HP Archive

This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com

Please visit us on the web!

On-line curator: Glenn Robb

This document is for FREE distribution only!

HEWLETT-PACKARD COMPANY / OPERATING AND SERVICE MANUAL 233 A
AUDIO OSCILLATOR

AUDIO OSCILLATOR
Manual Serial Prefixed: 003-
Manual Printed: 5/61
To adapt this manual to instruments with other serial prefixes check for errata below, and make changes shown in tables.

Instrument Serial Prefix Make Manual Changes

$003-$	ERRATA

Instrument Serial Prefix Make Manual Changes

ERRATA:
In Table 5-1, Replaceable Parts,
R57: Change description to include "factory selected component, average value shown". V1: Change to Tube, electron: 6Sj7; Mfr. 33173; 䑻. Stock No. 1923-0065; TQ=2; RS=2. Under MISCELLANEOUS,

Change Stock No. AC-10C to 5060-0632.
Change stock No. AC-10D to 5060-0633.
Change 4 Stock No. G-74C to 0370-0025.
Change Stock No. G-74N to $0370-0035$.
Change Stock No. G-747 to 0370-0045.
In schematic diagram of Figure 4-4,
Add an asterisk beside R57.
The three 6.3 volt windings on power transformer T1 are connected as shown in the following partial diagram.

OPERATING AND SERVICING MANUAL

MODEL 233A
AUDIO OSCILLATOR
SERIALS PREFIXED: 003 -

Copyright HEWLETT-PACKARD COMPANY 1956
1501 PAGE MLL ROAD, PALO ALTO, CALIFORNIA, U. S. A.

SPECIFICATIONS

FREQUENCY RANGE:	50 cps to 500 kc .4 decade bands.
FREQUENCY DIAL:	Effective scale length 85 in .
FREQUENCY STABILITY	$\pm 2 \%$ under normal room temperatures including initial warmup. $\pm 10 \%$ line voltage variations result in negligible change in output frequency.
FREQUENCY ADJUSTMENT:	May be standardized periodically for maximum calibration accuracy (approximately 1\%).
OUTPUT NO. 1:	3 watts into 600 -ohm balanced load (42.5 volts), 5 kc to 500 kc . Internal impedance approximately 100 ohms, 5 kc to 100 kc ; approximately 200 ohms at 500 kc . (Maximum output may be less with Function switch in MOD. BAL. position.)
OUT PUT NO. 2:	Approximately 6 volts into a 600 -ohm load, 50 cps to 500 kc , one terminal at ground. Internal impedance approximately 6 ohms.
FREQUENCY RESPONSE:	Output No. $1- \pm 1 \mathrm{~d} \dot{\mathrm{~b}}, 5 \mathrm{kc}$ to 500 kc . Output No. $2- \pm 1 \mathrm{db}, 50 \mathrm{cps}$ to 500 kc .
DISTORTION:	$\begin{aligned} \text { Output No. } 1- & \text { Less than } 1 \%, 10 \mathrm{kc} \text { to } 100 \mathrm{kc} \text { at } 2 \text { watts; } \\ & \text { Less than } 3 \%, 10 \mathrm{kc} \text { to } 100 \mathrm{kc} \text { at } 3 \text { watts; } \\ & \text { Less than } 4 \%, 5 \mathrm{kc} \text { to } 500 \mathrm{kc} \text { at } 3 \text { watts. } \end{aligned}$
	$\begin{aligned} \text { Output No. } 2- & \text { Less than } 1 \% \text { distortion operating into } 600 \text {-ohm load, } \\ & 50 \mathrm{cps} \text { to } 100 \mathrm{kc.} \mathrm{Less} \mathrm{than} 3 \%, 100 \mathrm{kc} \text { to } 500 \mathrm{kc} \text {. } \end{aligned}$
HUM VOLTAGE:	Less than 0.1% of full output.
AMPLITUDE CONTROL:	Adjust level on both No. 1 and No. 2 output terminals.
VOLTMETER:	Monitors output No. 1 in volts and dbm (reference, $0 \mathrm{dbm}=1 \mathrm{mw}$ in 600 ohms).
POWER SU PPLY:	$115 / 230$ volts $\pm 10 \%, 50 / 1000 \mathrm{cps}$, approximately 185 watts.
DIMENSIONS:	Cabinet Mount: 17-1/4 in. wide, 11 in . high, 15 in . deep.
WEIGHT:	Net: 39 lbs., shipping: 48 lbs.

table of contents

Section Page Section Page
I GENERAL DESCRIPTION I-1
IV MAINTENANCE IV - 1
1-1 General I-1
1-2 Inspection I-1
1-3 Power Cable I-1
1-4 230 Volt Operation I-I
II OPERATING INSTRUCTIONS III-1
$2=1$ Controls and Terminals II-1
2-2 Operation II -1
2-3 Standardization. II: -2
III CIRCUIT DESCRIPTION III -1
3-1 General III- 1
4-1 General IV - 1
4-2 Cover and Bottom Plate Removal IV-1
4-3 Lubrication IV - 1
4-4 Trouble Shooting -- General IV -1
4-5 Power Supply Maintenance IV -1
4-6 Oscillator Section Maintenance IV - 1
4-7 Checking Frequency Calibration IV - 2
4-8 Amplifier Section Maintenance IV-2
V REPLACEABLE PARTS V-1
5-1 Introduction V-1
5-2 Ordering Information V - I

LIST OF ILLUSTRATIONS

Number	Title	Page
3-1	Block Diagram	III-1
4-1	Top View with Cover Removed	IV - 0
4-2	Bottom View with Bottom Plate Removed	IV - 3
4-3	Resistor Board Details	IV - 4
4-4	Schematic Diagram	IV -6

SECTION I GENERAL DESCRIPTION

1-1 GENERAL

This Carrier Test Oscillator is designed for checking carrier current systems operating at frequencies up to 500 kc . In connection with a selective type vacuum tube voltmeter, it is possible to determine complete response characteristics of complicated transmission systems.

The instrument is designed to work into a 600 -ohm balanced load, and delivers a large amount of power so that tests over loops 100 to 200 miles in length may be made. It is possible to amplitude modulate the output so that communication is available on the line to facilitate tests. The output circuit is well balanced to ground for carrier voltages. A singleended low voltage system is provided for checking audio circuits. A built in voltmeter monitors the output level from the balanced output terminals. Output frequency is read on a $9^{\prime \prime}$ diameter individually calibrated dial.

1-2 INSPECTION

This instrument has been thoroughly tested and inspected before being shipped and is ready for use when received.

After the instrument is unpacked, the instrument should be carefully inspected for damage received in transit. If any shipping damage is found, follow
the procedure outlined in the "Claim for Damage in Shipment" paze of this instruction book.

1-3 POWER CABLE

To protect operating personnel, the National Electrical Manufacturers ${ }^{t}$ Association (NEMA) recommends that the instrument panel and cabinet be grounded. All Hewlett-P'ackard instruments are equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable three-prong connector is the ground wire.

To preserve the protection feature when operating the instrument from a two-contact outlet, use a three-prong to two-prong adapter and connect the green pigtail on the adapter to ground.

1-4 230 VOLT OPERATION

This instrument is normally shipped from the factory wired for operation from a nominal 115 volt $50-1000$ cycle source. If operation from a 230 volt supply is desired the dual 115 volt primary transformer windings can easily be reconnected from a parallel to a series arrangement. Refer to the schematic drawing for details. The power fuse must be changed from a 1.6 ampere slow blow to a 0.8 ampere slow blow type when changing from 115 volt to 230 volt operation.

SECTION II OPERATING INSTRUCTIONS

2-1 CONTROLS AND TERMINALS

ON
Turn on the power to the instrument from the power line. The indicator lamp will glow when the switch is in the ON position.

RANGE -

Select the frequency range of operation.
MOD. BAL. -BAL. -UNBAL. -
This three position switch performs the following functions:

MOD. BAL.
Position connects the oscillator output into the modulator where it is amplitude modulated, at voice frequencies, by the microphone and sent through the amplifier to the "Balanced Output" terminals.

BAL.

Position connects the output of the oscillator into the amplifier for balanced output.

UNBAL.
Position feeds the oscillator output through the singleended amplifier to the "Unbalanced Output" terminals.

AMPLITUDE - FINE, COARSE -
Provide a fine and coarse adjustment of the oscillator output voltage.
$\mathrm{Xl}, \mathrm{XlO}, \mathrm{Xl00}, \mathrm{Xl000}-$
These screwdriver adjustments on the control panel are used to standardize each frequency range.

MICROPHONE

Connect a field telephone set into the modulator circuit. The field telephone set consists of a carbon microphone, battery, and output transformer to work into a 600 ohm line.

FUSE, 1.6 amp -
The fuseholder, located on the control panel, contains a 1.6 ampere cartridge fuse, 0.8 ampere for 230 volt operation. To replace tne fuse, unscrew the fuseholder cap and remove the blown fuse, insert a new fuse of the same type and replace the fuseholder cap.

BAL. OUTPUT -
Up to 42.5 volts into 600 ohm load available balanced to ground over the frequency range 5 kc to 500 kc . The Output Level meter monitors the voltage across these terminals. The two binding posts to the left of the BAL. OUTPUT designation are connected to the output transformer. The binding post marked CT is connected to the center tap of the output transformer. The binding post marked G is connected to the chassis. The binding posts are arranged to have $3 / 4$ inch between centers of any two posts.

UNBAL. OUTPUT -

This binding post and the binding post marked G, are the terminals of the unbalanced output section of the instrument. Up to 6 v into a 600 load is available over the range 50 cps to $500,000 \mathrm{cps}$.

2-2 OPERATION

Turn on the instrument and allow a minimum warmup period of fifteen minutes.

Procedure for Obtaining Balanced Output Voltage -
a. Set the tuning dial and Range switch to proper positions to get desired frequency.
b. Set MOD. BAL. -BAL. -UNBAL. switch to BAL. position.
c. Adjust COARSE-FINE AMPLITUDE controls for desired output level. 600 ohms load across BAL. OUTPUT terminals.

Procedure for Obtaining Unbalanced Output Voltage

a. Repeat steps a and b above, Set output voltage at 42,5 volts for maximum unbalanced output.
b. Set MOD. BAI. -BAL. -UNBAL, switch to UNBAL.

Procedure for Modulating Balanced Output -
a. Use procedure for obtaining balanced output voltage. Set output voltage to maximum.
b. Plug carbon mike circuit into MICROPHONE jack and set MOD. BAIL. -BAI. -UNBAL. switch to the MOD. BAL, position.

2-3 STANDARDIZATION

Compare the output of the Audio Oscillator with a standard frequency source, by means of Lissajous figures. The dial and RANGE switch should be set as follows when the instrument is being standardized.

Range	Dial
$\mathrm{X1}$	100
$\mathrm{X10}, \mathrm{X} 100, \mathrm{X} 1000$	50

To adjust the oscillator to agree with the standard, turn the appropriate screwdriver adjustment on the control panel.

SECTION III CIRCUIT DESCRIPTION

3-1 GENERAL

The Model 233A Audio Oscillator consists of an oscillator, modulator, single-ended amplifier, pushpull amplifier, output voltmeter, and regulated power supply.

The oscillator is a two-stage resistance-coupled amplifier oyer which both positive and negative feedback are applied. The positive feedback network is a frequency-selective resistance-capacitance combination which is used to control the frequency of oscillation. Negative feedback is used to stabilize the operation of the circuit. The amount of negative feedback is determined by a resistance network which contains a thermally sensitive element in the form of a 10 -watt incandescent lamp. This element controls the amount of feedback in accordance with the amplitude of oscillation and consequently maintains the proper operating point in the system.

The modulator uses a 6SA7 tube. The oscillator voltage is applied to the modulator input grid G1 and the carbon microphone output is applied to control
grid G3. An amplitude modulated carrier voltage is obtained at the plate of the tube.

The single-ended amplifier is a two-stage resistancecoupled output amplifier. Feedback is used in this circuit to reduce distortion and to provide a good frequency response.
This amplifier is designed to deliver 6 volts into a 600 -ohm load over a 50 to 500,000 cycles $/ \mathrm{sec}$ frequency range.

The balanced output amplifier is transformer-coupled with push-pull output tubes. Negative feedback is also used in this amplifier to reduce distortion and improve frequency response.

The voltmeter section is a conventional d-c miliiammeter and crystal rectifier system. It is calibrated in volts RMS and decibels. The decibel refe rence levelis 1 milliwatt into 600 ohms impedance.

The power supply is a conventional full-wave rectifier circuit, filter, and electronic voltage regulator.

115 V
50/60~

Figure 3-1. Model 233A Block Diagram
00099-2

Figure 4-1. Model 233A Top View with Cover Removed

SECTION IV MAINTENANCE

4-1 GENERAL

This section contains information for maintenance of the Model 233A oscillator. The material in this section is as follows:

4-2 Cover and Bottom Plate Removal
 4-3 Lubrication
 4-4 Trouble Shooting -- General
 4. 5 Power Supply Maintenance
 4-6 Oscillator Section Maintenance
 4-7 Checking Frequency Calibration
 4-8 Amplifier Section Maintenance

4-2 COVER AND BOTTOM PLATE REMOVAL

The cover is removed by unscrewing the four screws, which fasten the cover to the back of the instrument, and sliding the cover toward the rear of the instrument.

The bottom plate comes off when the four screws, one in each corner of the plate, are removed.

4-3 LUBRICATION

Every six months the tuning capacitor drive should be lubricated and the dust blown out of the instrument. Put one drop of light machine oil in each oil hole in the tuning drive casting.

4-4 TROUBLE SHOOTING-GENERAL

The Model 233A oscillator is constructed of the finest quality parts and should give many years of trouble free service. Normally, faulty operation will be caused by defective tubes and not component failure. When faulty operation is experienced, the power supply should always be checked first to insure that it is working perfectly before checking any other circuits.

4-5 POWER SUPPLY MAINTENANCE

Weak tubes are generally easily detected by checking circuit operation at low supply voltage. To properly do this, it is desirable to have a variable voltage transformer equipped with an accurate monitoring voltmeter. The rectifier tube V6 can be checked by measuring the d-c voltage at pin 2 with the line voltage at 115 volts. It should read approximately 420 volts. Lower the line voltage 10% to 103 volts and note the d-c voltage reading. It should drop 10% to approximately 375 volts. Allow the supply voltage to remain at 103 volts for 1 minute. If the 375 volts slowly drops after a few seconds, V6 has low emmission and must be replaced.

Proper action of the electronic regulator can be checked as follows: Adjust the line voltage to 115 volts. Using an accurate d-c meter measure the voltage at pin 8 of V7. It should read 240 volts. If not, adjust R53. Reduce the line voltage to 103 volts. The regulated d-c voltage should not change more than about 1 volt. If it slowly decreases after a few seconds, V7 is weak. If it increases, V8 is weak. Increase the line voltage to 127 volts. If the 240 voits increases slightly, V7 is weak. If it decreases, V8 is defective. V9 may also be a cause of poor regulation, however, V7 and V8 should be knowr new, good tubes before changing V9. Always check the regulated voltage level after changing power supply tubes, Reset to +240 volts if needed, with R53.

4-6 OSCILLATOR SECTION MAINTENANCE

The frequency dial is attached to the mounting hub by three screws spaced 120° apart. The mechanical stop for the instrument is a part of the dial. If the dial is rernoved, mark the dial and the mounting hub so the dial can be returned to the same position when replaced.

CAUTION: If the tuning shaft is rotated too far in either direction while the dial is removed or if the dial is not properly oriented on the mounting hub when replaced, instrument calibration will be destroyed and it will be almost impossible to get the calibration back within specifications.

Once instrument calibration has been destroyed, it will be necessary to have a new hand-calibrated dial made for the instrument. If you have any sort of difficulty with the dial drive mechanism, contact your authorized Hewlett-Packard sales office for assistance. Many of these offices have repair facilities capable of repairing your instrument or, in any case, they can expedite repair of your instrument.

When working on the instrument, extreme care must: be taken not to disturb any wiring in the oscillator section. Leaddress is very critical as to frequency calibration at 500 kc . One of the most critical leads is the yellow lead from the output capacitor C7 to R13. It. is possible to correct 500 kc calibration by proper placement of this lead.

4-7 CHECKING FREQUENCY CALIBRATION

In order to accurately check frequency calibration a source of standard frequencies will be required that has an accuracy of at least 0.1% or better. An (bp) Model 100D/E frequency standard is excellent for this purpose. The output from the Model 233A oscillator should be fed to the vertical input of an oscilloscope. The standard frequencies should be fed into the horizontal input. By observing the Lissajou patterns and knowing the standard frequency being fed to the oscilloscope, the oscillator frequency can be accurately determined.

Correcting the frequency calibration can be done as follows: Set 50 kc on calibration with R12. Attempt to set 500 kc with C 4 . If C 4 will not provide enough range, try moving the yellow lead between C7 and R1.3. Again attempt to set 500 kc with C 4 . If C 4 is at minimum capacity, it is permissible to add C31, not more than 5 pf across R14. If C14 is at maximum, it is permissible to add as much as 1.0 pf in parallel with C29, C31 and/or C29 may be removed if needed. Excessive change of lead dress may make the top end of the X100 range out of specification as to flatness of output level. Correction of this involves a rather involved process requiring considerable experience. If you experience this
sort of trouble, contact your authorized HewlettPackard sales office for assistance in getting the instrument repaired at the closest authorized repair station or at the factory if necessary.

Weak oscillator tubes will cause higher than normal distortion and/or output amplitude that is not constant with frequency. Whenever the oscillator tubes are changed, the oscillator output level must be checked and reset if needed. This is done by connecting an ac vtvm such as an. ${ }_{4}$ p Model $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ from the junction of C7 and R23 to ground. Adjust the oscillator frequency to 10 kc . Adjust R13 if necessary so that the oscillator is exactly 22.5 volts. Stable operation can be checked. by operating the range switch from range to range. The output voltage should stabilize in less than 5 seconds after changing ranges. If it does not, oscillator tubes V1 and/or V2 are defective, or the lamp R15 (10 watt, 220 volt) should be replaced. Lamps generally must be selected to find one that is stable. Some lamps will allow the output to change drastically when jarred. The output level will need to be reset if the lamp is replaced. When V2 is replaced, the calibration should be rechecked at 500 kc and reset if needed.

4-8 AMPLIFIER SECTION MAINTENANCE

The other tubes: in the instrument are not critical with the exception of V12 and V13. It is necessary to check these tubes for matched operation in order to insure that the distortion is within rated specification. Audio distortion is best checked with an (5p) Model 330B Distortion Analyzer. The test should be performed at 5 kc . The source of the distortion can be determined by measuring the distortion of the oscillator alone at the AMPLITUDE CONTROL R25 and then at the output terminals. If the distortion of the oscillator alone is well under 1% and the output signal contains excessive distortion at either the balanced or unbalanced outputs, the cause of the distortion can be located in the amplifier circuitry associated with the output in question. Weak or gassy tubes are the general cause of distortion and should always be tried first. Quite of ten a new tube can cause high distortion. Therefore, always try several new tubes before changing any components.

Figure 4-2. Model 233A Bottom View with Bottom Plate Removed

Figure 4-3. Model 233A Resistor Board Details (Sheet 1 of 2)

Figure 4-3. Model 233A Resistor Board Details (Sheet 2 of 2)

0
8
8
0
1
1
Figure 4-4. Model 233A Audio Oscillator

SECTION V REPLACEABLE PARTS

5-1 INTRODUCTION

This section contains information for ordering replacement parts for the 233A Audio Oscillator.

Table 5-1 lists replaceable parts in alpha-numerical order of their reference designators. Detailed information on a part used more than once in the instrument is listed opposite the first reference designator applying to the part. Other reference designators applying to the same part refer to the initial designator. Miscellaneous parts are included at the end of the list. Detailed information includes the following:
a. Reference designator.
b. Full description of the part.
c. Manufacturer of the part in a five-digit code; see list of manufacturers in appendix.
d. Hewlett-Packard stock number.
e. Total quantity used in the instrument (TQ col).
f. Recommended spare quantity for complete maintenance during one year of isolated service (RS column).

5-2 ORDERING INFORMATION

To order a replacement part, address order or inquiry either to your authorized Hewlett-Packard sales office or to

CUSTOMER SERVICE
Hewlett-Packard Company
395 Page Mill Road
Palo Alto, California,
or, in Western Europe, to
Hewlett-Packard S.A.
Rue du Vieux Billard No. 1
Geneva, Switzerland.
Specify the following information for each part:
a. Model and serial number of instrument.
b. Hewlett-Packard stock number.
c. Circuit reference designator.
d. Description.

To order a part not listed in table 5-1, give a completedescription of the part and include its function and location.

Table 5-1. Replaceable Parts (Sheet 1 of 7)

Table 5-1. Replaceable Parts (Sheet 2 of 7)

* See introduction to this section

00099-2

Table 5-1. Replaceable Parts (Sheet 3 of 7)

[^0]Table 5-1. Replaceable Parts (Sheet 4 of 7)

Ckt. Ref	Description	Mfr *	(4i) Stock NO.	TQ*	RS*	
R12	Resistor: variable, wirewound, 300 ohms $\pm 20 \%$, 2 W	0000B	2100-0038	1	1	
R13	Resistor: variable, composition, linear taper, 2000 ohms $\pm 10 \%, 2 \mathrm{~W}$	71450	2100-0005	1	1	
R14	Resistor: fixed, wirewound, 1600 ohms $\pm 5 \%$, 1 W	75042	0812-0004	1	1	
R15	Lamp, incandescent: $250 \mathrm{~V}, 10 \mathrm{~W}$	24455	2140-0007	1	1	
R16	Resistor: fixed, composition, 56,000 ohms $\pm 10 \%, 1 \mathrm{~W}$	01121	0690-5631	1	1	
R17	Resistor: fixed, composition, 100,000 ohms $\pm 10 \%, 2 \mathrm{~W}$	01121	0693-1.041	3	1	
R18	Resistor: fixed, composition, 47,000 ohms $\pm 10 \%, 1 \mathrm{~W}$	01121	0690-4731	2	1	
R19	Resistor: fixed, composition, 220,000 ohms $\pm 10 \%, 1 \mathrm{~W}$	01121	0690-2241.	5	2	
R20	Resistor: fixed, composition, 560 ohms $\pm 10 \%$, 1W	01121	0690-5611	1	1	
R21.	Resistor: fixed, composition, 220 ohms $\pm 10 \%, 1 \mathrm{~W}$ Optimum value selected at factory. Average value shown	01121.	0690-2211	1	1	
R22	Resistor: fixed, wirewound, 5000 ohms $\pm 10 \%, 10 \mathrm{~W}$	35434	0816-0006	2	1	
R23	Resistor: fixed, composition, 12,000 ohms $\pm 10 \%$, 1 W Optimum value selected at factory. Average value shown.	01121	0690-1231	1	1	
R24	Same as R11.					
R25	Resistor: variable, wirewound, 5000 ohms $\pm 10 \%, 2 \mathrm{~W}$	0000B	2100-0006	2	1	
R26	Resistor: fixed, composition, 22,000 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	01121	0687-2231	1	1	
R27	Resistor: fixed, composition, $12,000 \mathrm{ohms} \pm 10 \%, 1 / 2 \mathrm{~W}$	01121	0687-1231	1	1	
R28	Resistor: fixed, composition, 390 ohms $\pm 10 \%, 1 \mathrm{~W}$	01121	0690-391.1	1	1	

* See introduction to this section

Table 5-1. Replaceable Parts (Sheet 5 of 7)

* See introduction to this section

Table 5-1. Replaceable Parts (Sheet 6 of 7)

[^1]Table 5-1. Replaceable Parts (Sheet 7 of 7)

[^2]00099-2

APPENDIX CODE LIST OF MANUFACTURERS (Sheet 1 of 2)

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H 4 handbooks.

$\begin{aligned} & \text { CODE } \\ & \mathrm{NO} . \end{aligned}$	MANUFACTURER ADDRESS
00334	Humidial Co, Colton, Calif.
00335	Westrex Corp. New York, N.Y.
00373	Garlock Packing Co., Electronic Products Div. Camden, N.S.
00656	Aerovox Corp. New Bedford, Mass.
00781	Aircraft Radio Corp. Boonton, N. .
00853	Sangamo Electric Co., Cap. Div. Marion, Ill,
00866	Goe Engineering Co. Los Angeles, Calif.
00891	Garl E. Holmes Corp. Los Angeles, Calif.
01121	Allen Sradley Co. Milwaukee, Wis.
01255	Litton Industries, Inc. Beverly Hills, Calif.
01281	Pacific Semiconductors, Inc. Culver City, Calif.
01295	Texas Instruments, Inc. Semiconductor Components Div. Dallas, Texas
01349	The Alliance Mfg. Co. Alliance, Ohio
01561	Chassi-Trak Corp. Indianepolis, Ind.
02114	Ferroxcube Corp. of America Saugerties, N.Y.
02286	Cole Mfg. Co. Palo Alto, Calit.
02660	Amphenol Electronics Corp. Chicago, III.
02735	Radio Corp. of America Semiconductor and Materials Diy. Somerville, N.J.
02777	opkins Engineering Co. San Fernando, Calif.
03508	ducts Dept. Syrecuse, N.Y.
03705	Apex Machine \& Tool Co. Dayton, Ohio
03797	Eldema Corp. El Monte, Calif.
04009	Arrow, Hart and Hegeman Elect. Co. Hartford, Conn.
04062	Elmenco Products Co. New York, N.Y.
04222	Hi-Q Oivision of Aerovox Myrłle Beach, S.C.
04404	Dymec Inc. Palo Alto, Calif.
04651	Speciall Tube Operations of Sylvania Electronic Systems Mountain View, Callf.
04713	Motorola, Inc., Semiconductor Prod. Div. Phoenix, Arizona
04732	Filtron Co., Inc. Western Division Culver City, Calif.
04777	Automatic Electric Sales Corp.
05624	Barber Colman Co. Rockford, III.
05783	Shewart Engineering Co. Soquel, Calif.
06004	The Bassick Co. Bridgeport, Conn.
068	Torrington Mig. Co., West. Div. Van Nuys, Calif.
07115	Corning Glass Works Electronic Components De
07137	Pransistor Electronics Corp. Minneapolis Minn.
07261	Avnet Corp. Los Angeles, Calif.
07263	Fairchild Sumiconductor Corp. Mountain View, Calif.
07933	Rheem Semiconductor Corp. Mountain View, Calif.
07980	Boonton Radio Corp. Boonton, N.J.
08718	Cannon Electric Co. Phoenix Div. Phoenix, Ariz.
08792	CAS Electronics Semiconductor Operations, Div. of C.B.S. Inc.
09134	Texas Capacitor Co. Houston, Texas
09250	Electro Assemblies, Inc. Chicago, III.
10646	Carborundum Co. Niagara Falls, N.Y.
12897	Clarosíat Mfg. Co. Dover, N.H.
14655	Comell Dubllier Elec. Corp. 5c. Plainfield, N.J.
15909	The Daven Co. Livingston, N.J.

CODE

01349 The Alliance Mifg. Co. Alliance, Ohio 01561 Chassi-Trak Corp. Indianapolis, Ind. 02114 Ferroxcube Corp. of America

02286 Cole Mfg. Co. Palo Alto, Calit 02660 Amphenol Electronics Corp. Chicago, III. 02735 Radio Corp. of America
erials Diy

San Fernando, Calif. 03508 G.E. Semiconductor Products Dept.
03705 Apex Machine \& Tool Co. Dayton, Ohio 03797 Eldema Corp

04009 Arrow, Hart and Hegeman Elect. Co. Conn
04062 Elmenco Products Co. New York, N.Y. of Aerovox Myrlo Alto Calis

04651 Speciall Tube Operations of Mountain View, Calif otorola, Inc., Semiconductor Western Division

Culver City, Calif
04777 Automatic Electric Sales Corp
05624 Barber Colman Co. 05783 Shewart Engineering Co. Soquel, Callif.
08004 The Bassick Co. Bridgeport, Conn.
08812 Torrington Mig. Co., West. Div. Nuys, Calif,
07115 Corning Glass Works
07137 Pransistor Electronics Corp. Minneapolis, Minn.
07261 Avnet Corp. Los Angeles, Calff.
07263 Fairchild Sumiconductor Corp. 07933 Rheem Semiconductor Corp.
07980 Boonton Radio Corp. Boonton, N.J.
08718 Cannon Electric Co.
Phoenix, Ariz
00792 CAS Electronics Semiconductor
Lowell, Mass. Chicago, III. 09250 Electro Assemblies, Inc. Chicago, III 10646 Carborundum Co. Niagara Falls, N.Y.
12897 Clarosíat Mfg. Co. Dover, N.H.
14655 Cornell Dublier Elec. Corp.
15909 The Daven Co. Livingston, N.J.

CODE
NO. MANUFACTURER ADDRESS
16758 Delco Radio Div. of G. M. Corp.
Kokomo, Ind
18873 E. 1. Dupont and Co., Inc.
Wilmington, Del.
19315 Eclipse Pioneer, Div, of
Bendix Aviation Corp. Teterboro N.J
19500 Thomas A. Edisom Industries,
Div. of McGraw-Edison Co.

19701 Electra Manufacturing Co. Kansas City, Mo 20;s 3 Electronic Tube Corp. Philadelptrie, Pa. 21520 Fansteel Metallurgical Corp.

No. Chicago, III.
21335 The Fafnir Bearing Co. New Britain, Conn. 21964 Fed. Telephone and Radio Corp.

24446 General Electric Co. Schenectady, N.
24455 G. E. Lamp Division,
24655 General Radio Co. 26462 Grobet File Co. of America, Inc.
26992 Hamilton Watch Co. Caristadt, N.J.
28480 Hewlett-Packard Co. Palo Alto Calif
33173 G. E. Receiving Tube Dept. Owensboro, Ky
35434 Lectrohmi lirc. Chicago, III. 37942 P. R. Mallory \& Co., Ine. Indianapolis, Ind. 39543 Mechanical Industries Prod. Co.
40920 Miniature Precision Bearings, In
Akron, Ohio

42190 Muter Co.
Keene, N.H
43990 C Norgran Co Chicago, III
44655 Ohmite Mig. Co. $\begin{array}{r}\text { Englewood, Colo } \\ \text { Skokie, II. }\end{array}$
48620 Precision Thermometer and
49956 Paytheon Co. Co 1 Wilatphia, Pa
54294 Shalleross Mis Waltham, Mass.
54294 Shalicross Mig. Co. Selma, N.C
55026 Simpson Electric Co. Ehicago, Ili.
55923 Sonotone Corp. Elmsford, N.Y.
5593 Sorenson \& Co. the So. Norwalk, Conn
56137 Spaulding Fibre Co., Inc. Tonawanda, N.Y. 56289 Spraque Eiectric Co. North Adams, Mass. 59446 Telex, Inc. St. Paul, Minn 61775 Union 5 witch and Signal, Div. of Westinghouse Air Brake Co.
62119 Universal Electric Co. Oittsburgh, Pa

64959 Western Electric Co., Inc. New York, W.Y. 65092 Weston Inst. Div. of Daystrom, inc.
70119 Advance Electric and Relay Co. 70276 Allen Mfg. Co. Hartford, Conn 70309 Allied Control Co., Inc. New York, N.Y. 70563 Amperite Co., Inc

7099 Bld Electron. Co.
10 Eird Electrowie Corp
71002 Birnbach Radio Co
71218 Bud Radio Inc.
71286 Camloc Fastener Corp.
71313 Allen D. Cardwell Electronic 7140 Prod. Corp Plainville, Conn. 71400 8ussmann Fuse Div. of McGraw71450 Chicago Telephone Supply Co. Elkhart, Ind 71468 Cannon Electric Co. Los Angeles, Calif. 7147 Cinema Engineering Co. Burbank, Calif. 71432 C. P. Clare \& Co. Chica
71590
Centralab Div. of Globe Union Inc.
71590 Centralab Div. of Globe Union Inc. $\begin{aligned} & \text { Milwauken. Wis }\end{aligned}$
71700 The Cornish Wire Co. New York, N.Y.

CODE

NO. MANUFACTURER ADDRESS
71744 Chicago Miniature Lamp Works
Chicago, 111.
71753 A. O. Smith Corp., Crowley Div. ${ }_{\text {West Orange, N.J }}$
71785 Cinch Mfg. Corg. Chirago III
71984 Dow Corning Corp. Midland, Mich.
72136 Electro Motive Mffg. Co., Inc.
Willimantic, Conn
72354 John E. Fast \& Co. Chicago, III.
72619 Dialight Corp. Brooklyn, N.Y
72656 General Ceramics Corp. Keasbey. N.J.
7275 Girard-Hopkins Oakland, Calif
72765 Drake Mfg. Co. Chicago, III.
72825 Hugh H. Eby Inc. Philadelphia, Pa. Chicago, III.
72982 Erie Resistor Corp.
73061 Hansen Mfg. Co., Inc. Princeton, Ind
73138 Helipot Div. of Beckman Instruments, ltic.
73293 Hughes Products Div. of Hughes Aircraft Co

Newport Beach, Calif
73445 Amperex Electronic Co., Dix. of
North American Phillips Co., Ine.
73506 Bradley Semiconductor Corp. $\begin{aligned} & \text { New Haven, Conn }\end{aligned}$
73559 Carling Electric, Inc. Hartford, Conn
73682 George K. Garrett Co., Ine.
73743 Fischer Special Mfo. Co. Cincinnati, Ohi
73793 The General Industries Co. Elyria, Ohio
73905 Jennings Radio Mfg. Co. San Jose, Calif. $74455 \mathrm{~J} . \mathrm{H}$. Winns, and Sons Winchester, Mass. 74861 Industrial Condenser Corp. Chicago, 111.
74868 Indurtrial Products Co. Danbury, Conn.
74970 E. F. Johnson Co. Waseca, Minn.
75042 International Resistance Co
Philadelphia, Pa.
75173 Jones. Howard 8., Division
of Cinch Mrg. Corp.
Chicago, 111
75378 James Knights Co. Sardwich, III.
75382 Kulka Electric Mfg. Co., Inc.
1t. Vernon, N.Y.
75818 Lenz Electric Mfg. Co. Chicago, III.
75915 Littelfuse Inc. Des Plaines, III.
76005 Lord Mfg. Co. Erie, Pa.
$762: 0$ C. W. Marwedel San Francisco, Calif.
76433 Micamold Electronic Mfg. Corp.
76487 James Millen Mifg. Co., Inc. Malden, Mass.
76530 Monadnock Milis: San Leandro, Calif.
76545 Mueller Electric Co. Cleveland, Onio
76854 Oak Manufacturing Co. Chicago, III.
77068 Bendix Corp., Bendix
77221 Phaostron Instrument and Electronic Co. South Pasadena, Calit.
7342 Potter and Brumfield, Inc. Princeton, Ind.
77630 Radio Condenser Co. Camden, N.J.
$7 J 634$ Radio Essentials inc. Mt. Vernon, N.Y.
77638 Radio Receptor Co., Inc. Brooklyn, N.Y.
77764 Resistance Products Co. Harrisburg, Pa.
782日3 Signal Indicator Corp. New York, N.Y.
70471 Tilley Mfg. Co. San Francisco, Calif.
78488 Stackpole Carbon Co. St. Marys, Pa.
78790 Transformer Engineers Pasadena, Calif.
79142 Yeeder Root, Inc. Hartford, Conn.
79251 Wenco Mig. Co. Chicago, III.
79963 Zierick Mfg. Corp. New Rochelle, N.Y.
80130 Times Facsimile Corp. New York, N.Y.

00015 -4
From: F.S.C. Handbook Supplements
H4-1 Dated July 1960
H4-2. Dated Oct. 1960
00099-2

APPENDIX

CODE LIST OF MANUFACTURERS (Sheet 2 of 2)

DDE	MANUFACTURER ADDRESS
Su131	Electronic Industries Association Any brand tube meeting ElA standards Washington, D.C.
8	Oxford Electric Corp. Chicago, III.
80411	Acra Manufacturing Co. Columbus, Ohici
80486	All Star Products Inc. Defiance, Ohio
83	Hammerlund Co., Inc. New York, N.Y.
806	Stevens, Arnold, Co., Ine. Boston, Mass,
0	
	Wilkor Products, Inc. Cleveland, Ohio
81453	Raytheon Mfg. Co., Industrial Tube Division
	International Rectifier Corp. El Segundo, Calif.
	Barry Controls, Inc. Watertown, Mass.
82042	Carter Parts Co. Skokie, 11.
82142	Jeffers Electronics Division of Speer Carbon Co.
82170	Allen B. DuM Mont Labs., Inc. Clifton, N.J.
82209	Maguire Itrdustries, Inc. Greenwich, Conn.
82219	Syivania Electric Prod. Inc, Electronic Tube Div. Emporium, Pa.
82376	Astron Co. East Newark, N.J.
9238 \%	Switchcraft, Ine. Chicago, III.
82647	Spencer Thermostar, Div. of liexas Instruments, Inc. Attleboro, Mass.
82866	Research Products Corp. Madison, Wis.
8	Yector Electronic Co. Glendale, Calif.
83148	Electro Cords Co. Los Angeles, Calif.
8	Victory Engineering Corp. Unian, N.J.
832	Bendix Corp., Red Bank Div. Red Bank, N.J.
83594	Burroughs Corp., Electronic Tube Div. Mainfield, N.J.
	Model Eng. and Mfg., Inc. Huntington, Ind.
	Loyd Scruggs Co. Festus, Mo.
84171	Arco Electronics, Inc. New York, N.Y.
	Good All Electric Mfg. Co. Ogallale, Neb.
84970	Sarkes Tarzian, Inc. Bloomingtan, Ind.
85474	Bracamonte \& Co. San Francisco, Calif.
85660	Kolled Kords, Inc. New Haven, Conn.
85911	Seamless Rubber Co. Chicago, III.
86684	Radio Corp. of America, RCA Electron Tube Div.
88140	Cufler-Hammer, Inc. Lincoln, Ill.

	MANUFACTURER ADDRESS
89473	General Electric Distributing Corp. Schenectady, N.Y.
90179	U.S. Rubber Co., Mechanical Goods. Div. Passaic, N.J.
0970	Bearing Engineering Co."San Francisco, Calif.
91418	Radio Materials Co, Chicago, Ill.
91506	Augat Brothers, Inc. Attleboro, Mass.
91637	Dale Products, Inc. Columbus, Neb.
91662	Eleo Corp. Philadelphia, Pa.
91737	remar Mfg. Co., Inc. Wakefield, Mass.
91827	K F Development Co. Redwood Cify, Callf.
91929	Micro-Switch Div. of Minneapolis Honeywell Regulator Ca. Freeport, III.
92196	
93332	Sylvania Electric: Prod. Iac., Semiconductor Div.
3369	Robbins and Myers, Inc. New York, N.Y.
93410	Stevens Mfg. Co., Inc. Mansfield, Ohio
93983	Insuline-Van Norman Ind., Inc. Electronic Division Manchester, N.H.
94144	Raytheon Mfg. Co., Receiving Tube Div.
94145	Raytheon Mfg. Co., Semiconductor Div. Newton, Mass.
94154	Tung-Sol Electric, Inc. Newark, N.J.
94197	Curtiss-Wright Corp., Electronics Div, Carlstadt, N.J.
94310	Tru Ohm Drod. Div. of Mode! Engineering and Mfg . Co. Chicago, III.
	Allies Products Corp. Miami, Fla.
95238	al Connector Corp.
95263	ecraft Mfg. Co., Inc. New York, N.Y.
95265	tional Coill Ca. Sheridan, Wyo.
95987	esser Co. Chicago, II.
96067	Huggins Laboratories Sunnyvale, Callif.
96095	Hi-Q Division of Aerovox Olean, N.Y.
96	Solar Manufacturing Co. Los Angeles, Calif.
96	Microwave Associates, Inc. Burlington, Mass,
96501	Excel Transformer Co. Oakland, Calif
97539	Automatic and Precision Mfg . Co. Yonkers, N.Y.
97966	
98	Axel Brothers Inc. Samaica, N.Y.
98	Francis L. Mosiey Pasadena, Calif.
98	Microdot, Inc. So. Pasadena, Calhif.
8291	Sealectro Corp. New Rochelle, N

CODE N.	MANUFACTURER ADDRESS
98.405	Carad Corp. Redwood Cify, Calif.
98734	Palo Alto Engineering Co., Inc. Palo Alto, Calif.
98.925	Clevite Transistor Prod. Div. of Clevite Corp. Waltham, Mass.
99109	Columbia Technical Corp. New York, N.Y.
99313	Varian Associates Palo Alto, Calif.
99800	Delevan Electronic: Corp. East Aurera, N.Y.
9982	North Hills Electric Co. Great Necl, L..I., N.Y.
99848	Wiico Corporation Indianapolis, ind.
99934	Renbrandi, Inc. Boston, Mass.
99942	Hoffman Semiconducfor Div. of Hoffman Electronics, Corp. Evanston, III.
99957	Technology Instruments Corp. of Cahif. No. Hollywood, Calif.
THE FOL BER ASS THE FED HANDBO	LOWING H-P VENDORS HAVE NO NUMSIGNED IN THE LATEST SUPPLEMENT TO ERAL SUPPLY CODE FOR MANUFACTURERS OK.
0000 A	Amp, Inc. Hawthorne, Calif.
0000 E	Chicago Telephone of Calif. S. Pasadena, Calif.
0000 C	Connor Spring Mfg. Co. San Francisco, Calir.
0000 D	Connex. Corp. Oakland, Callt.
0000 E	Fisher Switchas, ine. San Francisco, Ca' ${ }^{\text {. }}$
0000 F	Malco Tool and Die Losi Angeles, Cal
0000 G	Microwave Enginearing Co. Palo Alto, Calif.
0000 H	Philco Corp. (Lansdale Division) Lansdale, Pa.
00001	Telefunken ($c / 0$ American Elite) New York, N.Y.
0000 J	Ti Tai, Inc. Berkeley, Callf.
0000 K	Transitron Electronic Salus Cup. $\underset{W}{\text { Wakefielol, Mass. }}$
0000 L	Winchester Electronics, inc. Santa Monics, Calif.
0000 M	Western Coil Div. of Automatic ind., Inc. Redwood City, Calif.
0000 N	Nahm-Bros., Spring Co. San Leandro, Calif.
O000P	Ty-Car Mfq. Co., Inc. Holliston, Mass.
0000 R	Metro Cap. Div., Metropolitan Telecommunications Corps. Brooklyn, N.Y:
00005	Moulton Electronics San Carlos, Calif.

$00015-4$
Revised 15 March 1961

From: F.S.C. Handbook Supplements
 H4.1 Dated July 1960

H4-2 Dated Oct. 1960

[^0]: * See introduction to this section

[^1]: * See introduction to this section

[^2]: * See introduction to this section

