HP Archive

This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com

Please visit us on the web!

On-line curator: Glenn Robb

This document is for FREE distribution only!

OPERATING MANUAL

PLUS
SERVICE MANUAL

MODEL 300A

HARMONIC WAVE

ANALYZER

Abstract

This is a combined Operation, Instruction, and Service Manual for all Model 300A Harmonic Wave Analyzers. This manual contains complete operation and servicing instructions for the 300 A and may be used in place of the Instruction and Operating Manual originally supplied with each instrument.

Copyright 1956 by Hewlett-Packard Company
The information contained in this booklet is intended for the operation and maintenance of Hewlett-Packard equipment and is not to be used otherwise or reproduced without the written consent of the HewlettPackard Company.

HEWLETT-PACKARD COMPANY
PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S.A.

MODEL 300A HARMONIC WAVE ANALYZER INSTRUCTION \& OPERATING MANUAL

TABLE OF CONTENTS
SECTION I PageGENERAL
III
1-1 GENERAL DESCRIPTION
1-2 SPECIFICATIONS III
SECTION IIOPERATING INSTRUCTIONS
2-1 230 VOLT OPERATION III
2-2 CONTROLS \& TERMINALS IV
2-3 OPERATION IV
2-4 CALIBRATION ADJUSTMENT PROCEDURE. IV
2-5 MEASUREMENT PROCEDURE. IV
2-6 MEASUREMENT PRECAUTIONS V
2-7 SELECTIVITY V
SECTION III
CIRCUIT DESCRIPTION
3-1 GENERAI VI
SECTION IVMAINTENANCE
4-1 CABINET REMOVAL VII.
4-2 TUBE REPLACEMENT VII
4-3 LOCAL OSCILLATOR AMPLITUDE ADJUSTMENT. VII
4-4 VOLTAGE REGULATOR ADJUSTMENT. VII
4-5 HUM BALANCE ADJUSTMENT. VII
4-6 BALANCED MODULATOR ADJUSTMENT VII
4-7 SELECTIVE AMPLIFIER ADJUSTMENT VII
SECTION V
TABLE OF REPLACEABLE PARTS
5-1 GENERAL VII

INSTRUCTION \& OPERATING MANUAL

SECTION I

GENERAL

1-1 GENERAL DESCRIPTION

The Model 300A Harmonic Wave Analyzer is a selective voltmeter designed to measure the individual components of complex waves. The selectivity can be varied by means of selective amplifiers to measure either closely or widely spaced harmonics. The instrument covers the audio spectrum from 30 to $16,000 \mathrm{cps}$. It has a wide voltage range so that full scale readings may be obtained from 1 millivolt to 500 volts.

The Model 300 A is well adapted to the measurement of the harmonic distortion in audio frequency equipment of all kinds, broadcast receivers, transmitters; to determine the harmonic components in ac machinery and power systems; to the study of induced voltages on telephone lines; and to measurement of hum components in rectifier circuits.

Other uses include the study of noise by integrating portions of the spectrum with the selectivity control adjusted for a wide pass band and the checking of wave filter characteristics with maximum selectivity.

The Model 300A is also useful as a device to measure the amount of cross or intermodulation products generated by the simultaneous transmission of two frequencies by an audio system or to measure demodulation of a modulated wave applied through an audio system.

1-2 SPECIFICATIONS

Complete specifications for the Model 300 A Harmonic Wave Analyzer will be found on page 3 of the (市) No. 300A-2 Service Manual.

SECTION II

OPERATING INSTRUCTIONS

2-1 230 VOLT OPERATION

This instrument is shipped from the factory with the power transformer primaries connected in parallel for operation from 115 volts. If operation from a power line of 230 volts is desired, the power transformer primaries must be connected in series as shown by the "Transformer Detail" on the schematic diagram in Fig. 3 on page 39 of the No. 300A-2 Service Manual.

Some older instruments have a power transformer with a single primary wind ing for operation from 115 volts only.

The 1.25 ampere slo-blo fuse required for 115 volt operation must be replaced by a 0.6 ampere slo-blo fuse after changing primary connections from parallel to series for operation from 230 volts.

2-2 CONTROLS AND TERMINALS

All controls and terminals are fully described on pages 4 and 5 of the (${ }^{\circ} p$ No. 300A-2 Service Manual.

CAUTION

THIS INSTRUMENT IS ACCURATE AT AMBIENT TEMPERATURES OF APPROXIMATELY 55 TO 95 DEGREES FAHRENHEIT. OTHER AMBIENT TEMPERATURES MAY NECESSITATE REALi INMENT OF THE SELECTIVE AMPLIFIER SYSTEM.

2-3 OPERATION

The operation of the Model 300 A is divided into two parts, the calibration adjustment procedure and the measurement procedure.

2-4 CALIBRATION ADJUSTMENT PROCEDURE
This procedure will be found under the heading of CALIBRATION PROCEDURE starting on page 11 of the (0 (No. 300A-2 Service Manual.

See the important operating precautions given in step 26 of CALIBRATION PROCEDURE in the No. $300 \mathrm{~A}-2$ manual.

2-5 MEASUREMENT PROCEDURE

The instrument must be calibrated before attempting a measurement. In the following procedure, the voltage being analyzed has a fundamental frequency of 80 cps and an amplitude of 20 volts. The frequency and amplitude of this hypothetical voltage have been assumed to simplify the instructions. Any voltage between 1 millivolt and 500 volts at any frequency between 30 to $16,000 \mathrm{cps}$ could be similarly measured. A harmonic frequency must not be higher than 16.000 cps if the particular harmonic voltage is to be measured.
a. Calibrate the 300 A as previously described.
b. Set the METER MULTIPLIER control to 50 (X100) and the SET TO 100 FOR VOLTAGE MEASUREMENT control to 100.
c. Set the HALF BAND WIDTH control to 30. See step 26B on page 12 of No. 300 A-2 Service Manual regarding the degree of selectivity necessary for measuring voltages of various frequencies.
d. Set the frequency dial to 80 cps and peak the meter indication by adjusting the FINE TUNING control. The ivEEER SENSITIVITY control should be adjusted to give a readable indication on the millivoltmeter. The instrument is now tuned to measure the amplitude of the fundamental frequency (80 cps) with the harmonics excluded.
e. The actual value of the fundamental voltage is found by multiplying the millivoltmeter indication by the multiplying factor shown by the position of the METER MULTIPLIER control.

Example:

METER SENSITIVITY at 500 (5.0 on meter scale) full scale millivolts. Meter pointer at 2.0 therefore meter actually indicates 200 millivolts. 200 millivolts $\times 100$ (meter multiplier factor) is equal to 20,000 millivolts or 20 volts.
f. Turn the frequency dial to 160 cps (second harmonic of 80 cps) and set the METER SENSITIVITY and METER MULTIPLIER controls to obtain a readable meter indication. Use the FINE TUNING control to peak the meter indication. The meter indication times the meter multiplying factor will give the amplitude of the second harmonic.
g. Repeat step f. at as many higher harmonics as desired until the harmonic voltages become too small to measure. In some cases, the harmonic frequency will be higher than $16,000 \mathrm{cps}$ which will be outside the range of the 300 A 。

2-6 MEASUREMENT PRECAUTIONS
The results obtained with the 300 A will depend upon how closely the operator follows a few simple but very important operating precautions. These precautions are given in step 26 of PROCEDURE FOR CALIBRATION on page 12 of 㿻 No. 300.4-2 Service Manual.

In addition, a 20 KC filter should be used between the voltage to be measured and the input terminals of the Model 300A when voltages at frequencies of 5 KC or 10 KC are being measured. This filter will prevent the fourth harmonic of the 5 KC voltage or the second harmonic of the 10 KC voltage from entering the 20 KC selective amplifier and causing erroneous measurements.

2-7 SELECTIVITY

When operating the Model 300A, it should be borne in mind that the instrument is a frequency selective, wide range voltmeter whose selectivity is variable. It is necessary during operation to determine the degree of selectivity desired and to adjust the instrument correctly to obtain that degree of selectivity.

Determination of the proper selectivity to use in a particular measurement should primarily be based on the fact that unwanted voltages must be attenuated by the selectivity of the instrument to less than one thirf of the voltage under measurement. This attenuation is, in turn, dependent upon the order of separation of unwanted voltages from the desired voltage, and the relative magnitudes of the various voltages involved.

Instrument selectivity is controlled by the HALF BAND WIDTH control which is calibrated from " 30 " to " 145 ". These calibrations indicate the frequency separation from the center frequency at which the selectivity characteristics of the instrument attenuates by $40 \mathrm{db}(99 \%)$.

Another way of saying the same thing is that the HALF BAND WIDTH calibrations indicate the minimum frequency separation from a 100% voltage which will permit accurate measurement of a 3% voltage.

It will often be found convenient to useonly two degrees of selectivity as obtained by setting the HALF BAND WIDTH control at " 145 " for minimum

2-7 SELECTIVITY (Cont'd.)
selectivity or at " $30^{\prime \prime}$ ' for maximum selectivity. Use minimum selectivity for voltages with a fundamental frequency higher than 100 to 300 cps . Use maximur: selectivity for voltages with a funciamental frequency lower than 100 to 300 cps . This system eliminates the necessity of determining whether an intermediate degree of selectivity offers sufficient attenuation for the case at hand.

Occasionally, however, it is desirable to use degrees of selectivity which are intermediate between minimum and maximum. An example follows to illus trate a typical case of selectivity determination.

Refer to Fig. 2 on page 38 of the No. 300A-2 Service Manual which shows the selectivity characteristics of the 300 A for the two extremes of the HALF BAND WIDTH control. A convenient graph for converting attenuation in terms of decibels to percentage is given in Fig. 9 on page 45 of the No. $300 \mathrm{~A}-2$ Service Manual.

The graphs of Figs. 2 and 9 are used to determine the setting of the HALF BAND WIDTH control as illustrated in the following:

Assume that it is desired to measure the harmonics of an 80 cps fundamental and that harmonics which are 0.5% or higher are of interest.

Unwanted voltages must be attenuated to less than $1 / 3$ of the voltage under measurement and for this particular case it would be $1 / 3$ of $1 / 2 \%$ or $1 / 6$ of 1%. In other words, when measuining the second harmonic, the fundamental must be reduced to $1 / 6$ of 1% of its value by the 300 A selectivity characteristics. Referring to Fig. 9, we see that $1 / 6$ of 1% is equivalent to approximately 56 decibels. Therefore, the HALF BAND WIDTH control must be adjusted so that the instrument will attenuate by 56 decibels for a frequency separation of 80 cps .

Refer to Fig. 2 and sketch in a curve similar to the two curves shown. The new curve should pass through the 56 db point at 80 cps off resonance. Note the point where the new curve passes the 40 db line. This point has an abscissa of about 50 cycles off x esonance. Therefore, the HALF BAND WIDTH control should be set at "50" to obtain 56 db attenuation at 80 cps off resonance.

The instrument must then be calibrated using a HALF BAND WIDTH setting of " 50 " instead of "30" in steps 20 through 23 of PROCEDURE FOR CALIBRATION on page 12 of No. 300A-2 Service Manual. See step 26B on the same page for additional information.

SECTION III

CIRCUIT DESCRIPTION

3-1 GENERAL

The circuitry of the Todel 300A Harmonic Wave Analyzer is discussed on pages $8,9,10$, and 11 of the ${ }^{\circ} \mathrm{p}$ No. 300A-2 Service Manual.

4-1 CABINET REMOVAL

To remove the instrument from the cabinet it is necessary to unscrew the eight large Phillips head screws on the control panel and slide the instrument forward out of the cabinet.

In some older instruments, it may be necessary to remove the wire connecting the bottom chassis to the metal plate in the bottom of the cabinet. This wire will be found on the rear of the instrument.

4-2 TUBE REPLACEMENT

Refer to page 7 of Service Manual No. 300A-2 for complete instructions on tube replacements.

4-3 LOCAL OSCILLATOR AMPLITUDE ADJUSTMENT

This adjustment can be made at any time as directed in step 2 of PRELIMINARY TESTS \& ADJUSTMENTS on page 13 of No. 300A-2 Service Manual.

4-4 VOLTAGE REGULATOR ADJUSTMENT

The output of the regulated power supply section in the 300 A should be checked from time to time as directed in step 1 of PRELIMINARY TESTS \& ADJUSTMENTS on page 13 of No. 300A-2 Service Manual.

4-5 HUM BALANCE ADJUSTMENT
The hum balance control R159 is located on the bottom deck of the instrument next to the heater transformer. The procedure for adjusting this control is given in FINAL TEST step 8 on page 17 of No. 300A-2 Service Manual.

4-6 BALANCED MODULATOR ADJUSTMENT

The procedure for adjusting the balanced modulator to minimize harmonic distortion is given on page 18 of No. 300A-2 Service Manual in step 10 under FINAL TEST.

4-7 SELECTIVE AMPLIFIER ADJUSTMENT
The detailed procedure for adjusting the selective amplifier system in the 300 A is given on pages 14 and 15 of the No. $300 \mathrm{~A}-2$ Service Manual.

SECTION V

TABLE OF REPLACEABLE PARTS
5-1 GENERAL
A table of replaceable parts which is suitable for use with all 300A instruments is given in the (40) No. $300 \mathrm{~A}-2$ Service Manual. This table begins on page 51 of the manual。

FOR

MODEL 300A
HARMONIC WAVE ANALYZER
300A-2 A

This is a combined Operation and Service Manual for all (50) Model 300A Harmonic Wave Analyzers. This manual contains complete operation and servicing instructions for the 300 A and may be used in place of the Instruction and Operating Manual originally supplied with each instrument.

Copyright 1955 by Hewlett-Packard Company
The information contained in this booklet
is intended for the operation and main-
is not to be used otherwise or seproduced
without the written consent of the Hewlett-
Packard Company.

Typical Front View of -hp- Model 300A Harmonic Wave Analyzer
PAGE
SPECIFICATIONS 3
ACCESSORIES AVAILABLE 3
CONTROLS \& TERMINALS 4
TUBE COMPLEMENT \& TUBE REPLACEMENTS 7
CIRCUIT DESCRIPTION 8
Input \& Phase Inverter Circuits 8
Modulator Circuit \& Voltage Amplifier 9
Local Oscillator. 9
Power Supply 10
Selective Amplifier System 10
Voltmeter Circuit 11
CALIBRATION PROCEDURE
General 11
Procedure for Calibration 11
TEST PROCEDURE
Instruments Required for Test Procedure 13
Preliminary Tests \& Adjustments 13

1. Adjustment of B+ 13
2. Adjustment of Local Oscillator Injection Voltage. 13
3. Centering Tuning Range of " F " Control 14
4. Check Oscillator Stability 14
Selective Amplifier Alignment 14
Heat Run Check 16
Final Test 16
5. Check \& Adjust Regulated B+ Voltage 16
6. Check \& Adjust Oscillator Injection Voltage 16
7. Oscillator Response to Line Voltage Change 16
8. Final Alignment of Selective Amplifier 16
9. Adjust Millivolts Meter to Zero 16
10. Centering Range of Control "C" 16
11. Check for Carrier Leakage 16
12. Check for Hum (Balance Hum Control R 159) 17
13. Check Resonance Curves 17
14. Check Harmonic Distortion (Adjust Control R117) 18
15. Checking Variable Selectivity Contol 18
16. Checking Millivolts Meter Tracking. 18
17. Checking Instrument Sensitivity 18
18. Frequency Calibration - Check \& Adjustment 19
19. Frequency Response Check 19
20. Check Voltage Calibration 20
21. Checking Meter Sensitivity Control 20
22. Checking Meter Multiplier Control 21
23. Correcting Unsteady Millivolts Meter Readings 21
24. Adding "CALIBRATION PROCEDURE" Labels 21
25. Mechanical Inspection. 21
26. Instrument Bottom Plate Replacement 21
27. Completion of Final Test 21
CIRCUIT MODIFICATIONS
General 23
Top Deck Modernizing Procedure 23
Parts Required for Complete Top Deck Modernization 24
Bottom Deck Modification Procedure 25
Modification to Reduce Carrier Leakage 25
Power Supply Modification 26
Other Lower Deck Modifications 27
TROUBLE SHOOTING
General 29
Trouble Chart 29
PAGE
FIGURES \& ILLUSTRATIONS
Fig. 1. Block Diagram of -hp. Model 300A Analyzer. 37
Fig. 2. Characteristics of Selective Amplifier System 38
Fig. 3. Schematic Diagram Serial No. 1330 \& Above - Selective Amplifier (Top Deck) 39
Fig. 4. Schematic Diagram Serial No. 1610 \& Above - Modulator, Oscillator, Power Supply (Lower Deck). 40
Fig. 5. Typical Schematic Diagram, Serial No. 1329 \& Below - Selective Amplifier (Top Deck) 41
Fig. 6. Typical Schematic Diagram, Serial No. 1609 \& Below - Modulator, Oscillator, Power Supply (Lower Deck) 42
Fig. 7. Partial Schematic Diagrams Showing Early Circuitry 43
Fig. 8. Chart for Plotting Selectivity Curves 44
Fig. 9. Decibel to Voltage Ratio Conversion Graph 45
Fig. 10. Top View of Typical Bottom Deck 46
Fig. 11. Bottom View of Typical Bottom Deck 47
Fig. 12. Top View of Typical Top Deck - Less Panel 48
Fig. 13. Bottom View of Typical Top Deck - Less Bottom Plate 49
TABLE OF REPLACEABLE PARTS
General 51
Replaceable Parts Table 51
List of Manufacturers Code Letters for Replaceable Parts Table 50

SPECIFICATIONS

FREQUENCY RANGE -

30 to 16,000 cycles per second.
FREQUENCY CALIBRATION -
Within $\pm 3 \%$ or better.
VOLTAGE RANGES
Covers range between 0.1 millivolt and 500 volts with full scale readings of: $500,250,100,50$, $25,10,5,2.5,1.0,0.5,0.25$, and 0.1 volts plus full scale millivolt ranges of $50,25,10,5$, 2.5 , and 1.

OVERALL VOLTAGE ACCURACY -

Voltage readings are accurate to within $\pm 5 \%$ of full scale value provided harmonics are spaced so as to be suppressed by the selectivity of the instrument.

RESIDUAL MODULATION PRODUCTS -
Suppressed at least 65 db .
FUM VOLTAGE -
At Least 75 db below $0.5,5,50$, or 500 volts, depending upon input range selected.

SELeCTIVITY

Variable selectivity permits adjusting frequencies 30 to 145 cps away from the resonant frequency so they are 40 db below the resonant frequency while maintaining constant gain.

APPROX. db BELOW MAXIMUM RESPONSE

DEVIATION FROM CENTER
FREQUENCY WITI
MAXIMUM SELECTIVITY

3 db	3.5 cps	14 cps
10 db	8.0 cps	37 cps
40 db	30.0 cps	145 cps
60 db	53.0 cps	280 cps

INPUT IMPEDANCE
Input impedance is 200,000 ohms.

POWER -

115 or 230 volts, $\pm 10 \%$
50 to 60 cps
105 watts
DIMENSIONS -
Cabinet Model: $23^{\prime \prime}$ wide, $24^{\prime \prime}$ hish, $14^{\prime \prime}$ deep.
Rack Model: 1 g' wide, $22-3 /$ ł'h high, $^{\prime \prime} 12$ deep.

YEIGHT -

80 pounds for either model. Shipping weighe of cabinet model is 150 pounds.
ACCESSORIES AVAILAELE -
The following accessories are available for use with the 300 A . Eor additional information see our local sales representative or contact the factory directly.

- 1 F
Cable Assembly; dual banana plugs with $3 / 4$ spacing on each end of a \quad MODEL NO.

4 foot length of $\mathrm{RG}-58 / \mathrm{U}$ cable . AC-16A
Cable Assembly; dual banana plug with $3 / 4^{\prime \prime}$ spacing on one end of a 4 foot length of $R G-58 / U$ cable and a $U G-88 / U$ type $B N C$ male connector on the other end.
$A C-16 B$
Transformer, Bridging; for connecting 300 A input to a balanced line AC-60B

INPUT TERMINALS -

The two binding posts located in the lower left corner of the control panel are the instrument input terminals. The lower binding post is connected to the chassis.

METER MULTIPLIER MAX. INPUT VOLTAGE -
This four position rotary switch determines the maximum voltages that may be applied to the instrument without circuit overloading. This control, in conjunction with the METER SENSITIVITY control, indicates the multiplication factor for the MILLIVOLTS meter reading. The figures nearest the knob are the maximum voltages while the outer figures are the multiplication factors.

SET TO 100 FOR VOLTAGE MEASUREMENT -

This potentiometer provides a control for reducing the input voltage as required for relative voltage measurements. This control is calibrated from 0 to 100 in arbitrary units.

OPERATING PRECAUTION

voltage measurements are correct only when the set to 100 for voltage measUREMENT CONTROL IS SET TO "IOO" AND THE HALF BANDWIDTH CONTROL IS SET TO THE SAME POSITIONS SELECTED FOR CALIBRATION.

NEGATIVE FEEDBACK -

This control is used to maintain constant amplifier gain with different settings of the HALF BAND WIDTH control and is calibrated 50-0-50 in arbitrary units. Instructions for setting this control are given in the PROCEDURE FOR CALIBRATION.

Some older instruments in the field are not provided with this control. In these instruments, it will be necessary to recalibrate each time the setting of the HALF BAND WIDTH control is changed.

HALF BAND WIDTH -

Instrument selectivity is determined by the setting of this control. The calibrations of 30 to 145 on the scale around this control knob indicate the number of cycles off resonance the input signal must be in order to be attenuated 40 db . Instructions for setting this control are given in the PROCEDURE FOR CALIBRATION.

FREQUENCY DIAL -

The frequency dial and internal tuning capacitor are driven by the vernier knob in the center of the dial. The dial scale is calibrated from 0 to 16 KC in terms of the input signal frequency.

METER SENSITIVITY -

This tapped voltage divider controls the amplitude of the voltage supplied to the selective amplifier and the position of the knob indicates the full scale value, in millivolts, of the meter scale in use.

MILLIVOLTS METER-

This meter indicates the voltage measured by the instrument. The meter has three scale calibrations. The scale in use and the scale multiplication factor are indicated by the position of the METER SENSITIVITY FULL SCALE MILLIVOLTS and the METER MULTIPLIER MAX. INPUT VOLTAGE controls.

FINE TUNING -
This variable capacitor provides an incremental adjustment for the frequency dial. The instrument is calibrated with this control rotated so that the mark on the knob skirt is straight up over the center of the control.

ON - OFF SWITCH -
This toggle switch controls the power supplied to the instrument from the power line. When the instrument is turned on, the indicator lamp below the toggle switch will light.

POWER CABLE -

There are three wires in the power cable. Two of these wires (usually black and white) carry power to the instrument. The remaining wire (usually green) is connected internally to the instrument chassis and protrudes from the power cable at the plug end for grounding the instrument.

FUSE -

The fuseholder, located on the back of the lower chassis or deck, contains a 1.25 ampere slo-blo cartridge fuse. The fuse may be replaced by unscrewing the fuseholder cap and inserting a new fuse. Fast blow 2 ampere fuses were originally used in these instruments. The 1.25 ampere sloblo fuses are recommended for replacement since they offer increased instrument protection. Those instruments that have been changed for 230 volt operation require a 0.6 ampere slo ablo fuse for replacement.

SUB-PANEL CONTROLS -

Controls C, F, G, R, S, and V are located behind the door at the bottom of the control panel. These are non-operating controls used for instrument calibration.

CONTROL C - This control is used to balance the capacity across the two modulation transformer primaries.

CONTROL F - This control provides an adjustment for setting the local oscillator frequency to 20 KC when the frequency dial is set to zero.

CONTROL G - Overall instrument gain is determined by the setting of this control.
CONTROL R - This control provides a resistance balance between the two modulation transformer primaries.

CONTROL S - This lever switch selects the input signal for phase inverter stage Vlol. When this switch is to the right, the internal calibrating voltage is connected to Vl01. With this switch in the remaining position, the input voltage is connected to the grid of Vlo1.

CONTROL V - This control permits setting the internal calibrating voltage to 5 volts. A ten to one voltage divider following this control delivers 0.5 volts for instrument calibration.

VOLTS METER - This meter measures the internal calibrating voltage as adjusted by control V.

GENERAL -

Any tubes with RETMA standard characteristics may be used for replacement purposes. However, as noted in the instructions that follow, use of a selected tube will improve instrument performance in some cases.

The 300 A is a high gain instrument. Tubes that are microphonic or have relatively high heater to cathode leakage are not desirable.

The tube type used for some of the stages in the 300A have varied with time. In some cases use of a later tube type is recommended but not necessary. If in doubt, replace tubes with the same type found in the instrument.

The number of adjustments required will depend upon the tube replaced. The specific tests and /or adjustments are given in the chart that follows. This chart also shows where the procedures for these tests and adjustments can be found in the TEST PROCEDURE section of this manual.

CIRCUIT REFERENCE	ORIGINAL TUBE TYPE	RECOMMENDED REPLACEMENT	TESTS, ADJUSTMENTS, AND/OR SPECIAL NOTES
V1 thru V8	6 SJ ?	6 SJ 7	FINAL TEST procedure steps 8 and 9. Low microphonic tubes are best.
V9	6F8 or 6SN7	6 F 8 or 6 SN 7	Replace with same type as in instrument. FINAL TEST step 3.
V10	6H6	Aged 6Fi6	Select tube giving minimum change in zero setting between instrument on and off with no input signal. Complete FINAL TEST step 3.
F 101	2 amp fast blow or 1.25 amp slo-blo for 115 V . operation.	$\begin{aligned} & 1.25 \text { amp } \\ & \text { slo-blo } \end{aligned}$	Slo-blo fuse gives better instrument protection. Use different fuse for 230 volt operation as noted under FUSE in the CONTROLS \& TERMINALS section.
R140 lamp	$\begin{aligned} & 3 \text { watts, } 115 \\ & \text { volts or } \\ & 10 \text { watts, } \\ & 230 \text { volts } \end{aligned}$	10 watts 230 volts	FINAL TEST step 2. See step 1 of OTHER LOWER DECK MODIFICATIONS under BOTTOM DECK MODIFICATION PROCEDURE in CIRCUIT MODIFICATIONS section.
V 101	$6 \mathrm{SJ7}$	6SJ7	FINAL TEST procedure steps 3, 6, 8, \& 10. Use a tube with low microphonics and check for a "hump" in the resonance curves as directed in. FINAL TEST procedure step 9.
$\begin{aligned} & \text { V } 102 \text { \& } \\ & \text { V } 103 \end{aligned}$	6SJ7	6SJ7 selected as a matched pair.	
V 104	$6 \mathrm{SJ7}$	6S.57	EINAL TEST step 3. Check for low microphonics, hum, and 60 cps "hump". FINAL TEST step 9a.
V 105	6 J 7	$6 J 7$	Changing either tube will not cause appreciable change in frequency or oscillator injection voltage. Check by repeating steps 2, 3, 8, 10, and 14 of FINAL TEST. Oscillator output should be stable. Tubes should be non-microphonic.
V 106	6 F 6	6 F 6	

TUBE COMPLEMENT \& TUBE REPLACEMENTS (Cont'd.)
GENERAL (Cont'd.)

$\begin{gathered} \text { CIRCUIT } \\ \text { REFERENCE } \end{gathered}$	ORIGINAL TUBE TYPE	RECOMMENDED REPLACEMENT	TESTS, ADJUSTMENTS, AND/OR SPECIAL NOTES
V 107	NE16 Neon Tube or OAZ	$\begin{aligned} & \text { NEI6 } \\ & \text { or } \\ & \text { OA2 } \end{aligned}$	The two tube types given are not interchangeable. Replace with same type as found in instrument. Set B+ according to instructions in step 1 of FINAL TEST.
V 108	$6 \mathrm{SQ7}$ or 6SF5	$6 \mathrm{SQ7}$ or 6SF5	
V 109	$\begin{aligned} & \text { 6L6G, } \\ & \text { 6L6GA, } \\ & 6 \mathrm{~L} 6 \mathrm{~GB} \text {, or } \\ & 6 \mathrm{Y} 6 \end{aligned}$	6L6GB	FINAL TEST step 1. All of these tube types have the same pin connections. Resistor R164 must be in screen circuit if 6Y6 is used.
V 110	$\begin{aligned} & 5 \mathrm{Y} 3 \mathrm{GT}, \\ & 5 \mathrm{Z} 4,5 \mathrm{U} 4 \mathrm{G}_{n} \\ & 5 \mathrm{U} 4 \mathrm{GA} \text {, or } \\ & 5 \mathrm{U} 4 \mathrm{~GB} \end{aligned}$	5 U 4 GB	FINAL TEST step l. Best power supply regulation will be obtained in some cases by replacing with the same tube type as in instrument, All of these rectifiers are interchangeable in the 300 A with no change in pin connections. Voltage rating of. output electrolytic capacitors must not be exceeded.

CIRCUIT DESCRIPTION

GENERAL -

The -hp- Model 300A Harmonic Wave Analyzer is a frequency selective heterodyne type voltmeter designed to measure individual components of complex waveforms. Full scale meter readings can be obtained from input voltages varying between 1 millivolt and 500 volts. Instrument selectivity can be varied to measure either closely or widely spaced harmonics over the audio spectrum from 30 to $16,000 \mathrm{cps}$.

Basically, the circuit consists of a phase inverter, a local oscillator, a balanced mixer, a four section selective amplifier, and a vacuum tube voltmeter. In addition to these basic circuits, the Model 300A includes input and range multipliers as well as an internal calibrating system for use in standardizing overal! instrument gain. The block diagram given in Fig. 1 shows the function of the individual circuits and controls.

The instrument is divided into two chassis with a common front panel. The upper chassis contains the selective amplifier and vacuum tube voltmeter sections. The remaining circuits are located in the lower chassis. The schematic diagram is similarly divided.

INPUT \& PHASE INVERTER CIRCUITS -

The input terminals in the lower left corner of the instrument panel are connected to METER MULTIPLIER switch Sl0l which provides ranges of X1, X10, X100, and X1000. In addition, each position of this switch is calibrated in the maximum input voltage that may be applied without overloading the circuits of the instrument Erroneous readings will result from circuit clipping when the input signal is higher than these panel markings.

The METER ivULTIPLIER switch is followed by the SET TOIOO control which must be set to the 100 position in order to obtain a correct voltmeter reading when measuring the actual value of the input voltage.

Switch S102 ('S") permits connecting the input of the 6SJ7 phase inverter tube Vlol to the input signal or to the internal calibration circuit.

INPUT \& PHASE INVERTER CIRCUITS - (Cont'd.)

The internal calibration circuit obtains 6.3 volts from a heater winding on the power transformer. Control "V" permits setting the voltage to obtain a reading of 5 volts on the internal calibrating voltmeter. The values of R106 and Rl07 are chosen to obtain a 10 to 1 voltage division ratio and are factory adjusted to obtain a 0.5 volt calibration voltage when the calibration voltmeter reads 5 volts.

Phase inverter Vlol is a triode connected type 6 SJ7 pentode tube. The load resistor (other than cathode resistor R111) for this tube is effectively 44, 000 ohms and consists of R112 and R114 in serias. With R112 in the cathode circuit and R114 in the plate-circuit, the signal voltage delivered to the modulator tubes through coupling capacitors C103 and C105 are equal in amplitude and 180 degrees out of phase with each other.

MODULATOR CIRCUIT \& VOLTAGE AMPLIFIER -

The modulator circuit consists of two type 6SJ7 tubes (V102 and V103) in a balanced push-pull circuit. Potentiometer R 117 provides an adjustment for balancing the modulator input circuits. This control is set during FINAL TEST and is not an operating control. Variable capacitor Cl07 (control "C") and potentiometer R123 (control ' R ") provide balancing adjustments for the modulator output circuits.

The local oscillator voltage is injected into the cathode circuit of V102 and V103 at the top of their common cathode resistor (R120). The local oscillator operates at a frequency 20 KC higher than the input signal.

The push-pull modulator tubes will have the input and local oscillator frequencies present in their output as well as the sum and difference frequencies.

Transformer TlOL is designed for operation at 20 KC and readily accepts the 20 KC lower sideband and passes it on to the selective amplifier. These amplifiers are peaked to amplify a 20 KC signal. Any portion of the original signal arriving at the input to this amplifier system will be rejected by the amplifier .

The local oscillator signal is applied to V102 and V103 from a common source and hence appears in both plate circuits in the same phase and will be cancelled out across the balanced primary of Tl01. Balance is obtained by adjusting controls "C" and "R".

This balance becomes increasingly important at the lower frequency limit of the 300 A . When the frequency dial is set to zero the local oscillator frequency is 20 KC . If the modulator tubes are not balanced, the 20 KC signal from the local oscillator will feed through the selective amplifier and give an eironeous reading on the 300A.

Potentiometer R125 (control " G^{\prime}) across the secondary of Tlol provides an adjustment for standardizing overall amplifier gain.

METER SENSITIVITY switch S103 permits changing the amplifier input by any one of nine fixed ratios. This effectively acts as a control of meter sensitivity and when used in conjunction with the METER MULTIPLIER, switch SIO1, provides 18 full scale voltmeter ranges from 500 volts to 1 millivolt.

Tube V104 is a triode connected type 6SJ7 tube functioning as a voltage amplifier. The output from this tube is connected to a shielded cable terminated by a two prong plug. The shielded cable carries the 20 KC signal from the lower chassis to the upper chassis. A two prong socket is mounted in the upper chassis.

LOCAL OSCILLATOR -

The local oscillator is the resistance-capacity tuned circuit commonly found in -hp-instruments. Tubes V105 and V106 function basically as a two stage voltage amplifier with the output of V106 coupled to the grid and cathode circuits of V105. The grid circuit coupling produces regenerative feedback to maintain oscillation while the cathode circuit coupling produces degenerative feedback to stabilize the oscillator output.

The oscillator tunes over a relatively narrow range from 20 KC to 36 KC and has constant output over this range. Consequently, the amplitude of the 20 KC signal fed to the selective amplifier system is dependent upon the amplitude of the input signal.

LOCAL OSCILLATOR - (Cont'd.)

The frequency dial is calibrated to indicate the frequency of the input signal and not the local oscillator frequency which is 20 KC higher than the dial indication.

The 6 to 65 ,. f trimmer (C $11+$ control "F") provides an a justment for setting the local oscillator frequency. . ith the frequency dial set to " 0 ", control " F " is adjusted for a maximum indication on the 300 A voltmeter. This adjustment tunes the local oscillator to the 20 KC peak of the selective amplifiers. An accurately known external source connected to the 300 A input terminals can also be used for adjusting the local oscillator. The 300 A frequency dial is set to the same frequency as the external source and control " F " is adjusted for a maximum indication on the 300 A meter.

Local oscillator output is obtained from V106 cathode circuit and injected into the cathode circuit of V102 and V103. Injection voltage is set with the frequency control dial at "O" by adjusting potentiometer Rl43 which controls negative feedback from V106 to the cathode of V105. The 20 KC injection voltage measured at the top of cathode resistor R120 for V102 and V103 should be 2 volts.

POMER SUPPLY -

High voltage is obtained from a $5 \mathrm{U} 4 \mathrm{G} / \mathrm{AB}$ full wave rectifier followed by a two section capacity input L-C filter. This filtered dc output furnishes $B+$ for all selective amplifier circuits as well as the voltmeter circuit in the upper chassis. The filtered dc is also passed through a voltage regulator, the output of which supplies V101 through Vl06 in the lower chassis.

An OA2 voltage regulator tube V107 supplies the necessary reference voltage for the 6 SQ7 regulator control tube V108 which in turn controls the 6L6GB series regulator tube V109. Tube types for V:07, V108, and V109 may vary between instruments.

Potentiometer R152 is an adjustment for setting the output of the regulated portion of the power supply to +240 volts.

SELECTIVE AMPLIFIER SYSTEM -

The selective amplifier system consists of a total of eight type 6SJ7 tubes. These tubes are paired to give effectively four amplification stages. All four stages function in the same manner. Consequently, only the first stage involving VI and V2 will be discussed.

The signal from voltage amplifier V104 in the lower chassis is fed through a shielded cable to the grid circuit of Vl in the upper chassis. Coil Ll in the grid circuit is tuned to 20 KC by Cl and C 2 . The resistor of 830,000 ohms in the grid circuit prevents the preceding stage from loading the resonant circuit.

The amplified 20 KC signal is developed across one section of the HALF BAND WIDTH control. With this control rotated full counterclockwise, the control arm is at ground potential and there is no feedback from V2 to V1 through R5, R8, R9, or R10 resistors. Amplifier gain is determined by the fixed degenerative coupling through R1l and C37 between V2 output and VI cathode circuit. Amplifier selectivity is at minimum and is primarily determined by the resonant circuit in the grid circuit of VI. Resistor R74 will control the " Q " of the tuned circuit and hence also control amplifier selectivity under these conditions.

As the HALF BAND WIDTH control is rotated clockwise, more and more of the plate signal from V2 is fed back to the grid circuit of Vl. This signal is in phase with the input signal and the circuit becomes regenerative. The selectivity of the two stages becomes progressively sharper as regeneration increases.

The positive feedback would also cause an increase in gain if it were not for nogative feedback through R5, R8, and R10 to the cathode of Vl from the same point as the positive feedback. By design, circuit constants have been chosen to permit adjustment of the amount of negative feedback. By properly setting the NEGATIVE FEEDBACK control, as described in the Operating Instructions, it is possible to vary the selectivity of stages V l and V 2 while maintaining constant amplifier gain.

The remaining three sections of the selective amplifier operate in an identical manner. Tubes V3 and V4 comprise the second section, tubes V5 and V6 the third section, and tubes V7 and V8 the fourth section.

CIRCUIT DESCRIPTION (Cont'd.)

SELECTIVE AMPLIFIER SYSTEM - (Cont'd.)

The HALF BAND WIDTH control consists of four ganged potentiometers which control feedback in all four amplifier sections simultaneously. This control is calibrated 145 to 30 . The divisions on this scale indicate the number of cycles away from the resonant frequency at which the amplifier response will be down 40 db (99%).

The NEGATIVE FEEDBACK control also consists of four ganged potentiometers which provide simultaneous negative feedback control in all four amplifier sections. This control is calibrated 50-0-50 in arbitrary units.

The 20 KC toroid coils used in the selective amplifier sections are manufactured using the most up to date techniques known with the most recent engineering data in order to insure instrument accuracy over an ambient temperature range of approximately 55 to 95 degrees Fahrenheit. Ambient temperatures outside of this range may necessitate realignment of the selective amplifier.

VOLTMETER CIRCUIT -

The vacuum tube voltmeter voltage amplifier, V9, consists of two triode sections of a type 6SN7GT tube connected in a conventional resistance coupled amplifier circuit. The output of this amplifier is fed to a 6 H 6 tube in a full wave rectifier circuit. The ground return for the rectifier circuit is made through the cathode resistor for the first triode section. This introduces inverse or negative feedback which stabilizes the vacuum tube voltmeter circuit.

The indicating meter has a basic 0-1 milliampere movement with the scale calibrated in three ranges of $0-1,0-2.5$, and $0-5$ millivolts.

CALIBRATION PROCEDURE

GENERAL

The instrument should be given at least 30 minutes for warm up before starting the calibration procedure. This warm up will allow the circuits to reach a stable operating condition. It is also advisable to check the calibration after the instrument has been operating for more than one hour.

PROCEDURE FOR CALIBRATION -

1. Set the main tuning dial to "0".
2. Set the FINE TUNING so that the line is vertical.
3. Set METER SENSITIVITY to "500".
4. Set HALF BAND WIDTH to " 30 ".
5. Set NEGATIVE FEEDBACK to " 0 ".
6. Set METER MULTIPLIER to "X1000".
7. Set input gain control potentiometer (SET TO 100 FOR VOLTAGE MEASUREMENT) full counterclockwise to " 0 ". This control and the METER MULTIPLIER have no effect on the calibration procedure except to isolate the input terminals from the balance of the circuits.
8. Set switch "S" to the left (position vertical to panel).
9. Set control " G " to the center of its range.
10. Adjust control "F" for a maximum MILLIVOLTS meter indication. If MILLIVOLTS meter reads off scale, rotate control " G " to bring pointer on scale.
11. Adjust controls " C " and " R " for a minimum MILLIVOLTS meter reading. Rotate control " G " to increase meter readings and also switch METER SENSITIVITY to lower scales in order to increase meter readings.
12. Set HALF BAND WIDTH to "145".

CALIBRATION PROCEDURE (Cont'd.)

PROCEDURE FOR CALIBRATION - (Cont'd.)

13. Return METER SENSITIVITY to " 500 ".
14. Set switch "S" to the right position.
15. Adjust control "V" for a VOLTS meter reading of 5 volts.
16. Set main tuning dial to power line frequency and adjust for a maximum MILLIVOLTS meter indication. Adjust control " G " as required to keep the MILLIVOLTS meter on scale.
17. Adjust control " G " for exactly 500 millivolts (full scale on MILLIVOLTS meter).
18. FIip switch "S" to the left, METER SENSITIVITY switch to 25 , and adjust main tuning dial at 0 for a maximum indication on the MILLIVOLTS meter. If MILLIVOLTS meter reading is off scale, adjust " C " and " R " for a minimum meter reading.
19. Repeat steps 13 through 17.
20. Set HALF BAND WIDTH to " 30 " and adjust FINE TUNING for a maximum MILLIVOLTS meter reading.
21. Adjust NEGATIVE FEEDBACK control for a full scale MILLIVOLTS meter reading. Rotate control clockwise to increase reading or counterclockwise to decrease reading.
22. Set HALF BAND WIDTH to " $145^{\prime \prime}$ "and adjust FINE TUNING for maximum reading on MILLIVOLTS meter. If reading is not full scale, repeat steps 13 through 17.
23. Repeat steps 20 through 22 until a full scale MILLIVOLTS meter reading is obtained.
24. Flip switch "S" to the left and close the bottom door.
25. Before making voltage measurements, set front panel operating controls as follows: SET TO 100 FOR VOLTAGE MEASUREMENT full clockwise, METER MULTIPLIER to proper range for the voltage being measured, and HALF BAND WIDTH at "145" or "30". Main tuning dial must be tuned to frequency of voltage being measured and the FINE TUNING adjusted for a maximum MILLIVOLTS meter indication.
26. The following precautions must be observed when operating the -hp-Model 300 A Harmonic Wave Analyzer:
A. For maximum accuracy, recheck calibration from time to time while operating instrument.
B. For runvenience, set the HALF BAND WIDTH control to " 30 " when measuring voltages below 300 cps and to "l45" for voltages above 300 cps . Any desired intermediate points may be selected and used for a particular application provided these points are used in steps 20 through 23 of PROCEDURE FOR CALIBRATION.
C. To make voltage measurements, the input gain control (SET TO 100 FOR VOLTAGE MEASUREMENT) must be full clockwise to "l00". The HALF BAND WIDTH control should be set to the point or points used when calibrating. See B above. The instrument can be calibrated and used with the HALF BAND WIDTH control set to provide any desired degree of selectivity between "30" and "145".
D. The main tuning dial must be tuned to the signal voltage frequency and the FINE TUNING control adjusted for a maximum MILLIVOLTS meter reading.
E. The Model 300A can be used to measure hum in the presence of other signals if the following precautions are observed:
27. The modulator must be balanced to 10 millivolts or less in step 18 of the CALIBRATION PROCEDURE.
28. The HALF BAND WIDTH control must be set to " 30 ". These precautions are necessary, since this measurement is ordinarily made on the extremely sensitive ranges of the instrument with the local oscillator tuned to $20,060 \mathrm{cps}$. If the modulator is not balanced very closely, the signal from the local oscillator may feed directly into the selective amplifier. The HALF BAND WIDTH must be set for maximum selectivity to provide additional reduction of the signal from the local oscillator.

CALISRATION PROCEDURE (Cont'd.)

PROCEDURE FOR CALIBRATION - (CoAt'd.)

F. A 20 KC external siznal source operating near the 300 A may radiate a signal directly into the selective amplifier of the 300 A and produce an erroneous MILLIVOLTS meter reading or a beat.

```
this instrument is accurate within the approximate ambient temperature range of
55 to 95 degrees fahrenhelt. other ambient temperatures may require realignment
of the selective amplifier.
```


TEST PROCEDURE

INSTRUMENTS REQUIRED FOR TEST PROCEDURE -

1. A constant frequency and voltage sine wave source delivering 20 KC with not more than 1% distortion. The -hp- Model 200CD Wide Range Oscillator is recommended. A signal generator with an output attenuator such as -hp-Models $205 \mathrm{~A}, 205 \mathrm{AG}, 205 \mathrm{AH}$, or 650 A can also be used.
2. A frequency measuring device such as an hhp- Model 521 , 522, 523, or 524 Electronic Counter is recommended. An -hp- Model 100 C or 100D Secondary Frequency Standard used in conjunction with an oscilloscope will also serve the same purpose.
3. A pure sine wave source covering the approximate range from 100 to $6,300 \mathrm{cps}$ with extremely low distortion is needed. The -hp- Model 206A Audio Signal Generator followed by a pure wave filter is recommended.
4. A dc voltmeter such as -hp-Model $410 B$.
5. A constantly variable transformer for line voltage control.
6. An ac voltmeter such as -hp-Model 330, 400 AB , or 400D.
7. An oscilloscope with response up to 36 KC .

IMPORTANT
test procedures must be performed in the sequence given.

PRELIMINARY TESTS \& ADJUSTMENTS -

The instrument should be turned on at least an hour before making these adjustments. Set the line voltage to 115 volts for all tests unless otherwise instructed.

Unless otherwise designated, refer to Figs. 3 and 4 for circuit references.

1. Set the regulated dc voltage at cathode pin 8 of V109 to 240 volts by adjusting control potentiometer R152. This control will not be found in some older instruments and it will be neces. sary to pad resistor R50 or R5I shown in Fig. 7C to adjust for 240 volts.

The output of the regulated supply should stay within the limits of 238 and 242 volts when the line voltage is varied between 102 and 128 volts.
2. Set main tuning dial to zero and engraved line on FINE TUNING knob in a vertical position. Measure local oscillator injection voltage at cathode pin 5 of V102 or V103. The 20 KC voltage measured s.iould be 2 volts. Adjust potentiometer R 143 until a 2 volt reading is obtained on the voltmeter. If necessary, select a cathode lamp ($R 140$) to bring the oscillator level within the adjustment range of R143. Older instruments have a fixed resistor in place of this control and adjustment is made by padding the value of the fixed resistor.

PRELIMINARY TESTS \& ADJUSTMENTS - (Cont'd.)

3. Set main tuning dial and FINE TUNING controls to the same position used in step 2. Connect frequency measuring equipment and ac voltmeter at cathode pin 5 of VI02 or V103. Tune local oscillator to 20 KC by means of sub-panel "F" control. If the oscillator cannot be tuned to 20 KC with the " F " control or if this control does not tune at approximate mechanical center with plates half meshed, adjust variable capacitor Cl23, or if necessary change values of tiked capacitors Cll2 and Cll3. Some early instruments do not have variable capacitor CI23 which is mountod on the underside of the lower deck.
4. Geck oscillator for stability. Watch pattern on oscilloscope for any sudden changes in frequency or amplitude Cange oscillator tubes (V105 and V106) to correct trouble if it occurs.

SELECTIVE AMPLIFIER ALIGNMENT -

The selective amplifier consists of four stages witi: two tubes in each stage. All four stages are aligned in the same general manner.

The alignment procedure for instruments with Serial No. 1330 and above or older instruments which have been modernized varies slightly from the procedure for the older instruments which have Serial No. 1329 and below and have not been modernized. These alignment differences are given in the alignment procedure. The type of circuit that a particular instrument has should be determined before starting alignment of the selective amplifier. The MODERNIZING OLDER INSTRUMENTS section of this manual will aid in this circuit identification.

Input and output voltages, when mentioned in the following procedure, are measured between the indicated point in the circuit and the chassis. All circuit reforences refer to Fig. 3 unless otherwise noted. The amplifier stage or section being aligned can be determined by the prefix number $1,2,3$, or 4 in the steps of the following alignment procedure.

The selective amplifier stages normally operate with signal levels of very low amplitude. All four stages are basically the same and are each capable of delivering an output signal of 4 volts. Hence, for convenience in testing, the input test signal is adjusted so that the stage output voltage does not exceed 4 volts.

IA. Unplug the two prong connector from the top deck and remove the third amplifier tube V3. Remove bottom plate on top deck.

1B. Feed a signal of exactly $20 \mathrm{KC}(\pm 5 \mathrm{cps})$ from an external source into the upper deck two prong connector. The 20 KC source must meet specifications given at the beginning of this TEST PROCEDURE section. Once set, oscillator frequency must be monitered and not allowed to vary more than 1 cps . See above for instructions on setting input signal level.

1C. Connect an ac vacuum tube voltmeter to the junction of C7 ($0.05 \mu \mathrm{f}$) and RII ($68,000 \mathrm{ohms}$) in the plate circuit of $V 2$. Adjust external signal source as required to maintain a voltmeter reading no higher than 4 volts.

1D. Set the NEGATIVE FEEDBACK control at " -10 ". This control remains in this position for the balance of the alignment procedure.

1E. With the HALF BAND WIDTH control set at "30" adjust trimmer Cl across toroid coil Ll for a maximum indication on the external vacuum tube voltmeter. The trimmer capacitor across the toroid coil must not be tuned with the plates full open or full closed. To do so will cause a false resonance peak and when the feedback controi is adjusted later for normal operation, oscillation will occur. Change the value of fixed capacitor C2 in parallel with the trimmer to center the trimmer when tuned for a peak. Use silver mica or ceramic capacitors with low or zero temperature coefficients.

1F. Set the HALF BAND WIDTH control at "l45" and adjust for a stage gain of $19 \mathrm{db}, \pm 1 / 2 \mathrm{db}$ by padding the lower cathode resistor, R2, for the first tube in the stage. Set older instruments (unmodified Serial No. 1329 and below) for a gain of 19 to 19-1/2 db.

The schematic in Fig. 3 shows this resistor and the corresponding resistor in the following stages as having a nominal value of 900 ohms . The factory adjusted values of these resistors will range from approximately 600 ohms up to 900 ohms.

1G. Note the external voltmeter reading and then turn the HALF BAND WIDTH control to "30". Adjust potentiometer R8, in the feedback circuit, to obtain the same external voltmeter reading.

1H. Check trimmer setting and stage gain by repeating steps lE and lF. If a change is made, repeat step 1 G . Replace tube V3.

SELECTIVE AMPLIFIER ALIGNMENT - (Cont'd.)

2A. Remove amplifier tubes V2 and V5. Disconnect voltmeter and connect output from external 20 KC source to this same point (junction of C7 and R11) in plate circuit of V2. Reconnect voltmeter to junction of C16 ($0.05 \mu \mathrm{f}$) and R29 ($68,000 \mathrm{ohms}$) in V4 plate circuit.

2B. Repeat step $1 E$ except adjust trimmer $C 9$ across toroid coil $L 2$. Change the value of fixed capacitor Cl0 if necessary to center C9 tuning range.

2C. Repeat step $1 F$ except adjust the value of cathode resistor R20. Set older instruments (unmodified Serial No. 1329 and below) for a gain of $17-1 / 2$ to 18 db instead of $19 \mathrm{db}, \pm 1 / 2 \mathrm{db}$.

2D. Repeat step $1 G$ except adjust potentiometer R27.
$2 E$. Check trimmer setting and stage gain by repeating steps $2 B$ and $2 C$. If a change is made, repeat step 2D. Replace tubes V2 and V5.

3A. Remove amplifier tubes V4 and V7. Disconnect voltmeter and connect output from external 20 KC source to this same point (junction of C16 and R29) in the plate circuit of V4. Reconnect voltmeter to junction of C24 $(0.05 \mu f)$ and $R 45(68,000$ ohms $)$ in $V 6$ plate circuit.

3B. Repeat step IE except adjust trimmer Cl7 across toroid coil L3. Change the value of fixed capacitor Cl8 if necessary to center Cl7 tuning range.

3C. Repeat step 1F except adjust the value of cathode resistor R36. Set older instruments (unmodified Serial No. 1329 and below) for a gain of $17-1 / 2$ to 18 db instead of $19 \mathrm{db}, \pm 1 / 2 \mathrm{db}$.

3D. Repeat step lG except adjust potentiometer R43.
$3 E$. Check trimmer setting and stage gain by repeating steps 3 B and 3 C . If a change is made, repeat step 3D. Replace tubes V4 and V7.

4A. Remove amplifier tube V6. Disconnect voltmeter and connect output from external 20 KC source to this same point (junction of C24 and R45) in the plate circuit of V6. Reconnect voltmeter to junction of C32 ($0.05 \mu \mathrm{f}$) and R60(68,000 ohms) in V8 plate circuit.

4B. Repeat step lE except adjust trimmer C25 across toroid coil L4. Change the value of fixed capacitor C26 if necessary to center C17 tuning range.

4C. Repeat step $1 F$ except adjust the value of cathode resistor R 52 . Set older instruments (unmodified Serial No. 1329 and below) for a gain of 19 to $19-1 / 2 \mathrm{db}$ instead of $19 \mathrm{db}, \pm 1 / 2 \mathrm{db}$.

4D. Repeat step $1 G$ except adjust potentiometer R58.
4E. Check trimmer setting and stage gain by repeating steps 4 B and 4 C . If a change is made, repeat step 4D. Replace tube V6.
5. Replace bottom plate on top deck and reconnect plugs for two cables connecting top and lower decks. Turn instrument upright.
6. Balance the modulator as previously explained under CALIBRATION PROCEDURE. Adjust the "V" control for a reading of 5 volts on the VOLTS calibration meter. Flip switch "S" to the right.
7. Set HALF BAND WIDTH control to " $145^{\prime \prime}$, tune in 60 cps and set to a reference point on the MILLIVOLTS meter with the " G " control.
8. Turn HALF BAND WIDTH control to " 30 " and retune for a maximum reading with the FINE TUNING control.
9. Adjust the NEGATIVE FEEDBACK control to obtain the same reference reading on the MILLIVOLTS meter. If the NEGATIVE FEEDBACK control is between " $-15{ }^{\prime \prime}$ " and $" ; \mathrm{T}^{\prime}{ }^{\prime \prime}$, the selective amplifier is correctly aligned. Repeat alignment procedure until this test can be passed.
10. Place instrument in its cabinet and allow to operate for several hours before proceding with the HEAT RUN CHECK that follows.

If new coils have been installed, instrument should be operated continually for at least 24 hours. Up to 3 or 4 days heat run is recommended.

HEAT RUN CHECK -

1. Allow instrument to operate for several hours. Check the position of the NEGATIVE FEEDBACK control as directed in steps 6, 7, 8, and 9 of the SELECTIVE AMPLIFIER ALIGNMENT procedure and record the control setting.
2. Turn instrument off and let if cool over night. Repeat last step when instrument has been on for a few minutes and again record the NEGATIVE FEEDBACK control setting.
3. Repeat steps 1 and 2 until the instrument is stabilized as indicated by the NEGATIVE FEEDBACK control not requiring excessive adjustment between "hot" and "cold" operating temperatures.

The adjustment required may drift outside the limits of this control. In this case, the amplifier should again be aligned and the unit put on heat run. This realignment may be required a third time.

If the instrument will not stabilize, it may be necessary to replace one or more of the toroid coils. The defective coil can, in most cases, be located during realignment of the selective amplifier. Change the coil in the amplifier section that requires excessive retuning and readjustment of the internal feedback potentiometer (R $8, R 27, R 43$, or R58).

Once the instrument is stabilized it is ready for the final test.

FINAL TEST -

1. Check regulated output voltage in power supply as directed in the PRELIMINARY TESTS \& ADJUSTMENTS section of this manual.
2. Check oscillator voltage as directed in PRELIMINARY TESTS \& ADJUSTMENTS.
3. Check oscillator stability and response to line voltage change as follows:
A. Apply a $400 \mathrm{cps}, 1 / 2$ volt signal to input terminals and tune instrument to same frequency with HALF BAND WIDTH control set at " 145 ".
B. Adjust MILLIVOLTS meter to full scale with control " G ".
C. Turn HALF BAND WIDTH control to " $30^{\prime \prime}$ " and repeak signal with FINE TUNING control. Adjust NEGATIVE FEEDBACK control for a full scale MILLIVOLTS meter reading.
D. Turn the line voltage down to 105 volts with the variable transformer. The meter read ing normally drops to half scale. When the meter has stopped drifting, retune with the FINE TUNING control. The meter should read within 15% of full scale.

A change of greater than 15% is usually caused by a weak tube. Tubes V105 and V106 in the local oscillator, as well as tubes V9 and Vi0 in the meter circuit should be checked first.
4. Repeat the SELECTIVE AMPLIFIER ALIGNMENT procedure as a final selective amplifier alignment.
5. With no input to instrument, set frequency dial to midscale and the SET TO 100 dial to zero. Set the mechanical zero on the MILLIVOLTS meter to zero. The instrument must be at normal operating temperature when this adjustment is made.
6. Balance the modulator as explained in steps 1 through 11 of CALIBRATION PROCEDURE. Check control "C" butterfly capacitor, C107, to see that it is meshed equally on both sides. An unbalanced setting of this capacitor is an indication that modulator tubes V102 or Vl03 are unbalanced, modulation transformer (T101) is defective, or there are other defective parts in the modulator circuit. Refer to the TROUBLE SHOOTING section of this manual.
7. Check for carrier leakage. Balance modulator with HALF BAND WIDTH control at "145", METER SENSITIVITY control at " 500 ", and frequency dial at "0". Turn METER SENSITIV ITY to "25", rebalance modulator, turn control back to "500", and note MILLIVOLTS meter reading. Carrier leakage caused by the 20 KC signal from the local oscillator feeding through the power supply into the top deck will result in a higher MILLIVOLTS meter reading. Corrective steps are given in the TROUBLE SHOOTING section of this manual.

TEST PROCEDURE (Cont'd.)

FINAL TEST - (Cont'd.)

8. Check for hum as follows:
A. Balance the modulator.
B. Set METER SENSITIVITY control to " 500 " and HALF BAND WIDTH control to " 145 ".
C. Set the sub-panel meter to 5 volts with control "V". Flip lever switch "S" to the right.
D. Tune instrument at 60 cps for a maximum MILLIVOLTS meter reading. Adjust control " G " to obtain a full scale MILLIVOLTS meter indication.
E. Turn HALF BAND WIDTH control to " $30^{\prime \prime}$ " and retune instrument for a maximum MILLIVOLTS meter reading. Adjust NEGATIVE FEEDBACK control to obtain a full scale MILLIVOLTS meter reading.
F. Flip lever switch "S" to the left (vertical position) and turn the METER SENSITIVITY switch to "l".
G. Balance hum potentiometer (R159) in lower deck for a minimum MILLIVOLTS meter reading. The reading obtained should not be more than 0.08 millivol.ts.
H. Retune instrument: to 120 cps and then 180 cps . The MILLIVOLTS meter reading again should not be more than 0.08 millivolts. Refer to the TROUBLE SHOOTING notes on hum removal.
9. Check resonance curves as follows:
A. Check resonance curve for a 60 cps "hump". Set HALF BAND WIDTH control to "30"; METER SENSITIVITY at "500"; METER MULTIPLIER at ". 5"; SET TO 100 at "100"; and connect a $400 \mathrm{cps}, 1 / 2$ volt, external source to the input: terminals. Tune instrument to 400 cps and adjust control " G " for a full scale MILLIVOLTS meter deflection.

Gradually shift the external oscillator frequency and switch the METER SENSITIVITY control counterclockwise to maintain a MILLIVOLTS meter reading.

The meter indication should drop gradually. When the oscillator is 60 cps away from 400 cps , the gradual drop may show a hesitation or a small rise which is an indication of a 60 cps "hump" in the resonance curve.

The external ascillator must be tuned on both sides of 400 cps for this test. Refer to TROUBLE SHOOTING section of this manual for methods of eliminating this "hump".
B. Set instrument controls and connect external signal source as in step 9 A except set HALF BAND WIDTH control at " 145 ". Peak instrument: for a full scale MILLIVOLTS meter reading at 400 cps .

Set external oscillator to $420,460,520,545$, and 700 cps . Record millivolt reading obtained at each frequency.

Plot the resonance curve on the broad sample curve given in Fig. 8. The plotted curve should fall within the two outside lines of sample curve.

Repeat this same process after recording the readings obtained by tuning the external oscillator to $380,340,280,255$, and 100 cps .
C. If the plotted curves fall outside the sample curve limits, it will be necessary to change the value of any one or all four resistors R18, R34, R 74, and R77 across the toroid coils. Increasing a resistor value will sharpen the resonance curves in both broad ("145") and sharp ("30") HALF BAND WIDTH control positions. Adjustment of the broad curve must be completed before attempting adjustment of the sharp tuning curve.

The selective amplifier must be realigned after changing any of these four resistors.
D. Set HALF BAND WIDTH control to "30" (sharp) and plot resonance curve, using the procedure given in step 9 B except take readings at $10,20,30,40,50,60$, and 70 cps above and below 400 cps . Particular attention should be given to the frequencies of 340 and 460 cps to be sure that a "hump" does not appear as explained in step 9A.

TEST PROCEDURE (Cont'd.)

FINAL TEST - (Cont'd.)
9D. (Cont'd.)
If the plotted curves fall outside the sample curve limits, it will be necessary to change the value of either or both resistors R75 and R76 in the feedback circuits of the two center stages. Decreasing the value of these resistors will sharpen the resonance curve.

The selective amplifier must be realigned after changing either resistor values.
Changing either or both of these resistor values will not affect the broad tuning curve.
If the two sides of the resonance curve are not symmetrical, repeat this step after very carefully peaking the instrument to 400 cps with the MILLIVOLTS meter. Refer to the TROUBLE SHOOTING section of this manual if the resonance curve is still not symmetrical.
10. Check harmonic distortion in the 300 A as follows:
A. Balance the modulator, set HALF BAND WIDTH control to "145", and switch METER SENSITIVITY to " 500 ". Connect an external signal source with pure wave filter to input terminals and adjust to deliver a 0.5 volt signal at approximately 1600 cps .

The evernal signal source may have as high as 1.0% distortion provided a pure wave filter is used between this source and the 300 A input. Refer to INSTRUMENTS REQUIRED FOR TEST PROCEDURE at the beginning of this TEST PROCEDURE section.
B. Peak the 300A to the input signal and adjust the MILLIVOLTS meter to full scale with control "G". Retune instrument to the second harmonic (3200 cps) and set METER SENSICIVITY switch to "l".
C. Adjust potentiometer R117 in the grid circuit of balanced modulator tubes (V102 and V103) for a minimum MILLIVOLTS meter reading. Rebalance the modulator and again adjust Rll7 for a minimum reading.

The remaining MILLIVOLTS meter reading should not be more than 0.2 millivolts. This reading is an indication of input signal distortion by the 300 A .

Retune the 300 A to the third harmonic (4800 cps) and note the MILLIVOLTS meter reading. This reading should again not be more than 0.2 millivolts.
D. Repeat steps 10 A and 10 B with external signal source tuned to approximately 6300 cps and check second harmonic ($12,600 \mathrm{cps}$) only. The MILLIVOLTS meter reading obtained should not be greater than 0.2 millivolts.
11. Check HALF BAND WIDTH variable selectivity control as follaws:
A. Connect a $400 \mathrm{cps}, 0.5$ volt, sine wave signal to the 300 A input terminals. Tune instrument for a maximum reading with HALF BAND WIDTH control at "145". Set MILLIVOLTS meter to a reference point of ". 8 " with control " G ". The METER SENSITIVITY switch should be on " 500 ".
B. Set HALF BAND WIDTH control to " 30 " and repeak the instrument with the FINE TUNING control. Adjust NEGATIVE FEEDBACK controlfor same ". 8 "MILLIVOLTS meter reference reading.
C. Turn the HALF BAND WIDTH controlfor a maximum reading on the MILLIVOLTS meter and repeak the signal with the FINE TUNING control. The resultant MLLLIVOL'TS meter reading should be no greater than "l.0". If the reading if off scale, refer to the TROUBLE SHOOTING section of this manual.
12. Check MILLIVOLTS meter tracking as follows:
A. Check mechanical zero as described in FINAL TEST step 5.
B. Set the 300 A to read voltages accurately as explained in steps 26 A and 26 B of PROCEDURE FOR CALIBRATION. Introduce a 400 cps signal and check MILLIVOLTS meter tracking against a meter with known calibration accuracy. The 300 A voltmeter readings should be within $\pm 2 \%$ of the full scale reading.
13. Check instrument sensitivity as follows:
A. Set METER SENSITIVITY at " 500 ", control " G " full clockwise, SET TO 100 control full clockwise, METER MULTIPLIER at '".5", and HALF BAND WIDTH control at "l45".

FINAL TEST = (Cont'd.)

13. (Cont'd.)
B. Connect 400 cps from an external oscillator to input terminals and tune 300 A for a maxia mum MILLIVOLTS meter reading. Adjust exterinal oscillator for a full scale MILLIVOLTS meter reading. The input signal, as measured at the input terminals by an accurate external voltmeter, will normally be 0.25 volt or less. If external signal is 0.5 volt or less, sensitivity is satisfactory. See TROUBLE SHOOTING section if input voltage is too high.
14. Check main tuning dial frequency calibration as follows:
A. Set frequency dial at "0" and FINE TUNING control with knob indicator straight up. Tune control " F " for a maxinum MILLIVOLTS meter reading which will indicate that the internal oscillator frequency is 20 KC .

Rotor plates of "F" control trimmer should be approximately half meshed with stator plates when tuned to 20 KC . If they are not, or if internal oscillator cannot be tuned to 20 KC with control "F", it will be necessary to adjust variable capacitor C123 (See Fig. 4). If necessary, the values of fixed capacitors C112 and C113 may be adjusted. In older instruments having fixed capacitors C112 and CIl3 only, adjustment can be made only by changing these capacitor values.

When oscillator is on frequency in approximate center of tuning range for control "F", balance the modulator. Do not change setting of control " ε " or the FINE TUNING control for remaining portion of this step.

Check frequency dial calibration with an external oscillator and a frequency standard or other frequency measuring device connected to the 300 A input terminals. Adjust main. tuning dial for a maximum MILLIVOLTS meter indication and note the dial reading. Repeat this process across the instrument frequency range.

Frequency dial calibration should be within $\pm 3 \%$ at frequencies of 100 cps or higher and $\pm 5 \%$ at frequencies below 100 cps .

To correct poor frequency dial tracking, pad R138 and R139 precision resistors and readjust variable capacitor C123 or change fixed capacitors CI12 and C113 to bring oscillator on frequency. Series or parallel resistor pads may be used depending upon the tracking error to be corrected. Increasing either or both these resistor values will decrease oscillator frequency.
B. Check and if necessary adjust oscillator injection voltage at V102 and V103 cathodes as directed in step 2 of PRELIMINARY TESTS \& ADJUSTMENTS.

Turn frequency dial from top to bottom while measuring cathode injection voltage of V102 and V103. If injection voltage is not constant, reset variable capacitor C123 and bring oscillator on frequency with control " $F^{\prime \prime}$. If range of Cl23 is not wide enough or C123 is not in a particular instrument, change capacity ratio of fixed capacitors Cll2 and Cll3. Increase the capacity of one while decreasing the capacity of the other an equal amount. The capacity change required must be experimentally determined.

Oscillator injection voltage may be adjusted for a slight rise at top of dial to compensate instrument frequency response.
15. Check frequency response as follows:
A. Set HALF BAND WIDTH control to "145", connect external voltrieter and audio signal generator to 300 A input terminals, and adjust for an input of 0.5 volt at 100 cps . Tune for a peak MLLLIVOLTS meter reading and adjust control "G" for a reference reading of 0.9 on the 0 to 1.0 MILLIVOLTS meter scale with METER SENSITIVITY set to " 500 ".
B. Tune generator and 300 A to $1 \mathrm{KC}, 10 \mathrm{KC}$, and 16 KC while maintaining a contstant input voltage. External voltmeter must be flat over this frequency range. The MILLIVOLTS meter readings should not vary from the reference point by more than $\pm 2 \%$ of full scale. Correct a slight error by adjusting the internal oscillator frequency response as explained in step l4B. To correct a large error, see the TROUBLE SHOOTING section.

TEST PROCEDURE (Cont'd.)

FINAL TEST - (Cont'd.)
16. Check voltage calibration as follows:
A. Balance the modulator, set HALF BAND WIDTH control to "145", set METER SENSITIVITY to " 500 ", turn SET TO 100 control full clockwise, and set METER MULTIPLIER control to ". 5 ".
B. Introduce a measured 400 cps voltage of exactly 0.5 volt into the 300 A input terminals. Tune for a peak and set MILLIVOLTS meter to full scale with " G " control.
C. Turn control "V" fuil counterclockwise and adjust the mechanical zero of the VOLTS meter.
D. Flip switch "S" to the right and adjust control "V" for a reading of 5 volts on the VOLTS meter.
E. Tune instrument for a peak MILLIVOLTS meter reading at 60 cps . DO NOT CHANGE THE "G" CONTROL SETTING.
F. The MILLIVOLTS meter reading should be full scale. If not, adjust the 60 cps signal for a full scale reading by padding either R106 or R 107 in the voltage divider. Maintain a VOLTS meter reading of 5 volts with control "V" and pad R106 or R107 to obtain a full scale MILLIVOLTS meter reading.
G. Recheck for a full scale reading at: 400 cps as in step B except do not change the " G " control setting.
H. Repeat steps B through G until a full scale reading is obtained for steps F and G by setting control "V" for 5 volts and tuning for a peak MILILIVOLTS meter reading.
17. Check the METER SENSITIVITY control as follows:
A. Set METER MULTIPLIER to ". 5", SET TO 100 contral full clockwise, HALF BAND WIDTH control to "145", and METER SENSITIVITY control to " 500 ".
B. Connect output terminals of a precision attenuator to 300 A input terminals. Use the correct value of attenuator load as specified by the attenuator manufacturer. This load may be connected across the 300 A input terminals.
C. Couple a 400 cps source to the attenuator input and adjust both attenuator and source to provide a 0.5 volt (500 millivolts) input signal to the 300 A . The resulting signal level at the attenuator input must be maintained constant for the balance of this procedure.
D. Peak the 300 A for a maximum MILLIVOLTS meter indication and set control " G " for a full scale reading of 500 millivolts. DO NOT CHANGE THE SETTING OF CONTROL "G" FOR THE BALANCE OF THIS TEST.
E. Maintain a constant attenuator input level. Refer to the table on the right. Adjust the attenuator to introduce amount of attenuation given in column one, set the METER SENSITIVITY control to the position given in column two, and adjust the FINE TUNING control for a maximum MILLIVOLTS meter indication. In each case, the resulting MILLIVOLTS meter reading should be within $\pm 2 \%$ of full scale.

This check is accurate only when the input level is maintained constant and a properly terminated precision attenuator is used,

Attenuation in db	METER SENSITIVITY Control Setting
0	. . . 500
6.	. . . 250
14.	. . . 100
20	. . . 50
26.	. . . 25
34.	. . . 10
40 5
46.	. . . 2.5
54.	. . . 1

The external audio oscillator, ac voltmeter, attenuator, and 300 A should be grounded through the input test cable only. One side of the audio oscillator output cable should be grounded to oscillator chassis at the output terminals. A ground loop may cause erroneous readings when measuring low ac voltages.

TEST PROCEDURE (Cont'd.)

FINAL TEST - (Cont'd.)
18. Check the METER MULTIPLIER contral as follows:
A. Set METER MULTIPLIER to ". 5 ", SET TO 100 control full clockwise, HALF BAND WIDTH control to "145", and METER SENSITIVITY control to "500".

B A Apply exactly 0.5 volt (500 millivolts) at approximately 400 cps to the 300 A input ter minals. Peak the 300 A for a maximum MILL.IVOLTS meter indication and set control " G " for a full scale reading of 500 millivolts. DO NOT CHANGE THE SETTING OF CONTROL "G" FOR THE, BALANCE OF THIS TEST"
C. Set the METER MULTIPLIER and METER SENSITIVITY controls to the positions given in the following chart and note the MILLIVOLTS meter reading which should be as indicated in this same chart. Maintain a constant input signal. level.

METER MULTIPLIER Control Setting	METER SENSITIVITY Control Setting	MILLIVOLTS Meter
Reading		
.5	500	Set level. to full scale,
50	50	Full Scale, $\pm 1 \%$,
50	5	Full Scale, $\pm 1 \%$,
500	1	Half Scale, $\pm 2 \%$,

19. In some older instruments, random noise may cause a slight erratic movement of the MILLIVOLTS meter pointer. Installation of resistor R73 (220 ohms, $\pm 10 \%, 1$ watt) and capacitor C36 ($500 \mu \mathrm{f}, 15 \mathrm{vdcw}$, electrolytic) in the voltmeter circuit will eliminate this erratic movement. This network may be added on the top deck behind the MILLIVOLTS meter on a tiepoint installed for that purpose. These components, when factory installed, are mounted on the underside of the top deck.
20. Install "CALIBRATION PROCEDURE" labels on the inside of the sub-panel door if they are not already there. These labels are available as a. set from the factory under -hp-Stock No. $3 \mathrm{~A}=43 \mathrm{~A}$.
21. Give the instrument a complete mechanical inspection. Check for missing or loose screws, poor solder connections, and missing or loose shields. Install bottom plates and replace in cabinet.
22. The metal bottom plate was fastened to the inside of the cabinet in some older instruments. Solder a flexible lead from this plate to a solder lug on the back of the lower deck. This is necessary to reduce lower deck hum pick up. In later instruments, this plate is fastened directly to the chassis bottom.
23. Replace ventilating screen over instrument back. Turn instrument on and let it run for a few hours. Check NEGATIVE FEEDBACK control setting from time to time during this time. No great change should be required in this setting as explained under HEAT RUN CHECK in this same section.

CIRCUIT MODIFICATIONS

GENERAL -

The circuit modifications that follow provide greater instrument stability; longer component life; ease of adjustment, testing, and repair; and better manufacturing procedures. Electrical performance specifications of the Model 300A have not changed and an older instrument will provide the sameresults as a new instrument. If an older instrument is functioning properly, there is no reason to make any circuit modifications.

WARNING

```
major modifications should be attempted only when the necessary test equipment is available for final testing and adjustment of the modified instrument. instrument requirements for final testing are given in the test procedure section of this manual.
```

Instruments with Serial No. 1330 and above require no top deck modifications. Instruments with Serial No. 1610 and above require no modifications in either the top or bottom decks. The top deck in instruments with Serial No. 1610 and above is the same as that in instruments with Serial No. 1330 and above.

With certain exceptions in early instruments as noted, the modifications that follow will convert any Model 300A so that the top deck has a circuit equivalent to instruments with Serial No. 1330 or above and the lower deck has a circuit equivalent to instruments with Serial No. 1610 or above.

Components necessary for making circuit modifications are available from Hewlett-Packard. However, the quantity required will vary depending upon the age of the particular instrument involved.

IMPORTANT SCHEMATIC NOTICE

$$
\text { all circuit references are for schematic diagrams given in figures } 3 \text { or } 4 \text { un- }
$$ less otherwise noted.

TOP DECK MODERNIZING PROCEDURE -

The following circuit changes will convert top decks in all instruments with Serial No. 1329 or be= low into the circuit given in Fig. 3. A complete list of parts for this modernization follows the last step in this procedure.

There are some instruments in the field having a combination of toroid coils for the first. and fourth selective amplifier stages and solenoid type coils for the second and third stages. These solenoid type coils are wound on a round bobbin. Instruments with this coil combination usually have large rectangular shaped coil shields. Such instruments should be returned to the factory as field modernization is not practical.

1. Remove the four toroid coil shield cans. Install one watt, precision, carbon film, resistor of 479,000 ohms for R74, R18, R34, and R.77 in parallel with L1, L2, L3, and L4 respec* tively. Add this resistor to all four toroid coils. Any other resistors found across'a coil must be removed. Replace coil shields by pressing them firmly over base on chassis.
2. In some older instruments it will be necessary to replace any one or all four toroid coils. Drift will cause a loss in 20 KC selective amplifier gain. It will be necessary to advance the NEGATIVE FEEDBACK control farther and farther clockwise to obtain sufficient gain when the HALF BAND WIDTH control is set to " 30 ". Amplifier alignment will be required when the NEGATIVE FEEDBACK control adjustment limit is reached. If the drift reoccurs repeatedly after amplifter alignment, coil replacement is required.

Refer to TROUBLE SHOOTING section and to HEAT RUN CHECK in the TEST PROCEDURE section for tests to determine if coil replacement is necessaxy.
3. Install resistors of 80,000 ohms, $\pm 1 \%, 1$ watt ($-\mathrm{hp}-$ Stock No. $31-80 \mathrm{~K}$) for R 10 and R 59 in the negative feedback circuits for VI and V7 respectively. Install resistors of 56,000 ohms, $\pm 1 \%$, 1 watt (-hp-Stock No. $31-56 \mathrm{~K}$) for R28 and R44 in the negative feedback circuits for V3 and V5 respectively. The precision resistors available under the -hp-Stock numbers given above are the only ones recommended for this replacement.
4. Install-hp-Stock No. $24-68 \mathrm{~K}$ resistors (68,000 ohms, $\pm 10 \%$, 1 watt, composition) for RII, R29, R45, and R60 in the negative feedback networks for all four stages.

CIRCUIT MODIFICATIONS (Cont'd.)

TOP DECK MODERNIZING PROCEDURE - (Cont'd.)

5. Install -hp-Stock No. $31-2 \mathrm{M}$ resistors (2,0 megohms, $\pm 1 \%$, l watt, carbon film) for R9 and R57 in the positive feedback circuits of V1 and V7 respectively. Replace R4 and R5l (shown in Fig. 5 as being in series with R9 and R57) with wire jumpers.
6. Install -hp-Stock No. $31-1.63 \mathrm{M}$ resistors (1.63 megohms, $\pm 1 \%$, 1 watt, carbon film) for R26 and R42 in the feedback circuits for V3 and V5 respectively. Install -hp-Stock No. 23-150K resistors ($150,000 \mathrm{ohms}, \pm 10 \%$, 1/2 watt, composition) for R 75 and R76 in series with R26 and R42 respectively. These $1 / 2$ watt resistors should be temporarily mounted since their value will probably be changed during alignment of the selective amplifier system.
7. Replace R1, R17, R33, and R50 with -hp-Stock No, $31-830 \mathrm{~K}$ precision resistors (830,000 ohms, $\pm 1 \%$, I watt, carbon film). These resistors are in the grid circuits of V1, V3, V5, and V7 respectively.
8. Replace R3, R21, R37, and R53 with -hp-Stock No. $31-5000$ precision resistors (5000 ohms, $\pm 1 \%, 1$ watt, carbon film). These resistors are in the cathode circuits of V1, V3, V5, and V7 respectively.
9. Replace R2, R20, R36, and R52 in the cathode circuits of V1, V3, V5, and V7 respectively with -hp-Stock No. 31-900 precision resistors (900 ohms, $\pm 1 \%$, l watt, carbon film).

Shunt each of these four resistors with an mp- Stock No. 24-3900 resistor. These shunt resistors (3900 ohms, $\pm 10 \%$, 1 watt, composition) should be temporarily installed as their final values are determined during alignment and adjustment of the selective amplifier stages.
10. Install C37, C38, C39, and C40 ($10 \mu \mu f, \pm 10 \%$, 500 vdcw , mica, -hp-Stock No. 14-10) in parallel with R11, R29, R45, and R60 respectively.
11. Replacement of NEGATIVE FEEDBACK and HALF BAND WIDTH four gang control potentiometers and their shielded connecting cables is recommended for complete modernization. This is particularly important in instruments with shielded cables that do not have an insulating outer cover.
12. In instruments with Serial No. 1106 or below, install R 73 resistor (220 ohms, $\pm 10 \%, 1$ watt) in series with the MILLIVOLTS meter movement. Connect C36 (500 $\mu \mathrm{f}, 1.5 \mathrm{vdcw}$ electrolytic) capacitor in parallel with this series combination. The circuit before this modification is shown in Fig. 7A and afterwards in Figs. 3 and 7B.

This network is mounted on the top deck behind the MILLIVOLTS meter on a tiepoint installed for this purpose. The addition of this network minimizes meter pointer unsteadiness due to random noise. These components when factory installed, are mounted on the underside of the top deck.

PARTS REOUIRED FOR COMPLETE MODERNIZATION OF A TOP DECK -

The exact number of parts required will be dependent upon instrument age. Maximum quantities are given below.

DESCRIPTION
QUANTITY
-hp-STOCK NO.
Resistors, Precision; fixed, carbon film, axial
leads, $\pm 1 \%$, 1 watt,

Resistor; fixed, composition, 150, 000 ohms, $\pm 10 \%, 1 / 2$ watt

4
\square
4
2
2
2
4
4
2
2

2
$31-900$
31-5000
$31-56 \mathrm{~K}$
31-80K
$31-479 \mathrm{~K}$
$31-830 \mathrm{~K}$
$31-1.63 \mathrm{M}$
31-2M
$23-150 \mathrm{~K}$

DESCRIPTION

QUANTITY		-hp-STOCK NO.
I	- .	24.220
4	-•••	24-3900
4	- .	24-68K
4	-	14-10
1	- • •	18-5
1	- •	3A-15
4	-	3A-62

BOTTOM DECK MODIFICATION PROCEDURE -

Modifications that follow are divided into separate procedures since it may not be necessary or desirable to incorporate all modifications unless required. After some modifications have been completed, little or no instrument adjustment is required while after other modifications extensive instrument adjustments are required.
Instrument age will determine parts requirements for a particular modification. All possible parts required are identified by -hp - stock number as well as a complete description. Determine parts requirements by reading through a modification while referring to instrument to be changed. Parts required can then be secured from -hp-or a local source.

MODIFICATION TO REDUCE CARRIER LEAKAGE -

When incorporated in instruments with Serial No. 1369 or below, this modification will provide reduced carrier leakage. Step 7 of the FINAL TEST procedure gives the method of checking carrier leakage. Instruments with Serial No. 1370 and above had this modification included during manufacture.

This modification can be incorporated at any time and requires no special instrument adjustments following completion. Any instruments with a single three section capacitor for Cl25, C126, and Cl27 should have this modification incorporated before or when replacement of this electrolytic is necessary.

Basically three mechanical changes are made in the instrument wiring when incorporating this revision. Coupling in the common electrolytic capacitor for C125, C126, and C127 is eliminated in older instruments by installing separate capacitors. Leads carrying $B+$ are eliminated in any cabling crossing the front of the chassis. Resistor RI54 is moved to a new mounting location to provide better circuit isolation.

1. Chassis With a Single 3 Section Capacitor - Disconnect all wires (usually five) connecting to positive terminals of three section electrolytic capacitor for C125, C126, and C127. Trace all of these wires through the instrument cabling and disconnect other end of wire. Remove wires completely or clip them off at point of entry into cabling.

Chassis With 3 Separate Capacitors - Potentiometer R 123 (control "R") will have two wires connected to its center terminal. One of these wires goes through the cabling to screen grid pin 6 of V102 and V103 as well as transformer Tl01. This wire must remain in the instrument as is. Trace the other wire connecting the center terminal of R123 to one end of R154. Disconnect both ends of this second wire and remove completely or clip off ends at point of entry into cabling.

Locate the common junction of power resistors R148, R149 (both 10,000 ohms), and two wires. The other end of one of these wires connects to a tie lug junction of R144, R145, and Cl27 near the Vl05 tube socket. The second wire terminates at the cathode of series voltage regulator tube V109.

CIRCUIT MODIFICATIONS (Cont'd.)

BOTTOM DECK MODIFICATION PROCEDURE - (Cont'd.)

MODIFICATION TO REDUCE CARRIER LEAKAGE - (Cont'd.)

1. (Cont'd.)

If this second wire enters cabling across rear of instrument, it need not be changed and step 4 can be eliminated. However, if this wire enters cabling across front of instrument, disconnect and clip off both ends of wice at point of entry into cabling.
2. Add or move capacitors C125, C126, and Cl27 so that they are connected electrically as shown in Fig. 4 and as described below. The required tubular electrolytic capacitor (10 (if, 450 volts) is available under -hp-Stock No. 18-10.

These three capacitors have their negative terminals connected to a convenient chassis ground and their positive terminals connected as follows:

C125 - to tie point junction of R121, Tlol transformer, and screen grid pins 6 for V102 and Vl03.
C126 - to tie point junction of R136 and R137 in V104 plate circuit.
C127 - to tie point junction of R144 and R145 in V105 plate circuit.
Refer to Fig. Il for approximate mounting positions.
It will be necessary to add all three of these capacitors to any instrument from which a single triple section electrolytic capacitor is removed as directed in step 1 .
3. Remove R154 (15,000 ohms, $\pm 10 \%$, 2 watts, -hp- Stock No. $25-12 \mathrm{~K}$) from present mounting terminals and reconnect as directed in the procedure that follows.

Locate the junction of R144 and R145 which is usually a terminal on one end of dual tie lug strip. The opposite end of this tie lug strip may be vacant or have other components and wires connected to it. Any such connection to this second terminal must be moved to an electrically equivalent point elsewhere in the instrument. If this is not convenient, mount a new tie lug close enough to provide a mounting terminal for one end of R154 when the other end is connected to the tie lug junction of R144 and R145.

Mount R154 between the two tie lugs just identified. This connects one resistor end to the junction of R144 and R145 and the other end to a vacant insulated tie lug. Connect a wire between this vacant tie lug and circuit point to which screen grids (pin 6) of V102 and VI03 are connected.
4. Connect a wire between power supply series regulator tube (VI09) cathode and junction of R144, R145, and R154. This wire need not be added if, in step l, it was not necessary to remove a wire connecting these two points together. If in coubt, add this second wire as no harm can be done by doing so.

POWER SUPPLY MODIFICATION -

The power supply for all instrumonts is fundamentally the same. However, there have been minor circuit changes and different tube types used for power supply circuitry as shown by Figs. 4, 6, 7C, and 7D.

As long as a power supply is functioning properly as determined by tests given in the FINAL TEST procedure section, there is no need to attempt any type of power supply modernization. Replace power supply tubes with the same types found in an instrument.

If the power supply in a particular instrument becomes erratic or fails repeatedly, dismantle the power supply and rewire according to Fig. 4 schematic diagram. Install new parts throughout, change tube sockets as required, and if necessary change the power transformer.

The power transformer change will be a must when modernizing extremely old instruments having a type 2 A 3 tube for the series regulator tube.

After rebuilding a power supply, complete steps 1 and 2 of PRELIMINARY TESTS \& ADUSTMENTS and check harmonic distortion as described in step 10 of FINAL TEST procedure. Measure local oscillator frequency with main tuning dial at "0" and FINE TUNING control vertical. The local oscillator should tune to 20 KC with control "F" in the approximate center of its tuning range.

CIRCUIT MODIFICATIONS (Cont'd.)

BOTTOM DECK MODIFICATION PROCEDURE - (Cont'd.)

OTHER LOWER DECK MODIFICATIONS

The following changes should be incorporated in instruments only when required or applicable.

Replacement of any frequency determining components such as Cll2, Cll3, R138, or R139 in steps 2 and 3 will necessitate a complete frequency calibration according to step 14 and 15 of FINAL TEST procedure in this manual.

1. This modification applies to instruments with Serial No. 947 and below. Instruments with higher serial numbers had this component change made during manufacture.

Replace the 3 watt, 115 volt lamp (R140) in V105 cathode circuit with a 10 watt, 230 volt lamp available under mp-Stock No. 2l1-29. Complete step 2 of PRELIMINARY TESTS \& ADJUSTMENTS. Resistor RI43 will be a fixed resistor in instruments requiring this change. The series padding resistor value will be from 0 to 1000 ohms. If this adjustment range is not adequate for a particular lamp bulb, reject the bulb and try a different one.
2. Local oscillator frequency determining capacitors Cll2 and Cll3 should be silver mica or ceramic type units with low or zero temperature coefficients.

Silver mica capacitor -hp- Stock No. 15-27 is recommended for replacement of Cll2 and Stock No. 15-90 for replacement of Cl13.
3. Oscillator frequency stability can be improved in some older instruments by replacing frequency determining resistors R138 and R139. If, in a particular instrument, these special precision resistors (7000 ohms, wire wound) are found to have a stamped marking of "7K", they should be replaced with new type -hp-Stock No. 3A-26A which have the same resistance but no stamped markings. These are wound with a new type wire having an improved temperature coefficient.

TROUBLE SHOOTING

GENERAL -

The notes given in the TROUBLE CHART that follow are based on thp-experience. The more common troubles, their symptoms, and remedy are given.

It is beyond the scope of this manual to include all possible or obscure and rare troubles . If an instrument develops trouble symptoms not covered by this chart, repair analysis will be simplified if the CIRCUIT DESCRIPTION given in this manual is used to obtain a complete understanding of the instrument circuitry.

All circuit references refer to Figs. 3 and 4 unless otherwise noted. Signal, ac, or dc valtages when mentioned here, are measured between the indicated points and the chassis unless specified otherwise.

Any tubes with standard RETMA characteristics may be used for tube replacements as explained in the TUBE COMPLEMENT \& TUBE REPLACEMENTS section. In a great number of cases, instrument trouble can be traced to a defective tube. Modulator tubes V 102 and V103 must be selected for balance and freedom from hum, noise, and distortion. Oscillator tubes V105 and V106 or meter tubes V9 and V10 occasionally must be selected for minimum effect with line voltage changes.

Measurement of power supply dc current will, in many cases, aid in localizing the cause of instrument failure. The total B+ current, measured at the power transformer center tap, will normally be approximately 75 ma . The upper deck B+ current, measured on either side of R157, will normally be approximately 20 ma . Measure the combined plate and screen current for the series regulator tube V 109 to determine the regulated $\mathrm{B}+$ current delivered to the lower deck. This lower deck current will normally be approximately 55 ma . These current figures are shown on the schematic diagram of Fig. 4 at the points of measurement.

TROUBLE CHART -

TROUBLE SYMTOM	CAUSE AND/OR REMEDY
No dc voltage from power supply.	Fuse Flol burned out.
	Rectifier tube V1l0 defective.
	Filter capacitors C119, C120, or C121 and C122 shorted
	Short circuit in power supply distribution system.
	Choke L102 or L103 open.
	Power transformer Tl03 defective.
No $\mathrm{B}+$ from regulated portion of power supply.	No dc input to regulated supply.
	Tubes V107, V108, or V109 defective.
	Power transformer T103 defective.
	Capacitor C127 defective.
	Short circuit in regulated power supply distribution system.
Regulated $B+$ output is high and cannot be set to 240 volts with R152 control. Supply also will not regulate.	Any one or all tubes V107, V108, and V109 defective
	Any one of several resistors in voltage regulator circuit have increased in value or opened. up.
Regulated $\mathrm{B}+$ output is normal (240 volts) but power supply will not regulate with a change in line voltage.	Tube(s) V107, V108, and/or V109 defective.
	Defective rectifier tube V1l0.
	Power transformer T103 defective.
	Electrolytic capacitors C119, C120, C121, C122, or C 127 defective.
Regulated $\mathrm{B}+$ output is low and cannot be set to 240 volts with R152 control. Supply also will not regulate.	Tube(s) V107, V108, and/or V109 defective.
	Rectifier tube V110 defective.
	Power transformer T103 defective.
	Electrolytic capacitors C119, C120, C121, C122, or C127 defective.
	Capacitor C124 (0.05 μ) defective.
	Shorted B+ wiring in lower deck.
	Shorted tube anywhere in lower deck.
	Tube in lower deck drawing excessive plate current due to a defective coupling capacitor.

TROUBLE CHART - (Cont'd.)

TROUBLE SYMPTOM CAUSE AND/OR REMEDY

Oscillator dead when measured at junction of R138, R142, and CII7.

Tube Vl05 (6J7) or V106 (6玉6) defective. Cathode lamp (R140) unscrewed or open.
Grid cap for V105 disconnected.
Shorted plates in tuning capacitor Clll.
Trimmer capacitors C114, C115, or C123 shorted.
Capacitors Cll2, C113, Cll6, Cll7, Cll8, or C127 shoxted.
Resistors R138 or R139 defective.
Capacitors C116, or C117 open.
Resistors R144, R145, R148, or R149 open.
Failure of plate or heater supplies for tubes V105 and V106.

No oscillator voltage at cathodes of modulator V102 and V103.

Excessive oscillator voltage with control R143 not effective.

See preceding trouble symptom.
Capacitor C118 open.
Tube Vl02 or Vl03 shorted.

Excessive oscillator voltage with control R143 not effective.	Control R143 or resistor R142 open.
	Socket for R140 lamp shorted.
	Lamp R140 resistance may be too low. Replace with 10 watt, 230 volt lamp.
Oscillator output is distorted.	Tube V105 (6J7) or V106 (6F6) defective.
	Resistor R 141 defective.
	Incorrect dc voltages on these tubes due to defective resistors, leaky feedback capacitor C117 or coupling capacitor Cllb.

Oscillator operating at wrong frequency for some reason other than mal-adjustment of frequency determining components.

Fixed capacitors C112 or C113 defective.
Variable capacitor C114 or C123 disconnected.
Frequency determining resistors R138 or R 139 defective. A drop of solder can very easily short out a section of these wire wound resistors.

MILLIVOLTS meter dead.	Defective tube anywhere in upper deck.
	Defective meter movement.
	Defective coupling or by-pass capacitors in upper deck.
	No heater or $B+$ voltage in upper deck due to defective cable or connecting plug.
	Shorted or open signal cable frorn lower deck.
	Defective tube for any one or all stages Vlol through V106.
	Transformer T101 defective.
	Local osciliator not functioning.
	Defective coupling or by-pass capacitor.
	Power supply failure.
	Control potentiometer R108 defective.
	Switch Sl02 defective,
	METER MULTIPLIER and/or METER SENSITIVITY attenuator defective.
Low gain in selective amplifier.	Defective tube in selective amplifier.
	Low B+ from power supply.
	Defective coupling, feedback, and/or by-pass capacitor in amplifier.
	Open 10μ decoupling capacitor for C8, C15, C20, and /or C31 which will cause degenerative feedback.
	Tuned circuits out of alignment.
Low gain in selective amplifier only in the sharp (30) position.	Tuned circuits out of alignment.
	Potentiometers R8, R27, R43, and R58 in feedback circuits are out of adjustment.

TROUBLE CHART - (Cont'd.)

TROUBLE SYMPTOM \quad CAUSE AND/OR REMEDY

Amplifier gain too high in sharp tuning (30) position only.	Potentiometers R8, R27, R43, and R58 in feedback circuits are out of adjusiment.
	Grounded terminal on potentiometer $\overline{\mathrm{R} 8}, \overline{\mathrm{R} 27, \mathrm{R} 43}$, or R58.
	Grounded terminal on any one section of either of the two 4 gang potentiometers for NEGATIVE FEEDBACK and HALF BAND WIDTH controls. In some older instruments, the top deck bottom plate did not have an insulating strip and occasionally the control terminals short out on the bottom plate.
	One or more of the shielded cables to either of the 4 gang potentiometers may be shorted internally. This is more likely to happen in older cables having rubber insulation.

Poorly grounded toroid coil shield cans. Scrape paint or trim off insulating paper as required to obtain a good contact between can and lid.

Top deck oscillating. Oscillation usually more pronounced properly tuned and adjusted amplifier stage as extion usually more pronounced plained in Alignment of Selective Amplifier under Test Procedure. trol in the sharp position.

Potentiometer R $8, \mathrm{R} 27, \mathrm{R} 43$, and/or R58 in feedback circuit, out of adjustment.
Component in any feedback circuit, open or shorted to ground.
Capacitors C37, C38, C39, and/or C40 (10 uf), defective or missing.
Shorted terminal or open section in 4 gang potentiometers for NEGATIVE FEEDBACK and HALF BAND WIDTH controls.
One or more of the shielded cables to either of the 4 gang potentiometers may be shorted internally. This is more likely to happen in older cables having rubber insulation.

Modulator tubes V102 and V103 must be selected so that a balance can be obtained with controls "C" and " R " in the approximate center of their tuning range. Potentiometer R117 should also be in the approximate center of its range for this check and will then have to be readjusted according to instructions in FINAL TEST step 10.
Modulator will not balance according to CALIBRATION PROCEDURE instructions.

If capacitor" "C" (C107) or resistor "R" (R123) balance away off center, temporarily transpose tubes V102 and V103 and note position of controls when balanced. If control position has shifted to the other side of center, tubes V102 and V103 are at fault. If there is no change in control position, check components in modulator circuit other than tubes V102 and V103.
Modulation transformer Tl0l defective.
Open or of f value resistor for R 122 or R 124 which are normally 10,000 ohms.
Capacitor ClOf for contral "C" shorted due to damaged plates or foreign conductive material between plates. Potentiometer R123 for control "R", open.
Potentiometer R117, oper or shorted,
Open or off value resistor for R116 or R118 which are normally 82,000 ohms.

TROUBLE SHOOTING (Cont'd.)

TROUBLE CHART - (Cont'd.)

TROUBLE SYMPTOM	CAUSE AND/OR REMEDY
No 60 cps calibrating signal with "S" lever switch (S102) flipped to the right and a VOLTS meter reading of 5 volts.	Resistor R 106 open.
	Defective "S" lever switch (S102).
	Contacts dirty in 'S" lever switch.
	Short circuit across resistor R107.
The 60 cps calibrating signal measures 5 volts instead of 0.5 volt on MILLIVOLTS meter	Resistor R107 open.
	Short circuit across resistor R106.

Excessive carrier leakage as explained in FINAL TEST step 7.	Hum balance potentiometer R159 or ground strap to to this potentiometer may be open.
	By-pass capacitor C109 on VI04 cathode may be grounded to ground side of peaking coil Llol or to the chassis at the tube socket . Connect to point providing minimum carrier leakage.
	Single ground wire from METER SENSITIVITY attenuator may be grounded at V104 tube socket ar ground side of L101. Connect to point giving minimum carrier leakage.
	Instruments with Serial No. 1369 and below should be modernized to reduce carrier leakage as given in the CIRCUIT MODERNIZATIONS section of this manual.

If V9 and V10 in the MILLIVOLTS meter circuit are weak, the meter reading will drop off when the line voltage drops. Select tubes for replacement that produce minimum change in the meter reading.
Poor line voltage response as explained in FINAL TEST step 3.

Tubes for V10i, V102, V103, and/or V104 may be weak. Changes in line voltage have little effect on the selective amplifier stages.
If tubes for V105 and V106 in the oscillator are weak, excessive oscillator frequency change and a loss in injection voltage will result when the line voltage is reduced. Select tubes for replacement that produce minimum change in the MILLIVOLTS meter reading.
Loss of power supply regulation will have the same effect as weak tubes for the oscillator.

Instruments with Serial No. 1329 and below should be modernized according to the TOP DECK MODERN-
Excessive drift of the tuned circuits as indicated by the necessity of making repeated adjustments of the NEGATIVE FEEDBACK control. IZING PROCEDURE given in the CIRCUIT MODIFICATIONS section of this manual.
Defective toroid coil for $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$, and for L 4 .
Selective amplifier improperly aligned.
Replacement toroid coil not aged long enough. See HEAT RUN CHECK given under TEST PROCEDURE.
Toroid coils will occasionally deteriorate with age, particularly in older instruments, and become unstabie. It may be necessary to replace any one or all four coils.

Excessive hum as determined by FINAL TEST step 8 in TEST PROCEDURE section of this manual.

Defective tube for any one of Vlol through Vl06 in the lower deck or any 6SJ7 tube in the selective amplifier.
Stray coupling between CIO2 (0.5 (f) in VIOI cathode circuit and heater leads. Separate leads and capacitor as far as possible.
Pin 1 of some tube sockets are grounded to the chassis. Check these grounds for a possible loose connection.
Check all cable and attenuator ground connections.
In some older instruments, the lower deck bottom plate was fastened to the inside of the cabinet. Connect a flexible wire between this plate and the bottom chassis.
TROUBLE: SYMPTOM \quad CAUSE AND/OR REMEDY

Excessive hum as determined by FINAL TEST step 8 in TEST PROCEDURE section of this manual. (Contid.)

Defective power supply filter capacitors.
Check ground connections of electrolytic capacitors.
Hum balance potentiometer (R159) is not properly adjusted.
The METER MULTIPLIER ground lead should be connected to the ground side of the input gain control. R108. A second insulated wire from R108 ground terminal should then run down through the chassis hole and connect to a ground Iug on V102 socket. Remove any panel ground connection at the ground side of R108.

Resonance curve has 60 cps "hump" as determined by FINAL TEST step 9A in. TEST PROCEDURE section.

Resonance curve not symmetrical.	The braided shielding on the cables connecting to the two four gang potentiometers is not insulated in some older instruments. Ground loops resulting from this exposed shielding may cause a nonsymmetrical response curve. Replace complete assembly consisting of controis with insulated cables.
	Peaking coill Llol may be open.
	Defective four gang potentiometer for NEGATIVE FEEDBACK control.
	Top deck ascillating. See "Top deck oscillating". in this chart.
Excessive harmonic distortion. See step 10 of FINAL TEST in TEST PROCEDURE sec. tion.	Any one or all tubes V101 through V106 may be defective.
	Pin 1 of V1.01 tube socket may not be grounded.
	Modulator tubes V102 and V103 may be mismatched.
	Modulation transformer T 101 may be unbalanced, re- place.
	Potentiometer Rll7 may be incorrectly adjusted. Refer to step 10 of FINAL TEST in the TEST PROCEDURE section.
	Peaking coil Lill may be open.
	Leaky coupling capacitor or open by-pass capacitor in lower deck.
Variable selectivity will not pass test given in step 1.1 of FINAL TEST in TEST PROCEDURE section.	Replace the four gang potentiometer which functions as the HALF BAND WIDTH control. The control only, or an assembly which inciludes both four gang potentiometers and all shielded connecting cables can be obtained from the factory.
Excessive MILLIVOLTS meter tracking error.	Check and adjust mechanical zero on meter.
	High residual emission of type 6H6 tube used for V10. Replace this tube.
	Heater to cathode leakage in 6SN7GT tube used for V9. Replace tube.
	Capacitor: C35 ($0.05 \mu \mathrm{f}$) leaky.
Low instrument sensitivity as determined in step 13 of FINAL TEST in TEST PROCEDURE section.	Low injection voltage from local oscillator. See FINAL TEST step 2.
	Weak or defective tubes for any one or all tubes V 101 through V104.
	Adjust regulated B+ voltage. See FINAL TEST step 1.
	Defective Tl01 modulationtransformer.
	Capacitors C103, C108, and /or Cllo may be defective.

TROUBLE CHART - (Cont'd.)

TROUBLE SYMPTOM \quad CAUSE AND/OR REMEDY

Low instrument sensitivity as determined in step 13 of FINAL TEST in TEST PROCEDURE section. (Cont'd.)

Check all tubes for abnormal plate, screen, grid, cathode, and heater voltages.
Defective attenvator for METER MULTIPLIER or METER SENSITIVITY control.
Tubes V9 and/or V10 defective or weak.
Defective MILLIVOLTS meter movement.
Peaking coil LIOl may be open.
Low gain in selective amplifier. This is covered elsewhere in this TROUBLE CHART.

Main frequency dial off calibration as determined in step 14 of FINAL TEST in TEST PROCEDURE section of this manual.

Variable "F" control capacitor C114 may be disconnected.
Variable capacitor C 123 may be disconnected.
Defective fixed capacitors C112 and lor C113.
Tubes V105 and/ar V106 defective.
Wire wound frequency determining resistor $\bar{R} 138$ or R139 off value due to shorted turns. Look for a. drop of solder on resistor.

Poor frequency response.	Oscillator output not flat over the range of the instrument. See step 14B of FINAL TEST in TEST PROCEDURE section.
	Coupling capacitors C101, C103, and /or C105 defective.
	Check for defective component in circuits ahead of input to modulator tubes V102 and V103.
Voltage calibration error. See step 16 of FINAL TEST in TEST PROCEDURE section.	Operator failed to turn input gain control (SET TO 100) full clockwise to MAX, or to set the HALF BAND WIDTH control to same position used for calibration. Operator failed to adjust to the same reference level with the NEGATIVE FEEDBACK control when changing selectivity.
	Defective VOLTS meter movement.
	Wirewound resistors for R106 and R107 have changed value, opened up, or are shorted. Pad to proper ratio by connecting resistor in parallel with R106 or R107. A drop of solder can short out a section in one of these resistors.
	Adjust VOLTS meter to zero with instrument turned off or control "V" full counterclockwise.

Unsteady MiLLIVOLTS meter indication.	Check for noise in main and regulated power supplies. Check power supply electrolytic capacitors, tubes and resistors.
	Check local oscillator for a steady output as directed in step 4 of PRELIMINARY TESTS \& ADJUSTMENTS in the TEST PROCEDURE section of this manual.
	Check electrolytic decoupling capacitors in top deck.
	Check coupling, feedback, and by-pass capacitors in both chassis.
	Check for a noisy tube any where in instrument.
	Refer to step 12 of TOP DECK MODERNIZATION PROCEDURE in the CIRCUIT MODIFICATIONS section of this manual.
	A 20 KC external signal source operating near the 300 A may radiate a signal directly into the selective amplifier of the 300A and cause a beat effect.
Residual MILLIVOLTS meter reading.	Mechanical zero set on MILLIVOLTS meter is out of adjustment.
	Residual emission or hum in Vlo type 6H6 tube. Re. place with selected tube.
	Hum in V9 type 6SN7 tube.
	Top deck oscillating. See "Top deck oscillating" in this same section.

TROUBLE CHART - (Cont'd.)

TROUBLE SYMPTOM \quad CAUSE AND/OR REMEDY

Residual MILLIVOLTS meter reading. (Cont'd.)	Type 6Y6 tube for V109 in power supply is oscillating. Install resistor R164 in series with the screen grid.
	Oscillating reference tube for Vil07 (OA2 or neon bulb) in power supply. Replace.
	Excessive hum. See corrective steps given under this heading elsewhere in this chart.
	Leaking 0.05 f coupling capacitor for C35 in the meter circuit.
	A 20 KC external signal source operating near the 300 A may radiate a signal directly into the selective amplifier of the 300 A .

Hum balance potentiometer, RI59, smoking or burned out.	Heater lead or tube socket heater pin shorted to the chassis.

Microphonics

Microphonic tube anywhere in instrument. Modulator, oscillator and output amplifier tubes in lower deck as well as first 2 or 3 tubes in selective amplifier should be checked first.
Cathode lamp (R 140) in oscillator may be microphonic or loose in socket.
Loose center contact in lamp socket for R140. Replace socket.
Poor ground connection at negative terminal of an electrolytic capacitor.
Modulation transformer 101 defective.
Poor ground connection or solder joint anywhere in instrument. Intermittant short circuit.
Loose connection to MILLIVOLTS meter or defective meter movement.
Defective resistor anywhere in instrument.

Fig. 1. Model 300A Block Diagram
38.

Selectivity Characteristics of Model 300A Amplifier

Half Band Width Characteristics of Model 300 A Amplifier

Fig. 2. Characteristics of Selective Amplifier System

(40) MODEL 300 A

omanr lognticarion of metessaky parits
SELECTIVE AMPLIFIER \& METER CIRCUITS
(TOP DECK)
SERIAL 1330 \& ABOVE
FIG. 3

(4) MODEL 300A

MODULATOR, OSCILLATOR \& POWER SUPPLY
(BOTTOM DECK)
SERIAL 1610 \& ABOVE
FIG. 4

SELECTIVE AMPLIFIER \& METER CIRCUITS

TYPICAL
(ip) MODEL 30OA
 EMABLE IOENTIFICATIOM OF NECESSARY PaATY
MODULATOR, OSCILLATOR \& POWER SUPPLY
(bOTTOM DECK)
SERIAL 1609 \& BELOW
FIG. 6

Fig. 7A. Early Amplifier \& Meter Circuits

Fig. 7B. Late Amplifier \& Meter Circuits

Fig. 7C. One of Earliest Power Supplies. Series Regulator Tube T5 May Be a Type 2A3.

Fig. 7D. Later Power Supply Circuit. Same Basic Circuit as Fig. 7C With a Change in Tube Complement \& Control R1.57 Added.
44.

Fig. 8. Chart for Plotting Selectivity Curves

Fig. 9. Graph for Converting Attenuation in Decibels to Voltage Ratio

Fig. 10. Top View of Typical Bottom Deck and Back of Control Panel. Top Deck Removed.

P103

Fig. 13. Bottom View of Typical Top Deck With Control Panel and Bottom Plate Removed

MANUFACTURER
Aerovox Corp.
Allen-Bradley Co.
Amperite Co.
Arrow, Hart \& Hegeman
Busman Manufacturing Co .
Carborundum Co.
Centralab
Cinch-Jones Mfg. Co.
Hewlett-Packard Co.
Clarostat Mfg. Co.
Cornell Dubilier Elec. Co.
Hi-Q Division of Aerovox
Erie Resistor Corp.
Fed. Telephone \& Radio Corp.
General Electric Co.
General Electric Supply Corp.
Girord-Hopkins
Industrial Products Co.
International Resistance Co.
Lectrohm Inc.
Littlefuse inc.
Maguire Industries Inc.
Mitamold Radio Corp.
Oak Manufacturing Co.
P. R. Mallory Co., Inc.

Radio Corp. of America
Sangamo Electric Co.
Sarkes Tarzan
Signal Indicator Co.
Sprague Electric Co.
Stackpole Carbon Co.
Sylvania Electric Products Co.
Western Electric Co.
Wilkor Products, Inc.
Amphenol
Dial Light Co. of America
Leecraft Manufacturing Co .
Switcheraft, Inc.
Gremar Manufacturing Co.
Electra Manufacturing Co.
Acre Manufacturing Co.
Alliance Manufacturing Co.
Arvo Electronics, Inc.
Aston Corp.
Axil Brothers Inc.
Selden Manufacturing Co.
Bird Electronics Corp.
Barber Colman Co .
Bud Radio Inc.
Allen D. Cardwell Mfg. Co.
Cinema Engineering Co.
Any brand tube meeting
RETMA standards.
Corning Glass Works
Dale Products, Inc.
The Drake Mfg. Co.
Elco Corp.
Hugh H. Aby Co.
Thomas A. Edison, Inc.
Fansteel Metallurgical Corp. General Ceramics \& Steatite Corp. The Gudeman Co.

ADDRESS
New Bedford, Mass.
Milwaukee 4, Wis.
New York, N. Y.
Hartford, Conn.
St. Louis, Mo.
Niagara Falls, N. Y.
Milwaukee I, Wis.
Chicago 24, III.
Pablo Alto, Calif.
Dover, N. H.
South Plainfield, N. J.
Olean, N, Y.
Erie 6, Pa,
Clifton, N. J.
Schenectady 5, N. Y. San Francisco, Calif.
Oakland, Calif.
Danbury, Conn.
Philadelphia 8, Pa.
Chicago 20, III.
Dis Planes, III.
Greenwich, Conn.
Brooklyn 37, N. Y.
Chicago 10. 1 li .
Indianapolis, Ind.
Harrison, i. J.
Marion, III.
Bloomington, Ind.
Brooklyn 37, N. Y.
North Adams, Mass.
St. Mares, Pa.
Warren, Pa.
New York 5, N. Y.
Cleveland, Ohio
Chicago 50, III.
Brooklyn 37, N. Y.
New York, N. Y.
Chicago 22, 11 .
Wakefield, Mass.
Redwood City, Calif.
Kansas City, Mo.
Columbus 16, Ohio
Alliance, Ohio
New York 13, N. Y.
East Newark, N. J.
Long Island City, N. Y.
Chicago 44, III.
Cleveland 14, Ohio
Rockford, III.
Cleveland 3, Ohio
Plainville, Conn.
Burbank, Calif.

Corning, N. Y .
Columbus, Neb.
Chicago 22, 1II.
Philadelphia 24, Pa. Philadelphia 44, Pa.
West Orange, N. J.
North Chicago, Ill.
Keasbey, N. J.
Sunnyvale, Calif

ADDRESS
New York I, N. Y.
Chicago 18, III.
Manchester, N. H.
San Jose, Calif.
Waseca, Minn.
Chicago 47, III.
Freeport, III. .
Akron 8, Ohio
Huntington, Ind.
Chicago 5, Ill.
Skokie, III.
Harrisburg, Pa.
Camden 3, N. J.
Collingdale, Pa .
Los Angeles 58, Calif.
New Rochelle, N. Y.
Attleboro, Mass.
Mansfield, Ohio
Van Nuys, Calif.
Los Angeles 65, Calif.
Newark 5, N. J.
Burbank, Calif.
San Francisco, Calif.
Philadelphia 18, Pa.
Boonton, N. J.
New York 21, N. Y.
Attleboro, Mass.
Chicago, ill.
Dancers, Mass.
Elkhart, Ind.
West Orange, N.J.
Carlstadt, N. J.
Clifton N. J.
Oakland, Calif.
Cambridge 39, Mass.
Culver City, Cali.
El Segundo, Calif.
Sandwich, Ill.
Cleveland, Ohio
Philadelphia 30, Pa.
Mt. Vernon, N. Y.
Newton, Moss.
Newark 4, N. J.
Polo Alto, Calif.
Union, N. J.
Chicago 30. III.
Indianapolis, Ind.
Santa Monica, Calif.
Los Angeles 42, Calif.
Chicago 15, III.
Paramus, N. J.
Philadelphia 34, Pa
Swissuale, Pa.
New York II, N. Y.
Yonkers, N. Y.

Bridgeport 2, Conn.
New York 13, N. Y.
Bridgeport 2, Conn.
New York 13, N. Y.
Cincinnati 6 , Ohio
New York, N. Y.
Princeton, Ind.

Los Angeles, Calif.
Pablo Alto, Calif.
Ogallala, Nebr.

\qquad

\qquad

\author{

}

\qquad

[^0]\qquad

,

\qquad

\author{

}

\square
\qquad
Pa.

;
.
\qquad

.

GENERAL

The following parts list may be used to determine replacement parts for all -hp- Model 300A Harmonic Wave Analyzers. To determine the required replacement part, refer to the schematic diagrams given in Fig. 3 and Fig. 4. Use the circuit reference obtained from the schematic diagrams to identify correct component in the Table of Replaceable Parts.

To assure receiving the correct replacement part, be sure to include instrument Model and Serial numbers as well as the -hp-Stock Number and Description of the desired part. Failure to include this information may result in delay due to a wrong part being received or additional correspondence being required before proper part identification is possible.

The Model 300A has been manufactured over a span of several years with no major change in specifications or in basic cixcuitry. The components used, however, have changed. Different tube type, improved toroid coils, and other miscellaneous components of higher quality have been incorporated whenever they became available. The components given in this parts list are those used in the latest instruments.

Some older instruments must be completely modernized before these new parts can be used. Refer to the TUBE COMPLEMENT \& TUBE REPLACEMENTS, CIRCUIT DESGRIPTION, and CIRCUIT MODIFICATIONS sections of this manual. Factory modernization is recommended for older instruments not covered under CIRCUIT MODIFICATIONS. Field modernization of these older instruments is not practical.

It is necessary in some instances to substitute parts in this instrument. These substitutions do not impair instrument performance. Either the substitute part or the part specified in the Replaceable Parts Table may be used for replacement purposes.

TABLE OF REPLACEABLE PARTS

$\begin{aligned} & \text { CIRCUIT } \\ & \text { REF. } \end{aligned}$	DESCRIPTION, MFR. * \& MFR. DESIGNATION	$\begin{aligned} & \text { (40) STOCK } \\ & \text { NO. } \end{aligned}$	\#	
	TOP DECK			
Cl	Capacitor: variable, air dielectric, $100 \mu \mu \mathrm{f}$, (part of Toroid Coil Assembly)	12-11	5	
C2	Capacitor: Value selected at factory.		4	
C3	Capacitor: fixed, paper dielectric $.047 \mu \mathrm{f}, \pm 10 \%, 600$ vdcw, $125^{\circ} \mathrm{C}$	16-15	14	
C4	Capacitor: fixed, paper dielectric, . 001 $\mu \mathrm{f}, \pm 10 \%, 600 \mathrm{vdcw}, 125^{\circ} \mathrm{C}$ CC*	16-21.	7	
C5	$\begin{aligned} & \text { Capacitor: fixed, paper dielectric, } \\ & 0.1 \mu \mathrm{f}, \pm 10 \%, 600 \text { vdcw, } 125^{\circ} \mathrm{C} \end{aligned} \quad \mathrm{CC} *$	16-1	9	
C6, 7	Same as C3			
C8	Capacitor: fixed, electrolytic, $10 \mu \mathrm{f}, \pm 50 \%, 450 \mathrm{vdcw}, 85^{\circ} \mathrm{C} \quad \mathrm{X}^{*}$	18-10	7	
C9	Same as Cl			
$\mathrm{Cl0}$	Same as C2			

* See "List of Manufacturers Code Letters For Replaceable Parts Table".
\# Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * \& MFR. DESIGNATION	$\begin{aligned} & \text { (6.) STOCK } \\ & \text { NO. } \end{aligned}$	\#	
	TOP DECK (CONTINUED)			
Cll	Same as C3			
Cl 2	Same as C4			
Cl 3	Same as C5			
C14	Same as C3			
Cl 5	Same as C8			
Cl 6	Same as C3			
C17	Same as Cl .			
C18	Same as C2			
C19	Same as C3			
C20	Same as C8			
C21	Same as C4			
C 22	Same as C5			
C23, 24	Same as C3			
C25	Same as Cl			
C26	Same as C2			
C27	Same as C3			
C28	Same as C4			
C29	Same as C5			
C30	Same as C3			
C31	Same as C8			
C32	Same as C3			
C33	Same as C4			
C34	Capacitor: fixed, paper dielectric, $.0022 \mu \mathrm{f}, \pm 10 \%, 600$ vdcw, $125^{\circ} \mathrm{C} \quad \mathrm{CC}^{*}$	16-22	1	
C35	Same as C3			
C36	Capacitor: fixed, electrolytic, $500 \mu \mu \mathrm{f}, 15$ vdcw, $85^{\circ} \mathrm{C}$	18-5	1	

[^1]\# Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

TABLE OF REPLACEABLE PARTS

* See "List of Manufacturers Code Letters For Replaceable Parts Table".
\# Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

[^2]\# Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

[^3]TABLE OF REPLACEABLE PARTS

* See "List of Manufacturers Code Letters For Replaceable Parts Table"
\# Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

[^4]TABLE OF REPLACEABLE PARTS

[^5]\# Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * \& MFR. DESIGNATION	$\begin{aligned} & \text { 迹 STOCK } \\ & \text { NO. } \end{aligned}$	\#			
	BOTTOM DECK (CONTINUED)					
R124	Same as Rl22					
Rl25	Same as Rl23					
$\begin{aligned} & \mathrm{Rl} 26 \text { thru } \\ & \mathrm{Rl} 34 \end{aligned}$	Resistor: part of Meter Sensitivity Switch Assembly					
R135	Same as R66					
R136	Resistor: fixed, composition, 56,000 ohms, $\pm 10 \%, 1$ W	24-56K	4			
R137	Same as Rl22					
R138, 139	Resistor: fixed, wirewound, precision, 7000 ohms HP*	3A-62A	2			
R140	Lamp: 10 W (see 1 under OTHER LOWER DECK MODIFICATIONS in the CIRCUIT MODIFICATIONS section)	211-29	1			
R141	Same as Ri36					
R142	Same as R65					
RI43	Resistor: variable, wirewound, linear taper, 1000 ohms	210-5	1			
R144	Same as Rll6					
R145	Same as Rl36					
R146	Same as R68					
R14.7	Resistor: fixed, composition, 820 ohms, $\pm 10 \%$, 1 W	24-820	1			
R148	Resistor: fixed, wirewound, 10,000 ohms, $\pm 10 \%, 10 \mathrm{~W}$	26-10	2			
R149	Resistor: fixed, wirewound, 10,000 ohms, $\pm 10 \%, 20 \mathrm{~W}$	27-4	1			
R150	Resistor: fixed, composition, 15,000 ohms, $\pm 10 \%$, 2 W	25-15K	1			
R151	Same as R136					
R152	Resistor: variable, composition, linear taper, 25,000 ohms	210-11	1			

[^6]TABLE OF REPLACEABLE PARTS

TABLE OF REPLACEABLE PARTS

[^7]TABLE OF REPLACEABLE PARTS

ALABAMA
huntsville, 35801
Hewlett.Packard
Southern Sales Division
Holiday Office Ctr., Suite 18
(205) 88 1-4591

TWX: 510-579-2204

ARIZONA

Scottsdale, 85251
Hewlett-Pachard
Neely Sales Division
3009 No. Scottsdale Rd.
(602) 945.7601

TWX: 602-949-0111
Tucson, 85716
Hewlett-Packard
Neely Sales Division
232 So. Tucson Blvd.
(602) $623-2564$

TWX: 602-792-2759

CALIFORNIA

Los Angeles Area
Hewlett.Packard
Neely Sales Division
3939 Lankershim Bivd.
North Hollywood 91604
(213) 877-1282 and 766-3811

TWX: 910-499-2170
Sacramento, 95821
Hewlett-Packard
Neely Sales Division
2591 Carlsbad Ave.
(916) $482-1463$

TWX: 916-444-8683
San Biego, 92106
Hewlett-Packard
Neely Sales Division
1055 Shafter Street
(714) 223.8103

TWX-714-276-4263
San Francisco Area
Hewlett-Packard
Neely Sales Division
501 Laurel Street
San Carlos 9407.
(415) 591-7661

TWX: 910-376-4390

COLORADO

Englewood, 80110
Hewlett-Packard
Lahana Sales Division
7965 East Prentice
(303) 771.3455

TWX: 303.771-3056

CONNECTICUT

Middletown, 06458
Hewlett-Packard
Yewell Sales Division
589 Saybrook Rd.
(203) $345-6611$

TWX: 203-346-7433

FLORIDA

Miami, 33125
Hewlett-Packard
Florida Sales Division
2907 Northwest 7th St
(305) 635-6461

Orlando, 32803
Hewlett-Packard
Florida Sales Division
621 Commonwealth Ave.
(305) 425.5541

TWX: 305.275-1234
St. Petersburg, 33708
Hewlett Packard
Florida Sales Division
410-150th Ave., Madeira Beach (813) $391-0211$

TWX: 813.391-0666

GEORGIA
Atlanta, 30305
Hewlett-Packard
Southern Sales Division
3110 Maple Drive, N. E.
(404) 233-1141

TWX: 810-751-3283
ILLINOIS
Chicago, 60645
Hewlett-Packard
Crossley Sales Division
2501 West Peterson Ave.
(312) $275-1600$

TWX: 910-221-0277
INDIANA
Indianapolis, 46205
Hewlett-Packard
Crossley Sales Division
3919 Meadows Dr.
(317) 546-4891

TWX: 317-635-4300
KENTUCKY
Louisville, 40218
Hewlett-Packard
Southern Sales Division
Suite 4, 3411 Bardstown Rd.
(502) 459-4140

TWX: 810-535-3128

MARYLAND

Baltimore, 21207
Hewlett-Packard
Horman Sales Division
6650 Security Blyd.
(301) 944.5400

Washington, D. C. Area
Hewlett-Packard
Horman Sales Division
941 Rollins Avenue
Rockville 20852
(301) 427.7560

TWX: 710-828.9684
MASSACHUSETTS
Boston Area
Hewlett-Packard
Yewell Sales Division
Middlesex Turnpike
Burlington 01804
(617) 272.9000

TWX: 710.332.0382
MICHIGAN
Detroit, 48235
Hewlett-Packard
Grossley Sales Division
14425 West Eight Mile Road (313) $342-5700$

TWX: 313-342-0702
MINNESOTA
St. Paul, 551:14
Hewlett Fackard
Crossley Sales Division
842 Raymond Avenue
(612) $646-7881$

TWX: 612-55I-0055
MISSOURI
Kansas City, 64131
Harris Hanson Company
7916 Paseo Street
18161444.9494

TWX: 816-556-2423
St. Louis, 63144
Harris-Hanson Company
2814 South Brentwood Blvd.
(314) 647.4350

TWX: 314.962-3933
NEW JERSEY
Asljury Park Area
Hewlett-Packard
Robinson Sales Division
Shrewsbury
(201) 747-1060

Englewood, 07631
Hewlett-Packard
RMC Sales Division
391 Grand Avenue
(201) 567-3933

NEW MEXICO

Albuquerque, 87108
Hewlett-Packard
Neely Sales Division
6501 Lomas Blvd., N. E.
(505) 255-5586

TWX: 505-243-8314
Las Cruces, 88001
Hewlett-Packard
Neely Sales Division
114 S. Water Street
(505) 526 -2486

TWX: 505-524-2671
NEW YORK
New York, 10021
Hewlett-Packard
RMC Sales Division
236 East 75th Street
(212) $879-2023$

TWX: 710-581-4376
Rochester, 14625
Hewlett-Packard
Syracuse Sales Division
800 Linden Avenue
(716) 381.4120

TWX: 716-221-1514
Poughkeepsie, 12601
Hewlett-Packard
Syracuse Sales Division
82 Washington St.
(914) 454.7330

TWX: 914-452-7425
Syracuse, 13211
Hewlett-Packard
Syracuse Sales Division
Pickard Eldg., E. Molloy Rd.
(315) 454-2486

TWX: 315-477-1375
NORTH CAROLINA
High Point, 27262
Hewlett-Packard
Southern Sales Division
1923 N. Main Street
(919) $882-6873$

TWX: 510-926-1516

OHIO

Cleveland, 44129
Hewiett-Packard
Crossley Sales Division
5579 Pearl Road
(216) $884-9209$

TWX: 216-888-0715
Dayton, 45409
Hewlett-Packard
Crossley Sales Division
1250 W. Dorothy Lane
(513) 299-3594

TWX: 513-9440090
PENNSYLVANIA
Camp Hill
Hewlett-Packard
Robinson Sales Division
(717) 737.6791

Philadelphia Area
Hewlett-Packard
Robinson Sales Division
144 Elizabeth Street
West Conshohocken 19428
(215) 248-1600 and 828-6200

NWX: 215-828-3847
Pittsburgh Area
Hewlett-Packard
Crossley Sales Division
2545 Moss Side Blvd.
Monroeville 15146
(412) 271-5227

TWX: 710-797.3650

TEXAS

Dallas, 75209
Hewlett-Packard
Southwest Sales Division
P.0. Box 7166. 3605 Inwood Rd.
(214) 357-1881 and 332-6667

TWX: 910-861-4081
Houston, 77027
Hewlett-Packard
Southwest Sales Division
P.O. Box 22813, 4242 Richmond Ave
(713) 667-2407

TWX: 713-571-1353

UTAH

Salt Lake City, 84115
Hewlett-Packard
Lahana Sales Division
1482 Major St
(801) 486-8166

TWX: 801-521-2604

VIRGINIA

Richmond, 23230
Hewlett-Packard
Southern Sales Division
2112 Spencer Road
(703) 282-5451

TWX: 703-282-9986

WASHINGTON

Seattle Area

Hewlett-Packard
Neely Sales Division
11656 N. E. 8th St.
Bellevue 98004
(206) GL4-3971

TWX: 910-443-2303

CANADA

Montreal, Quebec
Hewlett-Packard (Canada) Ltd.
8270 Mayrand Street
(514) 735-2273

TWX: 610-421-3484
Ottawa, Ontario
Hewlelt-Packard (Canada) Ltd.
1762 Carling Ávenue
(613) 7224223

TWX: 610.562-1952
Toronto, Ontario
Hewlett-Packard (Canada) Ltd.
1415 Lawrence Avenue, West
(416) 249.9196

TWX: 610-492-2382

INTERNATIONAL SALES AND SERVICE OFFICES

ARGENTINA

Mauricio A. Saurez
Telecommunicaciones
Carlos Caivo 224, Buenos Aires
Tel: 30-6312
AUSTRALIA
Sample Electronics (Vic.) Pty. Ltd.
9.11 Cremorne Street

Richmond E. 1. Victoria
Tel: 42.4757 (3 lines)
Sample Electronics (N.S.W.) Pty. Lid.
4 Grose Street. Glebe, Sydney
New South Wales
Tel: 69.6338 (6 lines)
AUSTRIA
Unilabor G.m.t.H.
Rummelhardtgasse 6/3
Vienna
Tel: 426.181
BELGIUM
Hewlett-Packard Benelux S.A.
20-24 Rue de I'Hopital, Brussels Tel: 11.22.20
BRAZII.
Ciental Importacao E Comercio Ltda.
Rua Cons. Crispiniano, 69, 8. ${ }^{\circ}$ And,
Conj. 81, Sao Paulo
Tel: 32-4332

CANADA

Hewlett-Packard (Canada) Ltd.
8270 Mayrand Street
Montreal, Quebec
(514) 735-2273

Hewlett-Pachard (Canada) Ltd.
1762 Carling Avenue
Ottawa, Ontario
(613) 722-8162

Hewlett-Packard (Canada) Ltd.
1415 Lawrence Avenue W.
Toronto, Ontario
(416) 249.9196

CHILE
Hector Calcagni
Casilla 13942
Santiago
Tel: 6.42 .26
DENMARK
Tage OIsen A/S
Ronnegade 1
Copenhagen ρ
Tel. 29.48 .00
FINL_AND
INTO OM
P. O. Box 153

Meritullinkatu 11, Helsinki
Tel: 66.39.09 and 35.125

FRANCE

Hewlett-Packard France
150 Boulevard Massena
Paris 13e
Tel: 707.97.19

GERMANY

Hewlett-Packard V.m.b.H.
Steindamm 35, Hamburg
Tel: 24.05 .51
Hewlett-Packard V.m.b.H.
Kurhessenstrasse 95
Frankfurt am Main
Tel: 52.00 .36

Hewlett-Packard V.m.b.H
Reginfriedstrasse 13
Munich 9
Tel: 49.512122
Hewlett-Packard Vm.b.H.
Technisches Büro
Herrenbergerstrasse 110
703 Böblingen, Württemberg
Tel: 6971
GREECE
K. Karayannis

Klaftmonos Square, Athens 124
Tel: 230.301 (5 lines)
INDIA
The Scientific Instrument Company, Ld
6. Tej Bahadur Sapru Road, Allahabad I

Tel: 2451
The Scientific Instrument Company, Ld.
240. Dr. Dadabhai Naoroji Road,

Bombay 1
Tel: 26-2642
The Scientific Instrument Company, Ld.
11. Esplanade East, Calcutta 1

Tel: 23-4129
The Scientific Instrument Company, Ld
30. Mount Road, Madras 2

Tel: 86339
The Scientific instrument Company, Ld.
B-7, Ajmeri Gate Extn., New Delhi I
Tel: 271053
IRAN
Telecom Ltd.
P. 0. Box 1812, Tehran

Tel: 43850,48111
ISRAEI.
Electronics \& Engineering Ltd.
16 Kremenetski St., Te! Aviv
Tel: 35021 (3 lines)
ITALY
Hewiett-Packard Italiana S.p.A.
Viale Lunigiana 46, Milan
Tel: 69.15.84/5.6
Hewlett-Packard Italiana S.D.A.
Piazza Marconi, 25
Roma-Eur
Tel: $59.25 .44 / 5$
JAPAN
Yokogawa-Hewlett-Packard Ltd.
2270 Ishikawa-cho
Hachioji. Tokyo
Tel: Hachiofi 0426-3-1231 (19 lines)
Yokogawa-Hewlett-Packard Ltd.
No. 3, 6-chome, Aoyama-Kitamachi
Akasaka, Minato-ku, Tokyo
Tel: 403-0073. 403-0074, 403-0075
Yokogawa-Hewlett-Packard Ltd.
No 8. Umeda, Kita-ku, Osaka City
Tel: 361-3084, 341-2095
Yokogawa Hewielt Packard Litd.
No. 4. 3-chome, Himeikedori,
Chigusa-ku, Nagoya City
Tel: 75-8545
KOREA
American Trading Company, Korea, Ltd.
112-35 Sokong-Dong
Seoul P. O. Box 110°
Seoul
Tel: 3-7049, 3-7613

NETHERLANDS

Hewlett-Packard Benelux N.V.
23 Burg Rocilstraat, Amsterdam W.
Tel: (020) 13.28 .98 and 13.54.99
NEW ZEALAND
Sample Electronics (N. Z) Ltd
8 Matipo Street
Onehunga S. E. 5, Auckland
Tel: 565-361

NORWAY

Morgenstierne \& Co. A/S
Ingeniprfirma
6 Wessels Gate. Oslo
Tel: 201635
PORTUGAL
Telectra
Rua Rodrigo da Fonseca 103
P. O. Box 2531

Lisbon 1
Tel: 686072 and 686073 and 686074
PUERTO RICO \& VIRGIN ISLANDS
San Juan Electronics, Inc.
150 Ponce de Leon, Stop 3
P. O. Box 5167

Pta. de Tierra Sta., San Juan 00906
Tel: 722-3342, 724-4406
SPAIN
ATAIO, Ingenieros
A. Aguilera, No 8, Madrid 15

Tel: 223.27.42, 223.41.71, and 224.84.97

SOUTH AFRICA

F. H. Flanter \& Co. (Pty.), Ltd.

Rosella House
Buitencingle Street, Cape Town
Tel: 3.3817
SWEDEN
H-P Instrument AB
Centralvagen 28 , Solna Centrum
Tel: 08.83 .08 .30 and 10-83.08.30
SWITZERLAND
Max Pual Frey
Wankdorffeldstrasse 66, Bern
Tel: (031) 42.00 .78
TAIWAN (FORMOSA)
Hwa Sheng Electronic Co., Ltd.
21 Nanking West Road, Taipei
Tel: 4-6076, 4-5936
TURKEY
TELEKOM Engineering Bureau
P.O. Box 376-Galata, Istanbul

Tel: 49.40 .40
UNITED KINGDOM
Hewlett-Packará Ltd.
Dallas Road
Bedford. England
Tel: Bedford 68052
VENEZUELA
Citec, C. A.
Edif. Arisan-0f \#4
Avda. Francisco de Miranda-Chacaito
Apartado del Este 10.837, Caracas
Tel: 71.88 .05
YUGOSLAVIA
Belram S.A.
83 Av. des Mimosas
Brussels 15, Belgium
Tel: 35.29 .58

IN EUROPE
Hewlett Packard, S. A
54 Route des Acacias
Geneva, Switzerland
Telephone: (022) 42.8I. 50
Telex: 2.24 .86
Cable: HEWPACKSA

For Sales and Service Assistance in Areas Not Listed Contact:

IN LATIN AMERICA
Hewlett Packard Inter-Americas
1501 Page Mill Road
Palo Alto. California 94304, U.S.A.
Telephone: (415) 326-7000
TWX: 910.373-1267
Telex: 033811 Cable: HEWPACK

ELSEWHERE
Hewlett-Packard
International Marketing Department
1501 Page Mill Road
Palo Alto, California 94304 U.S.A.
Telephone: (415) 326-7000
TWX. 910-373-1267
Telex: 033811 Cable: HEWPACK
ACK

ALABAMA
Huntsville, 35801
Hewlett-Packard
Southern Sales Division
Holiday Office Ctr., Suite 18
(205) $881-4591$

TWX: 510-579.2204

ARIZONA

Scottsdaie, 85251
Hewlett-Packard
Neely Sales Division
3009 No. Scottsdale Rd.
(602) $945-7601$

TWX: 602-949-0111
Tucson, 85716
Hewlett-Packard
Neely Sales Division
232 So. Tucson Blvd.
(602) 623-2564

TWX: 602.792-2759
CALIFORNIA
Los Angeles Area
Hewlett-Packard
Neely Sales Division
3939 Lankershim Blvd.
North Hollywood 91604
(213) 877-1282 and 766-3811

TWX: 910-499-2170
Sacramento, 95821
Hewlett-Packard
Neely Sales Division
2591 Carlsbad Ave.
(916) 482.1463

TWX: 916-444-8683
San Diego, 92106
Hewlett-Packard
Neely Sales Division
1055 Shafter Street
(714) 223-8103

TWX-714-276-4263
San Francisco Area
Hewlett-Packard
Neely Sales Division
501 Laurel Street
San Carlos 94071
(415) 591.7661

TWX: 910-376-4390

COLORADO

Englewood, 80110
Hewlett-Packard
Lahana Sales Division
7965 East Prentice
(303) 771 -3455

IWX: 303-771-3056
CONNECTICUT
Middletown, 06458
Hewlett-Packard
Yewell Sales Division
589 Saybrook Rd.
(203) 346 -6611

TWX: 203-346.7433

FLORIDA

Miami, 33125
Hewlett-Packard
Florida Sales Division 2907 Northwest 7th St.
(305) 635.6461

Oriando, 32803
Hewlett-Packard
Florida Sales Division
621 Commonwealth Ave.
(305) $425-5541$

TWX: 305-275-1234
St. Petersburg, 33708
Hewlett-Packard
Florida Sales Division
410-150th Ave., Madeira Beach
(813) $391-0211$

TWX: 813:391-0666

GEORGIA
Atlanta, 30305
Hewlett-Packard
Southern Sales Division
3110 Maple Drive, N. E.
(404) 233-1141

TWX: 810-751-3283
ILLINOIS
Chicago, 60645
Hewlett-Packard
Crossley Sales Division
2501 West Peterson Ave.
(312) 275-1600

TWX: 910-221-0277
INDIANA
Indianapolis, 46205
Hewlett-Packard
Crossley Sales Division
3919 Meadows Dr.
(317) 546-4891

TWX: 317-635-4300
KENTUCKY
Louisville, 40218
Hewlett-Packard
Southern Sales Division
Suite 4. 3411 Bardstown Rd.
(502) 459-4140

TWX: 810-535-3128
MARYLAND
Baltimore, 21207
Hewlett-Packard
Horman Sales Division
6660 Security Blvd.
(301) $944-5400$

Washington, D. C. Area
Hewlett-Packard
Horman Sales Division
94I Rollins Avenue
Rockville 20852
(301) $427-7560$

TWX: 710-828-9684
MASSACHUSETTS
Boston Area
Hewlett-Packard
Yewell Sales Division
Widdlesex Turnpike
Burlington 01804
(617) 272-9000

TWX: 710-332-0382
MICHIGAN
Detroit, 48235
Hewlett-Packard
Crossley Sales Division
14425 West Eight Mile Road
(313) $342-5700$

TWX: 313-342-0702
MINNESOTA
St. Paul, 55114
Hewlett-Packard
Crossley Sales Division
842 Raymond Avenue
(612) 646.7881

TWX: 612.551-0055
MISSOURI
Kansas City, 64131
Harris-Hanson Company
7916 Paseo Street
(816) 444.9494

TWX: 816-556-2423
St. Louis, 63144
Harris Hanson Company
2814 South Brentwood Blvd.
(314) $647-4350$

TWX: 314.962-3933
NEW JERSEY'
Asbury Park Area
Hewlett-Packard
Robinson Sales Division
Shrewsbury
(201) 747-1060

Englewood, 07631
Hewlett-Packard
RMC Sales Division
391 Grand Avenue
(201) 567.3933

NEW MEXICO
Albuquerque, 87108
Hewlett-Packard
Neely Sales Division
6501 Lomas Bivd., N. E.
(505) $255-5586$

TWX: 505-243-8314
Las Cruces, 88001
Hewlett-Pachard
Neely Sales Division
114 S. Water Street
(505) $526-2486$

TWX: 505-524-2671
NEW YORK
New York, 10021
Hewlett-Packard
RMC Sales Division
236 East 75th Street
(212) 879-2023

TWX: 710-581-4376
Rochester, 14625
Hewlett-Packard
Syracuse Sales Division
800 Linden Avenue
(716) $381-4120$

TWX: 716-221-1514
Poughkeepsie, 12601
Hewlett-Packard
Syracuse Sales Division
82 Washington St.
(914) 454.7330

TWX: 914452.7425
Syracuse, 13211
Hewlett-Packard
Syracuse Sales Division
Pickard Bldg, E. Molloy Rd.
(315) 454-2486

TWX: 315-477-1375
NORTH CAROLINA
High Point, 27262
Hewlett-Packard
Southern Sales Division
1923 N. Main Street
(919) $882-6873$

TWX: 510-925-1516
OHIO
Cleveland, 44129
Hewlett-Packard
Crossley Sales Division
5579 Pearl Road
(216) 884-9209

TWX: 216.888.0715
Dayton, 45409
Hewlett-Packard
Crossley Sales Division
1250 W. Dorothy Lane
(513) 299.3594

TWX: 513-944-0090
PENNSYLVANIA
Camp Hill
Hewlett-Packard
Robinson Sales Division
(717) 737-6791

Philadelphia Area
Hewlett-Packard
Robinson Sales Division
144 Elizabeth Street
West Conshohocken 19428
(215) 248-1600 and 828-6200

TWX: 215-828-3847
Pittsburgh Area
Hewlett-Packard
Crossley Sales Division
2545 Moss Side Blvd.
Monroeville 15146
(412) 271.5227

TWX: 710-797-3650

TEXAS

Dallas, 75209
Hewlett-Packard
Southwest Sales Division
P. O. Box 7166, 3605 Inwood Rd
(214) $357-1881$ and 332.6667

TWX: 910-861-4081
Houston, 77027
Hewlett-Packard
Southwest Sales Division
P.O. Box 22813, 4242 Richmond Ave.
(713) $567-2407$

TWX: 713-571-1353

UTAH

Salt Lake City, 84115
Hewlett-Packard
Lahana Sales Division
1482 Major St.
(801) $486-8166$

TWX: 801-52I-2604

VIRGINIA

Richmond, 23230
Hewlett-Packard
Southern Sales Division
2112 Spencer Road
(703) 282-5451

TWX: 703-282.9986

WASHINGTON

Seattle Area
Hewlett-Packard
Neely Sales Division
11656 N E. 8th St.
Bellevue 98004
(206) GL4-3971

TWX: 910-443-2303

CANADA

Montreal, Quebec
Hewiett-Pachard (Canada) Etd
8270 Mayrand Street
(514) 735.2273

TWX: 610-421-3484
Ottawa, Ontarie
Hewlelt-Packard (Canada) Ltd.
1762 Carling Avenue
(613) 722-4223

TWX: 610-562-1952
Toranto, Ontaria
Hewlett-Packard (Canada) Ltd.
1415 Lawrence Avenue, West
(416) 249-9196

TWX: 610-492-2382

ARGENTINA

Mauricio A. Saurez
Telecommunicaciones
Carlos Calvo 224, Buenos Aires
Tel: 30.6312
AUSTRALIA.
Sample Electronics (Vic.) Pty. Ltd.
9-11 Cremorne Street
Richmond E. 1. Victoria
Tel: 42.4757 (3 lines)
Sample Electronics (N.S.W.) Pty. Ltd.
4 Grose Street Glebe. Sydney
New South Wales
Tel: 69-6338 (6 lines)
AUSTRIA
Unilabor G.m.t.H.
Rummelhardtgasse 6/3
Vienna
Tel: 426.181
BELGIUM
Hewlett-Packard Benelux S.A
20.24 Rue de I'Hopital, Brussels

Tel: 11.22 .20
BRAZIL
Ciental Importacao E Comercio Ltda.
Rua Cons. Crispiniano, 69, $8{ }^{\circ}$ And.,
Conj. 81, Sá Paulo
Tel: 32-4332
CANADA
Hewlett-Packard (Canada) Ltd.
8270 Mayrand Street
Montreal, Quebec
(514) 735-2273

Hewlett-Packard (Canada) Ltd.
1762 Carling Avenue
Ottawa, Ontario
(613) 722-8162

Hewlett-Packard ICanada) Ltd.
1415 Lawrence Avenue W.
Toronto, Ontario
(416) $249-9196$

CHILE
Hector Calcagni
Casilla 13942
Santiago
Tel: 6.42.26
DENMARK
Tage Olsen A/S
Ronnegade 1
Copenhagen \emptyset
Tel: 29.48 .00
FINLAND
INTO 0 Y
P. 0. Box 153

Meritullinkatu 11. Heisinki
Tel: 66.39 .09 and 35.125

FRANCE

Hewlett-Packard France
150 Boulevard Massena
Paris $13 e$
Tel: 707.97.19
GERMANY
Hewlett-Packard V.m.b.H.
Steindamm 35, Hamburg
Tel: 24.05 .51
Hewlett-Packard V.m.b.H.
Kurhessenstrasse 95
Frankfurt am Main
Tel: 52.00 .36

Hewlett-Pachard V.m.b.H.
Reginfriedstrasse 13
Munich 9
Tel: 49.51.21/22
Hewlett-Packard Vm.b.H.
Technisches Buro
Herrenbergerstrasse 110
703 Böblingen, Wurttemberg
Tel: 6971
GREECE
K. Karayannis

Klaftmonos Square, Athens 124
Tel: 230.301 (5 lines)
INDIA.
The Scientific Instrument Company, Ld.
6. Tej Bahadur Sapru Road, Allahabad 1

Tel: 2451
The Scientific Instrument Company, Ld.
240, Dr. Dadabhai Naoroji Road,
Bombay I
Tel: 26.2642
The Scientific Instrument Company, Ld.
II. Esplanade East, Calcutta 1

Tel: $23-4129$
The Scientific Instrument Company, Ld
30, Mount Road, Madras 2
Tel: 86339
The Scientific Instrument Company, Ld.
B-7. Ajmeri Gate Extn., New Delhi 1 Tel: 271053
IRAN
Telecom Ltd.
P. 0. Box 1812. Tehran

Tel: 43850,48111
ISRAEL
Electronics \& Engineering Ltd.
16 Kremenetski St., Tel Aviv
Tel: 35021 (3 lines)
ITALY
Hewlett-Packard Italiana S.p.A.
Viale Lunigiana 46. Milan
Tel: 69.15.84/5.6
Hewlett-Packard Italiana S.p.A.
Piazza Marconi, 25
Roma-Eur
Tel: 59.25.44.5
JAPAN
Yokogawa-Hewlett-Packard Ltd.
2270 Ishikawa-cho
Hachioji. Tokyo
Tel: Hachioji 0426-3-1231 (19 lines)
Yokogawa-Hewlett-Packard Ltd.
No. 3. 6-chome, Aoyama-Kitamachi
Akasaka, Minato-ku, Tokyo
Tel: 403-0073, 403-0074, 403.0075
Yokogawa-Hewlett-Packard Ltd.
No. 8, Umeda, Kita-ku, Osaka City
Tel: 361-3084, 341-2095
Yokogawa-Hewlett-Packard Ltd.
No. 4. 3-chome, Himeikedori,
Chigusa-ku. Nagoya City
Tel: 75-8545
KOREA
American Trading Company, Korea, Ltd.
112.35 Sokong-Dong

Seoul P. O. Box 1103
Seoul
Tel: 3-7049, 3.7613

NETHERLANDS
Hewlett-Packard Benelux N.V.
23 Burg Roellstraat, Amsterdam W.
Tel: (020) 13.28 .98 and 13.54 .99
NEW ZEALAND
Sample Electronics (N. Z.) Ltd.
8 Matipo Street
Onehunga S. E. 5, Auckland
Tel: 565-361
NORWAY
Morgenstierne \& Co. A/S
Ingeniprfirma
6 Wessels Gate, Osio
Tel: 201635
PORTUGAL
Telectra
Rua Rodrigo da Fonseca 103
P. 0. Box 2531

Lisbon 1
Tel: 686072 and 686073 and 686074
PUERTO RICO \& VIRGIN ISLANDS
San Juan Electronics. Inc.
150 Ponce de Leon, Stop 3
P. O. Box 5167

Pta. de Tierra Sta., San Juan 00906
Tel: 722-3342, 724-4406
SPAIN
ATAIO, Ingenieros
A. Agulera, No. 8, Madrid I5

Tel: 223.27.42, 223.41.71, and 224.84.97

SOUTH AFRICA

F. H. Flanter \& Co. (Pty), Ltd.

Rosella House
Buitencingle Street, Cape Town
Tel: 3-3817
SWEDEN
H-P Instrument $A B$
Centralvagen 28, Solna Centrum
Tel: 08.83.08.30 and 10-83.08.30
SWITZERLAND
Max Pual Frey
Wankdorffeldstrasse 66. Bern
Tel: (031) 42.00 .78
TAIWAN (FORMOSA)
Hwa Sheng Electronic Co., Ltd.
21 Nanking West Road, Taipei
Tel: 4-6076, 4-5936
TURKEY
TELEKOM Engineering Bureau
P.O. Box 376 -Galata, Istanbul

Tel: 49.40 .40
UNITED KINGDOM
Hewlett-Packard Ltd.
Dallas Road
Bedford. England
Tel: Bedford 68052
VENEZUELA
Citec, C. A.
Edif. Arisan-Of \#4
Avda. Francisco de Miranda-Chacaito
Apartado del Este 10.837, Caracas
Tel: 71.88 .05
YUGOSLAVIA
Belram S.A.
83 Av. des Mimosas
Brussels 15, Belgium
Tel: 35.29 .58

IN EUROPE

Hewlett-Packard, S. A.
54 Route des Acacias
Geneva, Switzerland
Telephone: (022) 42.81 .50
Telex: 2.24 .86
Cable: HEWPACKSA

For Sales and Service Assistance in Areas Not Listed Contact:

IN LATIN AMERICA
Hewlett-Packard Inter-Americas
1501 Page Mill Road
Palo Alto, California 94304, U.S.A.
Telephone: (415) 326-7000
TWX: 910-373-1267
Telex: 033811 Cable: HEWPACK

ELSEWHERE

Hewlett-Packard

International Marketing Department
1501 Page Mill Road
Palo Alto, California 94304, U.S.A.
Telephone: (415) 326-7000
TWX 910-373-1267
Telex: 033811 Cable: HEWPACK

Abstract

CERTIFICATION

The Hewlett-Packard Company certifies that this instrument was thoroughly tested and inspected and found to meet its published specifications when it was shipped from the factory. The HewlettPackard Company further certifies that its calibration measurements are traceable to the U.S. National Bureau of Standards to the extent allowed by the Bureau's calibration facility.

WARRANTY AND ASSISTANCE

All Hewlett-Packard products are warranted against defects in materials and workmanship. This warranty applies for one year from the date of delivery, or, in the case of certain major components listed in the operating manual, for the specified period. We will repair or replace products which prove to be defective during the warranty period. No other warranty is expressed or implied. We are not liable for consequential damages.

For any assistance contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

[^0]:

[^1]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".

[^2]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".

[^3]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^4]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^5]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".

[^6]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^7]: * See "List of Manufacturers Code Letters For Replaceable Parts Table". \# Total quantity used in the instrument.

