HP Archive

This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com

Please visit us on the web!

On-line curator: Glenn Robb

This document is for FREE distribution only!

INSTRUCTION AND OPERATING MANUAL FOR

MODEL 335B
F.M. MONITOR and MODULATION METER

Type No. 92848

TABLE OF COMTENTS

SPECIFICATIONS 0
TMTRODUCTORY. 1
UNPACKING • 1.
IMETALTATION
Location. 22 6-~~-
Electrieal Comoctions2
INIEIAL ADJUSTMENTS 3 ヶ-…-
ORERATION. 6.-.-.
Controls. (--․-
Overmoduletion Indicator. 7 -----
MEASUREMENTS. 8
Measurement of AM on FM compiers. - 8
Modulation Chock 10
MALNTENANCE12
Daily Maintenance. 12
Tube Replacement 12Stendardfzing of: ComparisonOscillator Frequency.. 13
RF Tuning13
Chance of 74
CIRCUIT DESCRIPTTON. 15
Brief Circuit Deserfption. 15Dotailed Circuit Doscription. .. 17
Those entries above that are marked are considered to be essentisl to the proper care of operation of this instrument and it is strongly rocommended that those ontries be read thorouchily beforo attompting to put this instrument into operation.

SPECTFT NTIONS

FREQUENCT MONTTO?
Frequancy Renge: Any frequency fror 35 mo to 108 me Supplied with orystal of frequency matching oustomer's transinittere

Deviation Renge: +3 ko to wh le mean fregrency devis tion.
Accurncy: Deviation indicator eocuraoy better tien t1000 ops ($\quad .001 \%$)
Power Required: Approximately 2 m atta Operate s sotisfactumiy at levis above snd below 2 watts.

WNULATTON NMTHR:
Modulation Range: Neter reads full s cale on modulation swing of 100 ken Scale caljbrated to 100% at 75 ko ; 133% at 100 kco

Acouracy: Within 5 modulation peroentage or ertiro sobluo
Meter Chareoteristios: Wetur Jampod in aconrimoe with rec recuivomentse Keads peak value oi mociulation pooir of durutior botween 40 and 90 milliseoonds. Moter returns from fuil readia to 10% of full 5 aluo within 500 to 800 mil12seocnds.

Froquenoy Forponse: Flat within -7 de from 30 to 15000 opso
Extornal Meters: Provisions axo mado for instol lotion of romote metor having fuli sogle sensitivity of 400 mioromperes geale anould indioato 100\% modulation at 300 mioromperos. Extra moters oan be suppliod with unit.

FGUK ITIT IMDICAOR
Foak Limit Range: From 50\% to 120% mod 3 ation (7510 $=100 \%$. Frovis ion For oxternel posk indicatorso

ATDJO OTPUT
Prequenoy Range: 0 ops to 20 ke Rooponse elat within the Equipped with straciar 75 mior seocnd dummphasis oin ouit.

Distortion: Ioss then 0.25% ot 100% modulat iono
cutput Vol tage: 10 volts into 20.000 ohms at 1 ow frequeno iow ti 200 modu. Tation at lon iregrencien

Goine: At Jast 75 db bglow naji土 output 2 wol rosuliming from hof modulation at in freguenoies.

Fonitorine output: 400 ma into 600 onms bamen, nt 100% modulation at Iom
Sizo; Front panol $10^{711} \times 19^{\prime \prime} \times 13^{\prime \prime}$ doop。
Porrer: 115 volta $50 / 00$ ops primary powen. Requires mproximntoly 150 volts.

-np-
 MODEL 335 B
 FM FREQUENCY MONITOE AND MODULATMON METETK

$\because \because \because \because \because \because \because \because \%$

INTRODUCTORY

Whe -hp-Model 335E FN Frequency Monitor and lodulation Meter has been designed for monitoring the carrier frequency and modulation of FM broadcast thansmitteres.

The instrument alco demodulates tioe carrior to provide essentially dintortion-rree audio output, for aural monitoring and for measuring thonomiturs performance characteristics. The instrument has boun carefully designed to provide the utmoet in stability and in troubiefuee porfomance. The campier deviation meter reads the center frequency without being affected by modulation and does not require frequent ealibration adjustments. The perfomence of the equipment is to a high degree independent of monitoring power supplied by the trensmitter, Ine voltage variations, tube charactoristios, and tomperature changes within the range of variation nommaly encountered in broadcast service.

In addition to monitoring the earmier trequency and modulation of the transmitter, the kodel 3353 ellows measupements of (a) inciciontal Alf modulation, (B) FM noise, and (c) percentage modulation of the transmitter by the carríar nall method.

This manuai pertains ooth to the Modol 335 B and the Model 335 PR . The suffix "R" distinguishes the rackmounting strie fron the cablret style.

UNPACMING

The crystal oven, its erystel, and the $200 \mathrm{ke} / \mathrm{s}$ check crystal used in this instmument aro packed soparately to minimire the possibility of damage in transit. The caystal oven should be unwrapped caxcfully being oaneful not to damage the thomometer protruding from the side of. the oven. The RF fittings for the rf input cable (not suppliod) are also peckagod with tho cryotel oven.

When the equipment is first unpecked, it should bo carefully ingpocted for possible damage in transit and to make certain that all tubes and lamps are secure in thoir socketa. If any shipping damage is discovered, Collow the directions sot out in the Warranty at the back of the manual. If the instrument is returned to the factory ton any reason, the crystal oven must be raclroc soparatoly
to prevent its falling out of the socket and damaging the interior of the cabinet. The 200 kc check erystal also should be packed soparately:

The crystal oven and check crystal should be placed in their sockets before the dust cover is replaced in this inspoction.

> INSTAEIATION

LOCATION

Snecial precautions should bo taken to install the fodel $335 B$ so that a generous circulation of afm is maintained. In order to obtain good circulation, it is desirable to mount the instrument above patch cord panels or othor Iow power systems. The instrument can be operated in quite high ainbient temperatures if this precoution is soliowed.

In no case should the instrment be operated in surroundings such that the crystal oven themostat loses control; the crystal oven thomostat pllot lamp should Mash intermittently, showing that the thermostat is controlling the oven temperature. If the lamp does not light, tho air flow around the instrument should be ircreased.

ELECTPICAL CONNECMIOIS

Thore are three sets of olectrical connections to bo made to the Model 335 B and all of those connectione are made on the back side of the instrumont:
(1) The motor base type plug on the instrument should be connectod to a nominal 115-volt, 50/60 cycle singlo phase supply. It should be noted that the powor source for the ovon is connected pormanontly across the input circuit ahead of the power switeh so that the crystal will be maintained at the propor tomperature when the equipmont is tumaed off end not in use.
(2) A coaxial tupe conncctor (Mavy type-49194) is provided and chould be connectod to the monitoring pick-up providod by tho transmitter manufacturor. Fiftyohm coaxial cable such as $R G-8 / \mathrm{U}$ shoula be used to conmect the model 3353 to tho pick-up loop. Relatively long Icng ths of cable can bo toleratod for this comection. Directions for adjusting the monitoring pick-up on the transmittor are given on page 5 of this manual.
(3) An eight-point terminal strip provides oonnections for avdio output, an oxtornal modulation
motor, and oxtomal poak modulation indicator lightso
(a) Monitoring output: Whon terminals 3 and 4 are comoctod togothor, tominals 1 and 2 provido an audio signal for fuoding a 600-ohn balancod circuit. Tho nominal ontput is l. 5 volts (4 mw) at 100% modulation at low modulating froquoncios.
(b) Hish Lovel Output: A high levol output is provided botwoon torminal 3 and ground (tomminel 5) for uso with a noise and distortion analyzor on a hisi impodanco inonitoring amplifior. Tho nominal output is 10 volts at 100% modulation at low modulating froquoncios and tho appliod load should not be loss than 20,000 ohms. Whon making noiso and distortion moasuromonts, terminal 4 should be disconnocted from tominal 3 to prevent any undosinabio loacing ty tho monitoring circuits.
(c) Extornal Modulation Motor: Tominals 5 and 6 aro normally joincd by a 1000-ohm resistor. If an external modulation moter is to bo usod, this rosistor should be removed and tho meter connected betwoen theso torminals, 6 boing the positivo conmection and 5 (ground) the negative. The oxtornal moter should bo identical to the one in the instrument in owdor to indicato accuratoly and have tho proper dynamic cheractoristics. It is recommendod that oxtro modulation moters bo obtainod from tho Howlett-Packard Compeny, Siving tho sorial numbor of the mit for which thoy are intondod.
(d) Extomal Peak Modulation Indicaton: An oxtornal indiceting lamp may bo placed in parallol with tho onc in the instrumont by comocting it botwoen torininels 7 and 8. Eithor a 3-or a 6-watt, 120 volt lamp mey bo uscd. Not more then a fow hundrod micromicro-farads of capasity should bo introduccd by this connction so that it is desirablo to uso short longths of low capecity cable.

All loads councoting to tho torminal strip and $A C$ powor connoctions shonid bo isolatod from stiong RE ficlas, proforably using shioldod wiro.

> INITIAI ADJUSTMENTS

Tho initisl adjustmonts for this unit are tho same as the usual operating adjustments, oxcopt for the adjustment of the transmittor pickmp loop. Tho following adjustmonts should bo mado whon tho lodol. 335 B is first installod and as often as dosired theroafter:
(1) Turn on the instrumont aud allov a hoating period of at luast a fow hours, bocause tho main crystal

Will tare somo time to bo hoatod to its propor tomporaturo. Disconncot tho pick-up loop. During the wammup, koop a closo chock reading on the crystal themometer which is visible through the front panol. If the reading of this thormometor overshoots $65^{\circ} \mathrm{C}$ by any appreciable amount, the cause usually will be found to be that the morcury column In eithor tho thermomotor or thomostat is not undtod. Theso columa can bo re-united by removing tho unft in question and altornatoly heating and cooling the unit.

Stops 2 and 5 below can bo performod ar or only a fow minutes warm-up, although as lons a wam-up as possiblo should bo allowod before porforming stop 6 .
(2) Opon the panel doon and sot the CALIARATE - USE - CARRIER LEVEI switeh to tho CALIBRATE position. The GARRTER DEVIATION muter will road closo to contor scale and tho PERCENT MODJLAMION meter will road approximately 100\%.

Aejust the SET TO ZERO DEV. control so that the CARRIER DEVIATION metor reads exactiy zero. Adjust tho SET TO 100% control so that the PERCENT MODUTATION motor reeds exactiy loo\%. Pheso controls adfust the sountor circuits to nomal operation.
(3) Sot the CALIBFATE - USE - CARRIER IEVEL switch to a position halfway botwoon USE and CARRIER LEVEL. There is a detont mochonism at this point, although not labolled on the penel.

A reading on the PERCENT MODULATION meter between 40 and 75 wili be obtained with no si gnal coming from the transmitter. This reading should be peaked by adjusting the condenser marked MUTT on the chassis (not on front pancl). With this condenser peaked, a reading of at least 40 on the PERCENT MODULATION meter shoula be obtained.
(4) The condenser marked Osc on the chassis should not need adjustment. However, if a reading of Iess than 40 is obtained with the previous adjustment in (3) above, it may be desirable to peture the oscillator tank circuit will be found to vary slowly on one side of the maximum and rapidly on the other side. The proper setting for this condenser is that which will give a reading about 25% below the maximum on the side whioh varies slowly. This adjustment is not eritical, since it affects only slightly the frequency and stability of the crystal oscillator.
(5) Next, set the CALIBPATE - USE - CARRIER

$$
-4-
$$

LEVEN switch to the CARRIER LEVRL position und adjust the pick-up loop in the transmitter to give a reading between 50 and 100 on the PERCENT MODULATION meter. The carrier input level is not critical. The power fron the transmitter con be adjusted from about one-tenth of a watt to 4 watts without affecting the accuracy of the Model 335 D .

The reading on the PRRCENT HODULATHON meter with the switch in the CARRTER LEVEL positioli is approximately proportional to the input voltage. With 10 volts of RF voltage from the transmitter, a reading of approxinately 100% will be obtained on the PERCENT MODUTAATOM meter with the switel in the CARRIER TEVEL position.
(6) The frequency of the comparizon oseilletox in the equiment has been adjusted to the specified chamel at the factory and can be expected to be within a few hurdred cycles of the correct frecuency when the instrument is received. Aster the equipment has been tumed on for several hours, the temperature of the erystal oven will come up to 65°. If it is desired to check the frequency of the monitor against a standard transmission, this may be done and the fequency of the monitor cen be adjusted by means of the screwdriver adjustment marked GRYSTAL TUNTNG under the cover on the front panel. This adjustment should be made with the switoh in the USE position.
(7) The instrument is now ready for operation and only those adjustments described under "Maintanance" in this manual should be requined.
(8) When making noise measurements on transmitters operating on chemels 201,221,241,261,281,300, or on channels near those, a spurious begt note may appear in the audio output of the monitor. Its maximum amplitude is approximately 65 di below the output for 200% modulation at low frequencies. The signal is caused by a hamonic of the 200 kc I. F^{\prime}. signal beating with the high frequeney crystal signal: hence, by detuning either the transmitter or the monitor crystal oscillator a few hundred eycles, the frequency all the beat can easily be shifted to a high frequency where the de-emphasis in the monitor will place it below the residual noise.

COUTROLS

The penel controls with their functions ame given below:

CONTROL
USE - CALIERATE CARAIPR LEVBL

SET TO 100%

SETT TO ZZRO DUVIATION

CRYSTAL TUNINO

MODULATIOR DOEATITY

PEAK MODULATIOR INDICATOR

ORYSTAL TMMPERATURE

Connect front pancl meters so as to enable the instrument to be calibrated, to check the performance of the comparison frequency multiplier circuite, and to masure the carrier input level fron the transmitter.

Adfusts current in final switching tubes to proper magnitude to insupe that sensitivt ity of both the CARRIER DEVIATION indication and PERCENT MODUTATION indication axe correct.

Adjusts balancing current in CARRDER DEVIATION meter so that zero doviation is indicated when exactly 200 kn is applied to the counter circuits. This adjustment is made in the CALIBRATE position of the UGE - CALIBRATE switch. In this position a 200 ke voltare from an internal 200 ke crystal-controllod oscillatur is applied to the couriten circuits.

Adiustis frequency of local aystal-controllt ed comparison oscillator so the monitor can be adjusted to read zero deviation for the correct frequoncy.

Conneets the modulation and peak indicators so they respond in accordance with either positivo on negative svings of modulation.

Adjusts the firing pofut of the peak mocuIation indicator lamp so the modulation level at which the fiash will be obtalued can be set.

Themometer which indioates temperature within crystal oven; normal temperature is approximately $65^{\circ} \mathrm{C}$.

In addition to these controls on the Iront panel., throe controls are located on the chassts of tho oguipment. A potentiometer Fl4, locatod on a terminal. board at the left side underneath the chassis, is provided to adjust the voltage rogulaton cireuit if necessary whon the voltage regulator tubes ane changed. A serew drivor control of tho tuning condenser (Ose) in the crystal tank circuit is locatod just bohind the erystal oven on top of tho chassis. Further back of the panel in the same aroa is located the crystal multiplier tank cipoujt control (MULT) which is also a serewariver adjustmento

When the equipment has been installed and adjusted in accordanco with the foregoing instructions, nothing further is nocessary during the operation except occasionally to check the roadings of the CARRTER DEVIAMION meter and the MODULATION meter in the CATIBRATE position. The CARRIER DEVIATION notox should read oxactly zero and the MODULATION metor should read exactly loo\% with the switch in CALIBRATE pocition. Any variations from these readings may be correctod from time to time by moans of the SET TO ZBRO DEVIA'SOA control end the SET TO 700 control.

It may also bo desirablo occasionally to check the carrior lovel by retuming the awitch to tho CARRIBR LEVEL position and reading the modulation meter. Any reading in this position between 50 and 100 wili provide satisfactory operation.

OVER MODULATION INDICATOR

The modulation meter in the fodel 335 B FM Froquency Monitor and Modulation Meter has beon dosigned so that it will indicate 90% of the value of a modulation pear of 85 millisoconds duration. Further, tho modulation motor will fall to 10% from a 100% roading in not less than 500 milliseconds and not more then 800 milliseconds aftor tho completo romoval of 100% modulation. These design requirements are in accordance with FCC standards.

In ractice, however, many bursts of moduletion in a typical program are of mach shorter duration thon 85 miliiseconds--perhaps one or two miliiseconds--and the Model 335 B does not indicate the full peak value of modu-
lation bursts of extremely short duration. levertheless, those shont intervals of high modulation are important, becausc, it substantial ovemodulation occurs on such peals, the result may be detected in recetvers and al.so may couse adjacent channel interforence.

In order to prevent these conditions, it is recommended that the Model 335 B be oporated with its overmodulation indicator (Iamy) adjustin? knoo set not hicher than 70% and that the modulation of the trassmittor be adjusted so that occasional ilashing of the overmodulation indicating lamp is obtained with common progran matorial. This will mean that the general program level whll result in the order of 50% modulation as indicated by the meter. Fodulation peaks of short duration will be higher than this value but probably will not exceed 100%. This condition of operation is desiroble as it permite the true capabilities of high quality, unique only to TM more nearly to be realizod. ovemodulation is to be avoided as it resuits in considerable deterioration of the program quality.

Any liniting amplifier used in the audio system should be essentielly instantanecus in its action. Iimiting amplifiers having a control action slower than a few milliseconds will permit modulation peaks goins considerably above the 100% lovel. This emphasis of short modulation peaks by limiting amplifiers is particularly bad in MA Systoms due to the pre-emphesis of the high frequencies in the system. Therefore it is recommended that liniting amplifiers be avoided mless their characteristies and offects on tho catire system are well known.

II $A S U R E M E N T S$

MEASUREMINT O THCIDDETAL AITLITUDE MOOULATTON
ON EM BROADCAST CARRIPRS
A special jack is provided in the -hip- Model 335 BFM monitor and Modulation lieter to facilitate the meacurement of spurious all modulation on the carrier or MM broadcast transmitters. This jack is located on the back of the inswrument and is marked J3. lloasurements of spurious AM modulation can be made with the use of this jack and a sensltive vacuum-tube voltmeter in the following marnex:

1. Couplo the unodulated RF voltage from the transmitter to the Model. 335 so that the RP voltage causes a reading of 100% on the PRnCRivT HODULATION metex when the CAIIBRATL - UST .- CAREIIR LSVEL switch is in the GARRIER LIEVEL position. This ts equivalont to a carrier voltage of 10 volts of to an avdio Ievel (assuming 100% All modulation
of +22.2 db referred to a zero reforence on one milliwett in 600 chms). If it is not possible to couple closely enough to obtain a reading of 100 , , record the reading obtained.
2. Connect a tip-and-sleeve $1 / 4^{11}$ dianeter telephone type whus to a sensitive vacuum tube voltmeter and connect the voltmeter to J3 on the back of the Model 335B. an -hp- Model 400A. 4000, or the VIVM section of an -hphodel 330 B or 3300 can be used for this msasurewent. The lead connecting the voltmeter. to the jack should be shiclded and the capacity should not oxceed 100 mm . Alao connect a 2 -me chm resistor across the teminais of the voltmeter so that the resistor is smatine the line to the Modol 335 .
3. Read and rocord the audio voltase readinz obtained on the voltmeter.
4. The percentage of hlf modulation can then be outalned from the following formula:

Por examplo, assume tio RF input was set to 100% and that a reading of 0.1 volt was obtained on the voltmeter. Then, the percentage of cminitude modulation is:

$$
\frac{0.1 \times 1000}{100}=\frac{100}{100}=1 \%
$$

5. On a db basis, 100% carpicr reading corresponds to an audio level of +22.2 db . The meter reading of 0.1 volt corresponds to -27.8 db . Mherefore the AM modulation expresed. in db is $22.2 \mathrm{db}+17.9 \mathrm{db}$ or 40 db . Thus, the spurious AM is 40 dib below the condition of 100% Ali modulation.

NOISE GEMERATGD TH MONITOR

The notse generated in the Model 335 is at least 75 db below the audio output level resuiting from 100,6 modulation at low frequencies. Assuming that loog modulation at a low frequency provides exactly 10 volts output at the high-impedanco audio output of the lodel 335B, the noise as measured across a 20,000 ohn minimum load on terminals 3 and 5 should be not more than 1.8 minlivolts.

Noise should be measured with the switch in the CAIIBRATE position. In no case should noise be measured by removing the RF input from the moniton viti the switch in the USE position, nor should tho noise be measured by shorting the RF input, When the Rr is removed with the switch in the USE position, the monitor operates with the equivalunt of a rloatinf rrid circuit causing an incrase

MODULATTON CHECK

The percent modulation of an FM transmitter may be measured convenientiy by the carrien null method using the TF signal from this monitor. Jack J2, which Is a phone jack on the rear of the chassis, supplies a small IF slgnal which is normally 200 ko in frequency and contains the full FM swing of the transmitter. This output should be connocted to the anteme temminal of a communications type receiver, preferably one which will tune to 200 kc . However, the signal is approximately a scuare wave, so that the second or third harmonic could be used. The transmitter should be unnodulated and the receiver BFO adjusted to give a beat note of serecal hundred oyclos. As sine wave modulation is gradually applied to the transmitter, the amplitudo of the trarsmitter carriez, and hence the feceiver beat note output, will go through successive omplitude nulls. Table 1 on pege IJ gives various combinations of percentage modulation and motulating frequency for the convenient number of nulls.

Other combinations may be comouted using the following relation:

$$
\text { Modulation index }=\frac{\text { frequency swing }}{\text { modulating frequency }}
$$

The velues of the modulation inder for which the carrier disappears are those which are equal to the argument of the zero oider Bessel function when the function has zero velue. These values of modulation indices are given in the Colloving table. Additional values are spaced at intervals of pi.

If the receiver is tuned to 200 kc , a modulation swing of 75 kc is used at 100% moduletion. However, if it is tuncd to a hamonic, the modulation swing is also multiplied, giving a correspondingly higher modulation ewing for 100% modulation.

It should be noted that the accuracy of measurement of modulation percentage is equal to the accuracy of calibration of the modulation frequency. Also, it is necessary that the modulation signal have low aistortion if the nulls are to be very sharply indiceted.

The method described is useful in setting the modulation monitor sensitivity if it becomes necessary to replace some critical part. Components whose volue directly affects the accuracy of the modulation moter are R38, R39, R40, R53, R58, and the meter MI itself. If any OI these parts are replaced, tt will be necessary to use oxact duplicate values on rosct R39 as follows: With the transmitter modulated 100 , with some convenient frequency between I and 5 kc . Set $R 26$ for 100% roading in the USE position. Then switch to CALIBRATS and set R39 for 100% reading. The monitor should read correctiy as long as this 100% reading is maintained in the CATIBRATE position.

TASIE I

MAINTENANCE

DATLY MAINTENANCE

A daily maintenance check of the Model $305 B$ is recommended before the transmitter is put on the air. This check can be made quickly by means of the internal calicration controls pirovided on the equipment. Tho following procedure is recommended:
(1) Set the switch under the panel door to the CAITBRATE position, Set the CAFRIRR DEVIATION meter to zero and the PBECENT MODULAIION meter to 100% by means of the corrospondingly marked controls.
(2) Noxt, set the switch halfway between the USE and CARRIER LEVEL positions. Ir this position the MODULATION meter should read at least " 40 " with no power coning from the transmitter.
(3) When the transmitter power is tumed on, sot the awitch to the CARRTER LSVIL position to male cortain that RF power is being received from the transmitter. A reading between 50 and 100 should be obteined on the PERCENT MODULATION meter. Iower readings indicate insurficient power being received from the transmitter.
(4) Make cortain that the front panel thermostat indicates that the temperature or the oryetal oven $1 s$ at 65 degrees Centigrade.
(5) Set the switch to the JSE position. The instrument is now ready for use.
(6) If any of the above resdings fail to come within the Iimits indicated, follow the procedure described under "Installation" or check for tube fallure.

IUBE REPLACEMENT

A11 of the tubes in this instrument, with the exception of tho crystal oscillator tubo, can be changed without spocial precaution. When any tube is changed, it is desirable to go through the routine maintenance check as doscribed abovo.

If the orystal oscillator tube is changed, a shift in frequency of the comparison oscillator may causc an error of several hundrod cyeles in the roading of the CARRIER DEVTATION metor. Although this variation is well within the limits of accuracy prescribed for FM service, it is desirable to check this frequency when the oscillator tube VI is replaced.

Tubes in the voltage regulator circuit can be replaced without appreciably affecting the acourecy of the instrument, although it is cestrable to measure the regulated voltage whenever any of thbes VIOB, Vl3, VIL, or VIS are replaced. The regulated voltage should be set at 300 volts de by means of Rlyo

If abnomally high or low lino voltages are present at the station instalietion, it may be desirabie to check the pperation of the voltage regulator at line voltages within the range likely to be encountered. This check can be made by connecting a do meter to the regulated side of the power supply and varying the input line voltage to the instrument with an auto-transfomer over the anticipated range of line voltage. The de voltage will be constant within the region of control of the regulator circuit and will change at the end af the region of control. This region of control cen be adjusted somewhat by potentiometor R49. Nommally, a variation in line voltage from 105 vol:s to 125 volts will have no neasurable effect on the accunacy of the monitor.

STANDARDIZTNG OF COHYARISON OSGILIATOR FREOUENOY

The frequency of tho local comparison osefllator is of the order of 5 megacycios. The circuits neve been designed so this oscillator can oporate at $1 / 20$ of a frequency 200 ke less then the tranmitter frequency. This dosign fecilitates checking of the crystal oscillatox in the monitor because the rrequency is always a multiplo of 5 kc . Thus, a source of 5 kc signal controlled by a crystal can be first set to zero beat with a W.W.V. transmission at 5 megacycles. Then this same 5 ko frequency will beat with the local comparison oscillator frequency to provide a difrerence signsl well within the audio range. This beat can be brought to zero beat with the pre-standardizod 5 ke signal by means of the crystal tuming adjustment of the FM monitor. The only equipment neeessary for this adjustment is a receiver which will cover the frequency pange around 5 megacycles end a source of 5 ke voltage which can be crystal controlled and adjusted slowly.

Many stations will profer to uso standard monitoring sorvice periodically to chock their transmiotors. In this case, It is desirable to adjust the transmittor in accordance with the instructions of the frequency monitor.. ing servlce and adjust the PM monitor to tho transmitter immediately thereaftor.

Checks of tho crystal. frequeney shotid not be required excopt over very long intervals. The accurecy of the Modol 335 B is such as to insune variations in readinge of rot more than 200 eycles over long periods of time.

Roturing of the RT circuits is indicated if the MODULATION moter roads less thon " 40 " when the GALIERATE - USE - CARRIPR LTVLL switch l s set midway botween the USE GAd CARRIER LEVEL positions with no power coming from the transmitter. (With powor coming from the transmitter, the roading will be 10 or so higher on the MODULATION moter than with no tranemitter power.)

Tuning tho fi section of the Model 335 B consists solely of peaking the crystal oscillaton V1. This osciliator operates at one-iwontieth of a froquency 200 ke below tho transmittor antema frequency $\frac{(f x n i t t o r-200 K C)}{20}$.

Since the Ifodel 335 monitors the $88-103$ me band, the oscillator operates in the vicinity of 5 mc , the exact Arequency depending upon the particular channel for which it is to be used.

To aid in tuning the oscillacor, the MODULATTON meter acts as a tuning indicator when the CALIERATE - USE CARFIER LEVEL switch is set midway betwoen the USE and OARILER LEVEL positions (with no transmitter power applied). This tuning should be nade as follows:
(1) The dust cover should be removed irom the instrument. Switch should be midway between USE and CARRIER LEVEL positions.
(2) Tune C2 (marked MULI on chassis) for a maximum reading on MODULASION meter.
(3) Tume C6 (mariced OSC on chassis) on the high frequency side of resonance for a reading about 1.5% below the maximum obtainable. On the high frequency side of resonance the meter reading varies much slower than on the low frequency side as c6 is tuned. By tuning 15\%. or more down in level, the frequency of oschlilation is made practically indepencent of tuning.
(4) If the roading on the MODULATION meter is now less than "40", a new GAC7 tuibe should be inserted and allowed to heat for twenty minutes or more. The proceedure should then be repeated.

CHANGE OF CHANNEL

If It is necessary to retune the oscillator completely as, for example, when a new crystel for a different channe? is inserted, the following procedure is recommended.

With no crystal in the circuit or when the new crystal is inserted, \& reading of about " 20 " is ofton obtained on the MODULATION meter when the switch is midway between the USE and CARRIIF IPVEL positions. This reading is caused by oscillation due to the 2ooke thed circuits in the plate and screen circuits.

Now, perform step (3) above. The MODULAMION moter reading will fall off when C6 is tuned to the proper frequency (unless 02 should happen to be tuned properly, in which case the MODULATION meter reading will rise).

Now percom steps (2) and (3) in that order to complete the retming of the oscillator. There is a possibility that C 2 (MULT) can be tuncd to tho wrong hamonic, because the tuning range of C 2 is about 25% and the circuit tunes to the fourth harmonic of the crystal. This can be avoided by removing the bottom plate from the Model 335 B and observing that condensen $C 2$ (MUIT) is adjusted nean minimum capacity for the higher channols and near maximun capacity for the lower channels. Another indication of tuming $C 2$ to the wrons hamonic is that the CARRIER DEVIARTON meter will reed off scale when the Model 335 B is returned to service.

It should also be romombered that the frequency of oscillstor Vl can be adjusted over a renge of several kc of the transmitter antenna frequency by means of the CRYSTAL TUNING control. Therefore, when using s new crystal, the Model $335 B$ should not be used on a new channel until the crystal frequency (and thus the acouracy of the Model 335B) has been checked accurately on the Model 3353 zeroed against a transmitter wose frequency is lown at tho time of conparison.

> CIRCDIT DESORIPMION

BRIEF DESCRTPTION OF OPERATION

The general operation of the Model 3355 can bo described by referming to the block diagram on Page 18. The transmitter frequency is combincd with an accurately controlled frequency derived from a crystal-controlled oscillator in the instiment so thet a differerce frequency of 200 kc plus or minus the modulation compononts is obtained. The frequency of this 200 kc moan difference frequency is measured by frequency counter circuits. The frequency counter circuits also demodulate the signal. From this cemoduleted sicnal the percentage of modulation is reasured.

Also, audio voltages are obtained for moasuring the disbortion and Proquoncy response cheracteristics of the trensmittor.

The local crystel-controlled oscillatar operates at 1/20 oi a frequency 200 re less than tho transmittor froquoncy $\frac{(r \text { mittor-200kc) }}{2}$. The output of the crustal controlled oscillator is multiplied foun times and fod into a triodo mirer at $1 / 5$ of the inal frequency. The final multiplication is obtainod in tho mizer cipouts.

Tho frequancy countor efrouits are of the pulse integrating type end are destgncd to provide a high degroe of If inearity over the frequency renge of 100 kc to 300 kc . A direct curment meter in the output circuit of these counter tubes is used to measure the frequancy deviation of the carmior. In order to יnse a meter of adequate sensitivity, a do compensating current exactly equal to the current generated in the counter circuits with 200 ke applied is used to balance the meter current to zero when the carpier of the transmitter is on frequency. The sensitivity of this moter is such that, when the counter circuits are driven by a frequercy which deviates by 3 kc above or 3 kc below 200 kc , a fuli scale reading is obtsined.

Since the 200 ke signal applied to the counter circuits contains also the cull mooviation swing, the counter circuits can be arranged to denodulate the requency moculation. The magnitude of this demodulated voltage is used to measure the percentage modulation of the transmitter. The audio amplifier which follows the frequency counter circuits, drives the modulation meter end the peak modulation indicator.

The frequency counter circuits are extronely stable and will drift genoraily less than 300 cyclos over a 2 l-bove period. However, an internal 200 ke check frequency is provided to set the froquency deviation metor to zono deviation and thus assure accurate callbration of the frequency counter circuits.

The calibration of the modulation monitor is standardized by stondardizing the current fod into the frequency counter circuits.

Audio oubput voltages are provided for monitoring or messuring the transmittor ontrut.

The deviation metor is fully protected from overloeds and no demaze to the instrumont wlll ocour if the transmitter mput is sudionly removed.

$$
-16-
$$

An external modulation meter may be comected in serics with the intomal meten. Temminals ape provided at the rear of the chassis for this purpose.

DETAILPD DESCRIPTION OF CIRCUITS

The schomatic diagram of the Modol 335B at the back of this mankal shovid be followed in conjunction with the following description.

Tube VI is the local crystal oscillator tubo which generates the basic froquency with which the transmittor frequency is comparod. This tube is operatod as an eloctron coupled oscillator. The crystal is connected from grid to ground when switch 52 is in the USE position. The crystal is mounted in a double chamber oven whose temperature is regulated by means of a meroury column themostat. The cheracteristics of this oven are such thet the temperature at the crystal varies by considerably less than l degree C as a runction of time and over an amblent range from +10 degreas to tio degrees 0 .

The screen of Vl is tuned to the crystal frequency by means of 13 and C6. The plate is tuned to rour times the crystal frequency by means of $H 1,02$, and 030

A small capacity 0l is connected directly across the orystel and provides for edjustment of the crystal frequency by about 3 ke around the nominel trensmitter frequency.

V2A is the mixer tube. A signel from the transmitter is applied directily to the cethode of VeA across R9 and RIO perallel. The input signal is fed to the mixer through a 50-ohn concentric cable and the characteristics of the temination R9 and R10 are such that a standing wave ratio of not over Is I/I is obtained looking into the RF input. The grid of V2A is driven by the output voltage from the crystal oscillator tube at a frequency of four times the crystal frequency. This signal combines with the signal from the trens. mitter to give a difference erequency in the plate cimcuit of V2A which is 200 kc plus the full modulation swing containod in the monitored signal.
V. is also armanged to provide the 200 nc signai for calibration of the pulse counter circuits. This signal is obtainod by switching a 200kc erystal between grid and ground of V1 and tuning the screen circuit of V1 to 200kc by means of $L 4$ and $C 8$. A 200 kc resonant circuit, the and 65 , is placed in series with the high frequency resonant circuit in the plate ot VI. This is possible because the tuning

capacities 08 and 05 ane large enough to provide adequate by-passing for the high frequency voltages generated when V2 is connected in the USE position. Switching is done by means of switch $S 2 B$ which connects the input of the counter circuits to either the output of mixer tube V2A in the USE position or directly to the 200kc voltage in the output of V1 in the CALIBRATE position.

V2B serves as on amplifier tube to amplify the 200kc signal. A crystal limiter, Yl and YZ, is connected to the grid circuit of $V 2 B$ so that the driving voltage is limited and clipped to provide a square vave shape.

V3 is a phase inverter winich applies the 200 ko signal to the grids of $V 4$ and $V 5$ which are the imitial switching tubos. The space current for V, and V s are derived from a constant current cenerator tube V6. This tube has a large un-bypassed cathode pesistor $R 60$, and the gric of $V 6$ is held at a constant potential from the regulated power supply by means of E23 and Ral. With this cirouit, the current passing through V6, and consequently V4 and V5, is, to a high degree, independent of the amplitude of the driving siznal on tubes v4 and $V 5$.

The operation of switchinc tubes VL and $V 5$ can be described as follows: The ghid of Vh is driven positive while the grid of $V 5$ is driven to cut off. All the current from V6 flows through VL and R21, thereby generating a flat topped wave across R2I. Whon the grid oi $V 5$ is positive, a similar action takes place with all of the current flowing through R22. Thus, the ontput of switching tubes V4 and VS provides a driving signaz in switching tubes V7 and V8 Which is nearly independent of the amplitude of the 200 ke voltage, provided the 200 ro voltage is at least large enough to provide the switching action thus described. Switching tubes $V 7$ and V8 operate in similar manner. When the grid of $V 7$ is driven positive, the conetant current provided by V9 flows through V7. In this cass, however, C22 takes ail of the curent initially, but as the chargo of c22 is butldinc up, more of the curront $1 J .0 w s$ ihrough R33 untlit finally c 22 is fully charged to a voltage which is oxactiy equal to the constent current provided by vy flowins through R33. In this manner, a pulso of accurstely controlled current flows throuch C22 for oach alternative half cycle. In a similax manors the switching of VB goneratos a pulse of accupstely controlled eurront through c26.

C22 and 026 provido an aditional function. Since ce2 is cully charged when the voliege changes so ess to cause v8 to conduct, the anode of tubc V7 is hejd at a low voltage, thus assisting in the cut-off of: v'? at the
instant tubo $v 8$ bogins to draw cumpent. In this manner, tho tine of riso of current conduction in tubes $V 7$ and $V 8$ is cutremely rapid so that eithor ono tubo or tho other is conducting the ontire constant current.

If the dircuit constants aro 90 arranged that 022 and C26 are fuliy charged within $1 / 2$ pycie of the highost frequency involvod, the amount of euxrent flowing through C2z is a function of froquency onzy. Tho current pulsos flowing throuch de2 and ca6 are rectified by means of a bridge rectificr, and tho rosulting de current is appliod to M2. This oporation makos the response of M2 directly prom portional to frequency. In ardon to balance out the reading which would bo obtainod on M2 with a 200kc signal, some current is applied in roverso through M2. This cumpoat is gonorated by a voltage drop across resistor R37 which carrios tho gamo curront which flows through curront rogulator tubo 19 and through switching tubos $V 7$ or V8.

The sonsitivity of this circuit as a froquency motor is directly proportional to this constant current. The balancing current in the meter varies in exact accordance with the constant current. Thus, should there be variations in oither the constant current or in the charactoristics of the tubes, the moter will still read zero center with 200 kc appifed. The current applied to the deviation motor consists of a sexies of pulses of direct current, the AC components or which are by-passed through 030. C30 is also effective to low audio frequencies, thus preventing the meter from trying to follow the modulation.

When frequency moduiation is applied to this counter cirouit, the rectifica value of the current varies Inearly with modulation. This rectifted current generates an auilo signal in the primary of transformer Th. VI7 serves as an audio amplifier stabilized with foedback by moans off a tertiury winding on \mathbb{T}. so the response and gain is stabilized。 The andio dutput from VI7 is applied to VIGA which serves as an impedance transformer to operato the modulation meter. VIGB serves as an impedance transfomer to provide a distortion-free audio output for monitoring and for measurins purposes.

The notworkg and the rectifior which dotermine the oporetion of modulation meter MI are comected to the cathode circuit of VI6A. This circuit is a peak reading voltmeter in which a de voltage is generated scross C39 equal in value to the peak value of the audlo Irequency. 30 is umanged to feod additional powor into the modulation meter ML on rapid upswinge, and the network of 253 , in combination with C38, together with the dynamic characteristics of the metor movemont provide the desired response and time characteristics of the modulation
metor. The same do voltage which operates the modulation meter is fed through B6I to the grid of VII. VII is a thymatron arrangod to flash a Lomp when the peak valuc of audio voltage oxceeds a pre-set level which is controlled by R42 in the cathode circuit of VII.

Since tho sensitivity of the deviation meter and the culibration of the modulation motor are dopendent, among other things, on the magnitude of tho constant curront switchod by tubos V7 and V8, ambangoments havo beon made for accurabe. Iy moasuring that current. Switch S2C and $S 2 B$ connect mettor MI to measure the constant current feed to the switching tubes. This current is adjusted by means of ne6 in the grid of v9.

V2OA is a tube which compensates for hum generated in the switching tubes. The hum voltage is picked up in T3. amplified in VlOA, and applied as a control signal on V9. This feature is of importance when the equipment is used cor measuring purposes.

Mete: M is also arranged to measure the grid current of the mixer tube. When the switch is in the CARRIER TEVEI position, Meter MI is comnocted to the grid circuit of V2A so thet the grid current drewn by V2A because of application of input voltase can be determined. When switch $S 2$ is in a position halfway between USE and CAPRTER LEVEL, meter MI is connected so as to measure the gric current of V2A generated by the application of voltage from the local oscillator. Thus, the tuning of the circuiis In the screen and plate of VI can be adjusted to mako suro adequate voltag. is obtained from the local crystal to provide proper miving action.

De-emphasis of the audio vultage is obtained by a network R52 and C46 in the grid of V163.

V14, V10B, V13, and VIS provide a regulated voltage supply for the operation of the critical circuite in the equipment. V12 together with T1, L11, L12, 032, 033, and 034 provide the de power for the operation of the equipment.

The roctifier crystals in the output of tho switching tubos and othon critical components are filtered and by-passod to eliminate spurtous ris pickup which otherwise might havo a dojeterious effect on the oporation of the equipmont.

CHART OR CBYSTAL FDWQUENCIES

FOR MODEL 335 B

$\begin{aligned} & \text { Cir } \\ & \text { cuit } \\ & \text { Refo } \end{aligned}$	Description	-np- Stock: NVO_{2}	Manufacturer and typo
Cl	ClBACmTOR: varisblo (trimmer type); approx 25 mme max; locking ty po shaft	22-15	Sarkes-Tarzion: J.2lp
2	CAPMCITOR: veriable (trimmer type); upprox 50 mmf max; looking type shoft	12-16	$\begin{aligned} & \text { Sarkes-Tarzian: } \\ & \text { J-55L } \end{aligned}$
03	CAPACITOR: ceramic; 47 mmf ; 500 vdow	15-34	Flectrical Reactrane Corp: ST-7 MPO
Cls	CAPACTTOR: mion; 5000 mmf ; 300 Vdiow	14-14	Wics mold: Typo 7
55	CAPACTIOR: ajilver mioa; $620 \mathrm{mmf} \pm 5 \%$; 500 vicur	15-12	Sangano: Type J
66	CAPACITOR: VEria blo (trimmor typo) approx 100 raf max ; lociling type shaft	12-17	Sarkes-Inajen: $J-1032$
C7	CIPACTTOR: $\operatorname{ailvor~mion;~} 1800$ mnf; 500 vdow	15.19	Sangano: Type CR
C8	CAPACITOR: silvor mica; 620 mmi t5\%; 500 vdaw	15-12	Sercamo: Iype d
C9	CAPACITCR: mice; 5000 mts ; 300 Vew	24-24.	Mon mold : Typo W
07.0	CAFACTMOR: cora mic: NPO: 22 maf; 500 vdew	15-2	Eleotrien Reactance Corp: CT-2
011	CAPACTHOR: micas 5000 mmf ; 300 Viow	$24-14$	16.comold: Typont
012	CAPACTIOR: miog ; 1000 mf ; 300 VLOW	14.11	3icamold: Typs OXM
C13	CAPACTIOR: COROLO; NPO: 22 mm ; 500 vdcw	15-21	Eloctriosl Reaotence Corp: CI-?
$\begin{aligned} & c D_{1} \\ & a, b \end{aligned}$	GAPACM CR : paper; two Beotions ench $0.25 \mathrm{mr} ; 600$ vdow	17-14:	```General Electric: 25F628```
0.5	CAPACLIOR: mio a; 1000 mmf ; 300 VCam	14-11.	Wio amold: Type orM
Cl6	CAPACTI CR: mjos; 1000 mme ; 300 vdow	1)-11	Micamold: Type OMN
017	CAPACITOR: amica; 1000 mmf ; 300 Vdow	[1-11	Nicamold : Type OxM
018	CAPACITOR: mica; 1000 mmf ; 300 vchew	14.11	Wicamold : Type OXM
C19	CARACITCR: peper; 1 mf ; 600 vdow	17-12	General Ele otric: $23 F 467 \mathrm{G} 103$
ceo	CAPACIT OR: paper; 1 mf ; 600 Vdow	17-12	General Electrio: 23.4679103

$\begin{aligned} & \text { Cix- } \\ & \text { cuit } \\ & \text { Ref. } \end{aligned}$	Description	-hy- Stock No.	Manuf'actures and Type
$\bigcirc 21$	CAPACTTOR: ceranic; 2000 mmf ; feed thru type	$15 \cdot 22$	Hlectrical Reactance Corp: CF-I
022	CAPACMOR: ceramic; NPO: $110 \mathrm{mmP} \pm_{2} \%$	15-22	Electricsl Roactance Corp: SI-7
023	This referonce not asaigned.		
024	CAPACITCR: peper; two sections each	1.7-1.4	Coneral Eloctric:
a,b	0.25 maf ; 600 vdcm		538628
625	CAPACITOR: pagor; $0.05 \mathrm{mf} ; 600 \mathrm{vd}$ (ev	16-2.	Aerovex: type 684
026	CAFAGTIOR: Coramic; NPO; $110 \mathrm{mmP}+2{ }^{*}$	15-22	Wlectrical Reactanco Corp: SI-7
C2?	CAPACTTOR: ceramic; 1000 maf ; food thri type	15-21	Electricel Ruecteno Corm: CE-1.
023	This refercne not assigned		
C29	CAPACITOR: ceranio; 1000 mm ; feed thru typo	15-21	Eloctricnl Reactance Corp: CF..I
030	CAPACITCR: dxy oloctrolytic; 50 inf ; 50 vdcw	18-50	Mallory: TC-39
031	OAPACITOR: peper; 1 mi ; 600 vdcw	17-12	$\begin{aligned} & \text { Genorel Rlectric: } \\ & \text { 23r4670103 } \end{aligned}$
032	CAPHCITOR: papur; 4 mf; 600 vacw	17-10	Comell-Dubilier: TH 6040
033	CAPACIMOR: papor; 4 mis; 600 vdcw	17.10	Cornel1-Tubilier: $\text { TL/ } 6040$
C34	CAPACTMOR: papor; 4 mf; 600 vdew	27-10	Comell-Dubilier: TLA 6040
635	Cf PACTTOR: neprer; 1 dar; 600 vacw	17-12	General Electric: 23F467G103
036	CAPACTTOR: paper; 1 mf; 600 vacw	17-12	Generol Electric: 23F4.67G103
037	CfPACITOR: paper; 4 mf ; 600 vacw	17-20	$\begin{aligned} & \text { Comell-Dubilier; } \\ & \text { TLA } 6040 \end{aligned}$
C38A	CAPACTIOR: pepur; 1 mf; 600 vdow	17-12	Goneral Electric: $23 F 4670103$

$\begin{aligned} & \text { Cir- } \\ & \text { cuit } \\ & \text { Ref. } \end{aligned}$	Decoription	$-h p-:$ Stock Mo.	Menufacturer and Typo
C38B	CAFACITOR: paper; 1 mf ; 600 vcicw	17-12	Ceneral Electric: 23F467G103
039	CAPACTIOE: paper; $4 \mathrm{me} ; 600 \mathrm{vdcu}$	17-2.0	Comell-Dubllisor: TLA 6040
040	CAPACTPOR: dry oloctrolytic; 10 mf : 40 vdcm	18-10	Mallory: Typo W3-72
C4]	CAPACITOR: silver mica: NPO; 62 mmp; 500 vach	15-25	Acrovox: Type 1469
042	CiPACIMOR: dry decotralytic; 50 m ; 50 vảew	18-50	Mallory: Type TC-39
C43	CAPACITOR: paper; 1 mP ; 600 Wdew	17-12	General Rlectric: 23표 $47 \mathrm{G103}$
044	CAPACITOR: mies; $1000 \mathrm{mmi} ; 300 \mathrm{vdcw}$	1.4-1.000	Micemold: Type OXM
045	CAPACITOR: paper; $1 \mathrm{mi} ; 600 \mathrm{vdcw}$	17-12	General HIoctric: 23F467c103
046	CAPACIMOR: silver mtca; $510 \mathrm{mmf} \pm 5 \%$ 500 vtick	15-24	Micenold: Type PO
047	CAPACIROR: ceramic; 110 maf	25-28	Bloctrical Reactonos Corp: SI. \cdot ?
043	This roforence not assignod.		
049	Capacticr: mica; 150 maf; 500 vicw	1.4-1.50	Micamola: Type OXM
050	CAPACTTOR: mica; 150 mmp ; 500 vacw	14-150	Micamold: Type OXM
051	CAPACTERE: mica; $150 \mathrm{mmi} ; 500 \mathrm{vacw}$	1.4-150	Muemold: Type CxM
059	CAPACTTOR: mica; 150 umif; 500 view	24-150	Micamold: Type OXM
053.	CAPACTTOR: mica; 150 mar; 500 vicw	$14-150$	Micamold: Type oxM
554	CAPACITOR: mica; 150 mmf ; 500 vacw	$14-150$	Micemold: Type OXM
05	CAPACTTOR: maica; 150 mar ; 500 vick	14-150	Micamold: Type CXM
056	CAPA CITOR: mica; 150 mmf ; 500 vacw	14-150	Micamold: Type OxM
057	CAPACTIOR: mica; 2000 men; 300 vdCw	14.11	Micanold: Typo oxm
058	GAPACITOR: mice; 1000 mme; 300 vdow	1.4-13.	Micamold: Type OXM
059	CAPACITOR: mice; 1000 mme : 300 vdew	14-11	Micariold: Type oxM

$\begin{aligned} & \text { Cir- } \\ & \text { cult } \\ & \text { Ref. } \end{aligned}$	Description	$\begin{gathered} -\mathrm{hp}- \\ \text { Stock No. } \end{gathered}$	Menufacturer and Type
060.	CAF	2 $14-1.50$	Micamold: Type OXM
661	CAPACITOR: mica; 150 mmr ; 500 vdew	24-150	Micemold: Type OXM
06	CAPAGETOR: mica; 150 mmf ; 500 vdcw	2.4-1. 50	Micemold: Type OXM
II	FUSE: cartridge typo, aiza 3AG; rated 0.025 amp, 250 volts	211-6	Littelfusc: 312.25
F2	FUSE: caftridge type, size 3 AG; rated 2. ainp; slow-olow tyno	211-16	Bustiman: MUL?
II	LaMP: incandescent; 6 watts; 120 volta; candelabra sorew base	$211-5$	General Risetric: 56/6W
Ie	LAMP: incandescont; $6-8$ volts, 0.15 lemp; min bayonat base	211-47	General Rleotric: " 147
J1	UhF PANEL JACK: Navy Type -49194	38-50	Amplienol: \#33-11
J2	JACK: telephone type	38-10	Switcheraft
33	JACis: tolephono typo	$38-10$	Switchoraft
L1	COIL: 0.9 microhenry; phenolic form	35s-60A	$\begin{aligned} & \text { Horrlett-Peckard: } \\ & 350-60 \mathrm{~A} \end{aligned}$
I2	CoIL: 1.1 millihenry; phenolio form	35F-601	$\begin{aligned} & \text { Hewlett-Packard: } \\ & 35 F-60 \mathrm{~s} \end{aligned}$
13	COIL: 2 microhenry: phonolic form	35F-600	Berlett-Packerd: $35 F-60 C$
L4	CoIt: 0.9 millihenry; phonolic form	35\%-600	Hewlett-Packerd: 35R-60D
L)	COIL: 1.5 microhenry choke; phenolic form	48-1	Elcotrical Reactano corp
15	COLL: 1.5 micronenry choke; phenolic form	48-1	Mlectrical Reactanc Core
L'7	COIT: 1.5 microhunry chole; phnolic form	48-1	Bloctrical Reactana Corp
L8	COIL: 1.5 microhenry choke; phenolic form	48-1	Electricel Reactano Corp
L9	COII: 1.5 raf crohenry choke; phenolic form -26-	48-1	Electricel Resctence Carp

TABLE OF REPLACEABLE PARTS

$\begin{aligned} & \text { Cir- } \\ & \text { cuit } \\ & \text { Ref. } \end{aligned}$	Deecription	-hp- Stock No.	Manuftcturer: and Typo
110	COTL; 1.5 micronenry choke; phenolic for	48-1	Wlectrical Reactenco Com
L111	FILTER CHOKP: 6 honries at 125 made: 240 ae ohm	$\begin{aligned} & M-67 \\ & (912-12 A) \end{aligned}$	Robert M. HodloyCo. H8169A
112	FTLTHR CHOKE: 6 homiles at 125 madc; 240 de ohn	$\begin{aligned} & \mathrm{M}-61 \\ & (911-12 \Lambda) \end{aligned}$	Robert M. Hediloy: \% 31694
M1	METER: 400 microemp full seale $4-1 / 4^{\prime \prime}$ x $3-15 / 16^{\prime \prime}$; illumineted typo	212-13	Weaton: Model Bol.
M?	MPTER: zero eentor microemmotar;:15-0-15 micro mpe full scale; $4-1 / 4^{\prime \prime} \times 3-15 / 16^{\prime \prime}$; illmanated type	112-12	Westion Model 361
R1	RESTSTOR: composition; 270,000 ohms; $\frac{1}{2}$ watt	23-270K	$\begin{aligned} & \text { Allen-Bradley: } \\ & \text { FB- } 2741 \end{aligned}$
R2	HEATER: wirewound; 5 olms (part of oven assenbly; sec entry followi ng "Xtal-2"		
R3	RESISTOR: composition; 56000 ohms 1 wott	$24-56 \mathrm{~K}$	$\begin{aligned} & \text { Allen-Bradley: } \\ & \text { G3--5631 } \end{aligned}$
F 4	RESISTOR: composition; 22000 ohne; 2 wette	$25-22 \mathrm{~K}$	fillen. Bradley: HB-2231.
R5	RESISTOR: composition; 120,000 ohme; 1 watt	$24 \cdots 120 \mathrm{~K}$	$\begin{aligned} & \text { Alen-Bradley: } \\ & \text { CB-12b1 } \end{aligned}$
R 6	RISISTOR: composition; 18000 obus; 2 wotids	$25 \cdot 18 \mathrm{~K}$	$\begin{aligned} & \text { Alen-Bradley: } \\ & \text { HB-1831 } \end{aligned}$
R7	RESISTOR: compoution; 30,000 ohms ; $\frac{1}{2}$ watt	23-30K	$\begin{aligned} & \text { Allen-Bradley: } \\ & \text { 13-3031 } \end{aligned}$
R8	RESTETOR: ecmposition 6800 ohms: 1. wett	24.6800	$\begin{aligned} & \text { Allen-Bradley: } \\ & \text { CB-63e1 } \end{aligned}$
R9	RESISTOR: composition; 100 ohms 2 watta	25-100	$\begin{aligned} & \text { Allen-Emadley: } \\ & \text { IB-lol. } \end{aligned}$
R10	RESISTOR: comporition; 100 ohros; ? wates	25-100	$\begin{aligned} & \text { Allen-Bradley: } \\ & \text { HB-1011 } \end{aligned}$
RII	FESTSTOR: COnposition; 10,000 ohme; 1. watt	24-10K	$\begin{aligned} & \text { Allon-Bradley: } \\ & \text { GB-1031 } \end{aligned}$
812	RESTSTOR: compesition; 100 oluns $\begin{array}{r}1 \text { watt } \\ -27\end{array}$	24-100	$\begin{aligned} & \text { Allen-Bradley: } \\ & \text { GB-loll } \end{aligned}$

$\begin{aligned} & \text { Cir- } \\ & \text { cuit } \\ & \text { Ref. } \end{aligned}$	Description	-im- ock गTo.	Menufecture: and Type
R13	RESISTOR: cmmosition; 3 e0 ohns; 1 wett	24-320	$\begin{aligned} & \text { Allen-Brady; } \\ & \text { QB-82l. } \end{aligned}$
814	RESISTOR: composition; 8200 ohms; 1 watt,	$24-8200$	Allen-Bradley: $\mathrm{CB}-8221$
R15	RESISIOR: cOnDCBition; 560,000 ohms 1 watt	$24-560 \mathrm{~K}$	Allen-Bradley:
R16	RESTGFOR: componjtion; 8e000 ohms; 1 wett	2l-8ck	dilon-B redley: GB-8c21
1277	RESTSTOR: compoultion; 4700 olms; 2 watts	2.5-4700	$\begin{aligned} & \text { Allon-Bradloy; } \\ & \text { HB-4.421. } \end{aligned}$
R13	RESISTOR: couposition; 4700 ohms; 2 watts	25-4700	Allen-Bradloy: HB - 4721
P19	RESISTOR: compositior; 330000hms; 1 wett	$24-33 \mathrm{~K}$	$\begin{aligned} & \text { Alien-Bradley: } \\ & \text { C3-3331 } \end{aligned}$
R20	RESISTOR: composition; 33000 ohms; lwatt	$24-33 \mathrm{~K}$	Allen-Bradiley: $G B-3331$
R21	RESISTOR: composition; 4700 ohras; 2 wetts	25-4700	Allon-Bradley: $E B-1 / 721$
R 22	RESTSTOR: composition; 4700 ohms; 2 wattis	25-4.700	$\begin{aligned} & \text { Alen-Bradoy: } \\ & \text { BB-4722 } \end{aligned}$
R 23	RESISTOR: emposition; 560,000 alms; 1 watt	24-560K	$\begin{aligned} & \text { Allen-Bradley: } \\ & C B-5641 \end{aligned}$
R24	RPSISTOR: compoeition; 88000 ohne; l wett	$24-826$	111en-Bradley: $G B-8231$
R25	RESISTOR: composition; 330,000 ohme; precision type; 1 watt	$31-3301$	Whiror: CP-1
R26	PCTEMTLCMETER: composition; 50,000 \%has	210-13	$\begin{aligned} & \text { Centralab: } \\ & 33-010-176 \end{aligned}$
R2?	RESISTOR: composition; 103,000 ohms; precision type; lwett	31-103K	Winkor: CP-1
228	RESTSTOR: composition; 1500 onms; 2 watts	25-1900	A1lon-Bradloy: HB-1521.
R29	RESESTOR: composition; 1000 ohras; 1 watt	24-1K	$\begin{aligned} & \text { Allen-Bradley: } \\ & \text { GB-1021 } \end{aligned}$
R30	RESISTOR: composition; 220,000 ohns; 7. wott	$24-280 \mathrm{~K}$	$\begin{aligned} & \text { Allen-Bradioy: } \\ & \text { GB-2241 } \end{aligned}$

Crcuit. Ref.	Description	$\begin{aligned} & \text {-hp- } \\ & \text { Stoclano. } \end{aligned}$	Manuracturex and Type
R31	RESISTOR: compoaiticn; 33000 olus: 1 wett	$24-33 \mathrm{~K}$	$\begin{aligned} & \text { Alcm-Tradiey: } \\ & \text { CB-331 } \end{aligned}$
A32	RESISPOR: compocition; 33000 oums; 1 wett,	$24-33 \mathrm{~K}$	$\begin{aligned} & \text { Allen-Bradiey: } \\ & \text { CB- } 3331 \end{aligned}$
R33	RTSISTOR: wirewound on phenolic card; 1200 ohms; precision type	35F-55	Hewlett-Packard: $35 E-55$
834	RISISTOR: wirewound on phenalic card; 1200 ohns; precision type	$35 \mathrm{~F}-55$	Hewlett-Pectrerd $35 f-55$
E35	TOTENTIONBPER: Wire und; 300 ohms; scrowdriver adneting	210-53	$\begin{aligned} & \text { Centralab: } \\ & 21-010-350 \end{aligned}$
136n	RESTSTOR: procision wirewound type; 9100 oluns; wound on phenolic card	35\%-55A	Hewlett-Packard: $35 \mathrm{P}-55 \mathrm{~A}$
$\begin{aligned} & \text { R36B } \\ & \text { or } \\ & \text { R } 7 \mathrm{~B} \end{aligned}$	RESISTOR: prociaion coripooition type; 1 watt; exect value selected during menufacturer:s testa		Wilkor: OP-1
R37A	RESTSTOR: precision wirewound type; 510 ohms; wound on phonolic cerd	35F-55B	Hewlett-Packard: $35 \mathrm{~F}-55 \mathrm{~B}$
R38	RFSTSTOR: wirowound on phenolic card; 62 ohms; precision type	$357-25$	HewZett Peckcrd $35 \mathrm{~F}-25$
K39	POTMNIIOMEMER: wirewound; 1000 ohms	210-5	$\begin{aligned} & \text { Controlab: } \\ & 21.020-355 \end{aligned}$
R40	RHSTSTOR: wirewound on phenolic card; 4700 ohras; precision type	$35 \mathrm{P}-27$	Hewlott-Packarod: 35F-27
124.1	RESTSTOR: composition; 603,700 ohms; l. watt; precision type	31.683 .7 K	Wilkox: CU-1
P42	POTHNTIOMETERR: Wi rowound; 25000 ohms	210-10	Clarootat: Typo 98
2!3	RESTSTOR: composition; 2.4.400 ohms:	31-14.4K	WITkow: CP-1.
844	TESISTOR: wirewound; 5000 onms; 20 watts	$27-5 \mathrm{~K}$	Iectrohm: Type 2n
R15	RESISTOR: wixewound; 4000 ohms; 220watte	26. 4 K	Loctrohn: Type 2R
$R 46$	RESTSTOR: composition; 560,000 ohims; 1 wett	$24-5605$	Allon-Bradloy: CB-564.
R47A	RESISTOR: compesition; 32000 ohms; 2w	$25-82 \mathrm{~K}$	$\begin{aligned} & \text { Alien-Brediey: } \\ & \text { EB-8231 } \end{aligned}$

$\begin{aligned} & \text { Cir- } \\ & \text { cuit } \\ & \text { Ref. } \end{aligned}$	Desoription	-irp- Stock INo.	Manutacturer and Type
Ph $\mathrm{P}_{\text {P }}$	RESISTUR: composition; 82000 ohms: 2 w	25-82k	$\begin{aligned} & \text { nlon-Bradley: } \\ & \text { HB-8231 } \end{aligned}$
Rha	RESTSTOR: composition; 316000 ohme; 1 w precision: typo	$31-316 \mathrm{~K}$	Wilkor: CP-I.
849	POMAMIOMETER; composition; 20,000 ohms	210-16	$\begin{aligned} & \text { Contraleb: } \\ & 33-010-725 \end{aligned}$
850	RESTSTOR: composition; 90,000 ohms; I wett; precision typo	31-90K	Wilkor: CP-1
R51	ERSTSTOR: Composition; 10,000 ohms; 2 watte	25-10K	Allen-Bradloy: HB- 1031
852	RESISTOR: composition; 144000 ohns; 1 watt; precislon typo	$31-144 \mathrm{~K}$	Wilkom: CP-1
R53	RESTSTOR: precision composition type; 33000 chms; I watt	31-33K	WISOR: GP-1.
R54	RESTSTOR: conposition; 5100 dhas; 1 wett	$2^{\prime}+-5100$	$\begin{aligned} & \text { Alon-Bradley: } \\ & \text { C3-5121 } \end{aligned}$
R55	RESISTOR: composition; 2e,000 ohms; 2w	25-2am	Allen-Bradley: H5-2231
RO6	RESISIOR: precision composition type; 216, 300 ohru: 1 watt.	$31-216.35$	Wilkor: CP-I
257	FESISTOR: conpostuion; 2000 ohms; 1 watt	$24-2200$	$\begin{aligned} & \text { Allen-Bradley: } \\ & \text { GB-2e21 } \end{aligned}$
R58	RESTSIOR: procicion ccaposition type; 69,000 ohras; 1 wett	$31-62 k$	Wilkor: CP-.
859	RHSISTCR: composition; 560 chus; lwatt	24-500	$\begin{aligned} & \text { Alon-Bradley: } \\ & \text { Cs-5611 } \end{aligned}$
RÉO	RISISTOR: cmposition; 2,200; 2 wntts	25-2,200	$\begin{aligned} & A 12+3-3 r e d l e y \\ & B B-202 I \end{aligned}$
R61	$\begin{aligned} & \text { Finstsion: composition; 1,000,000 olms; } \\ & \frac{1}{2} \text { watt } \end{aligned}$	23-1M	$\begin{aligned} & \text { Allen-Bradley: } \\ & \text { KB-1051 } \end{aligned}$
R62	RESISYOR: composition; 28000 ohms 1 w	24-18K	$\begin{aligned} & \text { Allon-Bradley: } \\ & \text { Gr-1831 } \end{aligned}$
1163	RESTSTOR: composition; 56 onme; $\frac{1}{2}$ watt	$23-56$	$\begin{aligned} & \text { Allon-Biadloy: } \\ & \text { Ris }-5601 \end{aligned}$
P64	RESISTOR: composition; 8000 ohns; $\frac{1}{2}$ watt	23-8200	$\begin{aligned} & \text { Glen-Bradey: } \\ & B B=322 \end{aligned}$

TABLE OF RHPLACMABLE PARTS

$\begin{aligned} & \overline{\text { Cir- }} \\ & \text { cult } \\ & \text { Rof. } \end{aligned}$	Description	$\begin{aligned} & \text {-hp- } \\ & \text { Stocl: No. } \end{aligned}$	Manufacturer and sypu.
1555	RESISTOR: comporition; L2 ohms $\frac{1}{2} \mathrm{~W}$	23-12	Allon-Bradley: D3-2301
R266	RHSISTOR: corposition; l wat ; velue aeloctod to circuit during celibretion; 8200-150000hms		
R6\%	RESTSTOR: cmposition; 56 olms; $\frac{1}{2}$ wabt	23-56	Allen-Brodley: BB. 5601
1268	RESISTOR: composition; 120,000 ohmas; 1 wat	24-120k	Allen-Bradley:
R69	RESISTOR: composition; 18000 ohma 1. W	$24-38$	$\begin{aligned} & \text { Allen-Bredloy: } \\ & \text { GB-1851 } \end{aligned}$
$\begin{gathered} \text { Relay } \\ 1 \end{gathered}$	RETAY: SPST: plug-in type	49-6	Sigma Inst: 41RCZ
51	SWITCH: togele; SPST; $5 / 8^{\prime \prime}$ bet handie	310-11	Arrow- H ch
Se	SWITCH: rotary; two scetion, four pole, five position	310-39	$\begin{aligned} & \text { Hewlett-kPackard } \\ & 310-39 \end{aligned}$
83	SWITCH: togele; IPDT: $5 / 8^{\prime \prime}$ be.t handie	310-42	Arrow E : H
T1	IRATSFORMTR: power; $115 \mathrm{v}, 50 / 60$ cycle pri; at 3 arnp; sec $\# 3,6.3$. vac at 5 anp; eec H4, 6.3 vac at 2 amp ; вec $75,6.3 \mathrm{v}$ at 1 amp	35F-8	Excel Transiomer क 910-26
T2	TRANSFORMETR: power; $117 \mathrm{~V}, 50 / 50$ eycle pxi; sec \#1, 180 v at 0.1 mp ; \sec \#ta, 6.3 v at 2 amp	$\begin{aligned} & 35 P-3 A \\ & (970-32) \end{aligned}$	Excel Tranatomor 6 910-32
23	TRANSFORMET: aweio: tuma ratio i. 2	(912-10)	Peerloss Electrical Products: $\mathbb{N O} .4603$
24	TRANSFORMER: sudio; 20 cps to $20 \mathrm{kc} \pm \frac{1}{2} \mathrm{db}$; 300 ohm primary, 1200 oly and 60,000 ohm 300.	912-7	Tronaformer Enginew 912-17
Ti)	TRANSFORMER: audio; 20 ops to $20 \mathrm{kc} \pm \frac{1}{2} \mathrm{db}$; 25000 okm pri, 600 chm sec onăary	$\begin{aligned} & (35 F-9) \\ & 912-8 \end{aligned}$	Trandormer Enginear 912-8
V1.	TUEE: RMA typo 6a07	212-5.c?	
ve	TJBE: RMA bye $7 \times$	222-7T8	
V	TUBI: RMA typo 6ACl	$212-600$	

Cir- cuit Ref.	Deseription	-hp-	Manufacturer and Type
T4,	TJBTE: RM type Svis	$212-6 \mathrm{~V} 6$	
V5	TUBE: RMA type 6V6	$212-6 \mathrm{~V}$	
V6	TTBE: RMF type 6V6	212-6v6	
V?	TTBE: RMA type 6V6	$212-676$	
V8	TURE: RMA type ÓTS	212.656	
V\%	TTJ: RUA iype 6V6	212-6V6	
TLO	TUBE: RMA type SSIT $-G T$	21?-6ST--	
V11	TUPE: RIA type 2050	212-2050	
V12	TUBE: RMA type sRLGY	212-5R4CY	
V1. 3	TUBE: RM tipe TR-75	$212-\mathrm{VR}-75$	
VI 4	TUBE: FUA ype ox6c	212-616G	
V15	TUBE: RMA yyoe VE-7\%	212-ik-75	
V6	TUBE: RM	212-6SN/-	
$V 17$	IUEE: RVA tyoo $05 J 7$	212-65]	
Xtal - 1	CRySTAL: guartz; rauel 200 kc .. 00 ; $20^{\circ} \mathrm{C}$. to $60^{\circ} \mathrm{C}$. temp range; includes holder and pins	41-10	Ynicht: $\mathrm{A} \cdot 13$
$\begin{aligned} & x+r a l- \\ & 2 \end{aligned}$	CRYSTAL: quartz; freg ceoordtig to desired channel; temp coefs l cycle per me per decree C.	$\begin{array}{r} 47-\text { (Spec. } \\ \text { freq. } \end{array}$	Bulley: Type MOF
. .	CRYSTAT OVBN: includes heater, thermometer, and themostat; does not include crystal.	$35 \mathrm{~F}-25$	$\begin{aligned} & \text { Hewlett-Packard : } \\ & 35 r-25 \end{aligned}$
	TITERMOMLTER: mexcuay column element; $55^{\circ} \mathrm{C}$. to $75^{\circ} \mathrm{C}$. range graduated at $1^{\circ} \mathrm{C}$ inter vals; L-shaped	$41-6$	Moellor Tns : rumert Co.
. .	CONIACI THERMOMBTIE (Thermostatic switch) meroury golum elemont; perating tempor. ature $65 \mathrm{C} . ; 0.1^{\circ} \mathrm{C}$. aifferential	$41-5$	Precision Instrumort Co.
$Y 1$ to YII	RECTIFIER CRYSTAL: TYDE 1 N 34	212-34	Sylvania: IN34

SABIE OF RDPLACEABIE PARNS

LIST OF MANUFACTURERS CODE LETTERS FOR REPLACEABLE PARTS TABLE

Code Letter	Manufacturer
A	Aerovox Corp.
B	Allen-Bradley Co.
C	Amperite Co.
D	Arrow, Hart and Hegernan
E	Bussman Manufacturing Co.
F	Carborundum Co.
G	Centralab
H	Cinch Manufacturing Co.
I	Clarostat Manufacturing Co.
J	Cornell Dubilier Electric Co.
K	Electrical Reactance Co.
L	Erie Resistor Corp.
M	Federal Telephone and Radio Corp.
N	General Electric Co.
O	General Electric Supply Corp.
P	Girard-Hopkins
HP	Hewlett-Packard
Q	Industrial Products Co.
R	International Resistance Co.
S	Lectrohm, Inc.
T	Littelfuse, Inc.
U	Maguire Industries, Inc.
V	Micamold Radio Corp.
W	Oak Mfg. Co.
X	P.R. Mallory Co., Inc.
Y	Radio Corp. of America
Z	Sangamo Electric Co.
AA	Sarkes Tarzian
BB	Signal Indicator Co.
CC	Sprague Electric Co.
DD	Stackpole Carbon Co.
EE	Sylvania Electric Products, Inc.
FF	Western Electric Co.
GG	Wilkor Products, Inc.
HH	Amphenol
II	Dial Light Co. of Anmerica
JJ	Leecraft Manufacturing Co.
ZZ	Any tube having RMA standard characteristics

CLAIM FOR DAMAGE IN SHIPMENT

The instrument should be tested as soon as it is received. If it fails to operate properly, or is damaged in any way, a claim should be filed with the carrier. A full report of the damage should be obtained by the claim agent, and this report should be forwarded to us. We will then advise you of the disposition to be made of the equipment and arrange for repair or replacement. Include model number, type number and serial number when referring to this instrument for any reason.

WARRANTY

Hewlett-Packard Company warrants each instrument manufactured by them to be free from defects in material and workmanship. Our liability under this warranty is limited to servicing or adjusting any instrument returned to the factory for that purpose and to replace any defective parts thereof (except tubes, fuses and batteries). This warranty is effective for one year after delivery to the original purchaser when the instrument is returned, transportation charges prepaid by the original purchaser, and which upon our examination is disclosed to our satisfaction to be defective. If the fault has been caused by misuse or abnormal conditions of operation, repairs will be billed at cost. In this case, an estimate will be submitted before the work is started.

If any fault develops, the following steps should be taken:

1. Notify us, giving full details of the difficulty, and include the model number, type number and serial number. On receipt of this information, we will give you service instructions or shipping data.
2. On receipt of shipping instructions, forward the instrument prepaid, and repairs will be made at the factory. If requested, an estimate of the charges will be made before the work: begins provided the instrument is not covered by the warranty.

SHIPPING

All shipments of Hewlett-Packard instruments should be made via Railway Express. The instruments should be packed in a wooden box and surrounded by two to three inches of excelsior or similar shock-absorbing material.

DO NOT HESITATE TO CALL ON US

