be calibrated when the OUTPUT LEVEL control is in the CAL (fully counterclockwise) position.
2) Low impedance recorders must be adjusted for a particular sensitivity with the OUTPUT LEVEL control.


Figure 3-4. Increasing the Absolute Sensitivity by Looping Current Path through Jaws Several Times


Figure 4-1. Block Diagram Model 428B

## SECTION IV <br> THEORY

## 4-1. INTRODUCTION.

4-2. This section describes the overall operation of the Model 428B, the operating principle of the current probe and the function of the different circuits of the instrument.

## 4-3. OVERALL OPERATION.

4-4. The simplified block diagram of figure 4-2 shows the basic operation of the Model 428B Clip-ON Milliammeter.


BD-S-224
Figure 4-2. Simplified Block Diagram

4-5. The probe clips around a wire carrying dc current and delivers a 40 kc output signal which is proportional to the dc current. For transducing the dc current into a 40 kc signal, the probe requires a 20 kc gating signal, as described in detail in paragrapl $4-9$, Current Probe.
t-6. The 40 kc output signal of the probe is amplified, detccted and fed back as negative feedback current to the probe head cancelling the effect of the measured dc current and thus reducing the 40 kc output signal almost to zero. The negative feedback current, being proportional to and almost equal to the dc current of the inserted wire, is used to indicate the measured de current.

4-7. Thi: 20 kc oscillator has two functions: First, it supplics a 20 kc signal for driving the probe head,
and also provides a 40 kc (second harmonic) signal for gating the 40 kc Synchrononous Detector.

4-8. Due to slight unbalances, the probe head output contains a small 40 kc signal, even with no de current being measured. A 40 kc phase-shifter output cancels such residual 40 kc signal (zero-set controls).

## 4-9. CURRENT PROBE.

4-10. The probe head is a specially designed second harmonic flux-gate type of a magnetometer used to measure the magnetic field around a wire carrying direct current.

4-11. The flux-gate principle is easily understood by referring to the mechanical model shown in figure 4-3.

4-12. Coil A (representing wire through probe), is energized with dc, producing a dc-flux in the core. Armature is rotating at a constant rate (F), gating the flux 2 F times per second inducing a voltage of 2 F frequency in coil B. The amplitude is determined by the dc in coil A .


Figure 4-3. Mechanical Flux Gate

4-13. The Model 428B head uses this principle in a similar way. Figure $4-4$ shows the basic concept of a saturable flux gate.

4-14. A magnetic core in saturation loses permeability and therefore is comparable to a core that has been mechanically opened (low permeability due to air gap).


Figure 4-4. Saturable Flux Gate

4-15. Coil C saturates the core periodically with a 20 kc signal, driving the small cores in and out of saturation twice per cycle. This is the only function of the 20 kc signal, and this signal can be disregarded in further discussion. Coil A represents the wire through the probe carrying the dc current to be measured. This dc current determines the main flux between the two saturation phases. The resulting 40 kc signal is induced in coil B.


Figure 4-5. Current Probe Bridge Circuit

4-16. In the actual head there are four coils connected in a bridge configuration as shown in figure 4-5A. The cores of the coils are periodically saturated by a balanced 20 kc signal at points C and D .

4-17. With no dc being measured, no signal will appear between points $A$ and $B$, since they are balanced as far as the 20 kc is concerned and since no dc flux exists, no 40 kc is generated.

4-18. When the probe jaws are clipped over a wire carrying dc, the instantaneous 40 kc voltages induced by the gated dc flux have the polarites shown in figure $4-5 B$ and a 40 kc signal appears at points $A$ and $B$. (If the direction of the measured dc changes, the phase of the instantaneous voltages will change by $180^{\circ}$.)

## 4-19. 20 KC OSCILLATOR.

$4-20$. The function of the 20 kc oscillator is to generate a balanced 20 kc signal which, after amplification, is used for driving the probe head in and out of saturation.
$4-21$. The circuit of the 20 kc oscillator is shown in figure 5-12. The oscillator V7 is operating in pushpull having a plate circuit tuned to 20 kc . Transformer coupling provides positive feedback through resistor R94 and R95 to the oscillator control grids. The control grids of oscillator V7 supply the drive signal for the push-pull head drive amplifier V8. The oscillator level is adjusted by controlling the cathode current of V7.
$4-22$. The common cathodes of oscillator V7 supply the 40 kc signal ( 2 pulses per 20 kc cycle) needed for the synchronous detector gate amplifier V5 and the 40 kc phase shifter.

## 4-23. HEAD-DRIVE AMPLIFIER.

4-24. The head-drive amplifier V8 supplies the balanced 20 kc signal for the probe head. Drive balance adjustment R 98 controls the current ratio of the two triode sections, and hence the second harmonic output. The dc bias voltage for the oscillator and the head-drive amplifier is obtained from reference tube V11.

## 4-25. DETECTOR GATE AMPLIFIER.

4-26. The 40 kc resonant circuit $\mathrm{C} 1, \mathrm{C} 2$ and L5 increases the level of the gate signal and filters out all signals except 40 kc . It also allows phase adjustment of the signal to correspond to the phase of the Synchronous Detector.

4-27. The operation of the Synchronous Detector requires a high level 40 kc signal. The 40 kc output signal of the oscillator V7 passes through a tuned circuit and drives the gate amplifier V5. The output of V5 delivers about a 300 -volt peak 40 -kc gate signal to the Synchronous Detector. The function and the adjustment of the Detector Gate Amplifier will be discussed in paragraph 4-30.

## 4-28. 40-KC INPUT/AMPLIFIER CIRCUIT.

4 -29. The 40 kc output voltage of the probe head is resonated by a 40 kc series resonant circuit (L5 and $\mathrm{C} 1 / \mathrm{C} 2$ ). Resistor R1 broadens the resonance response by lowering the Q to minimize drift problems. The 40 kc signal passes through a voltage divider S1B, which keeps the loop gain constant for all current ranges, by maintaining a constant input level range to stage V1. The output of the 40 kc amplifier V1 is band-pass coupled to the 40 kc detector driver stage V2. The output signal of V2 is isolated from ground by transformer T 2 , and fed to the 40 kc synchronous detector.

## 4-30. SYNCHRONOUS DETECTOR AND FILTER (C24).

4-31. The Synchronous Detector detects the amplitude and the phase of the 40 kc signal. Phase detection is necessary to preserve negative feedback at all times. Since the probe may be clipped over the wire in either of two ways the phase of the signal may vary by $180^{\circ}$. If phase detection were not present this $180^{\circ}$ phase reversal would cause positive feedback and the instrument would oscillate. With phase detection the polarity of the feedback will change also, maintaining the feedback negative around the system at all times.
$4-32$. The synchronous detector requires a large 40 kc gating signal, having the frequency of the desired
signal. Figure $4-6$ shows the synchronous detector drawn as a bridge circuit.

4-33. A large gating signal ( 300 volts peak) is fed to points 1 and 3 of the bridge. Each half cycle of the gating signal drives the diodes of branch (123) and branch (341) alternately into strong forward conduction (dotted line in figure 4-6b). The diodes function as switches operating at a rate of 40 kc (the gating frequency).

4-34. The 40 kc amplifier output transformer is returned to points 2 and 4 of the bridge, and its signal is superimposed on the gating signal (indicated by heavy line in figure $4-6 \mathrm{~b}$ ). Since the 40 kc output signal is considerably smaller than the 40 kc gating signal, the action of the gated diodes is to return alternately the top and bottom end of $T_{2}$ secondary to $T_{3}$ secondary center tap. The 40 kc output signal appears rectified across C24 (figure $4-7$ shows the phase and amplitude relationship in the synchronous detector). Referring to figure 4-6, resistors R41 through R4t provide a bias voltage for the diodes in cutoff. In other words, when diodes V3A and V4A conduct, the voltage drop across $R 41$ supplies a negative bias for $V 3 B$ and the voltage drop across R43 supplies the back-bias voltage for diode V4B.

4-35. The input of the gate amplifier V5 contains a tunable 40 kc resonant circuit, also used as a phase shifter for the 40 kc gating signal. The phase of the 40 kc gating signal is adjusted to synchronize exactly with the probe output signal as it appears at $V 2$.


Figure 4-6. Synchronous Detector


Figure 4-7. Change of Output of Synchronous Detector with Phase

## 4-36. DC AMPLIFIER.

4-37. The dc amplifier supplies a negative dc feedback current to the probe proportional to the output of the synchronous detector. The polarity of the negative feedback current changes if the polarity of the dc current (measured in the probe) changes. In this way the feedback of the system remains negative at all times thus maintaining the stability of the instrument.

4-38. In addition, this local negative feedback loop stabilizes the gain of the DC Amplifier.

4-39. Tube V6 is a differential amplifier in which a signal of approximately 1 volt (for full-scale deflection) is fed to pin 7 and compared with the signal on pin 2. The output of V6 is fed to the base of Q3.

4-40. Transistor Q3 drives the current-amplifiers Q1 and Q2 which are used as emitter-followers in a push-pull NPN-PNP pair combination.

4-41. The output current from Q1 and Q2 goes through the meter circuit to the current dividerS1A which feeds a portion of this current, appropriate for the range this instrument is working on, to the probe head as negative current feedback.

4-42. After passing through SIA and the probe head the combined current goes through the parallel resistor network R60-64. This develops a voltage at the junction of R61 and R62 which is proportional to the feedback current. This voltage is applied to pin 2 of V6 to complete the local feedback loop of the IS Amplifier. This circuit makes the output current of the DC Amplifier proportional to the voltage applied to the input grid, pin 7 , of $V 6$.

## 4-43. NEGATIVE FEEDBACK CURRENT CIRCUIT.

4-44. The negative feedback current path is shown in figure 4-8. Current divider S1A divides the feedback current in proportion to the dc current being measured*. For a dc input of 10 amperes, approximately 50 ma feedback current is fed to the probe head. Since an equal number of ampere-turns are necessary for canceling the main dc flux, the feedback coil inside the head requires approximately 200 turns.

[^0]

Figure 4-8. Feedback Current Circuit

## 4-45. 40 KC PHASE SHIFTER.

$4-46$. The output of the $40-\mathrm{kc}$ phase shifter is fed to the head of the probe to cancel any residual $40-\mathrm{kc}$ output signal which exists when zerodc is being measured. The canceling signal is obtained by adding two voltages which are $90^{\circ}$ out of phase and variable in amplitude. Figure $4-9$ shows the circuit and the idealized phase relationship of the two output voltages with respect to the $40-\mathrm{kc}$ signal from the oscillator.
4-47. By adding the two output voltages (vector $A$ and B) a $40-\mathrm{kc}$ signal is obtained, having phase angle and amplitude to cancel exactly the residual $40-\mathrm{kc}$ signal from the probe (vector C). Once the residual 40 kc


Figure 4-9. 40 KC Phase Shifter
signal of the probe has been canceled, the ZERO control compensates for any normal variations of zero shift. This control is necessary only on the lower ranges.

## 4-48. POWER SUPPLY.

4-49. A single series-regulated power supply of the conventional type provides 280 volts regulated for the circuits of the instrument. Voltage reference tube V11 provides a constant cathode potential at control tube V10 and this is the reference potential for the control grid of V10.


Figure 5-1. Cleaning Probe Jaws
Shows proper method of cleaning mating surfaces of probe jaw. If normal cleaning of jaws with brush will not permit jaws to mate perfectly, clean with pencil eraser. See paragraph 5-9, Cleaning of Probe Jaws.

# SECTION V <br> MAINTENANCE 

## 5-1. INTRODUCTION.

5-2. This section contains information about servicing and maintaining the Model 428B.

5-3. A Final Check (paragraph 5-36) is included in this section to be used to verify instrument operation without removing the instrument from the cabinet. This is also a good test as part of preventive maintenance and incoming quality control inspection.
$5-4$. A tube replacement chart (table 5-1) has been included. Most tubes may be replaced without requiring adjustment because of the large amount of negative feedback. However, the Final Check should be done when replacing any tube. If the instrument does not meet the performance check, then the tests indicated under that particular tube in the tube replacement chart should be performed.

5-5. A troubleshooting section which will help isolate troubles more easily has been included. This section consists of a series of waveforms systematically covering the $40-\mathrm{kc}$ signal, gate and oscillator circuits.

5-6. A complete test procedure covering all adjustments has been included. Normally only those parts of the procedure concerned with the particular section of the instrument that was faulty should be done. Do NOT perform this entire procedure as a part of preventive maintenance.

## 5-7. MECHANICAL ZERO-SET.

5-8. When meter is properly zero-set, pointer rests over the zero calibration mark on the meter scale when instrument is (1) at normal operating temperature, (2) in its normal operating position, and (3) turned off. Zero-set as follows to obtain best accuracy and mechanical stability:
a. Allow instrument to operate for at least 20 minutes; this allows meter movement to reach normal operating temperature.
b. Turn instrument off and allow 30 seconds for all capacitors to discharge.
c. Rotate mechanical zero-adjustment screw clockwise until meter pointer is to left of zero and moving upscale toward zero.
d. Continue to rotate adjustment screw clockwise; stop when pointer is right on zero. If pointer overshoots zero, repeat steps c and d .
e. When pointer is exactly on zero, rotate adjustment screw slightly counterclockwise to free adjustment screw from the meter suspension. If pointer moves during this step, repeat steps cthrough e.

## 5-9. CLEANING OF PROBE JAWS.

$5-10$. Cleaning of the probe jaws is done by squeezing together the probe flanges and cleaning the two mat-
ing surfaces with a brush (supplied with the instrument). If the foreign matter cannot be removed by the brush, then the probe head must be disassembled and the surfaces cleaned with an eraser (see figure 5-1). To disassemble the probe head, grasp the probe head in the palm of one hand and unscrew the probe center section (see figure 5-8) with the other hand. Make sure that you do not twist the cable while doing this.

## Note

In reassembling the probe, be sure that the polarity arrow on the probe points toward the side of the terminal strip with the heavy red lead of the probe cable.

## 5-11. TEST EQUIPMENT.

5-12. This paragraph lists all the test equipment and auxiliary equipment necessary for completely servicing and adjusting the Model 428B.
5-13. TEST INSTRUMENTS.
a. Oscilloscope with dual channel plug-in, such as ${ }^{\circ} \rho$ Model $140 \mathrm{~A}, 175 \mathrm{~A}$ or equivalent.
b. AC Vacuum Tube Voltmeter, such as $\frac{5 p}{}$ Model 400D or equivalent.
c. DC Vacuum Tube Voltmeter, such as (bp Model $412 \mathrm{~A}, 410 \mathrm{C}$ or equivalent ( $1 \%$ accuracy at 280 volts).
d. Electronic Counter, such as 审 Model 5212A, 5512 A etc., or equivalent.

## 5-14. AUXILIARY EQUIPMENT.

a. One $1.0 \mu \mathrm{f}$ capacitor; one $0.01 \mu \mathrm{f}$ capacitor.
b. Supply of small fixed mica padding capacitors (up to 500 pf ).
c. One 1500 -ohm resistor.
d. Supply of $1 / 2$-watt resistors ( 390 ohms to 47 K ohms, Allen Bradley or equivalent).
e. AC voltage source ( 6.3 volts), 60 cps .
f. Precision resistor, $100 \mathrm{ohm} \pm 1 \%, 1$ watt; 1 K ohm $1 \%$, 1 watt; 1 K potentiometer, 2 watts; 10 ohm, $1 / 4 \%$.
g. Variable ac power supply, such as variable autotransformer.
h. Variable dc power supply, such as 有 Model 711A Laboratory Power Supply.
i. Oscillator Balance Probe.



Connect Model 428B to a variable voltage supply, such as an autotransformer.

1. Turn ON power and allow approximately two minutes warmup time.
2. Place probe away from any stray fields (meter magnets, open-core transformers, etc.).
3. Check for complete closure of probe jaws (see paragraph 3-8).
4. Set RANGE switch to 1 ma .
5. Zero-set instrument with ZERO control. If zero-setting is not possible see paragraph 3-6.

Check: Change line voltage from 103 to 127 volts and observe meter on Model 428B. Zero-drift should remain within $\pm 0.5 \mathrm{ma}$.


1. Zero-ser Model 428B on 3 ma range, with no direct current input to probe.
2. Switch current RANGE to 100 ma .
3. Clip probe around wire carrying current to be measured, pointing arrow on probe in direction
of the conventional current flow (see arrows in figure above).
4. Increase current until milliammeter reads 100 ma .

Check: Reading on Model 428B should agree within $\pm 3 \%$.

Figure 5-3. DC Current Indication


Connect equipment as shown.

1. Open $S 1$, set R1 to center and turn power supply off.
2. Zero-set Model 428 B on 10 ma range with no input to probe.
3. Turn on power supply and adjust for 10 ma dc.
4. Close S1 and adjust R1 until Model 428B meter reading drops by approximately $2 \%$.

Check: AC voltmeter should read 0.7 vrms ( 10 ma peak, 7 ma rms), or more.

## 5-15. ADJUSTMENT AFTER TUBE REPLACEMENT.

5-16. Experience has shown this instrument to be very reliable. Most troubles will be due to faulty tubes. Never disturb any adjustment until extensive tests have indicated adjustment is necessary!

5-17. This instrument is very sensitive to phase shifts. If any adjustments which affect phase are disturbed, complete alignment will be necessary.
$5-18$. Phase shifts can be caused by changes in the 20-kc oscillator frequency. Normal variations in interelectrode capacities of the oscillator tubes will not change the oscillator frequency enough to require realignment, provided the rest of the circuitry was previously adjusted properly.

5-19. Some tubes may shift the frequency too much. In this case, you must realign the instrument. Perhaps an easier way is to select an oscillator tube which makes the circuit oscillate at the same frequency (approximately) as the old tube. This can save considerable time if a choice of tubes is available.

5-20. Table 5-1 lists possible adjustment or checks after a tube has been replaced. Consult table 5-1 only if instrument does not meet specifications.

Table 5-1. Tube or Transistor Replacement

| Ref. Desig | Type | Function | Check |
| :---: | :---: | :---: | :---: |
| V1 | 6aU6 | 40 kc Amplifier | No adjustment |
| V2 | 6AH6 | 40 kc Detector Driver | No adjustment |
| V3/4 | 6AL5 | Synchronous Detector | No adjustment |
| V5 | 6AH6 | Derector Gate Amplifier | No adjustment |
| V6 | 6DJ8 | DC Amplifier | Table 5-2, DC Ampl.Bal.Adj. |
| V7 | 6DJ8 | 20 kc Oscillator | No adjustment |
| V8 | $\begin{aligned} & 5814 / \\ & 12 \mathrm{AU} 7 \end{aligned}$ | 20 kc Head Drive | Drive Bal.Adj. |
| V9 | 12B4 | Series Regulator Tube | No adjustment |
| V10 | 6AU6 | Control Tube | No adjustment |
| V11 | 5651 | Reference Tube | Table 5-3, Power Supply |
| Q1 | 2N1218 | Current Ampl. | Test loop gain |
| $\begin{aligned} & \text { Q2 } \\ & \text { Q3 } \end{aligned}$ | $\begin{aligned} & \text { 2N1183 } \\ & \text { 2N156 } / / \\ & 1854-0003 \\ & \hline \end{aligned}$ | $\left.\begin{array}{l} \text { Current Ampl. } \\ \text { Driver } \end{array}\right\}$ | Test loop gain, Adjust R46 |

## 5-21. TROUBLE LOCALIZATION.

$5-22$. Three simple tests performed with the instrument in its cabinet indicate whether the circuits are operating normally. The tests can be used as incoming inspection checks and are not intended to check the accuracy of the instrument. See the following figures:

Figure 5-2. Electrical Zero-Set
Figure 5-3. DC Current Indication
Figure 5-4. AC Overload

5-23. PERFORM THE STEPS IN THIS SECTION BEFORE MAKING ANY ALIGNMENT ADJUSTMENTS.

5-24. Refer to paragraph 5-37 FINAL CHECK for three tests to check instrument performance. DO NOT attempt alignment before determining the location of the trouble. If alignment is attempted first, in addition to the alignment not working, troubleshooting may be made more difficult. For instance, if the original trouble was a faulty component, you would have to find the misalignment in addition to the faulty component. Finding two troubles in an instrument is usually much more difficult than finding a single trouble.

5-25. Proceed with the following steps until the trouble is found.

5-26. PROBE.
5-27. The first check to make after you determine that the instrument does not meet specifications is to check the probe. Remove probe connector from instrument and measure resistance between connector pins. The coils in the probe head are connected in the form of a bridge with each pin connected to a corner. The resistance between any adjacent pair of pins should be about 5 ohms. If not, one of the coils in the probe is probably open. If the reading is $\infty$ the cable is probably open. If the probe tests all right, connect it back to the instrument and degauss the probe.

## 5-28. POWER SUPPLY.

a. Remove the instrument from the cabinet by removing the two screws at the rear of the instrument and pushing the chassis free from the cabinet. Connect base of Q1 (pin furthest from chassis on 2N1218) to ground with a clip lead. Connect a voltmeter to any red lead on terminal board 428B-75F (board furthest from front panel). (It is assumed in all these directions that the ground lead of the voltmeter will be connected to the chassis unless specifically instructed otherwise.) This voltage should be $+272 \pm 6$ volts. If there is no voltage at all, check F3. If the voltage is not correct, try adjusting the Adj +272 V control or replacing V9, 10, or 11.
b. With Q1 still grounded check the voltage on the +12 V bus at pin 2 of V11. This voltage should be +12 $\pm 1$ volts. If not, check CR10 or Q1.
c. With Q1 still grounded check the voltage on the -7 V bus (lower terminal of bottom diode on etched circuit board nearest front panel). This voltage should be $-7 \pm 1$ volts. If not, check CR9 or Q2.
d. With the +12 V and -7 V buses set to their correct voltages, recheck the voltage on the +272 V bus as instructed above. Adjust the Adj +272 V control if necessary. Connect a variable voltage power line source to the 115 -volt input of the Model 428B. Vary the input voltage from 103 to 127 volts ac. The dc voltage should not vary more than $\pm 2$ volts dc. If it does, try replacing V9, 10, or 11.

## 5-29. OSCILLATOR-HEAD DRIVE AMPLIFIER.

a. Referring to the schematic for test details, check the waveform at testpoint (3). If the waveform is correct, go to paragraph 5-31. If not, goto stepb.
b. Check the signal on test point (2). If the signal at testpoint (2) is not correct check V7. If the signal at testpoint (2) is correct, check V8. If V8 is replaced perform steps 16 through 19 of the adjustment procedure. Waveform (4) should be similar to the waveform on testpoint (3) except $180^{\circ}$ out-of-phase.

## 5-30. HEAD DRIVE.

a. With Q1 still grounded connect the vertical input of an oscilloscope to pin 7 of V2 and the horizontal input to pin 7 of V5. Clip Model 428B probe around wire carrying 5 ma ac ( 0.5 volt ac across 100 ohms monitored by an external meter, see figure 5-5).
b. Turn Model 428B RANGE switch to 10 MA . Pattern on oscilloscope should look like a "bow tie" with its knot symmetrical (see figure $5-6 \mathrm{~A}$ or B ). Note that an addition to the top and bottom intersections being in a vertical line, the center section must be free of traces. It is possible to get the top and bottom intersections in a vertical line with traces in the center section but this is not a correct pattern. Figure 5-6C illustrates another type of an incorrect adjustment with the top intersection not over the bottom intersection. If this pattern is correct, the $40-\mathrm{kc}$ amplifier is functioning properly; proceed to paragraph 5-31. If not, check waveforms at junction of R1-L5 and waveforms at testpoints (7) and (8). No waveform is given at testpoint (7) since the waveshape will vary with different probes. Test for presence of .01 volt waveform of any shape.
c. Check the waveform at the connection between R1 and L5 with the RANGE switch set to 1 MA and the probe clipped around 100 ma dc. This waveform should be a 2.5 volt peak-to-peak sine wave. If not, check L5 and associated circuitry. If correct, proceed to step d.


## Figure 5-5. Detector Phase Adjustment Setup

d. Check the waveform on pin 7 of V1 with the RANGE switch set on 1 MA and the probe clipped around 100 ma dc . This waveform should be a 2.5 volt peak-to-peak sine wave. If not, check V1, RANGE switch, etc. In addition this waveform should be inphase with the waveform found in step $b$ (note that this relationship can only be observed if a high impedance probe is used and the oscilloscope is synchronized
externally as explained in the notes on the schematic). If this waveform is correct proceed to step e.
e. Check the waveform at pin 7 of V2 with the RANGE switch set to 100 MA and the probe clipped around 100 ma dc. This waveform should be a 1 -volt peak-to-peak sine wave. If not, check V2 and T1. In addition, this waveform should be in-phase with the waveform found in step d. If not, check T1. If this waveform is correct proceed to paragraph 5-31.

## Note

If V1, 2, or T1 are changed check the loop gain (table 5-2, Alignment Procedure, step 13).
5-31. SYNCHRONOUS DETECTOR.
a. With Q1 still grounded and Model 428B set on the 100 MA range, check the voltage on pin 7 of V6. This voltage should swing from approximately -5 volts to +2 volts as the ZERO control is rotated throughout its range. If it does, go to paragraph 5-33. If not, go to step b.
b. With Q1 still grounded, check waveforms (figure 5-7) at transformer T2 (testpoints (9), (10), and (11) on the schematic). Note that the amplitude and shape of these waveforms vary as you rotate the ZERO control. The waveform at testpoint (10) should be in-phase with the waveform at testpoint (9) while the waveform at testpoint (11) should be out-of-phase. If these waveforms are not correct, check V3, 4, and C19 and associated circuitry. If these waveforms are correct check the waveform at testpoint (5). If waveform (5) is correct go to step d. If waveform (5) is not correct, go to step c.
c. Check the waveform at test point (6). This waveform should be at 10 volt sine wave. If this waveform is good check V5 and associated circuitry. If the trouble is not found check the waveform at testpoint (1). If this waveform is correct, check V5. If the waveform at testpoint (1) is correct but the waveform at testpoint (6) is still not correct, the trouble may be in L7 or T4.
d. To check T2 remove V3, 4 and 6. With the base of Q1 still grounded and the RANGE switch on 30 MA , check the waveforms on testpoints (9), (10), and (11). These waveforms should be sine waves whose amplitude varies as you rotate the ZERO control. The peak of the waveform should sweep through at least 7 volts of space on the oscilloscope screen as the ZERO control is rotated throughout its range. In addition the amplitude of these waveforms should be approximately the same with (9) and (10) in-phase and (11) out-of-phase (oscilloscope must be externally triggered, see notes on schematic). If not, check circuitry connected to transformer T2 or tubes V3 and V4. If correct, replace transformer T2.

## 5-32. DC AMPLIFIER.

a. Remove probe from front panel. Remove the ground from Q1 and compare the voltage on pin 7 of V6 with the voltage on pin 2 of V6. These two voltages should track when the ZERO control is turned to give different values of voltage. These voltages should follow one another within 0.05 volt for a $\pm 1$ volt swing on pin 2 of V6. If so, the dc amplifier is functioning properly. If not, go to step b.
(A)

IDEAL CORRECT PATTERN.
(NO RESIDUAL)


## (B)

ANOTHER TYPE OF CORRECT PATTERN (WITH SOME

RESIDUAL.)
 free of traces.
(C)

INCORRECT PATTERNS (INTERSECTIONS ARE NOT VERTICALLY OVER ONE ANOTHER.)

$w-s-163$

Figure 5-6. Detector Phase Adjustment Waveforms
b. With the base of Q1 grounded and the RANGE switch on 100 MA measure the voltage on pin 6 of V6. Rotating the ZERO control over its range should swing this voltage from +50 to +250 volts. If so, go to step $c$. Remove the clip-lead grounding Q1.
c. With Q1 ungrounded and RANGE switch set to 3 MA measure the voltage on base and emitter of Q1. The voltage on the emitters should track the base voltages and ZERO control should swing the emitters $\pm 2.5$ volts. If not, check Q1, 2, and 3 and check for shorts in the RANGE switch.

## 5-33. ADJUSTMENT AFTER CURRENT PROBE REPLACEMENT.

5-34. If the current probe has to be replaced, it is not necessary to perform the complete adjustment procedure. In table 5-2 perform only steps 15 thru 23.

## 5-35 COMPLETE ADJUSTMENT PROCEDURE.

## CAUTION

Before changing any adjustment in the Model 428 B , be sure that an adjustment is necessary as indicated by the trouble localization procedure (paragraph 5-23). Always consult the trouble localization procedure first to determine which sections of the adjustment procedure to perform. Do not perform the complete adjustment procedure either as a trouble localization or preventive maintenance procedure.
$5-36$. The procedure given in table $5-2$ is complete and enables you to do a systematic alignment of all circuits. Refer to paragraph 5-14, Auxiliary Equipment listing auxiliary equipment needed for adjustment.


Figure 5-7. Trouble Localization Waveforms
Table 5-2. Adjustment Procedure

Step 1. PRELIMINARY ADJUSTMENT. ${ }^{-}$
The feedback loop must be disconnected for all tests uptoStep 17. Disconnect bare wire jumper on terminal board 428B-75D (board nearest front panel). Ground base of Q1. Zero-set the mechanical zero on the meter (see paragraph 5-7). Clean probe jaws (see paragraph 5-9).

Note: In the following instructions directions are given for connecting only single leads of the voltmeters, etc. In each case it is understood that the ground lead will be connected to the Model 428B chassis, unless otherwise specified.

Step 2. POWER SUPPLY.
Plug Model 428B into 115 volt line. Turn on and allow to warm up 15 minutes.
a. Connect a vtvm, such as the (tp) Model 410C Vacuum Tube Voltmeter, to any red lead on 428B-75F (rearmost) terminal board. This voltage should be 266 to 278 volts. If not, check F3 or adjust R109 (Adj+272V) for 272V.
b. Connect an oscilloscope to the same red lead as in Step a. The pattern on the screen will
be 40 kc with 120 cps superimposed. Vary the input voltage to the Model 428B from 103 to 127 volts. The 120 cps component of this waveform should beless than 50 mv peak-topeak. If not, replace V9, 10, or 11. Remove voltmeter and oscilloscope.
c. Turn RANGE switch to 3 AMP. Check the voltage on anode of CR10 (front board). This voltage should be 10.8 to 13.2 volts. If out of these limits, check Q1 and CR10.
d. Check voltage on the cathode of CR9 (front board). This voltage should be 6.1 to 7.5 volts. If low or high, check CR9, Q2, or C65.
Step 3. OSCILLATOR BALANCE.
Refer to paragraph 5-14, Auxiliary Equipment, above for the construction of the Oscillator Ba lance probe necessary for this test. Connect oscillator balancetest assembly to transformer T5 side of R94 and R95 (usually green and greenwhite wires). Connect an AC Voltmeter, such as the $\hbar_{p}$ Model $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ to the center point of the test assembly. With $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ set to 0.1 volt range, adjust oscillator balance slug of T5 for minimum reading (should be less than 50 millivolts). Lock slug and remove meter and probe.

Table 5-2. Adjustment Procedure (Cont'd)

## Step 4. OSCILLATOR FREQUENCY.

Connect electronic counter, such as (thp) Model $5212 \mathrm{~A} / 5512 \mathrm{~A}$ Electronic Counter, to one side of T3 secondary--either orange-white or greenwhite wires at top of 428B-75B (center) terminal board. Frequency should be $40 \mathrm{kc} \pm 200$ cycles. If not, pad C52 to set the frequency. Remove counter.

## Step 5. OSCILLATOR LEVEL.

 to transformer T5 side of either R94 or R95 (usually green and green-white wire) on terminal board $428 \mathrm{~B}-75 \mathrm{E}$ ) board furthest from front panel). Level should be 7.6 to 8.4 volts rms. If not, adjust oscillator level control R92 to set level to 8 volts rms. Remove meter.

## Step 6. DETECTOR GATE.

Connectac voltmeter, such as $\$ p$ Model 400D/H/L to pin 2 or 7 of V5. Adjust L7 for peak. Voltage should be 3.5 to 4.7 volts rms. If not, replace V5. Remove voltmeter.

## Step 7. RECHECK OSCILLATOR LEVEL.

If L7 was adjusted in Step 6, repeat Step 5.

## Step 8. SETUP FOR ALIGNMENT OF TUNED AMPLIFIER.

Connect an ac voltmeter, such as the (bD) Model $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ to pin 2 or 7 of V2. Set $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ to 1 volt range. Clip 428B probe around wire carrying 35 ma rms ac monitored by an external meter as appears in the ac generator portion of figure 5-5. Adjust 150 ohm potentiometer for 3.5 vac across the 100 -ohm resistor. Set $428 B$ RANGE switch to 100 MA . Keep this setup for the next three steps.

## Step 9. INPUT ALIGNMENT.

Adjust C2 (input tune) on smallest terminal board (428B-75D) for a maximum reading on 400D (approximately 0.1 volt).

Step 10. INTERSTA GE PRIMARY A LIGNMENT.
Connect a $0.0082 \mu \mathrm{f}$ capacitor across secondary of T1 (green and white/orange leads). Adjust bottom (primary) slug of $T 1$ for maximum $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ reading ( 0.01 volt range) and lock slug. Remove capacitor but leave rest of setup.

## Step 11. INTERSTAGE SECONDARY ALIGNMENT.

Connect a $0.0082 \mu \mathrm{f}$ capacitor across primary of T1 (red and blue leads). Adjust top (secondary) slug of T1 for maximum reading of $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ ( 0.01 volt range) and lock slug. Remove capacitor and voltmeter. Keep the base of Q1 grounded by means of the clip-lead.

## Step 12. DETECTOR PHASE ADJUSTMENT.

Clip a 390 ohm resistor across the "FEEDBACK DISCONNECT" terminals. Connect the horizontal input of an oscilloscope, such as (市) Model $140 \mathrm{~A} / 175 \mathrm{~A}$, to pin 2 or 7 of V5. Connect vertical input to pin 2 or 7 of V2. Leave 428 B probe around wire carrying 35 ma ac ( 3.5 volt ac) across 100 -ohm monitored by an external meter (see figure $5-5$ ). Turn 428 B to 100 ma range. Turn slug L7 so pattern on oscilloscope looks like a "bow tie" with its knot symmetrical (see figure $5-6 \mathrm{~A}$ or B). Note that in addition to the top and bottom intersections being in a vertical line, the center section must be free of traces. It is possible to get the top and bottom intersections in a vertical line with traces in the center section, but this is not a correct adjustment. Lock L7. Figure 5-6C illustrates an incorrect adjustment with the top intersection, not over the bottom intersection. Remove $39 \overline{0-0} \mathrm{ohm}$ resistor.

## Step 13. DC AMPLIFIER LOOP GAIN.

Remove the clip-lead from the base of Q1 and connect a short (6 inch or less) clip-lead across the secondary of T1. Turn Meter Cal. potentiometer R69 to its maximum clockwise position (minimum resistance). Connect a 1500 -ohm resistor between pin 2 V6 and pin 4 of V6. Connect ac voltmeter (set to 30 mv range) between pin 2 of V6 and chassis ground. Connect a dc voltmeter in parallel with the ac voltmeter and vary dc voltmeter indication from -0.5 volt to +0.5 volt by adjusting R46 DC Amp. Bal. The ac voltmeter should read less than 25 mv for both the -0.5 and +0.5 volt readings. Zero Model 428B meter with R46. Remove clip-lead, 1500 ohm resistor, and voltmeters.
Step 14. NOISE.
Turn Model 428B on with no input to probe, feedback still disconnected. Set RANGE switch to 30 MA. In any 5 second period the peak-to-peak swing of the needle should be less than 5 ma . If noise is excessive one of the coils in the head may be open. Remove probe connector from instrument and measure resistance between connector pins. The coils in the probe head are connected in the form of a bridge with each pin connected to a corner. The resistance between any adjacent pair of pins should be about 5 ohms. If not, one of the coils in the probe is probably open. If the reading is $\infty$ the cable is probably open.

Table 5-2. Adjustment Procedure (Cont'd)

## Step 15 <br> PRELIMINARY ADJUSTMENT OF ZERO POTS

Ground base of Q1. Always perform this step before steps 16 and 17. Do NOT alter the position of these potentiometers until step 17. Turn the $90^{\circ}$ Zero Adj. R84 and front panel ZERO potentiometer R82 to center position as follows:

Turn Model 428B RANGE switch to 300 MA. Connect an ac voltmeter, such as the 60 Model $400 \mathrm{D} /$ $\mathrm{H} / \mathrm{L}$ Vacuum Tube Voltmeter, to the center arm of the 900 Zero Adj. potentiometer R84. Adjust R84 for minimum reading on the $400 \mathrm{D} / \mathrm{H} / \mathrm{L}(0.1$ volt range). Connect an ac voltmeter ( $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ ) to center arm of ZEROadjust potentiometer R82. Adjust $R 82$ for minimum reading on the $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$. Minimum is approximately 0.02 volt.

Note: Do NOT alter this position of the potentiometers until step 17.

## Step 16 <br> DRIVE BALANCE ADJUSTMENT

Thoroughly clean probe head jaws (see paragraph 5-9). Degauss probe head completely (see paragraph 3-10). Set Model 428B RANGE switch to 1 MA . Connect an ac voltmeter, such as the (4p) Model $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ to pin 2 or 7 of V2. With no input to 428 B probe set Dr. Amp. Bal. potentiometer R 98 for a minimum reading on the $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$. On the 1 volt range of the $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ the minimum should be less than 0.5 volt. If no minimum can be reached, replace V8. Leave $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ connected.

## Step 17 <br> RECONNECT FEEDBACK AND CANCELLATION OF HEAD RESIDUAL OUTPUT

Replace the lead removed in step 1 and remove clip-lead to Q1. Leave $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ connected to pin 2 or 7 of V2. Leave 428 B on 1 ma range. Degauss probe. Zero 428B meter with front panel ZERO adjustment knob (see figure 3-1). With $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ set to 0.3 volt range, adjust $90^{\circ}$ Zero Adj. potentiometer R84 for a minimum 400D reading (approximately 0.02 volt). Adjusting R84 will throw off the setting of the ZERO adjust knob, so repeat this procedure until both controls are set properly. Remove the $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$.

## Step 18 <br> EARTH'S FIELD EFFECT

Point probe east and west, and rotate about its axis. Note peak-to-peak change in meter reading on the 1 ma range. This swing should not exceed 0.1 ma . If it does, the probe head is not sufficiently shielded, probably because the jaws are not completely closed. Check jaws for alignment and for foreign material. If an open lead in the head is suspected check as in step 14.

## Step 19 <br> RANGE TO RANGE ZERO

Turn the Model 428B RANGE switch to 1 MA. Zero-set meter with ZERO panel knob R82. Turn RANGE switch slowly through all ranges and check that zero falls right onfor all ranges. If the needle does not fall on zero ( $\pm 1.2 \%$ ) for all ranges, recheck steps 15,16 , and 17 . Recheck the mechanical zero setting.

## Step 20 <br> ZERO CONTROL RANGE

Switch Model 428B RANGE switch to 30 MA . Zero meter with ZERO control knob R82. Clip 428B probe around wire carrying 10 madc monitored by an external meter (see figure 5-4). Note reading on 428B. Turn ZERO control in both directions: 428B should have at least 5 ma zero adjustment range in each direction.

Step 21
CHANGE OF ZERO SETTINGWITH LINE VOLTA GE
Connect the Model 428B to a variable source of line voltage, such as a variable auto-transformer. Set the needle on a scale division with the ZERO adjust knob R82. Change the line voltage from 103 to 127 volts. The needle should change less than 0.5 ma . If not, try several V8's and repeat steps 15, 16, 17 and 20.

## Step 22 <br> OUTPUT CALIBRA TION

Connect the 428B probe as shown in figure 5-9 looping the wire through the probe ten times (see figure 3-4). Connect a dc voltmeter as in figure 5-9 so that it acts as a differential voltmeter measuring the difference between the 1 volt developed across the 10 ohm resistor (by the 100 ma ) and the voltage out of the front panel OUTPUT jack.

Turn the OUTPUT LEVEL control to the CALIBRATE position (fully counterclockwise). Turn RANGE switch on 428B to 1 AMPERE. Adjust R63 until there is an indication of less than 5 millivolts on the dc voltmeter.

## Step 23 <br> RANGE CALIBRA TION

Set Model 428B RANGE switch to 1 MA . Zero-set needle with ZERO panel knob R82. Set RANGE switch to the 100 ma range.
a. Feed 100 ma dc through probe (monitored with external dc ammeter, accurate to $1 / 4 \%$ ). Adjust Meter Cal. R69 so meter reads 100 ma exactly.

Table 5-2. Adjustment Procedure (Cont'd)
b. Change line voltage from 103 to 127 volts. Calibration should stay within $0.2 \%$.
c. Check calibration on all other current ranges, starting with 1 ma range, etc. Full scale reading should remain within $3 \%$ on all ranges.

CAUTION: Check zero-set on 3 ma range between each current range check.

## Step 24

CURRENT CHECK
Turn Model 428B to 100 MA range and clip 428B probe over lead (usually violet) going to F3 from
board 428B-75F. Meter on 428B should read 66 $\pm 2 \mathrm{ma}$. If not, determine which section of the instrument is not drawing the proper current.

Step 25
AC OVERLOAD
Zero-set Model 428B on 3 ma range. Supply ac through probe (see figure 5-4). With ZERO control set needle on Model 428B to full scale. Increase ac until dc indication on Model 428B drops $2 \%$. This ac voltage should be at least 0.25 volts rms ( $2.5 \mathrm{ma} \mathrm{rms}, 3.6 \mathrm{ma}$ peak). If not, recheck loop gain.


Figure 5-8. Exploded View of Probe


Figure 5-9. Output Calibration Test Setup

## 5-37. FINALCHECK.

5-38. Three tests (paragraphs 5-40, 5-42, and 5-45) performed with the instrument in its cabinet indicate whether the circuits are operating normally. The tests can be used as incoming inspection checks. See the following figures for equipment setups for these tests:

Figure 5-2. Electrical Zero Set
Figure 5-3. DC Current Indication
$5-39$. For the accuracy check use setup of figure 5-3, DC Current Indication. The accuracy check consists of Range Calibration and Meter Tracking.

5-40. RANGE CALIBRATION.
5-41. Check: Zero Model 428B on 1 MA range. Switch to 100 ma current range.


Figure 5-10. Left Side Internal View Model 428B


Figure 5-11. Right Side Internal View Model 428B
a. Feed 100 ma dc current through probe (monitored with external dc ammeter accurate to $0.25 \%$ or better). Adjust R69 Meter Cal for 100 ma .
b. Change line voltage from 103 to 127 volts. Calibration change should stay within $0.2 \%$.
c. Repeat step a for all other current ranges, i.e. $300 \mathrm{ma}, 100 \mathrm{ma}$, etc. Full-scale reading should remain within $3 \%$ on all ranges. If not, check range switch.

NOTE: Be sure that zero-set is adjusted each time in this check. If the meter is zero-set on 1 ma range and current ranges are gradually increased to the 10 amp range, it is normal for the zero-set to be off when the instrument is returned to the 1 ma range. This is caused by a slight residual magnetism induced
by the 10 amp of current in the probe. Subsequent repetition of this sequence of operation should cause very little additional shift.

5-42. METER TRACKING.
5-43. Check: Zero Model 428 B on 1 MA range. Switch to 100 ma range.
$5-44$. Feed 100 ma dc current through probe. Monitor dc current with external $\pm 0.25 \%$ accuracy or better dc ammeter. Reduce current and check tracking of Model 428B meter with inserted dc ammeter. Reading should stay within $3 \%$ of full scale at any point of the range.
$5-45$. BANDWIDTH (LOOP GAIN).
$5-46$. Check loop gain as indicated in step 18 of table 5-2, Adjustment Procedure.



## SECTION VI <br> REPLACEABLE PARTS

## 6-1. INTRODUCTION.

$6-2$. This section contains information for ordering replacement parts. Table 6-1 lists parts in alphanumerical order of their reference designators and indicates the description and ( 10 stock number of each part, together with any applicable notes. Table 6-2 lists parts in alpha-numerical order of their (6) stock numbers and provides the following information on each part:
a. Description of the part (see list of abbreviations below).
b. Typical manufacturer of the part in a five-digit code; see list of manufacturers in appendix.
c. Manufacturer's stock number.
d. Total quantity used in the instrument (TQ column).

6-3. Miscellaneous parts not indexed in table 6-1 are listed at the end of table 6-2.

## 6-4. ORDERING INFORMATION.

6-5. To order a replacement part, address order or inquiry either to your nearest Hewlett-Packard field office or to

CUSTOMER SERVICE<br>Hewlett-Packard Company<br>395 Page Mill Road<br>Palo Alto, California

or, in Western Europe, to
Hewlett-Packard S.A.
54 Route des Acacias
Geneva, Switzerland.
6-6. Specify the following information for each part:
a. Model and complete sexial number of instrument.
b. Hewlett-Packard stock number.
c. Circuit reference designator.
d. Description.

6-7. To order a part not listed in tables 6-1 and 6-2, give a complete description of the part and include its function and location.

REFERENCE DESIGNATORS

| A | assembly |
| :--- | :--- |
| B | motor |
| C | capacitor |
| CR | diode |
| DL | delay line |
| DS | device signaling (lamp) |
| E | misc electronic part |


| a | $=$ amperes |
| ---: | :--- |
| bp | $=$ bandpass |
| bwo | $=$ backward wave |
|  | oscillator |
| c | $=$ carbon |
| cer | $=$ ceramic |
| cmo | $=$ cabinet mount only |
| coef | $=$ coefficient |
| com | $=$ common |
| comp | $=$ composition |
| conn | $=$ connection |
| crt | $=$ cathode-ray tube |
| dep | $=$ deposited |
| EIA | $=$ Tubes or transistors | meeting Electronic Industries' Association standards will normally result in instrument operating within specifications; tubes and transistors selected for best performance will be supplied if ordered by 18 P stock numbers.


| $\mathbf{F}$ | $=$ fuse |
| :--- | :--- |
| $\mathbf{F L}$ | $=$ filter |
| J | $=$ jack |
| K | $=$ relay |
| L | $=$ inductor |
| $\mathbf{M}$ | $=$ meter |
| $\mathbf{M P}$ | $=$ mechanical part |

## ABBREVIATIONS

| $\begin{aligned} & \text { elect }=\text { electrolytic } \\ & \text { encap }=\text { encapsulated } \end{aligned}$ | $\begin{aligned} \text { mtg } & =\text { mounting } \\ \text { my } & =\text { mylar } \end{aligned}$ |
| :---: | :---: |
| = farads | NC = normally closed |
| fxd $=$ fixed | $\mathrm{Ne}=$ neon |
|  | NO = normally open |
| $\mathrm{Ge}=$ germanium | NPO = negative positive zero |
| grd = ground (ed) | (zero temperature coefficient) |
| h = henries | nsr $=$ not separately |
| $\mathrm{Hg}=$ mercury | replaceable |
| $\begin{aligned} & \text { impg }=\text { impregnated } \\ & \text { incd }=\text { incandescent } \\ & \text { ins }=\text { insulation (ed) } \end{aligned}$ | obd = order by de- |
|  | scription |
|  |  |
|  | $\mathrm{p} \quad$ = peak |
| $\mathrm{K}=$ kilo $=1000$ | $\text { pc } \quad=\underset{\text { brinted circuit }}{ }$ |
| lin $=$ linear taper | pf = picofarads $=$ |
| $\log =$ logarithmic taper | 10-12 farads |
| $=$ mill $\mathrm{i}=10^{-3}$ | $\mathrm{pp}=$ peak-to-peak |
| $\mathrm{m}=$ milli $=10^{-3}$ | piv = peak inverse |
| $\mathrm{M}=$ megohms | voltage |
| ma = milliamperes | pos = position(s) |
| $\mu=$ micro $=10^{-6}$ | poly $=$ polystyrene |
| minat $=$ miniature | pot $=$ potentiometer |
| $\mathrm{mfgl}=$ metal film on glass |  |
| $\mathrm{mfr}=$ manufacturer | rect $=$ rectifier |


| V | = vacuum tube, neon bulb, photocell, etc. |
| :---: | :---: |
| W | = cable |
| X | = socket |
| XF | = fuseholder |
| XV | = tube socket |
| XDS | = lampholder |
| rot = rotary |  |
| rms $=$ root-mean-squar |  |
| rmo $=$ rack mount only |  |
| s-b = slow-blow |  |
| $\mathrm{Se}=$ seleniu |  |
| sect $=$ section(s) |  |
| Si = silicon |  |
| sl $=$ slide |  |
| td = time delay |  |
| $\mathrm{TiO}_{2}=$ titanium dioxide |  |
| tog $=$ toggle |  |
| tol $=$ tolerance |  |
| trim $=$ trimmer |  |
| twt = traveling wave tube |  |
| var = variable |  |
| w/ = with |  |
| W = watts |  |
| ww = wirewound |  |
| $w / 0=$ without |  |
| * | = optimum value |
|  | selected at factory, |
|  | average value |
|  | shown (part may |
|  | be omitted) | be omitted)

Table 6-1. Reference Designation Index

| Circuit Reference | (70) Stock No. | Description \# | Note |
| :---: | :---: | :---: | :---: |
| A1, 2 | 428B-26A | Assembly: ww resistor, A1 includes, R3 thru R6 A2 includes, R7 thru R10 |  |
| A3 | 428B-26B | Assembly: ww resistor, includes R2, 11 |  |
| C1 | 0140-0099 | fxd, mica, $1 \mathrm{Kpf} \pm 1 \%, 500 \mathrm{vdcw}$ |  |
| C2 | 0131-0004 | var, mica, 14-150 pf, 175 vdcw |  |
| C3 thru C10 |  | Not Assigned |  |
| C11 | 0150-0014 | fxd, cer, 5 K pf, 500 vdcw |  |
| C12 | 0180-0050 | fxd, elect, 40 uf $-15 \%+100 \%, 50 \mathrm{vdcw}$ |  |
| C13 | 0170-0022 | fxd, my, 0.1 uf $\pm 20 \%, 600 \mathrm{vdcw}$ |  |
| C14 |  | nsr, part of T1 assembly |  |
| C15 | 0150-0012 | fxd, cer, $10 \mathrm{~K} \mathrm{pf} \pm 20 \%, 1000 \mathrm{vdcw}$ |  |
| C16, 17 | 0170-0019 | fxd, my, 0.1 uf $\pm 5 \%, 200 \mathrm{vdcw}$ |  |
| C18 |  | nsr, part of T1 assembly |  |
| C19 | 0150-0012 | fxd, cer, 10 K pf $\pm 20 \%, 1000 \mathrm{vdcw}$ |  |
| C20 |  | Not Assigned |  |
| C21 | 0180-0059 | fxd, elect, 10 uf $-10 \%+100 \%, 25 \mathrm{vdcw}$ |  |
| C22, 23 | 0150-0015 | $\mathrm{fxd}, \mathrm{TiO}_{2} 2.2 \mathrm{pf} \pm 10 \%, 500 \mathrm{vdcw}$ |  |
| C24 | 0170-0078 | fxd, my, $0.47 \mathrm{uf} \pm 5 \%, 150 \mathrm{vdcw}$ |  |
| C25 | 0180-0058 | fxd, elect, 50 uf $-10 \%+100 \%, 25 \mathrm{vdcw}$ |  |
| C26 | 0150-0012 | fxd, cer, 10 K pf $\pm 20 \% 1000 \mathrm{vdcw}$ |  |
| C27 | 0140-0099 | fxd, mica, $1 \mathrm{~K} \mathrm{pf} \pm 1 \%, 500 \mathrm{vdcw}$ |  |
| C28, 29 | 0150-0012 | fxd, cer, $10 \mathrm{~K} \mathrm{pf} \pm 20 \%, 1000$ vdcw |  |
| C30 |  | Not Assigned |  |
| C31 | 0170-0019 | fxd, my, 0.1 uf $\pm 5 \%, 200 \mathrm{vdcw}$ |  |
| C32 | 0140-0034 | fxd, mica, $22 \mathrm{pf} \pm 5 \%, 500 \mathrm{vdcw}$ |  |
| C33 thru C40 |  | Not Assigned |  |
| C41 | 0140-0108 | fxd, mica, $253 \mathrm{pf} \pm 2 \%, 300 \mathrm{vdcw}$ |  |
| C42 | 0140-0041 | fxd, mica, $100 \mathrm{pf} \pm 5 \%, 500 \mathrm{vdcw}$ |  |
| C43 thru C50 |  | Not Assigned |  |
| C51 | 0170-0019 | fxd, my, 0.1 uf $\pm 5 \%, 200 \mathrm{vdcw}$ |  |
| C52 | 0140-0149 | fxd , mica, $470 \% \mathrm{pf} \pm 5 \%, 300 \mathrm{vdcw}$ |  |
| C53, 54 | 0140-2102 | fxd, mica, $8.2 \mathrm{~K}^{*} \mathrm{pf} \pm 2 \%, 500 \mathrm{vdcw}$ |  |
| C55 | 0140-0147 | fxd, mica, $180 \mathrm{pf} \pm 5 \%, 500 \mathrm{vdcw}$ |  |
| C56 thru C60 |  | Not Assigned |  |
| C61 | 0180-0011 | fxd, elect, 20 uf, 450 vdcw |  |
| C62A/B | 0180-0012 | fxd, elect, 2 sect, 20 uf/sect, 450 vdcw |  |
| C63 | 0140-0031 | fxd, mica, $220 \mathrm{pf} \pm 10 \%, 500 \mathrm{vdcw}$ |  |

Table 6-1. Reference Designation Index (Cont'd)

| Circuit Reference | (40) Stock No. | Description ${ }^{\text {\# }}$ | Note |
| :---: | :---: | :---: | :---: |
| C64 | 0150-0012 | fxd, cer, $10 \mathrm{~K} \rho \mathrm{f} \pm 20 \%$, 1000 vdcw |  |
| C65 | 0180-0058 | fxd , elect, $50 \mu \mathrm{f}-10 \%+100 \%, 25$ vdcw |  |
| C66 | 0180-0104 | fxd, elect, $200 \mu \mathrm{f}, 15 \mathrm{vdcw}$ |  |
| C67 |  | Not Assigned |  |
| C68 | 0170-0022 | fxd, my, $0.1 \mu \mathrm{f} \pm 20 \%, 600$ vdcw |  |
| C69 | 0180-0104 | fxd, elect, $200 \mu \mathrm{f}, 15 \mathrm{vdcw}$ |  |
| CR1 thru CR8 | 1901-0028 | Diode, Si |  |
| CR9 | 1902-0013 | Diode, Si |  |
| CR10 | 1902-0014 | Diode, Si |  |
| DS1 | 2140-0012 | Lamp: indicating, \#12, 2 pin base |  |
| F1, 2 | 2110-0007 | Fuse: 1 amp , s-b (F1 $115 \cdot \mathrm{~V}$ operation) |  |
|  | 2110-0008 | Fuse: 1/2 amp, s-b (F1 230 V operation) |  |
| F3 | 2110-0012 | Fuse: 1/2 amp |  |
| J1 | 1251-0089 | Connector: female, 4 pin |  |
| J2 |  | Not Assigned |  |
| J3 | 1250-0118 | Connector: BNC, female |  |
| L1 thru L4 |  | nsr; part of probe assembly (see misc.) |  |
| L5, 6 | 428B-60K | Assembly, choke |  |
| L7 | 9140-0049 | Inductor: var, 16 mh |  |
| L8 | 9110-0025 | Inductor: degaussing |  |
| M1 | 1120-0116 | Meter: 0-5 ma, 6-10 ohms |  |
| P1 | 1251-0090 | Connector: male, 4 pin |  |
| P2 | 8120-0050 | Cable, power |  |
| Q1 | 1854-0039 | Transistor: Si NPN 2N3053 |  |
| Q2 | 1853-0016 | Transistor: Si PNP 2N3638 |  |
| Q3 | 1854-0003 | Transistor: 2N1564 |  |
| R1 | 0687-6801 | fxd , comp, 68 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R2 |  | nsr; part of A3 assembly |  |
| R3 thru R10 |  | nsr ; part of A1, A2 assembly |  |
| R11 |  | nsr; part of A3 assembly |  |
| R12 | 0727-0335 | fxd , dep c, 10 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R13 | 0757-0002 | $\mathrm{fxd}, \mathrm{mfg}, 24.3 \mathrm{ohms} \pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R14 | 0727-0035 | fxd , dep c, 68.4 ohms $\pm 1 / 2 \%, 1 / 2 \mathrm{~W}$ |  |
| R15 | 0727-0060 | fxd , dep c, 225 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R16 | 0727-0085 | $\mathrm{fxd}, \mathrm{dep} \mathrm{c}, 680$ ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R17 | 0727-0120 | fxd, dep c, 2250 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R18 | 0727-0145 | fxd , dep $\mathrm{c}, 6960$ ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R19 | 0727-0178 | fxd , dep $\mathrm{c}, 24.7 \mathrm{~K}$ ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |

Table 6-1. Reference Designation Index (Cont'd)

| Circuit Reference | (40) Stock No. | Description \# | Note |
| :---: | :---: | :---: | :---: |
| R20 | 0727-0198 | fxd, dep c, 66 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R21 | 0686-1345 | fxd, comp, 130 K ohms $\pm 5 \%, 1 / 2 \mathrm{~W}$ |  |
| R22, 23 | 0687-2261 | fxd , comp, $22 \mathrm{M} \pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R24 | 0687-1021 | fxd , comp, 1 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R25 | 0687-1051 | fxd , comp, $1 \mathrm{M} \pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R26 | 0687-1031 | fxd , comp, 10 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R27 | 0687-1541 | fxd, comp, 150 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R28 | 0689-7515 | fxd, comp, 750 ohms $\pm 5 \%$, 1 W |  |
| R29 | 0687-1541 | fxd, comp, 150 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R30 | 0687-5621 | fxd, comp, 5.6K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R31 | 0727-0226 | fxd , dep c, 250 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R32 | 0727-0201 | fxd , dep c, 71.56 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R33 | 0730-0032 | fxd , dep $\mathrm{c}, 12.3 \mathrm{~K}$ ohms $\pm 1 \%, 1 \mathrm{~W}$ |  |
| R34 | 0687-4701 | fxd, comp, 47 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R35 | 0690-4731 | fxd, c omp 47 K ohms $\pm 10 \%$, 1 W |  |
| R36 | 0689-9115 | fxd , comp, 910 ohms $\pm 5 \%, 1 \mathrm{~W}$ |  |
| R37 | 0687-4711 | fxd, comp, 470 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R38 thru R40 |  | Not Assigned |  |
| R41 thru R44 | 0727-0184 | fxd , dep c, 28.4 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R45 | 0727-0244 | fxd , dep $\mathrm{c}, 500 \mathrm{~K}$ ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R46 | 2100-0006 | var, ww, 5 K ohms $\pm 10 \%, 2 \mathrm{~W}$ |  |
| R47 | 0689-3935 | fxd , comp, 39 K ohms $\pm 5 \%, 1 \mathrm{~W}$ |  |
| R48 | 0687-4711 | fxd , comp, 470 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R49 | 0727-0075 | fxd, dep c, 490 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R50 | 0687-4721 | fxd , comp, 4.7 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R51 | 0730-0080 | fxd , dep c, 245 K ohms $\pm 1 \%, 1 \mathrm{~W}$ |  |
| R52 | 0727-0132 | fxd , dep c, 4 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R53 thru R59 |  | Not Assigned |  |
| R60 | 0687-6811 | fxd, comp, 680 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R61 | 0727-0021 | fxd , dep c, $45 \mathrm{ohms} \pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R62 | 0727-0038 | fxd , dep c, 90 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R63 | 2100-0022 | var, ww, lin, 500 ohms $\pm 20 \%, 1 \mathrm{~W}$ |  |
| R64 | 2100-0270 | var, ww, lin, $50 \mathrm{ohms} \pm 10 \%, 2 \mathrm{~W}$ |  |
| R65 | 0687-2711 | fxd, comp, 270 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R66 | 0687-4701 | fxd , comp, $47 \mathrm{ohms} \pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R67 | 0812-0015 | fxd, ww, 8 ohms $\pm 3 \%, 2 \mathrm{~W}$ |  |
| R68 | 0727-0023 | fxd, dep c, 50 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |

Table 6-1. Reference Designation Index (Cont'd)

| Circuit Reference | (4p) Stock No. | Description \# | Note |
| :---: | :---: | :---: | :---: |
| R69 | 2100-0002 | var, ww, 50 ohms $\pm 10 \%, 2 \mathrm{~W}$ |  |
| R70 | 0687-1001 | fxd, comp, 10 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R71 | 0693-1041 | fxd, comp, 100 K ohms $\pm 10 \%, 2 \mathrm{~W}$ |  |
| R72 | 0690-1241 | fxd, comp, 120 K * ${ }^{*}$ mms $\pm 10 \%, 1 \mathrm{~W}$ |  |
| R73 | 0764-0003 | $\mathrm{fxd}, \mathrm{mfg}, 3300$ ohms $\pm 5 \%, 2 \mathrm{~W}$ |  |
| R74 | 0727-0196 | fxd, dep c, 52.6 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R75 | 0727-0163 | fxd , dep c, 11.88K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R76 | 0816-0008 | fxd, ww, 10 K ohms $\pm 10 \%, 10 \mathrm{~W}$ |  |
| R77 | 0687-6821 | fxd, comp, 6. 8 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R78 | 0730-0072 | fxd , dep c, 123 K ohms $\pm 1 \%, 1 \mathrm{~W}$ |  |
| R79 | 0687-1021 | fxd, comp, 1 K ohms $\pm 10 \%, 1 / \mathrm{w}$ |  |
| R80 |  | Not Assigned |  |
| R81 | 0686-6225 | fxd, comp, 6. 2 K ohms $\pm 5 \%, 1 / 2 \mathrm{~W}$ |  |
| R82A/B | 2100-0197 | var, comp, dual pot, $\pm 10 \%, 2 \mathrm{~W}$ <br> R82A, 2 K ohms <br> R82B, 200 ohms |  |
| R83 |  | Not Assigned |  |
| R84 | 2100-0153 | var, comp, 2 K ohms $\pm 20 \% 1 / 3 \mathrm{~W}$ |  |
| R85 | 0687-5621 | fxd, comp, 5.6K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R86 | 0687-1531 | fxd , comp, 15 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R87 thru R90 |  | Not Assigned |  |
| R91 | 0727-0195 | fxd, dep c, 50 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R92 | 2100-0013 | var, comp, lin, 50 K ohms $\pm 20 \%$ |  |
| R93 | 0687-1011 | fxd, comp, 100 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R94, 95 | 0687-1021 | $\mathrm{fxd}, \mathrm{comp}, 1 \mathrm{~K}$ ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R96 | 0687-4711 | fxd, comp, 470 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R97 | 0687-1011 | fxd, comp, 100 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R98 | 2100-0038 | var, ww, 300 ohms |  |
| R99 | 0767-0010 | $\mathrm{fxd}, \mathrm{mfg}, 15 \mathrm{~K}$ ohms $\pm 5 \%$, 3 W |  |
| R100, 101 | 0690-1041 | fxd, comp, 100 K ohms $\pm 10 \%$, 1 W |  |
| R102 | 0811-0041 | $\mathrm{fxd}, \mathrm{ww}, 169 \mathrm{ohms} \pm 1 \%, 3 \mathrm{~W}$ |  |
| R103 | 0819-0011 | fxd, ww, 4. 5 K ohms $\pm 10 \%, 20 \mathrm{~W}$ |  |
| R104 | 0687-2251 | fxd, comp, $2.2 \mathrm{M} \pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R105 | 0687-4711 | fxd, comp, 470 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ |  |
| R106 | 0730-0063 | $\mathrm{fxd}, \operatorname{dep} \mathrm{c}, 83 \mathrm{~K} \text { ohms } \pm 1 \%, 1 \mathrm{~W}$ |  |
| R107 | 0727-0154 | fxd, dep c, 9380 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R108 | 0727-0240 | fxd, dep $\mathrm{c}, 405 \mathrm{~K}$ ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ |  |
| R109 | 2100-0013 | var, comp, lin, 50 K ohms $\pm 20 \%$ |  |

[^1]Table 6-1. Reference Designation Index (Cont'd)

| Circuit Reference | (4p) Stock No. | Description ${ }^{\text {\# }}$ | Note |
| :---: | :---: | :---: | :---: |
| R110 | 0727-0218 | fxd, dep c, 180K ohms $\pm 1 \%$, 1/2 W |  |
| S1 | 428B-19A | Assembly: range switch, includes, R2 thru R20, R61, R62 |  |
| S2 | 3101-0001 | Switch: tog, SPST |  |
| S3 | 3101-0018 | Switch: tog, SPST, momentary |  |
| S4 |  | Not Assigned |  |
| S5 | 3101-0033 | Switch, sl: DPDT |  |
| T1 | 9120-0052 | Assembly: transformer, interstage, includes, C14, C18 |  |
| T2 | 428A-60G | Transformer, detector signal |  |
| T3 | 428A-60C | Transformer, gate |  |
| T4 | 428B-60J | Transformer, zero balance |  |
| T5 | 9120-0051 | Transformer, osc |  |
| T6 | 428A-60D | Transformer, head drive |  |
| T7 | 9100-0104 | Transformer, power |  |
| V1, 2 | 1923-0017 | Tube, electron: 6AH6 |  |
| V3, 4 | 1930-0013 | Tube, electron: 6AL5 |  |
| V5 | 1923-0017 | Tube, electron: 6AH6 |  |
| V6, 7 | 1932-0022 | Tube, electron: 6DJ8/ECC88 |  |
| V8 | 1932-0029 | Tube, electron: 12AU7 |  |
| V9 | 1921-0010 | Tube, electron: 12B4A |  |
| V10 | 1923-0021 | Tube, electron: 6AU6 |  |
| V11 | 1940-0001 | Tube, electron: 5651 <br> MISCELLANEOUS |  |
|  | 428A-21A | Assembly: probe, includes L1 thru L4, P1 |  |
|  | 428B-65C | Assembly: circuit board " C " includes R65, R67, R68 |  |
|  | 428B-75H | Assembly: circuit board "A" includes C32, C66, C69, CR9, CR10, Q1 thru Q3, R70, R71 R74, R75, R102 |  |
|  | 428B-75B | Assembly: resistor board "B" includes  <br> C13 R26, 27 <br> C15 R35, 36 <br> C21 R41, 42 <br> C25 R45 <br> R21 thru R23 R73 |  |
|  | 428B-75C | Assembly: circuit board "C" includes   <br> C16, C17, C24 C41, C42 R30 thru R33 <br> R43, R44 R77 thru R79 R81 R85, R86 |  |
|  | 428B-75D | Assembly: resistor board ' D " includes $\mathrm{C} 1, \mathrm{C} 2 \mathrm{C} 11, \mathrm{C} 12 \quad \mathrm{R} 1 \quad \mathrm{R} 25$ |  |

\# See introduction to this section

Table 6-1. Reference Designation Index (Cont'd)

| Circuit Reference | (40) Stock No. | Description ${ }^{\#}$ | Note |
| :---: | :---: | :---: | :---: |
|  | 428B-75E <br> 428B-75F <br> G-74AW <br> G-74J <br> G-74N <br> 1200-0003 <br> 1200-0017 <br> 1400-0008 <br> 1400-0084 <br> 1450-0020 <br> 8520-0017 <br> 1205-0011 | Assembly: resistor board " E " includes <br> C27 thru C29 C51 R47 thru R52 R72 R91 <br> R94 thru R96 <br> Assembly: resistor board " F " includes <br> C53, C54 C68 CR1 thru CR8 R106 R108 R110 <br> Knob: red, 3/4" w/arrow <br> Knob: black, 1", concentric shaft ZERO <br> Knob: bar, RANGE <br> Socket, tube: 9 pin miniat <br> Socket, tube: 7 pin miniat <br> Fuseholder <br> Fuseholder <br> Jewel, pilot light <br> Electric shaver brush <br> Heat dissipator, semiconductor |  |

Table 6-2. Replaceable Parts

\# See introduction to this section

Table 6-2. Replaceable Parts (Cont'd)


Table 6-2. Replaceable Parts (Cont'd)


Table 6-2. Replaceable Parts (Cont'd)


Table 6-2. Replaceable Parts (Cont'd)

\# See introduction to this section

# APPENDIX <br> CODE LIST OF MANUFACTURERS (Sheet 1 of 2) 

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H 4 handbooks.


## APPENDIX <br> CODE LIST OF MANUFACTURERS (Sheet 2 of 2)




[^0]:    * Maintaining the current through meter Ml constant (5 ma maximum) for all current ranges. Inductance L6 isolates the 40 kc signal from the dc current circuit.

[^1]:    \# See introduction to this section

