HP Archive

This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com

Please visit us on the web!

On-line curator: Glenn Robb

This document is for FREE distribution only!

INSTRUCTION MANUAL CHANGES

MODEL 400AB
VACUUM TUBE VOLTMETER

C12: change to -hp- Stock No. 18-31; Mfr., X
C26: change to -hp-Stock No. 18-40HP; Mfr., CC
C29: change to capacitor, fixed, electrolytic, 2 sections, $1500 \mathrm{uf} / \mathrm{sect} ., 15 \mathrm{vdcw} ;-\mathrm{hp}$ - Stock No. 18 m 48 HP ; Mfr., CC

V1, change to tube, electron, selected, 6CB6;
V2: -hp-Stock No. G-73W; Mfr., HP
V7: change to tube, electron, 6CB6; -hp-Stock No. 212-6CB6; Mifr., ZZ

Serial 1182 and above:

NOTE: The 1000:1 input voltage divider has been changed from a capacitive to a resistive type. References to a capacitive voltage divider should be changed accordingly: pg. 3-1 fig. 3: pg. 3-2 para. 3-2.
Page 4-9 fig. 6: call-out to C3 should read: "Adjust high frequency response on 3 -volt range."
The text at the top half of page $4-4$ should be changed to read as follows:
page 4-4
Calibration consists of two parts: (1) Adjusting the amplifier gain on the 1 volt range with R43 (see fig. 5). (2) Checking the frequency response adjustment of the 1000:1 divider on the 3 volt range. The compensation adjustment is made with C3. DO NOT DISTURB THIS ADJUSTMENT UNLESS A HIGH FREQUENCY STANDARD IS AVAILABLE. THIS ADJUSTMENT DRASTICALLY AFFECTS THE FREQUENCY RESPONSE OF THE INSTRUMENT ON THE 3 VOIT AND ABOVE RANGES.

Model 400AB page -2-

Procedure:
a. Allow the instrument to heat for 5 minutes before calibrating。
b. Connect a low distortion test oscillator and an ac voltmeter accurate within $1 / 2 \%$ at 400 cps to the INPUT terminals of the Model 400 AB .
c. Set the Model 400 AB range swith to the 1 volt position and apply exactly 1 volt at 400 cps to the INPUT terminals.
d. Adjust $R 43$ so that the instrument reads 1.00 volt.

This completes the basic calibration of the instrument. The following steps should be followed if suitable equipment is available for determining frequency response. An -hp- Model 410B, 400D voltmeter are excellent for this purpose.
e. Set the Model 400 AB on the 3 volt range and apply 3 volts at 400 cps . Note the reading on the monitor meter.
f. Change the frequency to 500 kc and adjust the level until the monitor meter reads the same as at 400 cps . Adjust C3 to make the Model 400 AB read the same as at 400 cps .
g. Check the response over the range of 100 kc to 600 kc . It may be desirable to adjust C3 slightly to split any error to obtain the best over-all accuracy.

Section $4-10$ should read:
The high frequency response of the amplifier is affectied by the value of C25, which never needs adjustment. The low frequency response at 10 cps is affected by the value of R56. Smaller values of resistance lower the response at 10 cps . The value of $R 56$ is selected at the factory and should never need adjustment. Poor frequency response at 10 cps is usually due to weak tubes. V2 and V3 have the most affect. The amplifier has approximately 45 db of negative feedback which makes the frequency response almost independent of tube aging at mid-frequencies. Weak tubes will affect the frequency response some-what at 600 kc and 10 cps , where the feedback is less.
The 1000:1 resistive input divider is adjusted for flat frequency response with C3 on the 3-volt range. NO ATTEMPT TO ADJUST C3 SHOULD BE MADE UNLESS A REFERENCE VOLTMETER IS AVAILABLE WHICH HAS FLAT FREQUENCY RESPONSE FROM 400 cps TO 600 KC 。

Model 400 AB page $-3-$

The Table of Replaceable Parts should be changed as follows:
R3, R4: change to resistor, matched, $R 3=10.31$ megohms, R4 $=10.21 \mathrm{~K}$; hp- Stock No. 400D-67; Mfr., HP

R5: delete this circuit reference
ADD R65:. resistor, fixed, composition, 100 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$; -hp-Stock No. 23-100; Mir.s B

ADD R66: resistor, 2.2 megohms, $\pm 10 \%$, Electrical value adjusted at factory; average value shown.

The schematic diagram should be changed as shown in the following sketch.

MODEL 400 AB
PRODUCATION CHANGE
Serial 1182 and Above

Input voltage divider changed from capacitive to resistive type.

* Value adjusted at factory.

OPERATING AND SERVICING MANUAL FOR

MODEL 400AB
VACUUM TUBE VOLTMETER
Serial 982 and Above

Gopyright 1957 by Hewtett-Fackard Company
The information conteined in this booklet
is intended for the operation and main-
is intended for the operation and main-
tenance of Hewlett-Packard equipment and
is not to be used otherwise or reproduced
without the written consent of the Hewtert-
Packard Cormpany.

VOLTAGE RANGE: $\quad 0.3 \mathrm{mv}$ to 300 volts. 11 ranges, selected with front panel switch. Full scale readings of:

0.003 volts	0.1	3.0	100
0.01	0.3	10.0	300
0.3	1.0	30	

FREQUENCY RANGE: 10 cps to 600 KC .
ACCURACY: With nominal line voltage $\pm 10 \%$ (103 volts to 127 volts), overall accuracy is within $\pm 2 \%$ of full scale, 20 cps to $100 \mathrm{KC}, \pm 3 \%$ 10 cps to 600 KC .

CALIBRATION; Reads rms value of sine wave. Voltage indication proportional to average value of applied wave. Linear voltage scales, 0 to 3 and 0 to $1.0 ; \mathrm{db}$ scale, -12 db to +2 db , based on $0 \mathrm{dbm}=1 \mathrm{mw}$ in 600 ohms , 10 db intervals between r anges.

INPUT IMPEDANCE: $\quad 10$ megohms shunted by less than $25 \mu \mu \mathrm{f}$.
AMPLIFIER: Output terminals are provided so voltmeter can be used to amplify small signals or monitor waveforms under test with an oscilloscope. At least 0.25 volts available from 600 ohm source. Amplifier response same as voltmeter above 20 cps .

POWER: $\quad 115 / 230$ volts, $\pm 10 \%, 50 / 1000 \mathrm{cps}$, approx. 75 watts.

SIZE: Cabinet Mount: $11-1 / 2^{\prime \prime}$ high, 7-1/2" wide, $8-1 / 4^{\prime \prime}$ deep. Rack Mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, 8-1/4" deep.

WEIGHT: Cabinet Mount:
Net 13 lbs.; shipping weight 19 Ibs.
Rack Mount: Net 16 lbs.: shipping weight 26 lbs .

TABLE OF CONTENTS

MODEL 400AB
VACUUM TUBE VOLTMETER

Page No.

Section I GENERAL

1-1 General Description 1-1
1-2 Damage in Transit 1-1
1-3 Power Transformer Conversion 1-1
1-4. Accessories Available. 1-2
Section II OPERATING INS TRUCTIONS
2-1 Controls and Terminals 2-1
2-2 Operation, General 2-2
2-3 Voltage Measurement 2-2
2-4 DB Measurement 2-4
2-5 Using the 400AB as an Amplifier 2-5
2-6 Average Responding Meters 2-5
Section III THEORY OF OPERATION
3-1 General 3-1
3-2 Input Voltage Divider 3-2
3-3 Voltmeter Amplifier. 3-2
3-4 Meter and Rectifier 3-2
3-5 Power Supply. 3-2
Section IV MAINTENANCE
4-1 Introductory 4-1
4-2 Case Removal. 4-1
4-3 Servicing Eqipment Required 4-1
4-4 Trouble Localization 4-2
4-5 Power Supply. 4-3
4-6 Voltmeter Calibration and Gain 4-3
4-7 Tube Replacement 4-4
4-8 Meter Zero Adjustment 4-5
4-9 Residual Meter Reading 4-5
4-10 Frequency Response. 4-6
Section V TABLE OF REPLACEABLE PARTS 5-1

SECTION I

GENERAL

1-1 GENERAL DESCRIPTION

The Model 400 AB is a compact vacuum tube voltmeter which will measure voltages from. 003 volts full scale to 300 volts full scale over a frequency range from 10 cps to 600 KC . The input impedance is 10 megohms shunted by less than $25 \mu \mu \mathrm{f}$.

The basic accuracy of these measurements is $\pm 2 \%$ of full scale indication on all ranges from 20 cps to 100 KC with a $\pm 3 \%$ accuracy of full scale indications on all ranges over the entire range from 10 cps to 600 KC . It has a readable sensitivity to 0.3 millivolts which is sufficient to measure hum level and noise directly, as well as performing a variety of laboratory functions in measuring gain, network response, and output level.

The instrument is provided with output terminals so that it may be used as a high gain (40 db) broadband amplifier to increase the sensitivity of external equipment such as oscilloscopes or bridges.

1-2 DAMAGE IN TRANSIT

Should shipping damage become evident upon unpacking this instrument, follow the procedure outlined in the "Claim for Damage" section on the last page of this manual.

1-3 POWER TRANSFORMER CONVERSION

Should it be desired to convert the Model 400 AB to operate from a 230 v supply proceed as follows:
a. Remove the two bare wire jumpers on the terminal strip located on the right side of the instrument chassis above the power transformer. These jumpers connect the BLACK to the BLACK-GREEN lead and the BLACKRED to the BLACK-YELLOW lead from the power transformer primary.
b. Insert a new jumper on the terminal strip which connects the BLACK-YELLOW to the BLACK-GREEN lead.
c. Change the line fuse to one with a 0.5 ampere slow-blow rating. As shown on the schematic diagram this alteration changes the primary windings of the power transformer from a parallel to a series arrangement.

1-4 ACCESSORIES AVAILABLE
Model 452A. Capacitive Voltage Divider --
Extends the AC voltage range of the Model 400AB to 25, 000 volts.

Maximum voltage: $\quad 25,000$ volts
Frequency range: $\quad 25$ cycles/sec, to 20 MC
Accuracy: $\pm 3 \%$
Division ratio: 1000:1
Input capacity:
$1.5 \mu \mu \mathrm{f} \pm 1 . \mu \mu \mathrm{f}$
Model 454A Capacitive Voltage Divider --
Extends the voltage range of the Model 400 AB to 1500 volts.
Maximum voltage: $\quad 1500$ volts
Frequency range: $\quad 20$ cycles $/ \mathrm{sec}$. to 4 megacycles
Accuracy: $\pm 3 \%$
Division ratio: 100:1
Input impedance: $\quad 50$ megohms shunted with $2.75 \mu \mu \mathrm{f}$
Model 470A-470F Shunt Resistors --
These shunt resistors adapt the Model 400AB for meas uring currents as small as 3μ a full scale.

Accuracy: $\pm 1 \%$ to 100 KC , Models 480A-F:
$\pm 5 \%$ to 1 MC, Model 470 A
$\pm 5 \%$ to 4 MC, Models $470 \mathrm{~B}-\mathrm{F}$
Maximum power dissipation: l watt
Model
Shunt Resistance
470A
470B
470C
470D
470 E
470F
1 ohm

1. 0 ohm
2. 0 ohms
100.0 ohms
600.0 ohms
1000.0 ohms

Model AC-60A. Line Matching Transformer --

Adapts the Model 400 AB for the measurement of voltages on either a 135 ohm or 600 ohm balanced line.

Frequency range:	5 KC to 600 KC
Impedance, primary:	135 ohms or 600 ohms, balanced.
Impedance, secondary:	600 ohms, one side grounded.
Insertion loss:	Less than. 2 db at 100 KC .
Frequency response:	Less than. 5 db reduction at 5 KC and 600 KC from mid-fre-
Balance:	quency value. Better than 40 db , entire frequency range.
Power handling capacity:	+22 dbm (1.0 volts at 600 ohms).

Model AC-60B Bridging Transformer --

Operates through the audio range to match or bridge the Model 400 AB to balanced systems without disturbing the circuits under test.

Frequency range:
Impedance, primary:
Terminating
Resistance:
Insertion loss:
Erequency response:
Distortion:
Balanced:
Maximum level:

20 cps to 45 KC . 600 ohms.

600 ohms or 10,000 ohms. Less than 1 db at 1 KC . $\pm 1 \mathrm{db}, 20 \mathrm{cps}$ to $20 \mathrm{KC} ; \pm 2 \mathrm{db}$ to 45 KC .
Less than $0.1 \%, 50 \mathrm{cps}$ to 20 KC ; Less than 0.5% at 20 cps . Better than 60 db . $+15 \mathrm{dbm},(4.5$ volts at 600 ohms).

OPERATING INSTRUCTIONS

2-1 CONTROLS AND TERMINALS

Power Switch (ON)

Range Switch (DB VOLTS)

INPUT

OUTPUT

FUSE

POWER CORD

This toggle switch controls the power supplied to the instrument from the power line. In the ON position the red pilot lamp will glow.

This rotary switch selects the full scale voltage or the zero dbm decibel scale to be used.

These binding posts of the universal type are the input terminals for the instrument. The lower terminal marked G is connected to the chassis. The terminals are arranged to accept a $3 / 4^{\prime \prime}$ spaced double-banana plug.

These universal type binding posts are the output terminals for the amplifier section of the voltmeter.

This fuseholder, located on the rear of the instrument, contains a lampere cartridge fuse with a slow blow rating. When operating the instrument converted for 230 volt line voltage, the fuse should have a 0.5 ampere slow blow rating.

The three conductor power cable is terminated in a polarized three-prong male connector. This termination is provided upon recommendation of NEMA and for the protection of operating personnel. Instead of breaking off the ground terminal, it is recommended that an adaptor be used to mate the three-terminal plug with a two terminal receptacle. This will (l) provide operating personnel with the safety advantage the polarized plug offers, and (2) retain the connector for use when the plant is equipped with grounded female receptacles.

2-2 OPERATION, GENERAL

When the Model 400 AB is received from the factory, the meter pointer should indicate zero before the instrument is turned on as explained in paragraph 4-8. After the instrument is turned on, the meter pointer may show an indication as high as one scale divisions of the 0-1 scale. This effect is normal and does not impair the accuracy of the instrument.

Stray voltages in the vicinity of the instrument frequently cause erroneous pointer deflection when the instrument is operating on its lowest ranges. The condition arises because of the high input impedance of the instrument together with its amplifier gain.

When making measurements from a low impedance source, shielded leads will reduce the induced pickup.

If measurements are made from a high impedance source, stray pickup can also affect the meter indication. Shielded leads will reduce the pickup, but at the same time the shielding will increase the capacity shunted across the source, and may cause excessive circuit loading at high frequencies. In the case of low level meas urements the use of an oscilloscope is recommended to monitor the waveforms under test.

The Model 400 AB is an average responding device as discussed in paragraph 2-6 and as such has certain innate properties which affect measurement. Although the meter is calibrated RMS VOLTS the markings refer to the measurement of a true sine wave. If the signal under measurement contains harmonically related sinusoids, measurement errors will be encountered as described in Table 2-1.

2-3 VOLTAGE MEASUREMENT

Connect the instrument to a proper source. Allow about five minutes for the instrument to reach a stable operating condition after it is turned on.

Fig. 2 Impedance Correction Graph
a. Connect the signal under measurement across in INPUT terminals.
b. The voltage under measurement equals the meter indication multiplied by the range switch position divided by the full scale value of the appropriate meter scale.

EXAMPLES			
Meter	Range	Meter	Signal
Indication	Position	Scale	Volts
1.6	30	3	16
.7	.01	1	.007

2-4

DB MEASUREMENT

Measurements in terms of decibels are made the same way as voltage measurements except that the meter indication is read on the db scale. The level in dbm is the algebraic sum of the meter db indication and the range switch position when the measurement is made across 600 ohms. However, level differences may be read directly as $d b$ when the levels are measured across equal impedances.

EXAMPLES
(Across $600 \sim$)
Meter
Indication
$\begin{array}{lll}-6 & -10 & -16\end{array}$
$+1$
-20
-19

ACROSS EQUAL LOADS

\quad| Meter |
| :--- |
| Indication |

| $\mathrm{A}+2$ |
| ---: | :--- |
| $\mathrm{~B}-3$ |

db Difference	$=\mathrm{A}-\mathrm{B}$
	$=12-(-13)$
	$=25 \mathrm{db}$

dbm ACROSS LOADS NOT EQUAL TO 600 OHMS

To obtain the level in dbm when making measurements across impedances other than 600 ohms the impedance correction graph, shown in Figure 2, is provided. The corrected dbm level is the algebraic sum of the instrument reading and the correction from the graph.

EXAMPLE

400AB Indication	Load	Graph Correction	dbm
+30	90 ohms	$+8($ at 90$)$	+38

2-5 USING THE 400.AB AS AN AMPLIFIER
The Model 400AB may be used as an amplifier to increase the sensitivity of external measuring equipment. The maximum voltage gain is approximately 100 when the range switch is in the 3 millivolt position, with at least 0.25 volts from a 600 ohm source appearing across the OUTFUT terminals.

Higher voltages may be applied to the amplifier INPUT provided that the position of the range switch indicates a full scale voltage equal to or greater than the input voltage. The amplifier gain is cacreased in 10 db steps as the range switch is advanced toward. the high end from the 3 millivolt position. At the 0.3 volt position of the range switch the amplifier has a gain of unity.

2-6 AVERAGE RESPONDING METERS
The Model 400 AB is an average responding device calibrated to indicate $x \mathrm{~ms}$ values. It should be remembered that the rms calibrations on the meter face are based on the measurement of a true sine wave, and that the calibration is valid only when measuring a true sine wave.

Meters of the average responding type respond to those voltages which represent the absolute average of the variations from the dc mean value. Since the rms value of a sine wave is 1.11 times the absolute average, an average responding meter indicates 1.11 times the absolute average of any complex ac wave when the meter face is calibrated for the rms value.

Of particular interest in normal measurement is the sine wave partially distorted by harmonically related sinusoids.

If the waveform under measurement contains appreciable harmonics, errors of the magnitude shown in Table 2-1 may be anticipated.

This discussion in no way characterizes a limitation of the Model 400 AB since these conditions are common to all average responding devices. It is mentioned to insure that any operator engaged in measurement be fully apprised of the signal characteristics he measures. Input signals of a doubtful nature should be viewed on an oscilloscope to prevent unexpected results when using accurate measuring devices.

TABLE 2

EFFECT OF HARMONICS ON MODEL 400AB VOLTAGE MEASUREMENTS		
Input Voltage Characteristics	True RMS Value	Value Indicated
Fundamental $=100$	100	100
Fundamental + 10\% 2nd harmonic	100.5	100
Fundamental $+20 \%$ 2nd harmonic	102	100-102
Fundamental $+50 \%$ 2nd harmonic	112	100-110
Fundamental + 10\% 3rd harmonic	100.5	96-104
Fundamental $+20 \% 3$ rd harmonic	102	94-108
Fundamental + 50\% 3rd harmonic	112	90-116

SECTION III

THEORY OF OPERATION

3-1 GENERAL

Figure 3 shows that the Model 400 AB consists of an input system which acts as a voltage divider, a wide range amplifier which amplifies the ac input signal, and a rectifier and meter section which converts the ac voltage to a dc current presented by the meter. The functions of these sections will be discussed separately in the following paragraphs:

3-2 Input Voltage Divider
3-3 Voltmeter Amplifier
3-4 Meter and Rectifier
3-5 Power Supply

Fig. 3 Circuit Block Diagram

3-2 INPUT VOLTAGE DIVIDER.

The voltage divider section consists of two separate voltage dividers, one of which is a capacitive voltage divider, and the other is the precision wound cathode resistor of V1.

The switching sequence from the .003 volt position to the 1 volt position of the range switch covers the entire range of the cathode voltage divider in 10 db steps of attenuation.

At the 3 volt position the capacitive voltage divider consisting of C3, C4, R.3, and R. 4 is placed into the circuit and the entire switching sequency of the cathode voltage divider is repeated. In this manner the cathode voltage divider is used twice over the voltage range: once with and once without the input capacitive voltage divider.

3-3. VOLTMETER AMPLIFIER

The voltmeter amplifier V2, V3, and V4 is a straight forward frequency compensated circuit accepting the ac signal from the cathode follower Vl and furnishing two outputs with a gain of 40 db from V2 to V4. One output drives the rectifier and meter, while the other furnishes a signal across the OUTPUT terminals.

3-4 METER AND RECTIFIER

In the meter and rectifier section of the instrument the amplifier furnishes an ac signal to the rectifier section consisting of CR1 and CR2 which converts the ac voltage into a dc current which, in turn, is measured by the meter. The polarity of these two crystals is such that on each half cycle, they alternately charge and discharge the capacitors C23 and C24 through the meter in the same direction, as shown in Figure 4.

The two capacitors also furnish coupling to the feedback loop to the amplifier first stage V2. This negative feedback implicit in the loop consisting of R43, R22 and C25 serves to make the instrument more independent of tube variations, power supply changes, and circuit constants as well as to flatten the response of the amplifier.

3-5 POWER SUPPLY

The power supply consists of a full wave rectifier V5, a series regulator V6, a control tube V7, and a reference tube V8. Output ripple is coupled back to the control tube through capacitor C27.

Fig. 4. Partial Schematic Showing Rectifier Action

SECTION IV

MAINTENANCE
4-1 INTRODUCTORY
Maintenance and service procedures are contained in this sectionin the following paragraph.s.
4-2 Case Removal
4-3 Servicing Equipment Required
4-4 Trouble Localization
4-5 Power Supply
4-6 Voltmeter Calibration and Gain
4-7 Tube Replacement
4-8 Meter Zero Adjustment
4-9 Residual Meter Reading
4-10 Frequency Response
4-2 CASE REMOVAL
Ta remove the case from the instrument, remove the two screws on the rear panel of the cabinet. Slide the case to the rear free of the instrument body. The bezel. ring remains attached to the instrument body.

4-3 SERVICING EQUIPMENT REQUIRED

a. A dc voltmeter with a sensitivity of 20,000 ohms per volt or better a dc VTVM. (Such as the Model 410B.)
b. An ac voltmeter accurate within 1% of full scale at 400 cps .
c. A low distortion test oscillator. (Such as the (60p) Model 650A.)

TROUBLE LOCALIZATION

Electrical trouble shooting should be preceded with a visual inspection. Look for signs of damage, burned out components, overheating, looseness of parts, or cracks in printed wiring which, if not trouble sources themselves, suggest future trouble areas. A cold tube found simply by touch may save considerable time and effort. in restoring the instrument to operation. The voltage and resistance diagram on the reverse side of the schematic diagram sheet is frequently of assistance in localizing unknown difficulties.

The Model 400 AB consists of two major sections for the purpose of trouble shooting, and these sections should be checked in the following order:
a. Power Supply: Check the power supply voltages as shown in the schematic diagram. See paragraph 4-5 for instructions.
b. Voltmeter and Amplifier: Check the calibration and gain of the voltmeter and amplifier. See paragraph 4-6.

The chart in Table 4-1 is included to assist in analyzing common difficulties, and it is keyed to appropriate paragraphs in the text.

TABLE 4-1. TROUBLE SHOOTING CHART

SYMPTOM	POSSIBLE CAUSE	PARAGRAPH
Overall Instability	Inadequate power supply regualtion	$4-5$
Excessive noise and microphonics	Defective V1 or V2	$4-7$
Nonlinear meter tracking	Defective CR1 or CR2	
Poor meter Calibration	R43 and/or C3 out of adjustment	$4-6$
Excessive residual meter reading	Noisy V1 or V2 Hum and ripple	$4-6$
Hum, noise	Defective V6, V7, V8	$4-5,4-7$
Defective filter capa- citors or broken ground joints	$4-9$	

4-5 POWER SUPPLY

Before starting any service work check the power supply voltage between pin 8 of $V 6$ and ground with a dc voltmeter. The voltage should be between 295 and 300 volts dc.

If low: Possible defective rectifier V5 or regulator V6. Replace if necessary.

If high: Possible defective control tube V7. Replace if necessary.

If erratic: Possible defective reference tube V8.
The regulated output requires no adjustment, except that erroneous output voltage reading can indicate faulty regulator action.

Check the regulation of the power supply circuit by varying the line voltage from 103 v ac through 127 v ac. The Bt voltage should exhibit little observable change through this range, less than ± 1 volt.

DC FILAMENT ADJUS TMENT
a. Measure the dc voltage across C29 and ground, as shown in Figure 6.
b. Adjust R55, shown in Figure 6, as necessary to bring this voltage to 6.3 v dc, with a line voltage of 115 v .

4-6 VOLTMETER CALIBRATION AND GAIN

Weaknesses in this section are easiest to trace when the line voltage is reduced to approximately 103 volts ac with a known input: voltage at a frequency of 10 cycles. Under these conditions a tube with insufficient emission (V2, V3, or V4) will be readily apparent, because the feedback around the amplifier is least at the low frequencies and the voltmeter will not be in calibration within specifications. The use of higher frequencies for a calibration check might permit the feedback to compensate for the weak stage. This check should be performed when any tube is replaced in the voltmeter amplifier to be sure that the replacement tube possesses normal gain characteristics. It has been found, for example, that replacement tubes in the V3 position may carry plate voltage changes from tube to tube over a range of 110 vdc to 145 vdc or greater. When V3 is replaced its plate voltage should be measured to insure that it is between 110 v to 145 v dc. Generally, variations outside this range degrade the calibration of the instrument at 10 cps .

The first step in calibration adjustment consists of adjusting the amplifier gain on the 1 volt range with R43 shown in Figure 5. The second step adjusts the input voltage divider on the 3 vol.t range with C3 shown in Figure 6 .

After allowing the instrument to reach stable operating temperature the procedure is as follows:
a. Connect a low distortion test oscillator and an ac voltmeter (accurate to 1% full scale at 400 cps) to the INPUT terminals of the Model 400AB.
b. Set the Model 400 AB range switch to the 1 volt position, and apply 1 volt (as read on the external voltmeter) at 400 cps to the INPUT terminals.
c. Adjust R43 (Fig. 5) so that the 400AB indication agrees with that of the external ac meter (l volt full scale.)
d. Set the 400 AB range switch to the 3 volt position and apply 3 volts at 400 cps to the INPUT terminals.
e. Adjust C3(Fig. 6) so that the 400AB indication agrees with that of the external ac voltmeter (3 volt full scale).

If instrument cannot be calibrated, usually the crystal rectifiers are at fault, poor meter tracking, i, e: - a non-linear error across the scale, indicates poor crystals which should be replaced.

When replacing amplifier tubes, consult paragraph 4-7.

TUBEREPLACEMENT

Any tube in the Model 400 AB may be replaced with another of the same type having standard RETMA characteristics. Whenever a tube is replaced check the following chart.

CAUTION: The diodes used in the Model 400AB rectifier-meter circuit are special high performance junction type silicon diodes manufactured by the Hewlett-Packard Company, and must be obtained from (40p. The part number given this silicon diode is GlllA and replacements should be ordered by this number. These diodes are of the junction type. Because the junction is less than $1 / 2 \mathrm{mil}$ in diameter, extra care must be taken not to subject them to excessive mechanical shock. Dropping them on a table or on the floor, etc. may cause a mechanical failure at the junction. When installed in the instrument, however, the diodes will withstand any shock which can be withstood by the instrument as a whole.

TABLE 4:2. TUBE REPLACEMEN'T CHART

TUBE	FUNC TION	ADJUSTMENT REQUIRED
V1	Input Cathode Eollower	Calibrate Voltmeter, Paragraph 4-6, 4-9
$\underset{4}{\mathrm{~V} 2,3}$	Voltmeter Amplifier	See paragraph 4-6 and adjust amplifier gain steps a, b, c, Also see para. 4-10.
V5	Rectifier	Paragraph 4-5
V6	Series Regulator	Paragraph 4-5
V7	Regulator Control Tube	Check B+ Voltage, Paragraph 4-5
V8	Reference Tube	See Paragraph 4-5

4-8 METER ZERO ADJUSTMENT

Zero set the voltmeter with the instrument turned OFF. Use the mechanical adjustment on the meter to zero the pointer. Turn. the adjustment continuously in a clockwise direction to set zero and approach the zero from on-scale.

When the instrument is turned on, the meter pointer may rise above zero, but unless this residual reading exceeds two scale divisions when the range switch is on the 300 v position, (on the 0-1 scale) the accuracy of the instrument is not impaired. However, when the residual reading exceeds one scale division refer to the following paragraph.

4-9 RESIDUAL METER READING
Excessive residual meter displacement can be caused by noise or hum in the voltmeter amplifier or by ripple in the power supply. When the effect is present, short circuit the INPUT terminals and change V1 and/or V2. Check the dc filament voltage. (6.3 vdc across point shown in Figure 6 and chassis). The 120 cycle ripple on the de filaments should be less than. 05 v rms.

Before checking no1se or excess hum, be sure that a residual meter reading is not caused by an external rf field or by ground current effects in the measurement set-up before suspecting the Model 400AB
of faulty operation. In checking hum and noise start with the power supply rectifier and regulator tubes, replace if necessary. Check filter capacitors in power supply. Check decoupling capacitors in $B+$ circuit. Check all ground connections for broken solder joints.

Measure noise on B+ at pin 8, V6 with another 400 AB or 400D. This residual noise should be less than 2 mv .

4-10 FREQUENCY RESPONSE

High frequency compensation is established at the factory by value adjustment of the parallel network: R57, R58, and R59. No further adjustment of this network should be required.

No adjustment for frequency response is provided on the instrument since the 45 db of negative feed-back around the amplifier solessens the effects of tube characteristics that such adjustment is unnecessary. However, the response of the instrument can be affected at 10 cycles if replacement tubes do not possess standard RETMA characteristics in the V2 and V3 positions. Selection of tubes with normal gain characteristics for these two positions may be necessary.

CAUTION

When servicing printed circuits DO NOT push or pull wires in such a way as to raise the printed wiring from the board.

When soldering leads, use 50 watt ir on or smaller. Apply heat sparingly to the leads on the part, to be replaced, not to the printed wiring on the board.

Before installing new parts, clean holes to receive new part without forcing. Have new leads tinned and if necessary fluxed to receive solder quickly with a minimum of heat and without residue.
apply heat sparingly to lead of part to be replaced. remove part from card as iron heats the lead.

(2)

USING A SMALL AWL ©AREFULLY CLEAN INSIDE OF HOLE LEFT BY OLD PART.

(3)

BEND CLEAN LEADS ON NEW PART AND CAREFULLY INSERT THROUGH HOLES ON BOARD.

(4) HOLD PART AGAINST BOARD AND SOLDER LEADS.

Diagram showing how to replace parts mounted on printed circuit boards

Fig. 5. Rear View Cover Removed.

Fig. 6. Left Side View Cover Removed

Fig. 7. View Showing Amplifier Card Aside for Servicing

Resistor Board Details

NOTE: ON RESISTOR BOARD B ----
In some instruments $R 53$ is 80 K and R 52 is 144 K . In others R. 52 consists of 144 K and 3.9 M in parallel.

Range Switch Detail

(b) MODEL 4OOAB

(17p) MODEL 4OOAB
VACUUM TUBE VOLTMETER
SERIAL 982 \& ABOVE

SECTION V

TABLE OF REPLACEABLE PARTS

\square NOTE

Any changes in the Table of Replaceable Parts will be listed on a Production Change sheet at the front of this manual.

When ordering parts from the factory always include the following information:

Instrument model number
Serial number
-hp- stock number of part
Description of part

TABLE OF REPLACEABLE PARTS

Circuit Ref.	Description	-hp- Stock No.	Mfr. * \& Mfrs. Designation
C1	Capacitor: fixed, paper dielectric, $.01 \mu \mathrm{f}, \pm 10 \%, 600 \mathrm{vdcw}$	16-11	$\begin{aligned} & \mathrm{CC} \\ & 109 \mathrm{P} 10396 \end{aligned}$
C2	Capacitor: fixed, electrolytic, $20 \mu \mathrm{f}, 150 \mathrm{vdcw}$	18-9	X
C3	Capacitor: variable, ceramic dielectric, 1.5-7 $\mu \mu \mathrm{f}, 500 \mathrm{vdcw}$	13-7	L TS2A-NPO
C4	Capacitor: fixed, silver mica, $17,000 \mu \mu \mathrm{f}, \pm 2 \%, 300 \mathrm{vdcw}$	15-101	$\begin{aligned} & \mathrm{J} \\ & \text { lA3S17 } \end{aligned}$
C5	Capacitor: fixed, titanium dioxide dielectric, $1.0 \mu \mu \mathrm{f}, \pm 10 \%, 500 \mathrm{vdcw}$	15-102	DD Type GA
C6 to Cll	$\begin{aligned} & \text { Capacitor: fixed, paper dielectric, } \\ & .051 \mu \mathrm{f}, \pm 10 \%, 200 \mathrm{vdcw} \\ & \text { (Part of Range Switch Assembly) } \end{aligned}$	16-84	$\begin{array}{\|l\|} \mathrm{Z} \\ \text { Type } 33 \end{array}$
C12 A, B, C	Capacitor: fixed, electrolytic, 3 section, $10 \mu \mathrm{f} / \mathrm{sect}$. 450 vdcw	18-31.	$\begin{aligned} & \mathrm{X} \\ & \mathrm{FP}-375.8 \end{aligned}$
C13	Capacitor: fixed, paper dielectric, $.47 \mu \mathrm{f}, \pm 10 \%, 400 \mathrm{vdcw}$	16-99	$\begin{aligned} & \mathrm{A} \\ & \mathrm{P} 153 \mathrm{~N} \end{aligned}$
C14	$\begin{aligned} & \text { Capacitor: fixed, paper dielectric, } \\ & .051 \mu \mathrm{f}, \pm 10 \%, 400 \mathrm{vdcw} \end{aligned}$	16-89	$\begin{aligned} & J \\ & \text { Type BC } \end{aligned}$
C 15	Capacitor: fixed, electrolytic, $6 \mu \mathrm{f}, \pm 25 \%, 4 \mathrm{vdcw}$	18-45	CC Type $101 . \mathrm{D}$
C16	Capacitor: fixed, mica, $110 \mu \mu \mathrm{f}, \pm 5 \%, 300$ vdcw	14-71	$\begin{aligned} & \mathrm{V} \\ & \text { Type PQ } \end{aligned}$
C17	Same as C. 13		
C18	Capacitor: fixed, mica dielectric, $8200 \mu \mu \mathrm{f}, \pm 10 \%, 500 \mathrm{vdcw}$	15-98	$\begin{aligned} & \mathrm{J} \\ & \text { Cat. No. 1A5D82 } \end{aligned}$
C19	Capacitor: fixed, electrolytic, $4 \mu f, 10$ vdcw	18-37	CC Type 101.D
C20	Capacitor: fixed, silver mica, $820 \mu \mu \mathrm{f}, \pm 2 \%, 500 \mathrm{vdcw}$	14-49	Z
C21	Capacitor: fixed, paper dielectric, $2 \mu \mathrm{f}, \pm 20 \%, 400$ vdcw	16-81	$\begin{aligned} & \mathrm{AJ} \\ & \mathrm{SU} 5 \mathrm{E} 205 \mathrm{M} \end{aligned}$
C22	Capacitor: fixed, electrolytic, $500 \mu \mathrm{f}, 15 \mathrm{vdcw}$	18-5	$\begin{array}{lr} \mathrm{X} & \\ \mathrm{TC} & 1505 \end{array}$
C23, 24	Capacitor: fixed, paper dielectric, $1 \mu \mathrm{f}, \pm 10 \%, 400 \mathrm{vdcw}$	16-74	J

*See "List of Manufacturers Code Letters For Replaceable Parts Table."

TABLE OF REPLACEABLE PARTS

Circuit Ref.	Description	$-h p-$ Stock No.	Mfr. * \& Mfrs. Designation
C25	$\begin{aligned} & \text { Capacitor: fixed, mica, } \\ & 100 \mu \mu \mathrm{f}, \pm 10 \%, 500 \text { vdcw } \end{aligned}$	14-1.00	$\begin{aligned} & \mathrm{V} \\ & \mathrm{OXM} \end{aligned}$
C26	Capacitor: fixed, electrolytic, $40 \mu \mathrm{f}, 450 \mathrm{vdcw}$	18-40	$\begin{aligned} & \mathrm{X} \\ & \# F P-146 \end{aligned}$
C27	Capacitor: fixed, paper dielectric, . $1 \mu \mathrm{f}, \pm 10 \%, 400 \mathrm{vdcw}$	16-35	$\begin{aligned} & C C \\ & 109 P 10494 \end{aligned}$
C28	Capacitor: fixed, ceramic dielectric, $.01 \mu \mathrm{f}$, tol. $-0 \%+100 \%, 1000$ vdcw	15-43	$\begin{aligned} & \mathrm{CC} \\ & 36 \mathrm{C} 99 \end{aligned}$
C29 A, B	Capacitor: fixed, elec ${ }^{〔}=1 y t i c$, 2 section, $1000 \mu \mathrm{f} / \mathrm{sect} ., 15 \mathrm{vdcw}$	18-46'S''	CC Type DFP
C30	Capacitor: fixed, ceramic dielectric, $10 \mu \mu \mathrm{f}, \pm .5 \mu \mu \mathrm{f}, 500 \mathrm{vdcw}$	1.5-30	$\begin{aligned} & \text { K } \\ & \text { Type CI-1 } \end{aligned}$
C31	Same as C2.6		
R1	Resistor: fixed, composition, 330,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-330K	$\begin{array}{ll} \mathrm{B} & \\ \mathrm{~EB} & 3341 \end{array}$
R2	Resistor: fixed, composition, 100,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-100K	$\begin{array}{\|ll} \mathrm{B} & \\ \mathrm{~EB} & 1041 \end{array}$
R. 3	Resistor: fixed, composition, 10 megohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$	23-10M-5	$\begin{array}{ll} \mathrm{B} & \\ \mathrm{~EB} & 1065 \end{array}$
R4	Resistor: fixed, composition, 10,000 ohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$	23-10K-5	$\begin{array}{ll} \mathrm{B} & \\ \mathrm{~EB} & 1035 \end{array}$
R5	Resistor: fixed, composition, 10 megohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-10M	$\begin{array}{ll} \mathrm{B} & \\ \mathrm{~EB} & 1061 \end{array}$
R6	Resistor: fixed, composition, 470 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-470	$\begin{array}{ll} \mathrm{B} & \\ \mathrm{~EB} & 4711 \end{array}$
R7	Resistor: fixed, composition, 10,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-10K	$\begin{array}{ll} \mathrm{B} & \\ \mathrm{~EB} & 1031 \end{array}$
R8, 9	Resistor: fixed, special wirewound (Part of Range Switch Assembly)	400D-71	HP
R10 to R15	Resistor: fixed, composition, 750,000 ohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$ (Part of Range Switch Assembly)	23-750K-5	$\begin{array}{ll} \mathrm{B} & \\ \mathrm{~EB} & 7545 \end{array}$
R16	Resistor: fixed, composition, 15,000 ohms, $\pm 10 \%, 2 \mathrm{~W}$	25-15K	$\begin{array}{\|ll} \mathrm{B} & \\ \mathrm{HB} & 1531 \end{array}$
R 17	Resistor: fixed, composition, 47 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-47	$\begin{array}{\|ll} \mathrm{B} & \\ \mathrm{~EB} & 4701 \end{array}$

*See "List of Manufacturers Code Letters For Replaceable Parts Table."

Circuit Ref.	Description	-hp- Stock No.	Mfr. * \& Mfrs. Designation	
R18	Resistor: fixed, composition, 100,000 ohms, $\pm 10 \%$, 1 W	24-100K.	B GB	1041
R19	Resistor: fixed, composition, 4700 ohms, $\pm 10 \%$, 1 W	24-4700	B ${ }_{\text {GB }}$	4721
R20	Resistor: fixed, composition, 33,000 ohnas, $\pm 10 \%, 2 \mathrm{~W}$	25-33K	B	3331
R21	Resistor: fixed, composition, 330 ohms, $\pm 10 \%, 2 \mathrm{~W}$	25-330	$\frac{\mathrm{B}}{\mathrm{HB}}$	3311
R22 A, B, C	Resistor: fixed, wirewound (special)	$400 \mathrm{AB}-26 \mathrm{~A}$	HP	
R23 to R25	Resistor: fixed, composition, 510,000 ohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$	23-510K-5	$\begin{aligned} & \mathrm{B} \\ & \mathrm{E} \text { E } \end{aligned}$	5145
R26	Same as R17			
R27	Resistor: fixed, composition, 27,000 ohms, $\pm 10 \%, 2 \mathrm{~W}$	25-27K	B	2731
R28	Resistor: fixed, composition, 6800 ohms, $\pm 10 \%$, 1 W	24-6800	B ${ }_{\text {B }}$	6821
R29	Resistor: fixed, composition, 220 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-220	B	2211
R30, 31	Resistor: fixed, composition, 270,000 ohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$	23-270K-5	$\frac{\mathrm{B}}{\mathrm{~EB}}$	2745
R32	Same as R23			
R33	Resistor: fixed, composition, 270,000 ohms, $\pm 10 \%, 1 \mathrm{~W}$	24-270K	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~GB} \end{aligned}$	2741
R34	Same as R17			
R 35	Resistor: fixed, composition, 22,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-22K	B ${ }_{\text {E }}$	2231
R. 36	Same as R16			
R37	Same as R17			
R38	Same as R23			
R39	Same as R16			
R40	Resistor: fixed, composition, 1500 ohms, $\pm 10 \%$, 1 W	24-1500	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~GB} \end{aligned}$	1521

TABLE OF REPLACEABLE PARTS

Circuit Ref.	Description	-hp- Stock No.	Mfr. * \& Mfrs. Designation
R41	Resistor: fixed, composition, 200 ohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$	23-200-5	$\begin{array}{ll} \mathrm{B} & \\ \mathrm{~EB} & 2015 \end{array}$
R42	Resistor: fixed, composition, 390 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-390	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~EB} \quad 3911 \end{aligned}$
R43	Resistor: variable, composition, linear taper, 5000 ohms, $\pm 20 \%, 1 / 2 \mathrm{~W}$	210-122	$\begin{aligned} & \mathrm{BO} \\ & \mathrm{UPM}-45 \end{aligned}$
R44.	Resistor: fixed, composition, 270,000 ohms, $\pm 10 \%, 1 \mathrm{~W}$	24-270K	$\begin{array}{ll} \text { B } & \\ \text { GB } & 2741 \end{array}$
R45	Resistor: fixed, composition, 22,000 ohms, $\pm 10 \%, 1 \mathrm{~W}$	24-22K	$\begin{array}{\|l\|} \mathrm{B} \\ \mathrm{~GB} \\ 2231 \end{array}$
R46	Resistor: fixed, composition, 470,000 ohms, $\pm 10 \%, 1 \mathrm{~W}$	24-470K	$\begin{array}{\|ll} \mathrm{B} & \\ \text { GB } & 4741 \end{array}$
R47	$\begin{gathered} \text { Resistor: fixed, composition, } \\ 27,000 \text { ohms, } \pm 10 \%, 2 \mathrm{~W} \end{gathered}$	25-27K	$\left\lvert\, \begin{array}{ll} \mathrm{B} & \\ \mathrm{HB} & 2731 \end{array}\right.$
R48	Resistor: fixed, composition, 680 ohms, $\pm 10 \%, 1 \mathrm{~W}$	24-680	$\begin{array}{lr} \mathrm{B} & \\ \text { GB } & 6811 . \end{array}$
R49,50	Resistor: fixed, composition, 39,000 ohms, $\pm 10 \%, 2 \mathrm{~W}$	25-39K	$\begin{aligned} & \mathrm{B} \\ & \mathrm{HB} \\ & 3931 . \end{aligned}$
R 51	Same as R46		
R 52	Resistor: fixed, deposited carbon, 144,000 ohms, $\pm 1 \%, 1 \mathrm{~W}$	$31-144 \mathrm{~K}$	NN DC-1.
R 53	Resistor: fixed, deposited carbon, 80,000 ohms, $\pm 1 \%, 1 \mathrm{~W}$	31-80K	NN DC-1.
R 54	Resistor: fixed, composition, 33 ohms, $\pm 10 \%, 1 \mathrm{~W}$	24-33	$\begin{array}{ll} \mathrm{B} & \\ \mathrm{~GB} & 3301 . \end{array}$
R 55	Resistor: variable, wirewound, 4 ohms, $\pm 20 \%$	210-114	AT T.ype A control
R56 \Rightarrow R 59	These circuit references not assigned		
R60	Resistor: fixed, wirewound, 9 ohms, $\pm 10 \%, 5 \mathrm{~W}$	26-88	Sype C
R61	Resistor: fixed, composition, 470 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-470	$\begin{array}{ll} \mathrm{B} & \\ \mathrm{~EB} & 4721 \end{array}$
R62, 63	Resistor: fixed, composition, 150,000 ohms, $\pm 10 \%, 1 \mathrm{~W}$	24-150K	$\begin{array}{\|ll} \text { B } & \\ \text { GB } & 1541 \end{array}$

TABLE OF REPLACEABLE PARTS

Circuit Ref.	Description	-hp- Stock No.	Mfr. * \& Mfrs. Designation
R64	Resistor: fixed, composition, 4700 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-4.700	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~EB} \quad 4721 \end{aligned}$
	Binding Post Assembly: black	G-10C	HP
	Binding Post Assembly: red	G-10D	HP
	Insulator, binding post:	$\mathrm{G} \cdot 83 \mathrm{~A}$.	HP
	Insulator, binding post:	G-83G	HP
CR1, 2	Rectifiex, sillicon diode:	$\mathrm{G}-111 \mathrm{~A}$	HP
Fl	Fuse, cartridge: 1 amp, 250 V	211-18	$\begin{aligned} & \mathrm{E} \\ & \mathrm{MDL}-1 \end{aligned}$
	Holder, fuse:	140-16	$\begin{aligned} & \mathrm{T} \\ & 342003 \end{aligned}$
	Knob: bar	$\mathrm{G}-74 \mathrm{~N}$	HP
L1	Lamp, incandescent: 6-8V, . 15 amp	211-47	$\stackrel{\mathrm{O}}{\# 47}$
M1	Meter	112-6	BF Model 801 (special scale)
P1	Cable, power:	812-56	Electric Cords c/o Eckert-Lloyd.
S1	Switch, rotary:	310-1.63	$\begin{aligned} & \text { W } \\ & 68009-\mathrm{H} 2 \mathrm{C} \end{aligned}$
	Range Switch Assembly: includes Sl, C6, 7, 8, 9, iv, 11. R10, 10, 12, 13, 14, 1.5	$400 \mathrm{AB}-19 \mathrm{~W}$	HP
S2	Switch, toggle: ${ }^{\text {PST }}$	310-11	$\begin{aligned} & \text { Fisher } \\ & 80994-\mathrm{NV} \end{aligned}$
SR1	Rectifier, metallic:	212-101	$\begin{aligned} & B V \\ & 60-9284 \end{aligned}$
TI	Transformer, power:	910-139	Paeco
V1, 2	Tube, electron: 6CB6	212-6CB6	Z Z

*See "List of Manufacturers Code Letters For Replaceable Parts Table."

TABLE OF REPLACEABLE PARTS

Code Letter	Manufacturer
A	Aerovox Corporation.
B	Allen-Bradley Company
C	Amperite Company
D	Arrow, Hart \& Hegeman
E	Bussman Manufacturing Company
F	Carborundum Company
G	Centralab
H	Cinch-Jones Mfg. Company
HP	Hewlett-Packard Company
I	Clarostat Mfg. Company
J	Cornell Dubilier Elec. Company
K	Hi-Q Division of Aerovox
L	Erie Resistor Corporation
M	Fed. Telephone \& Radio Corporation
N	General Electric Company
0	General Electric Supply Corporation
P	Girard-Hopkins
Q	Industrial Products Company
R	International Resistance Company
S	Lectrohm Incorporated
I	Littlefuse Incorporated
U	Maguire Industries Incorporated
V	Micamold Radio Corporation
W	Oak Manufacturing Company
X	P.R. Mallory Co., Incorporated
Y	Radio Corporation of America
Z	Sangamo Electric Company
AA	Sarkes Tarzian
BB	Signal Indicator Company
CC	Sprague Electric Company
DD	Stackpole Carbon Company
EE	Sylvania Electric Products Company.
FF	Western Electric Company
GG	Wilkor Products, Incorporated
HH	Amphenol
II	Dial Light Co. of America
JJ	Leecraft Manufacturing Company
KK	Switcheraft, Incorporated
LL	Gremar Manufacturing Company
MM	Carad Corporation
NN	Electra Manufacturing Company
00	Acro Manufacturing Company
PP	Alliance Manufacturing Company
QQ	Arco Electronics, Incorporated
RR	Astron Corporation
SS	Axel Brothers Incorporated
TT	Belden Manufacturing Company
UU	Bird Electronics Corporation
VV	Barber Colman Company
W W	Bud Radio Incorporated
XX	Allen D. Cardwell Mfg. Company
YY	Cinema Engineering Company
ZZ	Any brand tube meeting RETMA characteristics.
$A B$	Corning Glass Works
AC	Dale Products, Incorporated
AD	The Drake Mfg. Company
AE	Elco Corporation
AF	Hugh H. Eby Company
AG	Thomas A. Edison, Incorporated
AH	Fansteel Metallurgical Corporation

Address

New Bedford, Mass. Milwaukee 4, Wis. New York, N. Y. Hartford, Conn. St. Louis, Mo. Niagara Falls, N. Y. Milwaukee 1, Wis. Chicago 24, Ill. Palo Alto, Calif. Dover, N. H. South Plainfield, N. J. Olean, N. Y.
Erie 6, Penn. Clifton, N. J. Schenectady 5, N. Y. San Francisco, Calif.
Oakland, Calif.
Danbury, Conn.
Philadelphia 8, Penn.
Chicago 20, Ill.
Des Plaines, Ill.
Greenwich, Conn,
Brooklyn 37, N. Y.
Chicago 10, Ill.
Indianapolis, Ind.
Harrison, N. J.
Marion, IIl.
Bloomington, Ind.
Brooklyn 37, N. Y.
North Adams, Mass.
St. Marys, Penn.
Warren, Penn.
New York 5, N. Y.
Cleveland, Ohio Chicago 50, Ill. Brooklyn 37, N. Y. New York, N. Y. Chicago 22, III. Lynn, Mass. Redwood City, Calif. Kansas City, Mo. Columbus 16, Ohio Alliance, Ohio New York 13, N. Y. East Newark, N. J. Long Island City, N. Y, Chicago 44, III. Cleveland 14, Ohic Rockford, Ill . Cleveland 3, Ohio Plainville, Conn. Burbank, Calif.

Corning, N. Y. Columbus, Neb. Chicago 22, Ill. Philadelphia 24, Penn. Philadelphia 44, Penn. West Orange, N..J. North Chicago, Ill.

Code Letter	Manufacturer
AI	General Ceramics \& Steatite Corp.
AJ	The Gudeman Company
AK.	Hammerlund Mfg. Co., Inc.
AL	Industrial Condenser Corporation
AM	Insuline Corporation of America
AN	Jennings Radio Mfg. Corporation
AO	E. F. Johnson Company
AP	Lenz Electric Mfg. Company
AQ	Micro-Switch
AR	Mechanical Industries Prod. Co.
AS	Model Eng. \& Mfg. , Incorporated
A.T	The Muter Company
AU	Ohmite Mfg. Company
AV	Resistance Products Company
AW	Radio Condenser Company
AX	Shallcross Manufacturing Company
AY	Solar Manufacturing Company
AZ	Sealectro Corporation
BA	Spencer Thermostat
BC	Stevens Manufacturing Company
BD	Torrington Manufacturing Company
BE	Vector Electronic Company
BF	Weston Electrical Inst. Corporation
BG	Advance Electric \& Relay Co.
BH	E. I. DuPont
BI	Electronics Tube Corporation
BJ	Aircraft Radio Corporation
BK	Allied Control Co., Incorporated
BL	Augat Brothers, Incorporated.
BM	Carter Radio Division
BN	CBD Hytron Radio \& Electric
BO	Chicago Telephone Supply
BP	Henry L. Crowley Co., Incorporated
$B Q$	Curtiss-Wright Corporation
BR	Allen B. DuMont Labs
BS	Exsel Transformer Company
B T	General Radio Company
$B \mathrm{U}$	Hughes Aircraft Company
BV	International Rectifier Corporation
BW	James Knight Company
BX	Mueller Electric Company
BY	Precision Thermometer \& Inst. Co.
BZ	Radio Essentials Incorporated
CA.	Raytheon Manufacturing Company
CB	Tung-Sol Lamp Works, Incorporated
CD	Varian Associates
CE	Victory Engineering Corporation
CF	Weckesser Company
CG	Wilco Corporation
CH	Winchester Electric Incorporated
CI	Malco Tool
C J	Oxford Electric Corporation
CK	Camlo Fastner Corporation
CL	George K. Garrett
CM	Union Switch
CN	Radio Receptor
CO	Automatic \& Precision Mfg. Co.
CP	Bassick Company
CQ	Birnbach Radio Company
CR	Fischer Specialties
CS	Telefunken (The American Elite Co)

Address
Keasbey, N. J.
Sunnyvale, Calif.
New York 1, N. Y. Chicago 18, Ill. Manchester, N. H. San Jose, Calif.
Waseca, Minn.
Chicago 47, Ill.
Freeport, Ill.
Acron 8, Ohio
Huntington, Ind,
Chicago 5, Ill.
Skokie, Ill.
Harrisburg, Penn. Camden 3, N. J.
Collingdale, Penn.
Los Angeles 58, Calif.
New Rochelle, N. Y.
Attleboro, Mass.
Mansfield, Ohio
Van Nuys, Calif.
Los Angeles 65, Calif.
Newark 5, N. J.
Burbank, Calif.
Los Angeles 58, Calif.
Philadelphia 18, Penn.
Boontan, N. J.
New York 21, N. Y.
Attleboro, Mass.
Chicago, Ill.
Danvers, Mass.
Elkhart, Ind.
West Orange, N. J.
Carlstadt, N. J.
Clifton, N. J.
Oakland, Calif.
Cambridge 39, Mass.
Culver City, Calif.
El Segundo, Calif.
Sandwich, Ill.
Cleveland, Ohio
Philadelphia 30, Penn.
Mt. Vernon, N. Y.
Newton, Mass.
Newark 4, N. J.
Palo Alto, Calif.
Union, N. J.
Chicago 30, Ill. Indianapolis, Ind. Santa Monica, Calif. Los Angeles 42, Calif. Chicago 15, 111. Paramus, N. J. Philadelphia 34, Penn. Swissvale, Penn. New York 11, N. Y. Yonkers, N. Y.
Bridgeport 2, Conn.
New York 13, N. Y.
Cincinnati 6, Ohio
New York, N. Y.

CLAIM FOR DAMAGE IN SHIPMENT

The instrument should be tested as soon as it is received. If it fails to operate properly, or is damaged in any way, a claim should be filed with the carrier. A full report of the damage should be obtained by the claim agent, and this report should be forwarded to us. We will then advise you of the disposition to be made of the equipment and arrange for repair or replacement. Include model number and serial number when referring to this instrument for any reason.

WARRANTY

Hewlett-Packard Company warrants each instrument manufactured by them to be free from defects in material and workmanship. Our liability under this warranty is limited to servicing or adjusting any instrument returned to the factory for that purpose and to replace any defective parts thereof. Klystron tubes as well as other electron tubes, fuses and batteries are specifically excluded from any liability. This warranty is effective for one year after delivery to the original purchaser when the instrument is returned, transportation charges prepaid by the original purchaser, and when upon our examination it is disclosed to our satisfaction to be defective. If the fault has been caused by misuse or abnormal conditions of operation, repairs will be billed at cost. In this case, an estimate will be submitted before the work is started.

If any fault develops, the following steps should be taken:

1. Notify us, giving full details of the difficulty, and include the model number and serial number. On receipt of this information, we will give you service data or shipping instructions.
2. On receipt of shipping instructions, forward the instrument prepaid, to the factory or to the authorized repair station indicated on the instructions. If requested, an estimate of the charges will be made before the work begins provided the instrument is not covered by the warranty.

S HIPPING

All shipments of Hewlett-Packard instruments, should be made via Truck or Railway Express. The instruments should be packed in a strong exterior container and surrounded by two or three inches of excelsior or similar shock-absorbing material.

DO NOT HESITATE TO CALL ON US

