HP Archive

This vintage Hewlett Packard document was preserved and distributed by
 www. hparchive.com
 Please visit us on the web!

On-line curator: Tony Gerbic

412A

DC VACUUM TUBE

 VOLTMETER SERIALS PREFIXED: 004.
OPERATING AND SERVICING MANUAL

MODEL 412A

SERIALS PREFIXED: 004-

SPECIFICATIONS

VOLTMETER

Voltage Range: Positive and negative voltages from 1 millivolt full scale to 1000 volts full scale in thirteen ranges.

Accuracy: $\quad \pm 1 \%$ of full scale on any range.

Input Resistance: 10 megohms $\pm 1 \%$ on $1 \mathrm{mv}, 3 \mathrm{mv}$, and 10 mv ranges.
30 megohms $\pm 1 \%$ on 30 mv range.
100 megohms $\pm 1 \%$ on 100 mv range.
200 megohms $\pm 1 \%$ on 300 mv range and above.

AC Rejection: A voltage at power line or twice power line frequency 40 db greater than full scale affects reading less than 1%. Peak voltage must not exceed 1500 volts.

AMMETER

Current Range: Positive and negative currents from 1 microampere full scale to 1 ampere full scale in thirteen ranges.

Accuracy: $\quad \pm 2 \%$ of full scale on any range.

Input Resistance:

Range	Internal Shunt Resistance*	Full Scale Voltage Drop	Range	Internal Shunt Resistance*	Full Scale Voltage Drop
. 001 ma	1000 ohms	1 mv	1 ma	1 ohm	1 mv
. 003 ma	316 ohms	0.9486 mv	3 ma	0.316 ohm	0.9486 mv
. 01 ma	100 ohms	1 mv	10 ma	0.1 ohm	1 mv
. 03 ma	31.6 ohms	0.9486 mv	30 ma	0.1 ohm	3 mv
.1 ma	10 ohms	1 mv	100 ma	0.1 ohm	10 mv
. 3 ma	3.16 ohms	0.9486 mv	300 ma	0.1 ohm	30 mv
			1000 ma	0.1 ohm	100 mv

* For total insertion resistance add 0.07 ohms copper lead resistance at $25^{\circ} \mathrm{C}$.

SPECIFICATIONS (CONT'D.)

OHMMETER
Resistance Range: Resistance from 1 ohm centerscale to 100 megohms centerscale in nine decade ranges.

Accuracy: $\quad \pm 5 \%$ of reading from 0.2 ohm to 500 megohms. $\pm 10 \%$ of reading from 0.1 to 0.2 ohm and from 500 megohms to 5000 megohms.

Voltages and Currents:

Range	Open Circuit Volts	Short Circuit Current	Range	Open Circuit Volts	Short Circuit Current
X1	10 mv	10 ma	X10K	1 v	$100 \mu \mathrm{a}$
X10	100 mv	10 ma	X100K	1 v	$10 \mu^{\text {a }}$
X100	1 v	10 ma	X1M	1 v	$1 \mu \mathrm{a}$
X1000	1 v	1 ma	X10M	1 v	. $1 \mu \mathrm{a}$
			X100M	1 v	$.01 \mu \mathrm{a}$

AMPLIFIER

Voltage Gain: $\quad 1000$ maximum
AC Rejection: Approximately 3 db at $1 \mathrm{cps}, 80 \mathrm{db}$ at 50 and 60 cps .
Output: Proportional to meter indication; 1 volt at full scale. (Full scale corresponds to 1.0 on upper scale.)

Output Impedance: Less than 2 ohms at 0 cps .
Noise: Less than 0.1% (rms) of full scale on any range.
Drift: Negligible.

GENERAL

Isolated Input: Input terminals are isolated from case (power line) ground by a minimum leakage resistance of 100 megohms shunted by $0.1 \mu \mathrm{f}$. Maximum potential difference between common lead and case ground: 500 v peak.

Power: $\quad 115 / 230$ volts $\pm 10 \%, 50-60 \mathrm{cps}, 35$ watts.
Dimensions: Cabinet Mount: 11-1/2 in. high, 7-1/2 in. wide, 10 in . deep. Rack Mount: $5-1 / 4 \mathrm{in}$. high, 19 in . wide, 10 in . deep.

Weight: Cabinet Mount: Net 12 lbs., shipping 17 lbs.

CONTENTS

SECTION I
 GENERAL DESCRIPTION
 Page

1-1 General . I - 1
1-2 Damage in Shipment . I - 1
1-3 Power Cable . I 1
1-4 230 Volt Operation . I - 1

SECTION II OPERATING INSTRUCTIONS

2 - 1	Low-Level Electrical Phenomena
2 - 2	Operating Instructions .

SECTION III CIRCUIT OPERATION

$3-1$	General .
$3-2$	Circuit Operation .

SECTION IV
MAINTENANCE

4-1	Introduction	IV - 1
4-2	Required Test Equipment	IV - 1
4-3	Performance Check . .	IV - 1
4-4	Cabinet Removal	IV - 3
4-5	Adjustments	IV - 3
4-6	Tube Replacement	IV - 4
4-7	Trouble Shooting	IV - 4
4-8	Modulator Check	IV - 4
4-9	Modulator Replacement	IV - 5
4-10	Demodulator Check	IV - 5
4-11	Demodulator Replacement	IV - 6
4-12	Cable Replacement	IV - 6

SECTION V TABLE OF REPLACEABLE PARTS
5-1 Table of Replaceable Parts
V - 1

SECTION I GENERAL DESCRIPTION

1-1 GENERAL

The Model 412A DC Vacuum Tube Voltmeter is a precision, wide range, multipurpose instrument which covers the entire range of voltage, current, and resistance measurements normally encountered in electronic equipment. It measures voltages from less than 0.1 millivolt to 1000 volts, currents from less than 0.1 microampere to 1 ampere, and resistances from 0.02 ohm to 5000 megohms.

1-2 DAMAGE IN SHIPMENT

Inspect and operate this instrument upon receipt. Section IV includes a performance check which is a good test as part of incoming quality control inspection. The check can be made with the instrument in its cabinet. If there is any damage, see the "Claim for Damage in Shipment"' paragraph at the rear of this manual.

1-3 POWER CABLE

The three-conductor power cable supplied with this instrument terminates in a polarized three-prong
male connector recommended by the National Electrical Manufacturers' Association. The third contact is an offset round pin added to a standard twoblade connector. This contact grounds the instrument when used with an appropriate receptacle. An adapter should be used to connect the NEMA plug to a standard two-contact output. When the adapter is used, the ground connection becomes a short lead from the adapter. This lead should be connected to a suitable ground for the protection of operating personnel.

1-4 230 VOLT OPERATION

The 412 A is normally wired at the factory for operation from a 115 volt, $50-60 \mathrm{cps}$ power source.

To convert it for use from a 230 volt, $50-60 \mathrm{cps}$ power source, change the dual 115 volt primary windings of the power transformer from a parallel combination to a series combination. See schematic diagram for details. At the time of conversion, change line fuse from $1 / 2$ ampere, slowblow type to $1 / 4$ ampere, slow-blow type.

SECTION OPERATING INSTRUCTIONS

2-1 LOW-LEVEL ELECTRICAL PHENOMENA

Stray low-level electrical phenomena are present, in one form or another, in nearly all electrical circuits. The 412A does not distinguish between stray and signal voltages; it measures net voltage. Thus, when using the lower voltage ranges, consider the possibility of low-level electrical phenomena. Thermocouples (thermoelectric effect), flexing of coaxial cables (triboelectric effect), apparent residual charges on capacitors (dielectric absorption), battery action of two terminals mounted on an imperfect insulator (galvanic action) all can produce voltages within the range of the 412A.

The 412A voltage probe, current/resistance lead, and common lead are designed to have a very low thermoelectric effect with copper, the most common electrical conductor. However, you may encounter other materials. For example, the leads of many transistors are made of a mixture of iron, nickel, and cobalt known commercially as Kovar, Fernico, etc. This material makes a very good thermocouple with copper: about $40 \mu \mathrm{v} /{ }^{\circ} \mathrm{C}$ with respect to a reference junction.

Whenever possible, connect the 412A leads to copper and maintain the points of connection at the same temperature, preferably ambient temperature. With the leads so connected, any voltage indicated by the 412 A is developed within the circuit under test.

2-2 OPERATING INSTRUCTIONS

CAUTION

Do not overload the instrument. Amplifier input, current shunts, and internal resistance standards are not protected from extreme overload. Momentary overloads ten times full scale will not damage the instrument.

Turn the 412 A on and allow a few minutes warm up.
A. VOLTAGE MEASUREMENT

1) Set FUNCTION selector to VOLTS.
2) Set POLARITY switch to desired polarity.
3) Set RANGE switch to desired range.
4) Use VOLTS and COM leads to connect instrument across circuit or component, and read voltage.
B. CURRENT MEASUREMENT
5) Set FUNCTION selector to MA.
6) Set RANGE switch to desired range.
7) De-energize circuit to be tested.
8) Use MA/OHMS and COM leads to connect instrument into circuit.
9) Energize circuit, set POLARITY switch for upscale reading, and read current.

NOTE
When measuring current, be sure there is no connection between the chassis-ground and cabinetground terminals of the DC AMPLIFIER OUTPUT connector.

C. RESISTANCE MEASUREMENT

1) Set FUNCTION selector to OHMS.
2) De-energize circuit to be measured.
3) Use MA/OHMS and COM leads to connect instrument across circuit or component.
4) Select range which brings meter pointer as close as possible to midscale, and read resistance.

When measuring the resistance of non-linear devices such as crystal diodes or transistors, you may want to know the voltage applied to the device and/or the current through it at the time of measurement. By using Table 2-1 and the upper voltage scale on the meter face, you can determine both. The meter reading is directly proportional to the voltage across the device being measured, and the meter reading subtracted from full scale is directly proportional to the current. For example, on the X10 range the upper voltage scale is a $0-100 \mathrm{mv}$ scale and a $10-0$ ma scale. If the meter indicates
.25 on the resistance scale, the device being measured has an equivalent resistance of 2.5 ohms. But the meter also indicates .2 on the upper voltage scale; thus, from Table 2-1, the device has 2.5 -ohms equivalent resistance with 20 mv across it and 8 ma flowing through it.

D. OPERATION WITH A RECORDER

To obtain permanent records of 412A readings, connect a recorder to the DC AMPLIFIER OUTPUT connector and operate the 412A as directed above. The output of the 412 A is 1 volt at full scale; if necessary, externally attenuate the 412A output to match it with recorder sensitivity. Maximum rated load current from the 412 A is 1 ma . A load resistance of less than 1000 ohms may cause the load current to exceed 1 ma and thus cause errors in meter indication and amplifier gain.

TABLE 2-1. RESISTANCE RANGE VS OPEN-CIRCUIT VOLTS/SHORT-CIRCUIT CURRENT

Range	Open Circuit Volts $(1.0$ on upper voltage scale $)$	Short Circuit Current $(0$ on upper voltage scale $)$
X1	10 mv	10 ma
X10	100 mv	10 ma
X1000	1 v	10 ma
X10K	1 v	1 ma
X100K	1 v	$100 \mu \mathrm{a}$
X1M	1 v	$10 \mu \mathrm{a}$
X10M	1 v	$1 \mu \mathrm{a}$
X100M	1 v	$0.1 \mu \mathrm{a}$
	1 v	$0.01 \mu \mathrm{a}$

SECTION CIRCUIT OPERATION

3-1 GENERAL

The 412 A is basically a 0 to 0.9 millivolt dc voltmeter. Precision voltage dividers, shunts, and reference resistors extend the range of the basic voltmeter and permit current and resistance measurements as well.

3-2 CIRCUIT OPERATION

With the FUNCTION selector and RANGE switch properly set, voltage is applied to a photoconductive modulator through a low-pass filter. See Figure $3-1$. The filter attenuates ac components present on any input signal, and the modulator converts the remaining dc component to a square wave. A synchronous-motor-driven, light-beam chopper
sets modulator frequency at $5 / 6$ power-line frequency. An ac-coupled amplifier amplifies modulator output about 500,000 times. A demodulator synchronized with the modulator by the light-beam chopper, converts amplifier output to dc. The output of the demodulator is filtered and applied through a cathode follower to 1) a feedback network 2) the DC AMPLIFIER OUTPUT terminals and 3) an output indicator. The feedback network stabilizes the dc gain of the modulator-amplifierdemodulator system to a value of 1111 , thereby providing an output of 1 volt for an input of 0.9 millivolt. The output indicator is a $0-1$ voltmeter. The POLARITY switch permits reversal of indicator connections, if required, to obtain up-scale readings. The POLARITY switch is disabled when the FUNCTION selector is set to OHMS.

Figure 3-1. Model 412A Block Diagram

SERVICING ETCHED CIRCUIT BOARDS

Excessive heat or pressure can lift the copper strip from the board. Avoid damage by using a low power soldering iron (50 watts maximum) and following these instructions. Copper that lifts off the board should be cemented in place with a quick drying acetate base cement having good electrical insulating properties.

Use only high quality rosin core solder when repairing etched circuit boards. NEVER USE PASTE FLUX. After soldering, clean off any excess flux and coat the repaired area with a high quality electrical varnish or lacquer.

A break in the copper should be repaired by soldering a short length of tinned copper wire across the break.

When replacing tube sockets it will be necessary to lift each pin slightly, working around the socket several times until it is free.

1. Apply heat sparingly to lead of part to be replaced. Remove part from card as iron heats the lead.

2. Bend clean tinned leads on new part and carefully insert through holes on board.

3. Using a small awl, carefully clean inside of hole left by old part.

4. Hold part against board and solder leads. Avoid overheating the board.

SECTION IV MAINTENANCE

4-1 INTRODUCTION

This section contains testing and servicing information. Included is a performance check to verify proper instrument operation. The check can be made with the instrument in its cabinet and is a good test as part of routine maintenance or incoming quality control inspection.

Standard, readily available components are used for manufacture of (6p instruments whenever possible. Special components are available through your local 兯 Representative who maintains a parts stock for your convenience.

When ordering parts, specify instrument model and serial number plus the component description and stock number appearing in the Table of Replaceable Parts.

Your local (5p Representative maintains complete facilities and specially trained personnel to assist you with any problems you may have with ${ }^{40}$ instruments.

4-2 REQUIRED TEST EQUIPMENT

To carry out the instructions in this section, you will need the following test equipment:

1) A dc voltmeter with an input resistance of at least 100 megohms to measure voltages from 1 volt to 350 volts. You can use a voltmeter with 20,000 ohms/volt sensitivity, but circuit loading will cause errors in some readings. Recommended (bp) equipment: 410B Vacuum Tube Voltmeter or 412A DC Vacuum Voltmeter.
2) A dc metering device which can resolve 10 mv . A plain meter movement is satisfactory if it can resolve 10 mv . Recommended (D p equipment: 410B Vacuum Tube Voltmeter or 412A DC Vacuum Tube Voltmeter.
3) A dc voltage source to supply voltages from .001 volt to 300 volts in steps of $1,3,10$, etc., and voltages from 0 to 1 volt in 0.1 -volt steps. All voltages should be accurate within 0.1%. Recommended equipment: Model 738A Voltmeter Calibrator.
4) An oscilloscope with 0.01 volt/cm sensitivity for measuring $10-\mathrm{cps}$ hum. Recommended (做 equipment: 120A Oscilloscope.
5) Variable power transformer for varying line voltage between 103, 115 and 127 volts. The transformer should have a monitor voltmeter accurate within 1 volt and should have a capacity of at least 1 amp .
6) An ohmmeter. Recommended (50) equipment: 410B Vacuum Tube Voltmeter or 412A DC Vacuum Tube Voltmeter.

4-3 PERFORMANCE CHECK

You can check instrument performance without removing the cabinet. Before starting, check the mechanical zero of the meter; if the meter requires adjustment, see Paragraph 4-5A.

A. VOLTMETER CHECK

1) Turn Voltmeter Calibration Generator on and allow 5-minute warm up.
2) Connect 412 A to variable power source, set line voltage to rated value ($115 / 230 \mathrm{v}$), and turn 412A on. Allow 412 A a few minutes warm up.
3) Set FUNCTION selector to VOLTS AND POLARITY switch to +.
4) Connect VOLTS and COM leads to OUTPUT connector of Voltmeter Calibration Generator.
5) Check 412A reading versus Voltmeter Calibration Generator output on each 412 A range. Maximum 412A error should be no greater than 1% of full scale.

NOTE

When checking 412A on its .003 and .001 volt ranges, set the selector switch of Voltmeter Calibration Generator to OFF and note any 412A zero offset due to thermoelectric voltage. Add or subtract, as appropriate, any offset from the 412A reading when Voltmeter Calibration Generator selector switch is set to $\mathrm{DC}+$.
6) Check 412A meter tracking on + and -1 volt ranges. Maximum error should be no greater than 0.01 volt.
7) Repeat step 5 (on one range only) at line voltage of 103 and 127 volts.
B. MILLIAMMETER CHECK

1) Set line voltage to 115 volts.
2) Set FUNCTION selector to MA and POLARITY switch to + .
3) Connect 412A to Voltmeter Calibration Generator as shown in Figure 4-1.
4) Check 412A as shown in Table 4-1.

Figure 4-1. Equipment Setup for Current Check

NOTE

Switching through the current ranges from 10 to 1000 does not change the current shunt. Only the voltage attenuator, checked in part A above, changes. (See Figures 4-5, 4-6 and 4-7 for simplified switching details.)

C. OHMMETER CHECK

1) Set FUNCTION selector to OHMS.
2) Connect 1% resistor of $1,10,100,1000,10 \mathrm{~K}$, $100 \mathrm{~K}, 1 \mathrm{M}, 10 \mathrm{M}$ and 100 M ohms between MA/OHMS

TABLE 4-1. AMMETER CHECK

Output of Voltmeter Calibration Generator	Series Resistance	Model 412A Range	Model 412A Reading $(\pm 2 \%$ of full scale)
1 volt	$1.00 \mathrm{M}_{ \pm} 0.1 \%$.001	1.0
3 volts	$1.00 \mathrm{M}_{ \pm} 0.1 \%$.003	3.0
10 volts	$1.00 \mathrm{M}_{ \pm 0.1 \%}$.01	1.0
30 volts	$1.00 \mathrm{M}_{ \pm 0.1 \%}$.03	3.0
100 volts	$1.00 \mathrm{M}_{ \pm 0.1 \%}$.1	1.0
300 volts	$1.00 \mathrm{M}_{ \pm} 0.1 \%$.3	3.0
300 volts	$300 \mathrm{~K} \pm 0.1 \%$	1	1.0
300 volts	$100 \mathrm{~K}{ }_{ \pm 0.1 \%}$	3	3.0
300 volts	30 K	$\pm 0.1 \%(5$ watts)	10
300 volts	30 K	$\pm 0.1 \%(5$ watts)	30

and COM leads. With appropriate range selected, meter should indicate between 0.95 and 1.05 in each case.

4-4 CABINET REMOVAL

1) Unplug power cord from power source.
2) Remove two retaining screws from instrument rear.
3) Slide instrument chassis forward out of cabinet. Bezel ring remains attached to front panel.

NOTE

Avoid touching the RANGE switch wafers. A dirty switch can degrade instrument performance.

4-5 ADJUSTMENTS

A. MECHANICAL ZERO ADJUSTMENT

1) Turn instrument off. Allow several minutes for power-supply capacitors to discharge.
2) Rotate meter adjustment screw, located directly below meter face, clockwise until pointer is upscale.
3) Continue rotating adjustment screw "clockwise until meter pointer indicates zero exactly. If pointer overshoots zero, repeat steps 2 and 3.
B. HUM BALANCE ADJUSTMENT
4) Turn instrument on and allow a few minutes warm up.
5) Set FUNCTION selector to VOLTS.
6) Connect oscilloscope to DC AMPLIFIER OUTPUT connector.
7) Adjust Hum Bal. (R126), for minimum 10-cps signal on oscilloscope. (If power-line frequency is 50 cps , adjust for minimum $8-1 / 3 \mathrm{cps}$ signal.) See Figure 4-10 for location of R126.
C. CATHODE FOLLOWER BIAS ADJUSTMENT
8) Set RANGE switch full clockwise - one step beyond 1000 .
9) Adjust BIAS ADJ. (R116), to set meter pointer approximately on zero. R116 is located on instrument rear. This adjustment is not critical, since any deviation from zero is reduced more than 100 times when the RANGE switch is on any operating position.

D. AMPLIFIER GAIN CALIBRATION AND METER CALIBRATION

1) Connect equipment as shown in Figure 4-2. You may replace the test voltmeter with any high resistance meter device which can resolve 10 mv .
2) Set Voltmeter Calibration Generator output to +1 volt.
3) On 412A under test, set FUNCTION selector to VOLTS, POLARITY switch to + , RANGE switch to 1.

4-2. Equipment Setup for Amplifier Gain Calibration

4) Adjust Gain Cal. (R119), for zero on test voltmeter. For location of R119 see Figure 4-10. A $10-\mathrm{mv}$ reading on test voltmeter indicates 1% error in gain calibration.
5) Adjust Meter Cal. (R46), to set meter pointer on 1.0.
6) Disconnect test voltmeter.
7) Check 412A reading versus Voltmeter Calibration Generator output on each range. See note in step 5 of paragraph $4-3 \mathrm{~A}$. If any reading is in error more than 1% of full scale, readjust Gain Cal. (R119), to bring all readings within 1%.

E. OHMMETER ADJUSTMENT

1) Set FUNCTION selector to OHMS and RANGE switch to X1K. Be sure MA/OHMS and COM leads are not connected through some external resistance.
2) Adjust OHMS ADJ. (R36), to set meter pointer on ∞, which corresponds to 1.0 on upper voltage scale. R36 is located on instrument rear.

4-6 TUBE REPLACEMENT

Tubes will sometimes cause trouble; check them by substitution and replace only those which are defective. Following the replacement of a particular tube, make the adjustment indicated:

Tube Replaced
V101 (12AX7) Amplifier

V102 (6AU8) Amplifier/
Cathode Follower
V103 (6X4) Rectifier
V104 (OA2) Regulator
V105 (OB2) Regulator

Adjustment
Hum balance; check gain calibration

Cathode follower bias; check gain calibration

None
Ohmmeter
None

4-7 TROUBLE SHOOTING

When isolating trouble, consider the 412A as having two sections: switching and amplifier/power supply sections. Front-panel indications should indicate the section in which a trouble is located and, in the case of switching-section trouble, should isolate
the trouble to a few components. For example, if the instrument operates properly on all voltage ranges but . 003 , only R1, R9, or associated switch contacts and wiring can be faulty. For a simplified breakdown of the switching sequence, see Figures $4-5,4-6$ and 4-7. Figures 4-11 and 4-12 identify parts mounted on the RANGE, FUNCTION and POLARITY switches.

NOTE

BE CAREFUL when working with the RANGE switch. Avoid touching the switch wafers. A dirty switch can degrade instrument performance. When soldering to the switch, use a minimum of heat. Excessive heat will melt the wafer material.

Should trouble occur in the amplifier/power supply section, it will be common to all ranges and all functions. Voltages are indicated at various points on the schematic diagram; these are typical voltages and may vary somewhat from instrument to instrument.

The 412 A is a sensitive instrument. If it has an offset from zero or gives unexpected readings on its lowest voltage ranges, it may be measuring thermoelectric voltages, etc., in addition to the expected voltage (see paragraph 2-1). When in doubt, check instrument performance (paragraph 4-3) before trouble shooting.

If the instrument fails to operate at all, be sure power is supplied to it, the POWER switch is on, and fuse F101 is good before checking inside.

4-8 MODULATOR CHECK

1) Unplug instrument from power source and remove cabinet.
2) Remove shield from left side of chassis to expose terminals of C103 (see Figure 4-10).
3) Connect 1.5 volt battery across C103. Any other source of dc voltage between 1 and 5 volts will do as well.
4) Remove V101.
5) Connect one lead of 22 M resistor to signal connector of oscilloscope. With jumper wire, connect other resistor lead to pin 2 of V101 socket (grid connector of V101A). Connect common lead of oscilloscope to 412A COM lead. The 22M resistor reduces circuit loading by oscilloscope.
6) Turn 412A ON and compare waveform on oscilloscope with that shown in Figure 4-3. Peak-topeak amplitude of signal at pin 2 of V101 should approximately equal the applied dc voltage. Signal frequency should be $5 / 6$ power-line frequency.

Figure 4-3. Modulator Waveform

4-9 MODULATOR REPLACEMENT

Should it become necessary to replace the modulator, we recommend that you send your instrument to your (${ }^{(2 p)}$ Representative for repair. If you repair the instrument, check with your (tp) Representative about a replacement modulator. The procedure for replacement is as follows:

1) Unplug 412A from power source.
2) Unlace harness containing two black leads from amplifier input assembly. Disconnect the black leads at COM cable terminal (point A of Figure 4-9) and at RANGE switch (point B of Figure 4-9).

NOTE

Lead placement is important on the COM cable terminal. See Figure 4-4 when replacing assembly. BE CAREFUL when connecting and disconnecting leads from RANGE switch. Keep switch clean and apply minimum heat with soldering iron. A dirty switch will degrade instrument performance, and too much heat will melt wafer material.
3) Disconnect white-orange lead at C115 (point C of Figure 4-10).
4) Disconnect white lead at Gain Cal potentiometer R119 (point D of Figure 4-9).
5) Disconnect cable to amplifier at amplifier (point E of Figure 4-9).
6) Remove four machine screws and nuts holding light beam chopper (Figure 4-8) and let it hang by its leads.
7) Spread collars on modulator light rods (Figure 4-9) and slide rods out of modulator assembly.
8) Remove four screws holding modulator/amplifier input assembly to main chassis. Each screw has an insulating shoulder washer, for the modulator/amplifier input assembly is insulated from the chassis. Be sure to seat the washers in the chassis holes when replacing the screws.
9) Lift out modulator/amplifier input assembly and disconnect green lead at amplifier input assembly (point F of Figure 4-10).
10) Reverse above procedure to install replacement assembly.

4-10 DEMODULATOR CHECK

The demodulator assembly is located between the main chassis and power transformer. See Figure 4-10. Proceed as follows:

1) Unplug instrument from power source and remove cabinet.
2) Remove V102.
3) On light-beam chopper assembly, remove upper lamp nearest front of instrument. This lamp illuminates the forward section of demodulator.
4) Connect $1 \mu \mathrm{f}$ capacitor across input terminals of ohmmeter.
5) Connect ohmmeter common lead to demodulator terminal which has the pink-orange lead connected to it.
6) Connect other ohmmeter lead to the terminal which has the white-orange lead connected to it.
7) Plug instrument into power source and turn it ON.
8) Note resistance indicated by ohmmeter. Typical resistance is between 1 m . and 2 m .
9) Turn instrument off and unplug it from power source.
10) Replace lamp in light-beam chopper and remove upper lamp nearest rear of instrument. This lamp illuminates rear section of demodulator.
11) Connect common ohmmeter lead to demodulator terminal which has the brown-orange lead connected to it.
12) Connect other lead from ohmmeter , the terminal which has the white-orange lead connected to it.
13) Plug instrument into power source, turn it ON, and note resistance indicated on ohmmeter. Typical resistance is between 1 meg and 2 megs.
14) Turn instrument off; replace lamp and V102.

4-11 DEMODULATOR REPLACEMENT

Check with your (5p) Representative about a replacement demodulator.

1) Turn instrument off.
2) Remove three leads connected to demodulator.
3) Remove nuts from demodulator mounting screws and remove demodulator from instrument. If you must get at screw heads to remove nuts, remove four mounting screws from light-beam chopper assembly (Figure 4-8) and let assembly hang by its leads.

Reverse the above procedure to install replacement assembly. Be sure to connect pink-orange lead to terminal nearest instrument rear, white-orange lead to center terminal, and brown-orange lead to terminal nearest front of instrument.

4-12 CABLE REPLACEMENT

Figure $4-4$ is a connection diagram for the VOLTS, MA/OHMS, and COM cables. Replacement of the VOLTS and MA/OHMS cables is straightforward: connect the new ones as indicated in the figure. However, be careful when replacing the COM cable. The position of the leads on terminal post \#3 is critical. Connect the leads as shown in detail.

Figure 4-4. Connection Diagram for Volts, MA/OHMS and COM Cables

.001-volt range

.003-volt range

.01-volt range

.03-volt range

.1-volt range

.3 to 1000 -volt ranges

Figure 4-5. Simplified Diagram of Voltmeter Switching

Figure 4-6. Simplified Diagram of Ammeter Switching

Figure 4-7. Simplified Diagram of Ohmmeter Switching figure

Figure 4-8. Right Side View Model 412A

Figure 4-9. Bottom View Model 412A

Figure 4-10. Upper Left Side View Model 412 A

Figure 4-11. Location of Parts Mounted on Range, Function, and Polarity Switches

Figure 4-13. Range, Function and Polarity Switches Figure

NOTE

Standard components have been used in this instrument, whenever possible. Special components may be obtained from your local Hewlett-Packard representative or from the factory.

When ordering parts always include:

1. (4p) Stock Number.
2. Complete description of part including circuit reference.
3. Model number and serial number of instrument.
4. If part is not listed, give complete description, function and location of part.

Corrections to the Table of Replaceable Parts are listed on an Instruction Manual Change sheet at the front of this manual.

RECOMMENDED SPARE PARTS LIST

Column RS in the Table lists the recommended spare parts quantities to maintain one instrument for one year of isolated service. Order complete spare parts kits from the Factory Parts Sales Department. ALWAYS MENTION THE MODEL AND SERIAL NUMBERS OF INSTRUMENTS INVOLVED.

TABLE OF REPLACEABLE PARTS

*-See "List of Manufacturers Code Letters For Replaceable Parts Table". TQ - Total quantity used in the instrument.
RS - Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

*-See "List of Manufacturers Code Letters For Replaceable Parts Table". TQ -Total quantity used in the instrument.
RS - Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

[^0]TABLE OF REPLACEABLE PARTS

*-See "List of Manufacturers Code Letters For Replaceable Parts Table".
TQ - Total quantity used in the instrument.
RS - Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

$\begin{aligned} & \text { CIRCUIT } \\ & \text { REF. } \end{aligned}$	DESCRIPTION, MFR. * \& MFR. DESIGNATION	$\begin{aligned} & \text { (40) STOCK } \\ & \text { NO. } \end{aligned}$	TQ	RS	
R102	Resistor: fixed, composition, 100,000 ohms $\pm 10 \%, 1 / 2 \mathrm{~W} \mathrm{~B}^{*}$	0687-1041	1	1	
R103	Resistor: fixed, composition, 1800 ohm s $\pm 10 \%, 1 / 2 \mathrm{~W}$ B*	0687-1821	2	1	
R104	Resistor: fixed, deposited carbon, 100 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	0727-0043	1	1	
R105	Resistor: fixed, composition, 4.7 megohms $\pm 10 \%, 1 / 2 \mathrm{~W} \quad \mathrm{~B}^{*}$	0687-4741	1	1	
R106	Resistor: fixed, composition, 1 megohm $\pm 10 \%, 1 / 2 \mathrm{~W}$	0687-1051	1	1	
R107	Resistor: fixed, composition, 10,000 ohms $\pm 10 \%, 1 / 2 \mathrm{~W} \mathrm{~B}^{*}$	0687-1031	2	1	
R108	Resistor: fixed, composition, 22 megohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	0687-2261	1	1	
R109	Same as Rl06				
R110	Resistor: fixed, composition, 47,000 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	0687-4731	1	1	
Rlll	Resistor: fixed, composition, 2.7 megohms $\pm 10 \%, 1 / 2 \mathrm{~W} \mathrm{~B}^{*}$	0687-2751	1	1	
R112	Resistor: fixed, composition, $1,000 \mathrm{ohms} \pm 10 \%, \mathrm{l} / 2 \mathrm{~W}$	0687-1021	1	1	
R113	Resistor: fixed, composition, 100,000 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	0687-1041	1	1	
R114	Resistor: fixed, composition, 820,000 ohms $\pm 10 \%, 1 / 2 \mathrm{~W} \quad \mathrm{~B}^{*}$	0687-8241	1	1	
R115	Resistor: fixed, composition, 33,000 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	0687-3331	1	1	
R116	Resistor: variable, composition, 25,000 ohms $\pm 20 \%, 1 / 3 \mathrm{~W}$	2100-0009	1	1	
R117	Resistor: fixed, composition, 2.7 megohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	0687-2751	1	1	
R118	Same as Rl07				
R119	Resistor: variable, composition, linear taper 6,000 ohms $\pm 20 \%, 1 / 4 \mathrm{~W}$,	2100-0136	I	1	
R120	Resistor: fixed, deposited carbon, 108,000 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ NN	0727-0209	1	1	

*-See "List of Manufacturers Code Letters For Replaceable Parts Table".
TQ - Total quantity used in the instrument.
RS - Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

[^1]TQ - Total quantity used in the instrument.
RS - Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

*-See "List of Manufacturers Code Letters For Replaceable Parts Table".
TQ - Total quantity used in the instrument.
RS - Recommended spares for one year isolated service for one instrument.

LIST OF CODE LETTERS USED IN TABLE OF REPLACEABLE PARTS TO DESIGNATE THE MANUFACTURERS

CODE LETTER	MANUFACTURER
A	Aerovox Corp.
B	Allen-Bradley Co.
C	Amperite Co.
D	Arrow, Hart \& Hegeman
E	Bussman Manufacturing Co.
F	Carborundum Co.
G	Centralab
H	Cinch-Jones Mfg. Co.
HP	Hewlett-Packard Co.
I	Clarostat Mfg. Co.
J	Cornell Dubilier Elec. Co.
K	Hi-Q Division of Aerovox
L	Erie Resistor Corp.
M	Fed. Telephone \& Radio Corp.
N	General Electric Co.
0	General Electric Supply Corp.
P	Girard-Hopkins
Q	Industrial Products Co.
R	International Resistance Co.
S	Lectrohm Inc.
T	Littlefuse Inc.
U	Maguire Industries Inc.
V	Micamold Radio Corp.
W	Oak Manufacturing Co.
X	P. R. Mallory Co., Inc.
Y	Radio Corp. of America
Z	Sangamo Electric Co.
AA	Sarkes Tarzian
BB	Signal Indicator Co.
CC	Sprague Electric Co.
DD	Stackpole Carbon Co.
EE	Sylvania Electric Products Co.
FF	Western Electric Co.
GG	Wilkor Products, Inc.
HH	Amphenol
II	Dial Light Co. of America
JJ	Leecraft Manufacturing Co.
KK	Switcheraft, Inc.
LL	Gremar Manufacturing Co.
MM	Carad Corp.
NN	Electra Manufacturing Co.
OO	Acro Manufacturing Co.
PP	Alliance Manufacturing Co.
QQ	Arco Electronics, Inc.
RR	Astron Corp.
SS	Axel Brothers Inc.
TT	Belden Manufacturing Co.
UU	Bird Electronics Corp.
VV	Barber Colman Co.
WW	Bud Radio Inc.
XX	Allen D. Cardwell Mfg. Co.
YY	Cinema Engineering Co.
ZZ	Any brand tube meeting
	RETMA standards.
$A B$	Corning Glass Works
$A C$	Dale Products, Inc.
$A D$	The Drake Mfg. Co.
AE	Elco Corp.
AF	Hugh H. Eby Co.
AG	Thomas A. Edison, Inc.
AH	Fansteel Metallurgical Corp.
AI	General Ceramics \& Steatite Corp.
AJ	The Gudeman Co.

ADDRESS	CODE LETTER	MANUFACTURER
New Bedford, Mass.	AK	Hammerlund Mfg. Co., Inc.
Milwaukee 4, Wis.	AL	Industrial Condenser Corp.
New York, N. Y.	AM	Insuline Corp. of America
Hartford, Conn.	AN	Jennings Radio Mfg. Corp.
St. Louis, Mo.	AO	E. F. Johnson Co.
Niagara Falls, N. Y.	$A P$	Lenz Electric Mfg. Co.
Milwaukee I, Wis.	$A Q$	Micro-Switch
Chicago 24, III.	$A R$	Mechanical Industries Prod. Co.
Palo Alto, Calif.	AS	Model Eng. \& Mfg., Inc.
Dover, N. H.	AT	The Muter Co.
South Plainfield, N. J.	$A \cup$	Ohmite Mfg. Co.
Olean, N. Y.	AV	Resistance Products Co.
Erie 6, Pa.	AW	Radio Condenser Co.
Clifton, N. J.	$A X$	Shallcross Manufacturing Co.
Schenectady 5, N. Y.	AY	Solar Manufacturing Co.
San Francisco, Calif.	AZ	Sealectro Corp.
Oakland, Calif.	BA	Spencer Thermostat
Danbury, Conn.	$B C$	Stevens Manufacturing Co.
Philadelphia 8, Pa.	BD	Torrington Manufacturing Co.
Chicago 20, III.	BE	Vector Electronic Co.
Des Plaines, III.	BF	Weston Electrical Inst. Corp.
Greenwich, Conn.	BG	Advance Electric \& Relay Co.
Brooklyn 37, N. Y.	BH	E. I. DuPont
Chicago 10, III.	BI	Electronics Tube Corp.
Indianapolis, Ind.	BJ	Aircraft Radio Corp.
Harrison, N. J.	BK	Allied Control Co., Inc.
Marion, III.	BL	Augat Brothers, Inc.
Bloomington, Ind.	BM	Carter Radio Division
Brooklyn 37, N. Y.	BN	CBS Hytron Radio \& Electric
North Adams, Mass.	BO	Chicago Telephone Supply
St. Marys, Pa.	BP	Henry L. Crowley Co., Inc.
Warren, Pa.	$B Q$	Curtiss-Wright Corp.
New York 5, N. Y.	BR	Allen B. DuMont Labs
Cleveland, Ohio	BS	Excel Transformer Co.
Chicago 50, Ill.	BT	General Radio Co.
Brooklyn 37, N. Y.	BU	Hughes Aircraft Co.
New York, N. Y.	BV	International Rectifier Corp.
Chicago 22, III.	BW	James Knights Co.
Wakefield, Mass.	BX	Mueller Electric Co.
Redwood City, Calif.	BY	Precision Thermometer \& Inst. Co.
Kansas City, Mo.	BZ	Radio Essentials Inc.
Columbus 16, Ohio	CA	Raytheon Manufacturing Co.
Alliance, Ohio	CB	Tung-Sol Lamp Works, Inc.
New York 13, N. Y.	$C D$	Varian Associates
East Newark, N. J.	CE	Victory Engineering Corp.
Long Island City, N. Y.	CF	Weckesser Co.
Chicago 44, III.	CG	Wilco Corporation
Cleveland 14, Ohio	CH	Winchester Electronics, Inc.
Rockford, III.	Cl	Malco Tool \& Die
Cleveland 3, Ohio	CJ	Oxford Electric Corp.
Pla:nville, Conn.	CK	Camloc-Fastener Corp.
Burbank, Calif.	CL	George K. Garrett
	CM	Union Switch \& Signal
	CN	Radio Receptor
Corning, N. Y.	CO	Automatic \& Precision Mfg. Co.
Columbus, Neb.	CP	Bassick Co.
Chicago 22, III.	CQ	Birnbach Radio Co.
Philadelphia 24, Pa.	CR	Fischer Specialties
Philadelphia 44, Pa.	CS	Telefunken (c/o MVM, Inc.)
West Orange, N. J.	CT	Potter-Brumfield Co.
North Chicago, III.	CU	Cannon Electric Co.
Keasbey, N. J.	CV	Dynac, Inc.
Sunnyvale, Calif.	CW	Good-All Electric Mfg. Co.

ADDRESS
New York I, N. Y. Chicago 18, III. Manchester, N. H. San Jose, Calif.
Waseca, Minn.
Chicago 47, III.
Freeport, III.
Akron 8, Ohio Huntington, Ind. Chicago 5, III
Skokie, III.
Harrisburg, Pa.
Camden 3, N. J.
Collingdale, Pa.
Los Angeles 58, Calif.
New Rochelle, N. Y.
Attleboro, Mass.
Mansfield, Ohio
Van Nuys, Calif.
Los Angeles 65, Calif.
Newark 5, N. J.
Burbank, Calif.
San Francisco, Calif.
Philadelphia 18, Pa.
Boonton, N. J.
New York 21, N. Y.
Attleboro, Mass.
Chicago, III.
Danvers, Mass.
Elkhart, Ind.
West Orange, N. J.
Carlstadt, N. J.
Clifton, N. J.
Oakland, Calif.
Cambridge 39, Mass.
Culver City, Calif.
El Segundo, Calif.
Sandwich, III.
Cleveland, Ohio Philadelphia 30, Pa. Mt. Vernon, N. Y.
Newton, Mass.
Newark 4, N. J.
Palo Alto, Calif.
Union, N. J.
Chicago 30, III. Indianapolis, Ind. Santa Monica, Calif. Los Angeles 42, Calif. Chicago 15, III. Paramus, N. J. Philadelphia 34, Pa. Swissvale, Pa.
New York II, N. Y. Yonkers, N. Y. Bridgeport 2, Conn. New York 13, N. Y. Cincinnati 6, Ohio New York, N. Y. Princeton, Ind.
Los Angeles, Calif.
Palo Alto, Calif.
Ogallala, Nebr.

CLAIM FOR DAMAGE IN SHIPMENT

The instrument should be tested as soon as it is received. If it fails to operate properly, or is damaged in any way, a claim should be filed with the carrier. A full report of the damage should be obtained by the claim agent, and this report should be forwarded to us. We will then advise you of the disposition to be made of the equipment and arrange for repair or replacement. Include model number and serial number when referring to this instrument for any reason.

WARRANTY

Hewlett-Packard Company warrants each instrument manufactured by them to be free from defects in material and workmanship. Our liability under this warranty is limited to servicing or adjusting any instrument returned to the factory for that purpose and to replace any defective parts thereof. Klystron tubes as well as other electron tubes, fuses and batteries are specifically excluded from any liability. This warranty is effective for one year after delivery to the original purchaser when the instrument is returned, transportation charges prepaid by the original purchaser, and when upon our examination it is disclosed to our satisfaction to be defective. If the fault has been caused by misuse or abnormal conditions of operation, repairs will be billed at cost. In this case, an estimate will be submitted before the work is started.

If any fault develops, the following steps should be taken:

1. Notify us, giving full details of the difficulty, and include the model number and serial number. On receipt of this information, we will give you service data or shipping instructions.
2. On receipt of shipping instructions, forward the instrument prepaid, to the factory or to the authorized repair station indicated on the instructions. If requested, an estimate of the charges will be made before the work begins provided the instrument is not covered by the warranty.

SHIPPING

All shipments of Hewlett-Packard instruments should be made via Truck or Railway Express. The instruments should be packed in a strong exterior container and surrounded by two or three inches of excelsior or similar shock-absorbing material.

DO NOT HESITATE TO CALL ON US

al

2ala
等思

R10

H1
多 S
and

 20
 3van
Enc土 M 5 an 15 呈（1）

[^0]: *-See "List of Manufacturers Code Letters For Replaceable Parts Table". TQ- Total quantity used in the instrument.
 RS - Recommended spares for one year isolated service for one instrument.

[^1]: *-See "List of Manufacturers Code Letters For Replaceable Parts Table".

