## HP Archive

This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com

Please visit us on the web!

## On-line curator: Glenn Robb

This document is for FREE distribution only!

## OPERATING AND SERVICING MANUAL

 FOR
## MODEL 400B

VACUUM TUBE VOLTMETER
Serial 8938 and A bove


Copyright 1955 by Hewlett-Packard Company
The information contained in this booklet is intended for the operation and maintenance of Hewlett-Packard equipment and is not to be uned otherwise or reproduced Packard Company.

HEWLETT-PACKARD COMPANY 275 P AGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S.A.

# OPERATING AND SERVICING MANUAL <br> FOR 

MODEL 400B<br>VACUUM TUBE VOLTMETER

\author{

## ERRATA

 <br> Delete binding post, insulator, yellow plastic cap, -hp-Stock No. M-58. <br> Add: binding post $\mathrm{a}_{3}$ red, -hp-Stock No. G-10D, Mfr. HP. <br> Add: binding post, insulator, -hp-Stock No, G-83F, Mfr. HP <br> Add: binding post, ground (left) with shorting strap, -hp-Stock No, G-76J, Mfr, HP.}

# INSTRUCTION AND OPERATING MANUAL 

 FORMODEL 400B
VACUUM TUBE VOLTMETER

## PRODUCTION CHANGES

## Serial 8938 and above:

Change C7 to $2 \mu \mathrm{f}$, fixed, paper dielectric, $\pm 20 \%, 400$ vdcw, -hp-Stock No. 16-81, Mfr. Gudeman Co. \#231E205

## SPECIFICATIONS

## (40) MODEL 400 B

## VACUUM TUBE YOLTMETER

VOLTAGE RANGES: Volts Full Scale (RMS) -

$$
.03 \quad .1 \quad .3 \quad 1 \quad 3 \quad 10 \quad 30 \quad 100 \quad 300
$$

DB =
$-30-20-100+10+20+30+40+50$
2 to 100,000 cycles $/ \mathrm{sec}$.
$\pm 3 \%$ of full scale indication on all ranges, from 10 cycles $/ \mathrm{sec}$, to 100 KC . $\pm 1 / 2 \mathrm{db} 3$ to 10 cycles/sec. $\pm 1 \mathrm{db} 2$ to 3 cycles $/ \mathrm{sec}$.

METER CALIBRATION: Meter calibrated to RMS value of a sine wave. Linear voltage scales $0-1 \mathrm{~V}$ and $0-3 \mathrm{~V}$. Voltage ranges related by 10 db steps. Zero Level - 1 milliwatt into 600 ohms .

Line voltage variations from 105 to 125 volts will cause less than $\pm 2 \%$ variation in reading on all frequencies below 100 KC .

Approximately 9 megohms at 100 cycles /sec. and 4 megohms at 100,000 cycles $/ \mathrm{sec}$.

Meter will not be damaged by occasional overloads of 100 times normal.

Voltage - 115 volts
Frequency - 50-1000 cycles
Wattage -50 watts
Cabinet Mount - 7-3/4" wide $\times 9-1 / 4^{\prime \prime}$ high $x$ 10-1/2" deep.
Rack Mount - $19^{\prime \prime}$ wide $\times 8-3 / 4^{\prime \prime}$ high $x$ 10-1/2" deep.

WEIGHT: Cabinet Mount - 14 lbs , net; shipping 27 lbs .
Rack Mount - 17 lbs . net; shipping 30 lbs.

OVERALL DIMENSIONS:

## T ABLE OF CONTENTS

(40) MODEL 400 B

## VACUUM TUBE VOLTMETER

Page No.
Section I GENERAL DESCRIPTION
1-1 General ..... 1
1-2 Parts Substitutions ..... 1
Section II OPERATING INSTRUCTIONS
2-1 Inspection ..... 3
2-2 Controls and Terminals ..... 3
2-3 Operation ..... 4
Section III THEORY OF OPERATION
3-1 Introductory ..... 7
Section IV MAINTENANCE
4-1 Cover and Bottom Plate Removal ..... 9
4-2 Tube Replacement ..... 9
4-3 Checking Calibration ..... 9
Section V TABLE OF REPLACEABLE PARTS ..... 15

## GENERAL DESCRIPTION

## 1-1 GENERAL

The Model 4006 Vacuum Tube Voltmeter is an accurate voltmeter with high sensitivity and high input impedance. Alternating current voltage as small as .005 volts and up to 300 volts at frequencies from $2 \mathrm{cycles} / \mathrm{sec}$. to 100,000 cycles $/ \mathrm{sec}$. may be measured with the voltmeter. The input impedance is high enough so as not to disturb the majority of circuits being measured.

The Model 400B is useful for laboratory work where quick and accurate measurements of amplifier gain, network response hum level, and output level are to be made.

The higher voltage ranges are useful for measuring power circuit voltages in broadcast and television equipment.

## 1-2 PARTS SUBSTITUTIONS

Difficulties in procuring some of the parts used in this instrument may cause the electrical or physical values to deviate from those shown in this instruction manual. These substitutions have been made so as not to impair the performance of this instrument. Whenever replacement of any of these parts is necessary, either the substitute value or the original value may be used.

## CAUTION

The maximum voltage applied to the input terminals of the Model 400 B Vacuum Tube Voltmeter must not exceed 600 volts, the sum of the $d c$ voltage and the ac peak voltage. Higher voltages will break down the capacitors in the input system of the instrument.

Electrolytic capacitor C9 abcd is a very high quality capacitor which has a useful life of from five to ten years. Do not replace this capacitor unless it is proven defective by accurate tests.


Front View of Model 400 B

## 2-1 INSPECTION

This instrument has been thoroughly tested and inspected before being shipped and is ready for use when received.

After the instrument is unpacked, it should be carefully inspected for damage received in transit. If any shipping damage is found, follow the procedure outlined in the "Claim for Damage in Shipment" page at the back of this instruction book.

## 2-2 CONTROLS AND TERMINALS

ON
This toggle switch controls the power supplied to the instrument from the power line. When the switch is in the ON position the red indicator will glow.

## DB - RMS VOLTS

This rotary switch connects the proper multiplier resistors into the circuit for the desired voltage range. The position of the switch indicates the meter scale and the full scale voltage of the range in use. The switch position also indicates the DB level when the meter pointer indicates zero on the DB scale.

## INPUT

The two binding posts, located in the lower left hand corner of the control panel, are connected to the input circuit of the instrument. The binding post marked G is connected to the chassis.

## OUTPUT

The two binding posts, located in the lower right hand corner of the control panel, are connected to the output of the amplifier. The amplifier has a high impedance output circuit. The output voltage available at these terminals is from 17,5 to 24 volts with full scale meter deflection.

CAUTION
The maximum voltage applied to the input terminals of the Model 400B Vacuum Tube Voltmeter must not exceed 600 volts, the sum of the dc voltage and the ac peak voltage. Higher voltages will break down the capacitors in the input system of the instrument.

## FUSE

The fuseholder, located on the back of the chassis, contains a .6 ampere slo-blo cartridge fuse. To replace the fuse, unscrew the fuseholder cap and remove the blown fuse. Insert a new fuse of the same type and replace the fuseholder cap.

## Power Cable

The power cable consists of three conductors. Two of these conductors carry power to the instrument while the third conductor (green wire) is connected to the instrument chassis. The third wire projects from the cable near the plug end of the cable and may be connected to a ground when it is desirable to have a grounded chassis.

## BELOW 10 CPS, ABOVE 10 CPS

This toggle switch is used to add capacity across the meter when the instrument is operated on frequencies below 10 cycles/ sec . The added capacity $(2000 \mu \mathrm{f})$ bypasses the very low frequencies around the meter so that the meter pointer will not vibrate.

## 2-3 OPERATION

Voltage Measurements - Plug the power cable into a 115 volt power line and turn the toggle switch to ON. Allow the instrument about five minutes to reach a state of stable operation. Set the DB-RMS VOLTS range switch to the desired voltage range and connect the input terminals to the voltage being measured. The BELOW 10 CPS, ABOVE 10 CPS switch should be set to agree with the frequency of the voltage being measured. The meter scale multiplying factor (DB-RMS VOLTS switch position divided by the full scale value of the meter scale in use) times the meter indication equals the voltage being measured.

## Examples:

A. $100(\mathrm{DB}-\mathrm{RMS}$ VOLTS switch position) $\div 1$ (full scale value of meter scale in use) $=10^{\circ} 0$ (Meter scale multiplying factor).

100 (meter scale multiplying factor) x . 83 (meter scale indication) $=83$ volts (measured voltage).
B. 30 (DB-RMS VOLTS switch position) $\div 3$ (full scale value of meter scale in use) $=10$ (meter scale multiplying factor).

> 10 (meter scale multiplying factor) $\times 2.3$ (meter scale indication) $=23$ volts (measured voltage).

Whenever it is necessary to view the wave shape of the measured voltage, an oscilloscope may be connected to the OUTPUT terminals of the instrument.

As a precaution in maintaining accuracy of measurement, it must be kept in mind that the instrument is an average reading-device. Although the calibration on the face of the instrument is marked "RMS Volts", this simply means that the meter will read the rms value of a true sine wave. If the wave form of the voltage being measured contains appreciable harmonic voltages or other spurious voltages, errors in measurement will be encountered of a magnitude indicated by the following table.

| EFFECT OF HARMONICS ON MODEL 400 B VOLTAGE MEASUREMENTS |  |  |
| :---: | :---: | :---: |
| Input Voltage Characteristics | True <br> RMS Value | Value Indicated by Model 400B |
| Fundamental - 100 | 100 | 100 |
| Fundamental $+10 \%$ 2nd harmonic | 100.5 | 100 |
| Fundamental $+20 \%$ 2nd harmonic | 102 | 100-102 |
| Fundamental $+50 \%$ 2nd harmonic | 112 | 100-110 |
| Fundamental $+10 \% 3$ rd harmonic | 100.5 | 96-104 |
| Fundamental $+20 \% 3 \mathrm{rd}$ harmonic | 102 | 94-108 |
| Fundamental $+50 \% 3 \mathrm{rd}$ harmonic | 112 | 90-116 |

DB Measurement - Decibel measurements are made in the same way as voltage measurements except that the DB scale is used and the measurements must be made across 600 ohms, if the 1 milliwatt across 600 ohms reference level is to be used. The difference between two or more voltages, measured in decibels, may be read directly from the Model 400 B provided each measurement is made across the same value of impedance. The decibel level being measured is determined by sum difference of the meter scale indication and the range switch indication. The plus or minus signs before the meter scale figures, determine whether the meter scale indication is to be added or subtracted from the decibel level shown by the range switch.

## Examples:

C. Interpreting the range switch position and meter scale indication for a level of +12 db . Measured across 600 ohms with one milliwatt across 600 ohms as the reference level.
+10 db (DB-RMS VOLTS switch position) plus +2 $\mathrm{db}(\mathrm{db}$ meter scale indication) $=+12 \mathrm{db}$ or +20 db (DB-RMS VOLTS switch position) plus - 8 $\mathrm{db}(\mathrm{db}$ meter scale indication $)=+12 \mathrm{db}$.
D. Interpreting the range switch position and meter scale indication for the difference between two voltages, measured in decibels, across the same value of impedance.

Voltages equal -37 db and +12 db . -30 db (DB-RMS VOLTS switch position) plus -7 db (db meter scale indication) $-37 \mathrm{db}$ +10 db plus +2 db (from Example C$)=(-)+12 \mathrm{db}$
(total decibel differ ence between the two voltages)

Characteristics of the Amplifier Function of the Model 400B The output circuit of the amplifier (OUTPUT terminals) is designed to work into a load of 100,000 or more ohms.

At full scale meter indication, the output voltage will be approximately 17.5 to 24 volts on any range. The approximate gain between the INPUT and OUTPUT terminals, with full scale meter indication, is shown by the following table.

Gain
$+56 \mathrm{db}$
$+46 \mathrm{db}$
$+36 \mathrm{db}$
$+26 \mathrm{db}$
$+16 \mathrm{db}$
$+6 \mathrm{db}$

- 4 db
$-14 \mathrm{db}$
$-24 \mathrm{db}$

Range

|  | 03V |  | scale |
| :---: | :---: | :---: | :---: |
|  | 1 V | II |  |
|  | 3 V | " | " |
| 1.0 | 0 V | 11 | " |
| 3.0 | 0 V | 11 | " |
| 10.0 | 0 V | 11 | " |
| 30.0 | 0 V | 11 | " |
| 100.0 | 0 V |  | " |
| 300.0 | 0 V |  |  |

Zero Meter Indication - The meter pointer may not coincide with the zero scale mark when the instrument is turned off. This condition is normal.

## SECTION III

## THEORY OF OPERATION

## 3-1 INTR ODUCTORY

The circuit of the Model 400B Vacuum Tube Voltmeter consists of a cathode follower input stage, a stablized amplifier, a rectifier and meter section, and a regulated power supply.

The voltage applied to the input terminals is passed through a blocking capacitor to the grid of the 6J5 cathode-follower input stage. The cathode resistor is a tapped precision wirewound resistor which serves as the voltmeter multiplier on all but the two highest ranges. On the higher ranges a high-resistance fre-quency-compensated voltage divider is switched across the input terminals and ahead of the grid of the first tube.

The cathode follower feeds into a broad-band resistance-coupled amplifier using 6AC7 tubes. Negative feedback is used in this amplifier in order to obtain high stability and uniform response over a wide frequency range, and to make the amplifier more independent of variations in tube characteristics.

From the amplifier the voltage is passed to a full wave rectifier using a 6 H 6 duo-diode tube. The indicating meter is connected from one plate to the opposite cathode of the tube and therefore is actuated by a portion of the plate current of the two diodes.

Direct current for the plate supply of the tubes in the instrument is obtained from a conventional full-wave rectifier feeding into a resistance-capacity filter. A voltage-regulating circuit across the output of the rectifier keeps the plate supply voltage constant over a wide range of line voltages.


Fig. 1. Top View of Model 400 B Cover Removed

## 4-1 COVER AND BOTTOM PLATE REMOVAL

The cover is removed by unscrewing the four screws which fasten the cover to the back of the instrument, and sliding the cover away from the panel.

The bottom plate is fastened to the instrument with four screws, one in each corner of the plate.

## 4-2 TUBE REPLACEMENT

The replacement of tubes will have a slight effect upon the calibration of this instrument. Now and then, when replacing 6AC7 tubes, a permanent deflection of the meter pointer will be observed with the input terminals shorted and when the new tube has heated. This condition is usually caused by a cathode-heater leakage and the tube should be rejected in favor of another.

When replacing 6 H 6 and/or 6 AC 7 tubes, it is desirable to check the voltage response of the new tube if the voltmeter is being operated from an unregulated line voltage. This check can be made by applying a constant voltage to the input terminals and varying the line voltage $\pm 10$ volts from 115 volts. The voltmeter reading should not change by more than $2 \%$ at frequencies below 100 KC . Try another tube if necessary.

## 4-3 CHECKING CALIBRATION

Probably the most accurate method which can be used in the field to check the calibration of the Model 400 B is a test using a cathoderay oscilloscope and a freshly calibrated dynamometer type voltmeter.

After the new tube has heated in the Model 400B, apply a low-frequency ( $50-60 \mathrm{cps}$ ) voltage simultaneously to both the Model 400B and the dynamometer type voltmeters. Readings of the two instruments should agree closely. Try another tube if necessary.

Next, calibrate the cathode-ray tube of the oscilloscope by applying a low-frequency sinusoidal voltage simultaneously to the dynamometer voltmeter and to the vertical-deflecting electrodes of
the $c-r$ tube. No horizontal sweep voltage should be used. Directions for connecting to the deflecting electrodes of the tube are usually given by the manufacturer of the oscilloscope. By meas uring the peak-to-peak deflection of the $c-r$ tube trace with a graph screen and by noting the reading of the voltmeter, the deflection voltage of the $c-r$ tube can be quickly determined. It is important that the voltage used to calibrate the $c=r$ tube be essentially sinusoidal and free from harmonics.

Now connect the Model 400B in parallel with the vertical-deflecting plates of the c-r tube and apply sinusoidal voltages of frequencies up to 100 KC to the combination of the two instruments. The voltage shown by the Model 400B should agree closely with that indicated by the magnitude of deflection of the $c-r$ tube trace. If such is not the case, try another tube in the Model 400B and repeat the process.

The above procedure will give a reasonable check at all frequencies within the range of the Model 400B, although a check cannot be made of small voltages. Low voltage ranges can be checked by starting with a voltage within one of the ranges checked on the oscilloscope and working downward. For example, if the accuracy and frequency response of the 100 -volt range of the Model 400B have been checked on the oscilloscope, apply a 25 -volt wave to the Model 400B and note the reading on the 100 -volt range. Then switch to the 30 -volt range and note that the reading is correct. By extending this procedure, all ranges of the instrument can be checked.

Although the above methods will not give precision results, they will often prove helpful in determining whether or not old tubes have exceeded their service life or new tubes are satisfactory to use.

Beyond changing tubes, it is not recommended that repair or calibration of this instrument be attempted in the field, because of the elaborate equipment required. Either the (b) factory or any (40) authorized field Repair Station will recalibrate the instrument quickly and at a nominal charge; contact your (40) field engineer for further information, Use of this service will usually save a great deal of time.


Fig. 2 Bottom View of Model 400B Bottom Plate Removed


(40) MODEL $400 B$

LOW FREQUENCY VACUUM TUBE VOLTMETER
SERIAL 8938 a Above

| Circuit Ref. | , Description | -hp- <br> Stock No. | Mfr. * \& Mfrs. Designation |
| :---: | :---: | :---: | :---: |
| C1 | Capacitor: variable, ceramic, $5-20 \mu \mu \mathrm{f}, 500 \mathrm{vdcw}$ | 13-20 | L |
| C2 | Capacitor: variable, ceramic, 5-20 $\mu \mu \mathrm{f}, 500 \mathrm{vdcw}$ | 13-20 | TS2A-N300 |
| C3 | Capacitor: fixed, paper, $.1 \mu \mathrm{f}, \pm 10 \%, 600 \mathrm{vdcw}$ | 1601 | $\begin{aligned} & \text { A } \\ & \text { Type P688 } \end{aligned}$ |
| C4 | Capacitor: fixed, mica, $22 \mu \mu \mathrm{f}, \pm 10 \%, 500 \mathrm{vdcw}$ | 14-61 | $\begin{aligned} & \text { V } \\ & \text { Type OXM } \end{aligned}$ |
| C5, C6 | These circuit references not assigned |  |  |
| C 7 | Capacitor: fixed, paper, dielectric, $2 \mu f, \pm 20 \%, 400 \mathrm{vdcw}$ | 16-81 | Gudeman Co, \# 231E205 |
| C8 | Capacitor: fixed, electrolytic, $50 \mu \mathrm{f},-10 \%,+200 \%, 50$ vdcw | 18-50 | $\begin{aligned} & \mathrm{X} \\ & \mathrm{TC}-39 \end{aligned}$ |
| C9 abcd | Capacitor: fixed, electrolytic, 20, 20, $40 \mu \mathrm{f}, 450 \mathrm{vdcw}$ | $18-42 \mathrm{~S}$ | HP |
| C10 | Capacitor: fixed, paper, <br> . $1 \mu \mathrm{f}, \pm 10 \%, 600$ vdcw | 16-1 | A <br> Type P688 |
| Cll | Capacitor: fixed, electrolytic $10 \mu \mathrm{f}, 450$ vdcw | 18-10 | x <br> WB 72 |
| C 12 | Capacitor: fixed, electrolytic, $2000 \mu \mathrm{f}, 6$ vdew | 18-6 | $\begin{aligned} & \mathrm{J} \\ & \mathrm{BRH}-620 \end{aligned}$ |
| C13 | Capacitor: fixed, mica, $22 \mu \mu \mathrm{f}, \pm 10 \%, 500$ vdcw | 14-61 | $\begin{aligned} & \text { V } \\ & \text { Type OXM } \end{aligned}$ |
| C14 abcd C15 abcd C16 abcd | Capacitor: fixed, electrolytic, 20, 20, 20, $20 \mu \mathrm{f}, 450 \mathrm{vdcw}$ | 18-42 | $\begin{aligned} & \mathrm{X} \\ & \mathrm{FPQ}-444 \end{aligned}$ |
| C17 | Capacitor: fixed, electrolytic, $50 \mu \mathrm{f},-10 \%,+200 \%, 50$ vdcw | 18-50 | $\begin{aligned} & \mathrm{X} \\ & \mathrm{TC}-39 \end{aligned}$ |
| R1, R2 | Resistor: fixed, composition, 8 megohms, $\pm 1 \%$, 1 W | $31-8 \mathrm{M}$ | HP |
| R3 | Resistor: fixed, composition, 9.55 megohms, $\pm 1 \%$, IW Five megohms made up of two 9.55 megohm resistors in parallel. | $31-9.55 \mathrm{M}$ | HP |
| R 4 | Electrical value adjusted at factory |  |  |
| R 5 | Resistor: fixed, composition, 51 ohms, $\pm 5 \%$, 1 W | 24-51-5 | $\stackrel{\text { B }}{\text { GB }} 5105$ |

TABLE OF REPLACEABLE PARTS

| Circuit Ref. | Description | -hpStock No. | Mfr. * \& Mfrs. Designation |
| :---: | :---: | :---: | :---: |
| R6 | Resistor: Part of Range Switch Assy. |  |  |
| R7 | Resistor: fixed, composition, 1.1 megohms, $-0 \%+1 \%$, 1 W | 31.1 .04 M | HP |
| R8 | Resistor: fixed, composition, 2200 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$ | 23-2200 | B <br> EB 2221 |
| R9 | This circuit reference not assigned |  |  |
| R10 | Resistor: fixed, composition, 82,000 ohms, $\pm 10 \%$, IW | 24-82K | B $\text { GB } 8231$ |
| RII | Resistor: fixed, composition, 180,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$ Electrical value adjusted at factory | 23-180K | B <br> EB 1841 |
| R12 | Resistor: fixed, wirewound, 11.16 ohms | 4B-90 | HP |
| R13 | Resistor: variable, wirewound, 100 ohms, linear taper | 210-28 | Muter Co. \#10516 |
| R14 | Resistor: fixed, composition 27 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$ | 23-27 | $\begin{aligned} & \text { B } \\ & \text { EB } 2701 \end{aligned}$ |
| R15 | Resistor: fixed, composition, 56,000 ohms, $\pm 10 \%$, 1 W | 24-56K | $\begin{aligned} & \text { B } \\ & \text { GB } 5631 \end{aligned}$ |
| R16 | Resistor: fixed, composition, 22,000 ohms, $\pm 10 \%, 2 \mathrm{~W}$ | $25-22 \mathrm{~K}$ | B HB 2231 |
| R17 | Resistor: fixed, composition, 1800,006 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$ electrical value adjusted at factory | 23-180K | $\begin{aligned} & \text { B } \\ & \text { EB } 1841 \end{aligned}$ |
| R18 | Resistor: fixed, composition, 56,000 ohms, $\pm 10 \%$, 1 W | 24-56K | $\begin{aligned} & \text { B } \\ & \text { GB } 5631 \end{aligned}$ |
| R19 | Resistor: fixed, composition 22,000 ohms, $\pm 10 \%, 2 \mathrm{~W}$ | 25-22K | $\begin{aligned} & \text { B } \\ & \text { HB } 2231 \end{aligned}$ |
| R20 | Resistor: fixed, composition, 620 ohms, $\pm 5 \%$, $1 / 2 \mathrm{~W}$ | 23-77 | $\begin{array}{ll} \text { B } & \\ \text { EB } 6215 \end{array}$ |
| R21 | Resistor: fixed, composition, 620 ohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$ | 23-77 | $\begin{array}{ll} \mathrm{B} & \\ \mathrm{~EB} & 215 \end{array}$ |
| R22 | Resistor: fixed, wirewound, 7 ohms, $\pm 10 \%, 2$ W | 26-18 | $\begin{array}{ll} \text { I } & \\ \text { CM } & 8027 \end{array}$ |
| R23 | Resistor: fixed, composition, 6200 ohms, $\pm 5 \%$, 1 W | 24-86 | $\begin{aligned} & \text { B } \\ & \text { GB } 6225 \end{aligned}$ |

TABLE OF REPLACEABLE PARTS

| Circuit Ref. | Description | -hpStock No. | Mfr. * \& Mfrs. Designation |
| :---: | :---: | :---: | :---: |
| R24 | Resistor: fixed, composition, 6200 ohms, $\pm 5 \%$, IW | 24-86 | $\begin{aligned} & \text { B } \\ & \text { GB } 6225 \end{aligned}$ |
| R25** | Resistor: fixed, composition, 9.55 megohms, $\pm 1 \%$, 1 W Five megohms made up of two 9.55 megohm resistors in parallel. | $31-9.55 \mathrm{M}$ | HP |
| R26 | Resistor: electrical value adjusted at factory |  |  |
| R27-R30 | Resistor: fixed, composition, 5600 ohms, $\pm 10 \%$, 1 W | 24-5600 | $\begin{aligned} & \text { B } \\ & \text { GB } 5621 \end{aligned}$ |
| R31 | Resistor: fixed, wirewound, 2500 ohms, $\pm 10 \%, 10 \mathrm{~W}$ | 26-7 | Type 1-3/4E |
| R32 | Resistor: fixed, composition, 10,000 ohms, $\pm 10 \%, 2 \mathrm{~W}$ | 25-10K | $\begin{aligned} & \text { B } \\ & \text { HB } 1031 \end{aligned}$ |
| R33 | Resistor: fixed, composition, 270,000 ohms, $\pm 10 \%$, 1 W | 24-270K | $\begin{aligned} & \text { B } \\ & \text { GB } 2741 \end{aligned}$ |
| R34 | Resistor: fixed, composition, 33,000 ohms, $\pm 10 \%, 1 \mathrm{~W}$ | 24-33K | $\begin{aligned} & \text { B } \\ & \text { GB } 3331 \end{aligned}$ |
| R35 | Resistor: fixed, composition, 68,000 ohms, $\pm 10 \%$, 1 W | 24-68K | $\begin{aligned} & \mathrm{B} \\ & \text { GB } 6831 \end{aligned}$ |
| R36 | Resistor: fixed, composition, 100 ohms, $\pm 10 \%$, 1 W | 24-100 | $\begin{aligned} & \text { B } \\ & \text { GB } 1011 \end{aligned}$ |
| R37 | Resistor: variable, composition, 25,000 ohms, linear taper | 210-11 | $\begin{aligned} & \text { G } \\ & \text { BAI-010-1990 } \end{aligned}$ |
| R38 | Resistor: fixed, composition, 10,000 ohms, $\pm 10 \%$, 1 W | 24-10K | $\left\lvert\, \begin{aligned} & \text { B } \\ & \text { GB } 1031 \end{aligned}\right.$ |
| R39 | Resistor: fixed, composition, 5600 ohms, $\pm 10 \%$, 1 W | 24-5600 | $\left\lvert\, \begin{aligned} & \text { B } \\ & \text { GB } 5621 \end{aligned}\right.$ |
| R 40 | Resistor: fixed, wirewound, 800 ohms, $\pm 10 \%, 10 \mathrm{~W}$ Electrical value adjusted at factory | 26-6 | $\begin{aligned} & \mathrm{S} \\ & \text { Type } 1-3 / 4 \mathrm{E} \end{aligned}$ |
|  | Binding Post | 312-3 | HP |
|  | Binding Post Insulator | $\mathrm{G}=83 \mathrm{~A}$ | HP |
|  | Binding Post Insulator: yellow plastic cap | M-58 | HP |

TABLE OF REPLACEABLE PARTS


* *See "List of Manufacturers Code Letters For Replaceable Parts Table."


## LIST OF CODE LETTERS USED IN TABLE OF REPLACEABLE PARTS TO DESIGNATE THE MANUFACTURERS

ADDRESS:
New Bedford, Mass.
Milwaukee 4, Wis.
New York, N. Y.
Hartford, Conn.
St. Louis, Mo.
Niagara Falls, N. Y.
Milwaukee 1, Wis.
Chicago 24, III.
Palo Alto, Calif.
Dover, N. H.
South Plainfield, N. J.
Olean, N. Y.
Erie 6, Pa,
Clifton, N.J.
Schenectady 5, N. Y.
San Francisco, Calif.
Oakland, Calif.
Danbury. Conn.
Philadelphia 8, Pa.
Chicago 20, III.
Des Plaines, III.
Greenwich, Conn.
Brooklyn 37, N, Y.
Chicego 10, II.
Indianapolis, Ind.
Harrison, N. J.
Marion, III.
Bloomington, Ind.
Brookiyn 37, N. Y.
North Adams, Mass.
St, Marys, Pa.
Worren, Pa.
New Y'ork 5, N. Y.
Cleveland, Ohio
Chicago 50, !!!.
Brooklyn 37, N. Y.
New York, N. Y.
Chicago 22, III.
Wakefield, Mass.
Redwood Cify, Calif.
Kansas City, Mo.
Columbus. 16, Ohio
Alliance, Ohio
New York 13, N. Y.
East Newark, N. J.
Long island City, N. Y.
Chicago 44, III.
Cleveland 14, Ohio
Reckford, 1!!.
Cleveland 3, Ohio
Plainville, Conn.
Burbank, Colif.

Corning, N. Y.
Columbus, Neb .
Chicago 22, III.
Philadelphic 24, Pa.
Philadelphia 44, Pa.
West Orange, N. J.
North Chicago, III.
Keasbey, N. J.
Sunnyvale, Calif.

CODE
LETTER
AK.
AL.
AM

ADDRESS
New York I, N. Y.
Chicago 18, III.
Manchester, N. H.
San Jose, Calif.
Waseca, Minn.
Chicago 47. 11 .
Freeport, III.
Akron 8, Ohio
Huatington, lad.
Chicaqo 5, III.
Skokie, III.
Harrisburg, Pa.
Camden 3, N. J.
Colfingdale, Pa.
Los Angeles 58, Calif..
New Rochelle, N. Y.
Attleboro, Mass.
Mansfield, Ohio
Van Nuys, Calif.
Los Angeles 65، Calif.
Newark 5, N. J.
Burbank, Calif.
San Francisco, Calif.
Philadelphia 18, Pa.
Boonton, N. J.
New York 21, N. Y.
A.tfleboro, Mass.

Chicaqo, IH.
Danvers, Mass.
Elkhart, Ind.
West- Orange, N. J.
C.arlstadf́, N. J.

Clifton, N. J.
Oakland, Calif.
Cambridge 39, Mass.
Culver City, Calif.
El Segundo, Cialif.
Sandwrich, III.
Clevelland, Ohia
Philadelphia 30, Pa.
Mt. Vernon, N. Y.
Newton, Mass.
Newarl: 4, N.J.
Palo Alto, Calif.
Union, N. J.
Chicago 30, III.
Indianapolis, Ind. Santa Manica. Calif.
Los Angeles 42, Calif.
Chicago 15, III.
Paramus, N. J.
Philadelphia 34, Pa.
Swissvale, Pa.
New York II, N. Y.
Yonkers, N. Y.
Bridgeport 2, Conn.
New York: 13, N. Y.
Cincinnati b, Ohio
New Yoilc, N. Y.
Princeton, Ind.
Los Angeles, Calif.
Palo Alto, Calif.
Oqallala, Nebr.

| Hammerlund Mfg. Co., Inc. | New York I, N. Y. |
| :---: | :---: |
| Industrial Condenser Corp. | Chicago 18, III. |
| Insuline Corp. of America | Manchester; N. H. |
| Jennings Radio Mfg. Corp. | San Jose, Colif. |
| E. F. Johnson Co.. | Waseca, Minn. |
| Lenz Electric Mfg. Co. | Chicago 47, 1H. |
| Micro-Switch | Freeport, III. |
| Mechanical Industries Prod. Co. | Akron 8, Ohio |
| Model Eng. \& Mfg., Inc.. | Huatingtorn, lad. |
| The kiduter Co. | Chicaqa 5, III. |
| Ohmite Mfg. Co., | Skokie, III. |
| Resistance Products Co.. | H'arrisburg, Pa. |
| Radio Condenser Co. | Camden 3, N. J. |
| Shalleross Manufacturing Co. | Colfingdale, Pa. |
| Solar Manufacturing Co. | Los Angeles 58, Calif.. |
| Sealectro Corp. | New Rochelle, N. Y. |
| Spencer Thermostat | Attleboro, Mass. |
| Stevens Manufacturing Co. | Mansfield, Ohio |
| Torrington Manufacturing Co. | Van Nuys, Calif. |
| Vecfor Electronic Co. | Los Angeles 65، Calif. |
| Weston Electrical Inst. Corp. | Newark 5, N. J. |
| Advance Electric \& Relay Co. | Burbank, Calif. |
| E. I., DuPont- | San Francisco, Calif. |
| Electronics, Tube Corp. | Philadelphia 18, Pa. |
| Aircraff Radio Corp. | Boonton, N. J. |
| Allied Control Co., Inc. | New York 21, N. Y |
| Augat Brothers, Inc. | A.tfleboro, Mass. |
| Corter Radio Division | Chicaqo, 1II. |
| CBS Hytron Rodia \&: Eleactric | Danvers, Mass. |
| Chicago Telephone Supply | Elkhart, Ind. |
| Henry L. Crowley Co., inc. | West- Orange, N. J. |
| Curtiss-Wright Corp. | C.erlstadf, N. J. |
| Aillerr B. DuM ${ }^{\text {ant Labs }}$ | Cliftan, N..J. |
| Excel Transformer Co. | Oakland, Calif. |
| General Radio Co. | Cambridge 39, Mass. |
| Huqhes Aircraft Co. | Culver City, Calif. |
| International Rectifier Corp. | El Segundo, Cialif. |
| James Knights Co. | Sandwrich, Ill. |
| Mueller Electric Co. | Cleveland, Ohio |
| Precision Thermometer \& linst. Co. | Philadelphia 30, Pa. |
| Radio Essentials Inc. | Mt. Vernon, N. Y. |
| Raytheon Manufacturing Co. | Newton, Mass. |
| Tung-Sol Lamp Works, Inc. | Newarl: 4, N. J. |
| Varion Associates | Palo Alto, Calif. |
| Victory Ȩnqineerinq Corp. | Union, N. J. |
| Weckesser Co. | Chicago 30, IIl. |
| Wilco Corporation | Indianapolis, Ind. |
| Winchester Electronics, Inc. | Santa Manica, Calif. |
| Malco Tool \& Die | Los Angeles 42, Calif. |
| Oxford Electric Coip, | Chicago 15, III. |
| Camloc-Fosfener Corp. | Paramus, N. J. |
| Georqe K. Gorrett | Philadelphia 34, Pa, |
| Union Switch 8\% Signa! | Swissuale, Pa. |
| Radio Receptor | New York II, N. Y. |
| Automatic \& Precision Mfg. Co. | Yonkers, N. Y. |
| Bassick Co. | Bridgeport 2, Conn. |
| Birnbach Radio Co. | New York 13, N. Y. |
| Fischer Specialfies: | Cincimati 6 , Ohio |
| Telefunken (c/o MVM, Inc.) | New Yorti, N. Y. |
| Potter-Brumfield Co. | Princeton, Ind. |
| Cannon Electric Co. | Los Angeles, Calif. |
| Dynac, Inc. | Palo Alto, Calif. |
| Good-All Electric: Mfg. Co. | Oqallaia, Nebr. |

