200S OSCILLATOR

OPERATING AND SERVICE MANUAL

HP Archive

This vintage Hewlett Packard document was preserved and distributed by
www. hparchive.com Please visit us on the web !

Scanned by on-line curator: Tony Gerbic ** For FREE Distribution Only ***

OPERATING AND SERVICE MANUAL

(HP PART NO. 00200-91902)

MODEL 2005 OSCILLATOR

SERIALS PREFIXED: 332-

Appendix C, Manual Backdating Changes,
adapts this manual to Serials Prefixed: 229-, 129-, 103-, 001-.

Copyright Hewlett-Packard Company 1959
P. O. Box 301, Loveland, Colorado, 80537 U.S. A.

TABLE OF CONTENTS

Section Page Section Page
都
I GENERAL DESCRIPTION 1-1
1-1. General 1-1
1-2. Instrument Identification 1-1
1-3. Power Cable 1-1
1-4. 230 -Volt Operation 1-1
$1 \mathbf{1 - 5}$. Incoming Inspection 1-1
II OPERATING INSTRUCTIONS 2-1
$2-1$. Operating Procedure 2-1
2-2. Output Circuit Options 2-1
III THEORY OF OPERATION 3-1
3-1. General 3-1
$3-2$. Frequency-Controlling Bridge 3-1
3-3. Amplifier 3-1
$3-4$. Output Circuit 3-14-1
4-1. Introduction 4-1
$4-2$. Test Equipment Required 4-1
4-3. Performance Check 4-1
4-4. Cabinet Removal 4-2
4-5. 230-Volt Operation 4-2
4-6. Periodic Maintenance 4-2
4-7. Adjustment Procedure 4-2
$4-8$. Troubleshooting 4-5
4-9. Repair and Replacement 4-5
V REPLACEABLE PARTS 5-1
$5-1$. Introduction 5-1
$5-2$. Ordering Information 5-1
Appendix
$\begin{array}{ll}\text { A } & \text { CODE LIST OF MANUFACTURERS } \\ \text { B } & \text { SALES AND SERVICE OFFICES } \\ \text { C } & \text { MANUAL BACKDATING CHANGES }\end{array}$
LIST OF ILLUSTRATIONS

Number	Title	Page	Number	Title	Page
1-1.	Model 200S Oscillator 1-0		4-2.	Calibration Test Setup	
			4-3.	Alternate Calibration Setup	4-3
2-1.	Controls and Terminals	2-0	4-4.	Distortion Test Setup	4-4
2-2.	Typical Output Connections		4-5.	Range Switch Detail	4-7
			4-6.	Left Side View Model 200S	
			4-7.	Right Side View Model 200S	4-9
3-1.	Model 200S Block Diagram	3-0	4-8.	Servicing Etched Circuit Boards	4-10
			4-9.	Voltage and Resistance Diagram	4-11
4-1.	230-Volt Operation. . .	4-2	4-10.	Model 200S Oscillator	4-12

LIST OF TABLES

Number	Title	Page
$4-1$.	Test Instruments Required	$4-0$
$4-2$.	Frequency/Period Conversion	$4-1$
$4-3$.	Distortion Test Frequencies.	$4-2$
$4-4$.	Troubleshooting.	$4-5$
$4-5$.	Replacement of Critical Parts	$4-6$
$5-1$.	Replaceable Parts	$5-1$

SPECIFICATIONS

FREQUENCY RANGE: $\quad 5 \mathrm{cps}$ to 600 kc in 5 ranges.

$$
\text { DIAL ACCURACY: } \quad \pm 2 \%
$$

FREQUENCY RESPONSE: $\quad \pm 1 \mathrm{db}, 1000 \mathrm{cps}$ reference.
MAXIMUM OUTPUT: $\quad 3 \mathrm{~V} \mathrm{rms}$ into 50 ohms.
ATTENUATOR: Approximately 10 db range.
DISTORTION: Less than 0.5% below 500 kc ; less than 1% above 500 kc .
HUM VOLTAGE: Less than 0.1% of rated output.
POWER: $\quad 115 / 230$ volt, $\pm 10 \%, 50-1000 \mathrm{cps}, 75$ watts.
ACCESSORIES AVAILABLE: Q11000A Cable Assembly, terminated by dual banana plugs.
11001A Cable Assembly, as above, but with one BNC connector.
DIMENSIONS: Cabinet Mount: $\quad 7-1 / 2^{\prime \prime}$ wide, 11-1/2" high, 14-1/4" deep.
Rack Mount:

WEIGHT: Cabinet Mount: Net 23 lbs., shipping 29 lbs.
Rack Mount: Net 27 lbs ., shipping 35 lbs .

SECTION
 GENERAL DESCRIPTION

1-1. GENERAL.

The Model 200S is specifically designed to provide the low frequency signals required by the (${ }^{2 p}$ Model 739A Frequency Response Test Set. The oscillator covers the range between 5 cps and 600 kc in five overlapping ranges and will provide at least 3 volts into a 50 ohm load. Since the instrument was developed for a specific application, the output amplitude control has a limited range. The minimum output into a 50 ohm load is between 1 and 2 volts.

The Model 200S with the Model 739A Frequency Response Test Set may be used to check the frequency response of voltmeters, oscilloscopes, amplifiers, or filters between 5 cps and 10 mc .

To help eliminate ground loops, the output terminals are ungrounded. If a grounded output is desirable, a link is provided to connect one of the output terminals to the chassis.

1-2. INSTRUMENT IDENTIFICATION.

Hewlett-Packard uses a two-section eight-digit serial number (e.g. , 000-00000). If the first three digits of the serial number on your instrument do not agree with those on the title page of this manual, change sheets supplied with the manual will define differences between your instrument and the Model 200S described in this manual.

1-3. POWER CABLE.

For the protection of operating personnel, the National Electrical Manufacturers, Association (NEMA) recommends that the instrument panel and cabinet be grounded. This instrument is equipped with a threeconductor power cable, which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable three-prong connector is the ground pin.

To preserve the protection feature when operating the instrument from a two-contact outlet, use a threeprong to two-prong adapter and connect the green pigtail on the adapter to ground.

1-4. 230-VOLT OPERATION.

This instrument is normally wired for operation from a nominal 115 volt supply. Operation from a 230 volt source is easily accomplished by reconnecting the dual primary windings on the power transformer in series. Refer to paragraph 4-5 for connection procedures.

1-5. INCOMING INSPECTION.

Upon receipt of your 200S, check the contents against the packing list and inspect the instrument for any obvious damage received in transit. To facilitate reshipment, keep the packing material until an operational check has been performed (see paragraph 4-3). If there is any apparent damage, file a claim with the carrier and refer to the warranty page in this manual.

Figure 1-1. Model 200S Oscillator

Figure 2-1. Controls and Terminals

SECTION II OPERATING INSTRUCTIONS

2-1. OPERATING PROCEDURE.

1) With the instrument plugged into a power source of specified voltage and frequency, and the power switch at ON, allow a warm-up period of approximately five minutes. Where maximum accuracy is desired, this warm-up period should be extended at least to thirty minutes.

NOTE

If a 230 volt power source is used, check (a) that power transformer T3 is strapped for 230 -volt operation (strapping options shown on schematic diagram) and (b) that fuse F1 is the correct size for 230 -volt operation. (See Table of Replaceable Parts for value.)
2) The frequency of the output voltage is determined by (a) the setting of the frequency dial and (b) the setting of the RANGE switch. For example, to obtain a 1000 -cycle output, set the frequency dial at 10 and the RANGE switch at X100 (10×100 is 1000).
3) Make the connection between the Model 200 S and the equipment to be driven at the terminals designated 50Ω. (Connections are discussed in paragraph 2-2.)
4) Adjust the AMPLITUDE control to obtain the desired output level.

2-2. OUTPUT CIRCUIT OPTIONS.

The output circuit of the Model 200S may be arranged for balanced or unbalanced operation. Typical connections for each are indicated in figure 2-2.

Figure 2-2. Model 200S Typical Output Connections
A. UNBALANCED OPERATION. To operate with one side grounded, a strap is placed between the G terminal and the center terminal, as indicated in figure 2-2A.
B. BALANCED OPERATION. Connections for balanced operation are indicated in figure 2-2B. (The broken line from the ground terminal indicates the output circuit is balanced to ground, with the AMPLITUDE control at maximum.)

Figure 3-1. Model 200S Block Diagram

SECTION III
 THEORY OF OPERATION

3-1. GENERAL.

The Model 200S Oscillator uses a balanced (push-pull) oscillator circuit from which the output is taken directly, avoiding the complication and possible distortion of an isolating amplifier. Reaction of the load on the oscillator is minimized by the use of a low impedance output stage. This arrangement results in a simple, trouble-free circuit having low distortion and high stability over the entire frequency range.

Functionally, the circuits of the Model 200S include a frequency-controlling bridge and balancedpush-pull amplifier which constitute the oscillator circuit, an output circuit which may be arranged either for balanced or unbalanced operation, and a power-supply circuit. These are shown in block diagram form in figure 3-1 and in detail in the schematic diagram.

3-2. FREQUENCY-CONTROLLING BRIDGE.

The frequency-controlling circuit is arranged as a floating bridge, symmetrical with respect to ground. With no connection to ground on any terminal of the bridge, stability of calibration is assured since any stray capacity and leakage to ground present at the bridge output terminals do not shunt either the frequency-controlling or amplitude-stabilizing arms of the bridge. The frequency-controlling components (RC networks which are varied by operation of the RANGE switch and frequency dial) comprise two arms of the bridge, while the amplitude-stabilizing components (a voltage divider which includes a thermallysensitive resistance) comprise the other two arms. The amplitude is stabilized at such a level that the amplifier tubes are operated in the substantially linear portion of their characteristics, which, together with the large negative feedback at harmonic frequencies, results in a very pure sine wave oscillation.

The bridge is fed by the balanced voltage developed at the cathodes of V2 and V4 in the output of the balanced amplifier. The output of the frequency-controlling branch of the bridge is applied to the grid of V3 and the output of the amplitude-stabilizing branch is applied to the grid of V1. The manner in which the voltage-versus-frequency and phase-versus-frequency characteristics of an RC network can be utilized with an amplifier of proper design to achieve an oscillator
which delivers a voltage of excellent stability and waveform is well covered intexts such as Terman \& Pettit's Electronic Measurements.

Variable resistor R11 is provided for adjustment of the maximum output amplitude.

Variable capacitors C3, C6, and C7 are adjusted for optimum calibration and frequency response. They should not require adjustment unless the RANGE switch is replaced.

3-3. AMPLIFIER.

The oscillator amplifier is a balanced push-pull circuit which includes a voltage-amplifier stage (V1, V3) and a special cathode-follower stage (V2, V4). Crisscross positive feedback is used in the cathodefollower stage to provide a low output impedance as seen by the cathode-to-cathode load. The feedback paths are from the plate of V2 to the control grid and screen of V4, and from the plate of V4 to the control grid and screen of V2. The degree of the positive feedback is a function of the load and increases as the load impedance decreases, thus tending to maintain the output constant regardless of load.

Capacitors C10, C11, and C12, and coils L2 and L3 are part of the frequency-compensating circuitry.

The output from the cathode-follower stage (1) returns feedback to the frequency-controlling bridge and (2) supplies the primary winding of the output transformers, which couple the oscillator output to the output circuit.

3-4. OUTPUT CIRCUIT.

Transformer coupling provides isolation between the oscillator circuit and the output circuit, and allows the output to be obtained either balanced or unbalanced. Since a single transformer will operate suitably over only a part of the frequency range covered by the 200 S , two transformers are provided. Connections between cathode-followers V2 and V4 and the proper transformer for the band in use are set up by the RANGE switch. The secondary windings of the coupling transformers supply the output attenuator, the setting of which is adjusted by operation of the AMPLITUDE control on the front panel.

Table 4-1. Test Instruments Required

Instrument Type	Minimum Required Specifications	Recommended © Instruments
DC Electronic Voltmeter	Sensitivity: 1 volt full scale minimum Input resistance: 10 megohms or higher	Model 410B or 412A Vacuum Tube Voltmeter
AC Electronic Voltmeter	Input impedance: 2 megohms shunted by 40 pf (below the 0.3 volt range) Accuracy: $\pm 3 \%$ from 5 cps to 500 kc	Model 403A Transistor Voltmeter
AC Electronic Voltmeter	Input impedance: 10 megohms shunted by 25 pf (below the 0.3 volt range) Accuracy: $\pm 2 \%$ from 20 cps to 1 mc	Model 400D/H/L Vacuum Tube Voltmeter
Distortion Analyzer		Model 330B Distortion Analyzer
50-ohm Resistor	50 ohms $\pm 1 \%$ to 100 kc	Not Available
Electronic Counter	Frequency and period readings available. Frequency measuring capabilities to at least 600 kc	Models 523C/CR, D/DR or 524C/D Electronic Counters
Frequency Standard	Frequencies available: a) 10 cps b) 100 cps c) 1 kc d) 100 kc Output voltage: 5 volts rms minimum Frequency accuracy: $\pm 0.05 \%$	100ER Precision Frequency Standard
(Optional - recommended) Oscilloscope	Frequency range: flat from 5 cps to at least 600 kc	Models 150A, 160B, 170A Oscilloscopes

SECTION IV MAINTENANCE

4-1. INTRODUCTION.

This section contains test and maintenance information for the 200S Oscillator. Included is a quick performance check that may be made with the instrument in its cabinet, as a part of routine maintenance or as a part of your incoming quality control inspection

The maintenance data provided in this section assumes that maintenance personnel are familiar with the operating procedures and circuit theory given in section II and III respectively.

The 200S should require little maintenance, since all component parts are operated well within the recommended ratings. Should failure occur, however, a troubleshooting paragraph, $4-8$, has been included to assist you in quickly localizing the problem.

Tube replacement will probably correct a majority of the difficulties which may develop, however, some readjustment will be necessary after replacement of tubes, stabilization lamps (RT1 and RT2), and other critical parts. Refer to table 4-5 for any necessary adjustment after replacement of these parts.

Small errors may be introduced in the 200S because of the capacitance added to the circuit after cabinet replacement. Therefore, if any adjustments are required in the 200S throughout this section, slide the cabinet over the instrument after the adjustment, and check instrument performance.

4-2. TEST EQUIPMENT REQUIRED.

Table 4-1 lists the test equipment required for maintenance and repair of the 200 S . If equipment other than the recommended types are used in the following procedures, make sure it meets the minimum specifications listed in table 4-1.

4-3. PERFORMANCE CHECK.

The following procedure is to verify proper operation and should be accomplished with the instrument in its cabinet. A complete adjustment procedure is given in paragraph 4-7. Proceed as follows:

NOTE

To isolate troubles in the 200 S , turn to paragraph 4-7 and follow all steps and note indications, but DO NOT adjust anything. Then refer to table 4-4 for possible causes of readings that are beyond test limits.

A. FREQUENCY RESPONSE.

1) Connect the 200 S to an ac voltmeter and a 523D Electronic Counter as shown in figure 4-2. Substitute a 403 A for the $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ in figure $4-2$.
2) Set 200 S RANGE to X 100 , frequency dial to 10 . Terminate output in 50 ohms.
3) Adjust 200S AMPLITUDE for a convenient reference around 0.9 on the voltmeter scale.
4) Starting with the X1 range, rotate the frequency dial across the band while observing the meter.
5) Repeat this process for each range. The voltmeter indication should not vary more than $\pm 1 \mathrm{db}$ throughout the ranges checked.
B. DIAL ACCURACY.
6) Set 200 S RANGE to X 10 K , frequency dial to 60. Observe the frequency reading on the 523D Counter.
7) Check the frequency at $40,20,10$ and 5 on the dial.
8) Repeat this procedure for the remaining ranges. The frequency should be correct within $\pm 2 \%$.

NOTE

For the lower end of the X10 range and the entire X1 range, it will be advantageous to measure the frequency indirectly by switching the 523D FUNCTION SELECTOR to 10 PERIOD AVERAGE. Table 4-2 lists the specifications in terms of period readings for each point on the X1 range. To check X10 range, divide the period limit in table 4-2 by 10 .

Table 4-2. Frequency/Period Conversion

Frequency (cps)	Frequency Limits	Period Limits
5	5.1	
	4.9	196.0 ms
10	10.2	204.0 ms
	9.8	098.0 ms
20	20.4	102.0 ms
	19.6	049.0 ms
40	40.8	051.0 ms
	39.2	024.5 ms
60	61.2	025.5 ms
	58.8	016.3 ms
		017.0 ms

C. DISTORTION.

1) Connect the 200S to a 330B Distortion Analyzer as shown in figure 4-4.
2) Set 200S RANGE switch and frequency dial to one of the frequencies indicated in table 4-3.
3) The 330 B switches should be set to the following positions:
a. AF-RF to AF
b. FREQUENCY to incoming frequency selected in step 2
c. Selector switch to SET LEVEL
d. RMS VOLTS-DB switch set to +20 db .
4) Adjust 330B INPUT control for a zero db reference on the 330B meter.
5) Switch selector to DISTORTION.
6) Adjust BALANCE and FREQUENCY controls for a dip on the meter.
7) Turn RMS VOLTS-DB switch counterclockwise while continually adjusting 330B BALANCE and FREQUENCY until the lowest possible dip is obtained. Specifications are listed in table 4-3.
8) Check the remaining frequencies listed in table 4-3 by following steps 1 through 7 .

Table 4-3. Distortion Test Frequencies

Range	Frequency	Specifications
X10	100 cps	46 db
X100	1000 cps	46 db
X100	6 kc	46 db
X1K	5 kc	46 db

4-4. CABINET REMOVAL.

To remove the 200 s cabinet, proceed as follows:

1) Disconnect the 200 S from the power source.
2) Remove the two screws at the rear of the cabinet. The 200SR rack mount unit has two additional screws on the front panel which must be removed.
3) Carefully slide the instrument forward, out of the cabinet.

4-5. 230-VOLT OPERATION.

The following describes circuit modifications necessary to change the 200 S power transformer primary from 115 -volt operation to 230 -volt operation. Figure 4-1 further illustrates this procedure.

1) Remove the cabinet as per paragraph 4-4.
2) Remove the two bare wire jumpers from the terminal strip as indicated in figure 4-1.
3) Add an insulated jumper from the green/black transformer primary wire to the black/yellow one.
4) Replace fuse F1 with a 0.6 amp slow-blow fuse (see table 5-1, Replaceable Parts).

Figure 4-1. 230-Volt Operation

4-6. PERIODIC MAINTENANCE.

The 200S should require a minimum of maintenance, since there are few moving parts. The following procedure performed once or twice a year should insure smooth operation.

1) Put one drop of oil in each of the three oil holes on the tuning drive mechanism.
2) Place a small amount of high quality contact cleaner on the RANGE switch contacts. Rotate the switch back and forth several times.
3) Using compressed air, gently blow any accumulated dust out of the tuning capacitor plates (C5).

4-7. ADJUSTMENT PROCEDURE.

The following is a complete adjustment procedure. Adjustments should be made only if it has been definitely determined that the 200 S is not operating within specifications. If the instrument fails to perform within any of the limits given in the following procedure, refer to table 4-4 for possible cause and corrective action.

This procedure can also be an aid in troubleshooting. Simply follow the procedure until the trouble manifests itself as a reading that exceeds the test limit, and then refer to table 4-4 for possible causes.

NOTE: The test indications and limits given in this paragraph are NOT formal performance specifications. Specifications are given in the front of the manual.

In order to minimize the effects of hand capacity, a "tuning wand" or tuning screwdriver with a plastic shank should be used for all adjustments.
A. TERMINOLOGY. When the expression "Slip the dial" is used in this text, it has the meaning here specified:

1) Remove center knob on frequency dial.
2) Loosen the four screws which secure the dial plate to the drive shaft.
3) Reset dial to position indicated in the text.
4) Tighten the four securing screws. (Center knob may be replaced at the end of this procedure.)
B. PRELIMINARY CHECKS. The following basic tests are given to avoid possible unnecessary adjustment of the 200 S . If the instrument fails any of these tests, some component is probably at fault and should be replaced before attempting any adjustments. Proceed as follows:
5) Power Supply:
a. With the instrument turned off, check the resistance from C13 to ground and the resistance across C13. This resistance is typically many megohms. A very low reading (below 100 K) indicates a shorted or leaky capacitor between the $\mathrm{B}+$ line and ground.
b. Turn the instrument on, and allow it to warm up for at least 15 minutes.
c. Check to see that all tubes are glowing.
d. Using the 412A, 410B Electronic Voltmeters, or other suitable voltmeter, measure the positive and negative power supply voltages using ground as a reference. The positive voltage (approximately 225 volts) may be measured between the chassis and C14. The negative voltage (approximately 155 volts) is measured from the chassis to the junction of R30, R31 and R40 (figure 4-7). The difference between the negative and positive voltage should be 380 volts ± 75 volts.
6) Recovery Time:
a. Switch RANGE to X 10 K and frequency to 50 kc .
b. Connect the output of the 200 S to an oscilloscope.
c. Switch from range to range, observing the oscilloscope pattern after each range switching.
d. The oscilloscope presentation should become stable within 5 seconds after switching ranges.
C. CALIBRATION. Calibration procedure for the 200S is divided into two basic parts. The first procedure is intended to effect a flat frequency response for the 200 S and is accomplished with the instrument set on the X10 range. The second, accomplished on the X100 range, is given to produce correct frequency dial tracking. Proceed as follows:
7) Frequency Response Adjustments:
a. Turn 200S RANGE to X10, frequency dial to 5 .
b. Connect the 200 S to a $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ AC Voltmeter and a frequency measuring device (counter or frequency standard) as shown in figures 4-2 or 4-3.
c. Using 200S AMPLITUDE, set a reference around .9 volts as read on the $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ meter.
d. Turn the frequency dial to 60 . The $400 \mathrm{D} / \mathrm{H} / \mathrm{L}$ should read within $+1 / 4 \mathrm{db}$ of the reference in step C1c and the frequency should be correct within 2%.

Figure 4-2. Calibration Test Setup

Figure 4-3. Alternate Calibration Setup
e. If 600 cps is off more than 2%, set the frequency on with C6.
NOTE: Since replacing the cabinet raises the frequency slightly, it is advisable to set the frequency slightly low (e.g., 599 cps) when making this adjustment.
f. Observe the output voltage and determine how much it differs from the reference.
g. Adjust C3 to correct for half this difference. Then adjust C6 so that the output frequency is again 600 cps .
h. Observe the output voltage. If it is more than $\pm 1 / 4 \mathrm{db}$ from the reference in step C1c repeat steps C1c through C1h until a flat response is obtained with 600 cps set on frequency (see note above).

2) Frequency Dial Tracking:

a. Switch 200SRANGE to X100. Connect the equipment as shown in figures 4-2 or 4-3.
b. Check the frequency at 5 . The frequency reading should be $500 \mathrm{cps} \pm 2 \%$. If the frequency is off more than $\pm 2 \%$ slip the dial to put it on frequency.
c. If it was necessary to slip the dial, repeat steps C1a through C1h.
d. If step C2c was necessary, repeat step C2b. It is possible that the entire dial will now track without further adjustment.
e. Check all numbered points on the dial, beginning at the high end. If some points exceed test limits ($\pm 2 \%$), try to equalize the error by slipping the dial to get all points within these limits.
f. Switch RANGE to X10K, and set the 200 S frequency dial to 60 .
g. Adjust C 7 to put 600 kc on frequency.
h. Check calibration on the remaining ranges. Calibration should be correct to $\pm 2 \%$.
NOTE: It will be advantageous to set the counter FUNCTION SELECTOR to 10 PERIOD AVERAGE when measuring frequency on the X 1 range (refer to table 4-2).

Finally, if the above procedures do not result in correct calibration, start over by adjusting C3 and/or C6 as in step C1 a through h . Then work toward the low end by setting the dial to the next numbered point and bending one of the outer rotor plates in each section of C5 at the point of mesh. Continue this procedure to the low end of the dial to obtain approximately correct frequencies. Repeat the bending procedure from the high end, this time making fine adjustments of frequency with the other outer rotor plates. In this way, bending of any one plate is minimized.

When bending rotor plates, observe the following precautions: (1) Keep all bends as near the shaft as possible. (2) Keep all segments in line. The rotor plates should taper gradually inward or outward, depending on whether you must compress or expand the
frequency range. This gradual taper is essential for linearity. (3) Bending of plates near the high frequency end should be unnecessary.

D. DISTORTION

1) Connect the 200 S to a 330 B Distortion Analyzer as shown in figure 4-4.
2) Set 200 S RANGE to X 1 and the frequency dial to 20.
3) The 330B switches should be in the following positions:
a. AF-RF to AF
b. FREQUENCY to 20
c. Selector switch to SET LEVEL
d. RMS VOLTS-DB switch set to the +20 db position
4) Adjust 330B INPUT control for a zero db reference on the 330 B meter.
5) Switch selector to DISTORTION
6) Adjust BALANCE and FREQUENCY controls for a dip on the meter.
7) Turn RMS VOLTS-DB switch counterclockwise while continually adjusting 330B BALANCE and INPUT until the lowest possible dip is obtained.
8) Adjust R50 (dynamic balance) for a dip (minimum distortion) on the 330B meter. Repeat steps 7 and 8 until the lowest possible dip is obtained.

NOT'E: For optimum results use lowest frequency setting of the 200S Wide Range Oscillator.
9) Repeat steps 1 through 8 , adjusting all 330 B controls for 50 cps (60 cps if 50 cps line frequency is being used) instead of 1000 cps .
10) Adjust R51 (Hum Balance) instead of Dynamic Balance on step 8.

E. OUTPUT VOLTAGE.

1) Connect the 200 S , loaded, to a 400 D AC Voltmeter.
2) Turn 200S AMPLITUDE fully clockwise, and adjust R11 for 3.5 volts on the 400D meter.

Figure 4-4. Distortion Test Setup

4-8. TROUBLESHOOTING.

The following is intended as a guide to assist in localizing troubles that may occur in the 200S. A good way to locate troubles is to follow the test procedure until the problem appears as a reading that does not meet the test limit. Then refer to table 4-4 for possible causes. The following suggestions are offered to save time in trouble isolation.
A. POWER SUPPLY. If the fuse has blown, replace it with a new slow-blow fuse of correct rating. See table 5-1. If the new one does not blow, it is possible that the fuse was defective or the failure was due to a line surge. If the fuse blows again, turn the 200S off, short C14 to ground, and measure the resistance from B+ and B- to ground (observe polarity). This resistance is typically many megohms.

If the resistance is 100 K or more, remove V5 and replace the fuse. If it blows again, the trouble is either in T3 or the heater circuit. If the fuse does not
blow, the problem is either a shorted tube or a high voltage breakdown of one of the capacitors between $\mathrm{B}+$ and $\mathrm{B}-$, or $\mathrm{B}+$ and ground (usually C13 or C14).
B. AMPLIFIER. In the rest of the instrument, tube failure will most likely be the cause of trouble. DO NOT indiscriminately make adjustments in the 200 S . If the instrument is not operating within specifications, try replacing tubes or RT1 and RT2 first. Check tubes by substitution. Results obtained through the use of a "tube checker" may be erroneous and misleading. Mark original tubes so if they are not replaced, they may be returned to the same socket. If tubes are replaced, refer to table 4-5 for required adjustments.

4-9. REPAIR AND REPLACEMENT.

A. SERVICING PRINTED CIRCUIT BOARDS.

Servicing parts on the etched circuit board requires special care to avoid excessive heat that might

Table 4-4. Troubleshooting

Symptom	Probable Cause	Symptom	Probable Cause
Resistance to ground less than 100 K ohms	C13A, B, C leaky C14 leaky C10, 11 shorted Blown fuse F1	Impossible to set low end on frequency Dial springs back when turned counterclockwise against the stop	Tuning capacitor open too far when fully meshed
Tubes not glowing, pilot light out	S2 defective		
		Calibration bad on one range only	Dirty RANGE switch
One or more tubes not glowing, pilot light on	One or more tubes burned out	range only	C1, C2, C7, or C16 need adjusting One RANGE switch
Power supply voltage variation exceeds test limit	C13A, B, C or C14 breaking down under high voltage		resistor has changed resistance
	V5 defective V1-V4 shorted	Excessive distortion on X1-X100 ranges	R50 or R51 adjusted T2 defective
Turning AMPLITUDE control causes jumpy output	R39 (AMPLITUDE control) defective	Excessive distortion on $\mathrm{X} 1 \mathrm{~K}-\mathrm{X} 10 \mathrm{~K}$ ranges	R50 or R51 misadjusted
Recovery time exceeds test limit	V1, V3 defective RT1, RT2 defective		T1 defective
200S obviously microphonic	V1-V4 defective RT1, RT2 defective Tuning capacitor dirty or defective	Excessive distortion on all ranges	V1-V4 defective RT1-RT2 defective Dust between tuning capacitor plates
Dial springs back when turned clockwise against the stop	Tuning capacitor closed too far when fully meshed	Impossible to set 3.5 v out with 200S terminated with 50 ohms (adjustment procedure)	RT1, RT2 defective V1-V4 weak

Figure 4-5. Range Switch Detail
damage the board. Refer to figure 4-9 for information concerning parts replacement on etched circuit boards.
B. TUBE REPLACEMENT. If V2 or V4 are changed, be careful to replace the special tube shields in their original positions since they also function to increase tube reliability by lowering the operating temperature of the output tubes. When replacing tubes in the 200 S , be sure to use the correct replacements as specified in the parts list (table 5-1). Refer to table 4-5 for any necessary adjustments after replacement.
C. TUNING CAPACITOR REPAIR. The tuning capacitor should not be loosened unless absolutely necessary, since doing so may cause misalignment of the tuning capacitor shaft with the shaft extension to the gears. If C5A, B, C has been removed or loosened for any reason, it should be readjusted mechanically before any electrical adjustment is attempted. In some cases, due to slippage, the tuning capacitor will not mesh far enough to allow perfect calibration at the extreme low end of the dial. When correctly set, the edge of the insulation protruding from the rotor plate spacer on C5 should line up with the topmost stator spacer when the dial is set fully clockwise.
D. RANGE SWITCH REPAIR. Resistor values on S1 have been carefully bridged and adjusted at the factory to the exact value required for proper tracking
on all ranges. If one range is found to be badly out of calibration and all other possibilities have been exhausted (especially dirty RANGE switch contacts) try adjusting the value of C1, C2, C7 or C16 (depending on the range affected) slightly. If any part of the RANGE switch is found to be defective, it is recommended that the switch be replaced as an assembly. Figure 4-6 shows all wiring detail for replacement.

Table 4-5. Replacement of Critical Parts

Ref.	Function	Required Checks or Adjustments
V1, V3	Voltage Ampli- fier	Recheck Calibration and distortion. Re- set output voltage. See paragraph 4-7.
V2, V4	Cathode Fol- lowers Recheck distortion, paragraph 4-7C. Reset output voltage, paragraph 4-7E.	
RT1,RT2	Rectifier Amplitude Sta- bilization lamps Check power supply voltage (par. 4-7B1). Reset output voltage, paragraph 4-7E.	

Figure 4-7. Right Side View Model 200S

SERVICING ETCHED CIRCUIT BOARDS

Excessive heat or pressure can lift the copper strip from the board. Avoid damage by using a low power soldering iron (50 watts maximum) and following these instructions. Copper that lifts off the board should be cemented in place with a quick drying acetate base cement having good electrical insulating properties.

A break in the copper should be repaired by soldering a short length of tinned copper wire across the break.
Use only high quality rosin core solder when repairing etched circuit boards. NEVER USE PASTE FLUX. After soldering, clean off any excess flux and coat the repaired area with a high quality electrical varnish or lacquer.

When replacing components with multiple mounting pins such as tube sockets, electrolytic capacitors, and potentiometers, it will be necessary to lift each pin slightly, working around the components several times until it is free.

WARNING: If the specific instructions outlined in the steps below regarding etched circuit boards without eyelets are not followed, extensive damage to the etched circuit board will result.

1. Apply heat sparingly to lead of component to be replaced. If lead of component passes through an eyelet in the circuit board, apply heat on component side of board. If lead of component does not pass through an eyelet, apply heat to conductor side of board.

2. Bend clean tinned leads on new part and carefully insert through eyelets or holes in board.

3. Reheat solder in vacant eyelet and quickly insert a small awl to clean inside of hole. If hole does not have an eyelet, insert awl or a \#57 drill from conductor side of board.

4. Hold part against board (avoid overheating) and solder leads. Apply heat to component leads on correct side of board as explained in step 1.

In the event that either the circuit board has been damaged or the conventional method is impractical, use method shown below. This is especially applicable for circuit boards without eyelets.

1. Clip lead as shown below.

2. Bend protruding leads upward. Bend lead of new component around protruding lead. Apply solder using a pair of long nose pliers as a heat sink.

This procedure is used in the field only as an alternate means of repair. It is not used within the factory.

Figure 4-8. Servicing Etched Circuit Boards

Figure 4-9. Model 200S Voltage and Resistance Diagram

SECTION V
 REPLACEABLE PARTS

5-1. INTRODUCTION.

This section contains information for ordering replacement parts for the Model 200S Wide Range Oscillator.

Table 5-1 lists replaceable parts in alpha-numerical order of their reference designators. Detailed information on a part used more than once in the instrument is listed opposite the first reference designator applying to the part. Other reference designators applying to the same part refer to the initial designator. Miscellaneous parts are included at the end of the list. Detailed information includes the following:

1) Reference designator.
2) Full description of the part.
3) Manufacturer of the part in a five-digit code; see list of manufacturers in appendix.
4) Hewlett-Packard stock number.
5) Total quantity used in the instrument (TQ column).

5-2. ORDERING INFORMATION.

To order a replacement part, address order or inquiry either to your authorized Hewlett-Packard sales office (see lists in appendix) or to

CUSTOMER SERVICE
Hewlett-Packard Company 395 Page Mill Road Palo Alto, California,
or, in Western Europe, to
Hewlett-Packard S. A. 54 Route del Acacias Geneva, Switzerland.

Specify the following information for each part:

1) Model and complete serial number of instrument.
2) Hewlett-Packard stock number.
3) Circuit reference designator.
4) Description.

To order a part not listed intable 5-1, give a complete description of part and include function and location.

Table 5-1. Replaceable Parts (Sheet 1 of 4)

Table 5-1. Replaceable Parts (Sheet 2 of 4)

* See introduction to this section

Table 5-1. Replaceable Parts (Sheet 3 of 4)

[^0]Table 5-1. Replaceable Parts (Sheet 4 of 4)

*See introduction to this section

APPENDIX

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H 4 handbooks.

Code		de		Code		Code			
No.	Manufacturer Address	No.	Manufacturer Address	No.	Manufacturer Address	No.	Manufacturer	Address	
00000	U.S.A. Common Any supplier o	115	Corning Glass Works	24655	General Radio Co. West Concord, Mass.	3293			
00136	McCoy Electronics Mount Holly Spring			263	Reprod		Hughes Aircraft Co.	Newport Beach, Calif.	
00213	Sage Electronics Corp. Rochester, N. Y.	07126	Digitran Co. Pasadena, Calif.	26462	Grobet File Co. of America, Inc. Caristadt, N.J. Hamilton Watch Co. Lancaster, Pa.	734	Amperex Electronic Co., Div. of North		
00334	Humidail Co. Colton, Calif.	07137	Transistor Electronics Corp. Minneapolis, Minn.	26992		13490	American Phillips Co, Inc.Hicksville, N.Y.Beckman Helipot Corp.So. Pasadena, Calif.		
00335	Westrex Corp. New York, N. Y.	07138	Westinghouse Electric Corp.	28480	Hew lett-Packard Co. Palo Alto, Ca lif. G. E. Receiving Tube Dept. Owensboro, Ky. Cectrohm Inc. Chicago, III. Stanwyck Corp. Hawkesbury, Ontario, Canada	73490			
00373	Garlock Packing Co., Electronic Products Div.	07149	Electronic Tube Div. \quad Elmira, N.Y. mohm Corp.	331 354		$\begin{aligned} & 73506 \\ & 73559 \end{aligned}$	Bradley Semiconductor Corp. Carling Electric, Inc.	Hamden, Conn. artford, Conn.	
00656	Aerovox Corp. New Bedford, Mass.	233	Cinch-Graphik Co. City of Industry, Calif.	361		73682	George K. Garrett Co., Inc.	iladelphia, Pa.	
0077	Amp, Inc. Harrisburg, Pa.	07261	Avnet Corp. Los Angeles, Calif.	37942	P. R. Mallory \& Co., Inc. Indianapolis, Ind.	73734	Federal Screw Prod. Co.Fischer Special Mfg. Co.	Chicago, III.	
0078	Aircraft Radio Corp. Boonton, N	07263	Fairchild Semiconductor Corp.	395	Mechanical Industries Prod. Co. Akron, Ohio	$\begin{aligned} & 73743 \\ & 73793 \\ & 73846 \end{aligned}$		Cincinnati, Ohio	
00815	Northern Engineering Laboratories, Inc. Burling	07322	Minnesota Rubber Co. Minneapolis, Minn.	40920	Miniature Precision Bearings, Inc. Keene, N.H.		Fischer Special Mfg. Co. The General Industries Co. Goshen Stamping \& Tool Co.	Elyria, Ohio Goshen, Ind.	
008		07387	The Birtcher Corp. Los Angeles, Calif.	43990	$\begin{array}{lr} \text { Muter Co. } & \text { Chicago, III. } \\ \text { C.A. Norgren Co. } & \text { Englewood, Colo. } \\ \text { Ohmite Mfg. Co. } & \text { Skokie, III. } \end{array}$	73899	JFD Electronics Corp.	pokly	
	Ordill Division (Capacitors) Marion, III.	07700	Technical Wire ProductsContinental Device Corp. \quadSpringfield, N.J. Hawthorne, Calif.	44655		73905	Jennings Radio Mfg. Co. Signalite lis.	San Jose, Calif. Neptune, N.J.	
00866	Goe Engineering Co. Los Angeles, Calif.	07910		47904	Ohmite Mfg. Co. Skokie, III. Polaroid Corp. Cambridge, Mass.	4276			
00891	Carl E. Hoimes Corp. Los Angeles, Calif.	07933	Rheem Semiconductor Corp. Mountain View, Calif.	4862	Precision Thermometer and	744	J.H. Winns, and Sons	Winchester, Mass.	
01121	Allen Bradley Co. Milwaukee, Wis.	07966	Shockley Semi-Conductor		Inst. Co. Philadelphia, Pa .	$\begin{aligned} & 74861 \\ & 74868 \end{aligned}$	Industrial Condenser Corp. Chicago, III. R.F. Products Division of Amphenol-		
01255	Litton Industries, inc. Beverly Hills, Calif.		Laboratories	49956	Raytheon Company Lexington, Mass.				
281	TRW Semicunductors inc. Lawndale, Calif.	980		5209	Rowan Controller Co. Baltimore, Md.		Borg Electronics Corp.	Danbury, Conn.	
01295	Texas Instruments, Inc. Transistor Products Div.	$\begin{aligned} & 08145 \\ & 08289 \end{aligned}$	U.S. Engineering Co. Los Ange les, Calif. Blinn, Delbert, Co. Pomona, Calif.	63743 54294	Shalleross Mfg. Co. Sel	74970 75042	E.F. Johnson Co.International Resistance Co. Waseca, Minn.Philadelphia, Pa.		
0134	The Alliance Mfg. Co. Alliance, Ohio	358	Burgess Battery Co.			$\begin{aligned} & 75042 \\ & 75173 \end{aligned}$	Jones, Howard B., Division		
01561	Chassi-Trak Corp. Indianapolis,		Sloan Company $\begin{array}{r}\text { Niagara Falls, Ontario, Canada. } \\ \text { Burbank, Calif. }\end{array}$	55933	Sonotone Corp.		of Cinch Mfg. Corp. $\quad \begin{gathered}\text { Chicago, III. } \\ \text { James Knights Co. }\end{gathered}$		
01589	Pacific Relays, Inc. Van Nuys,			55938	Sorenson \& Co., Inc.	75378			
01930	Amerock Corp Rockfo	08718	Cannon Electric Co.,Phoenix Div. Phoenix, Ariz.	56137	Spaulding Fibre Co., Inc.	75382			
01961	Pulse Engineering Co. Santa Clara,	08792	CBS Electronics Semic onductor Operations,Div.of C. B. S.,Inc. Lowell, Mass.	56289	Sprague Electric Co. North Adams, Mass. Telex, Inc. St. Paul, Minn. Thomas \& Betts Co. Elizabeth 1, N.J.	75818	Lenz Electric Mfg. Co. Chicago, III.		
02114	Ferrox cube Corp. of America Saugerties, N.Y.			59446			$\begin{array}{lr}\text { Littlefuse Inc. } \\ \text { Lord Mfg. Co. } & \text { Des Plaines, III. } \\ \text { Erie, } \mathrm{Pa} \text {. }\end{array}$		
02286	Cole Mfg. Co. Palo Alto, Calif.	08984	Mel-Rain \quad Indianapolis, Ind.Babcock Relays, Inc. \quad Costa Mesa, Calif.	5973		76005			
02660	Amphenol-Borg Electronics Corp. Chicago,	09026		60741	Thomas \& Betts Co . Tripplett Electrical Inc. Elizabeth 1, N.J. Bluffton, Ohio	76210	C.W. Marwedel San Francisco, Calif.		
02735	Radio Corp. of America, Semiconductor and Materials Div. Somerville,	$\begin{aligned} & 09134 \\ & 09145 \end{aligned}$	Texas Capacitor Co. Houston, Texas Atohm Electronics Sun Valley, Calif.	61775	Union Switch and Signal, Div. of Westingiouse Air Brake Co.	$\begin{aligned} & 76433 \\ & 76487 \end{aligned}$	Micamold Electronic Mfg. Corp. Brooklyn, N.Y. James Millen Mfg. Co., Inc. Malden, Mass.		
02771	Vocaline Co. of America, Inc.	250	Electro Assemblies, Inc. Mallory Battery Co. of Canada, Ltd.	62119	Universal Electric Co. Owosso, Mich.	76493	J.W. Miller Co , Los Angeles, Calif.		
	Old Saybrook,	09569		63743	Ward-Leonard Electric Co. Mt. Vernon, N.Y.		Monadnock Mil	Los Angeles, Calif. San Leandro, Calif.	
02771	Hopkins Engineering Co. San Fernando,			64959	Western Electric Co., Inc. New York, N.Y. Weston Inst. Div. of Daystrom, Inc. Newark, N.J.	76545	Mueller Electic C_{0}. Cleveland, Ohio. Oak Manufacturing C_{0}. Crystal Lake, III.		
03508	G. E. Semiconductor Products Dept. Syracuse, N.Y.	64	The Bristol Co. Waterbury, Conn.	65092		768			
03705	Apex Machine \& Tool Co. Dayton, Ohio	10214	General Transistor Western Corp. Los Angeles, Calif.	6295	Wittek Manufacturing Co . Wollensak Optical Co. Allen Mig. Co. Allied Control Co. , Inc. Allmetal Screw Prod. Co., Inc.	71068	Bendix Pacific Division of Bendix Corp No. Hollywood, Calif.		
03797	Eldema Corp. El Monte, Calif.			$\begin{aligned} & 66346 \\ & 70276 \end{aligned}$					
03877	Transitron Electronic Corp. Wakefield,	411	Ti-Tal, Inc. Berkeley, Calif.			$\begin{aligned} & 77075 \\ & 77221 \end{aligned}$	Pacific Metals Co. San Francisco, Calif.		
03888	Pyrofilm Resistor Co. Morristow	10646	Carborundum Co. Niagara Falls, N.Y. CTS of Berne, Inc. Berne, Ind.	$\begin{aligned} & 70309 \\ & 70319 \end{aligned}$			Phaostran Instrument and		
954	Air Marine Motors, Inc. Los Angeles, Calif.	11236					Electronic Co.	th Pas	
04009	Arrow, Hatt and Hegeman Elect. Co.	11237	Chicago Telephone of California, Inc. So. Pasadena, Calif.	70485		77252	iladelophia Steel and Wire Corp.		
04013	Taurus Corp. Lambertville,	11312	Microwave Electronics Corp. Palo Alto, Calif.	$\begin{aligned} & 70563 \\ & 70903 \end{aligned}$	Atlantic India Rubber Works, Inc. Chicago, III. Amperite Co., Inc. New York, N. Y.				
04	Elmenco Products Co. New York,	11534	Duncan Electronic, Inc. Santa Ana, Calif.General Instrument Corporation		Belden MIg. Co. Chicago, III. Bird Electronic Corp. Cleveland, Ohio	77342	Potter and Brumfield, Div. of American		
04222	Hi-Q Division of Aerovox Myrtle Beach, S.C.	1171		70998			Machine and Foundry	Princeton, Ind.	
04298	Elgin National Watch Co., Electronics Division Burbank, Calif.	11717	General Instrument Corporation Semiconductor Division Imperial Electronic, Inc. \quad Buena Park, C.J.J.	$\begin{aligned} & 71002 \\ & 71041 \end{aligned}$		17638	Radio Condenser Co. Radio Receptor Co., Inc.	Camden, N.J. Brooklyn, N. Y.	
04354	Precision Paper Tube Co. Chicago, III.	11870	Melabs, lnc. Palo Alto, Calif. Philadelphia Handle Co. Camden, N.J. Clarostat Mfg. Co. Dover, N.H.		Boston Gear Works Div. of Murray Co. of Texas	1738	Resistance Products Co. Rubbercraft Corp. of Calif.	Harrisburg. Pa. Torrance, Calif.	
04404	Dymec Division of Hewlett-Packard Co.	12136		71218	Bud Radio Inc. Cleveland, Ohio Camloc Fastener Corp. Paramus, N. J.	71969			
	Palo Alto,	12697		$\begin{aligned} & 71286 \\ & 71313 \end{aligned}$		7818	Shakeproof Division of Illinois Tool Works		
04651	Sylvania Electric Prods., Inc.	12859 12930	Nippon Electric Co., Ltd.Tokyo, Japan Delta Semiconductor Inc. Thermolloy pert Beach, Calif. Dallas, Texas		Allen D. Cardwell Electronic Prod. Corp. Plainville, Conn.			Elgin, III. New York, N.Y.	
04713	Electronic Tube Div. Mountain View, Motorola, Inc., Semiconductor Prod. Div.	12930					Struthers-Dunn Inc. Thompson-Bremer \& Co.		
	Phoenix,	96	Te lefunken (G.M.B.H.)Hannover, Germany Midland Mfg. Co. Kansas City, Kansas	71400	Bussmann Fuse Div. of McGraw- Edison Co. St. Louis, Mo.	$\begin{aligned} & 78290 \\ & 78452 \end{aligned}$		Pitman, N.J. Chicago, III.	
04732	Filtron Co., Inc., Western Div. Culver City,	35		71436	Chicago Condenser Corp. Chicago, III.	78471		Tilley Mfg. Co. San Francisco, Calif.	
04773	Automatic Electric Co. Northlak	14099	Sem-Tech Newbury Park, Calif. Calif. Resistor Corp. Santa Monica, Calif. American Components, Inc. \quad Conshohocken, Pa. Cornell Dubilier Elec. Corp. So. Plainfield, N.J. Williams Mfg. Co. San Jose, Calif.	71450		7848878493	Stackpole Carbon Co. St. Marys, Pa. Waitham, Mass. Standard Thomson Corp. Was.		
04777	Automatic Electric Sales Corp. Northlake, III.	1419			CTS Corp. Elkhart, Ind.				
04796	Sequoia Wire \& Cable Co. Redwood City, Calif.	14298		$\begin{aligned} & 71468 \\ & 71471 \end{aligned}$	Cannon Electric Co. Los Angeles, Calif. Cinema Engineering Co. Burbank, Calif. C. P. Clare \& Co. Chicago, III.	78553	Tinnerman Products, Inc. Cleveland, OhioTransformer EngineersPasadena, Calif.		
04811	Precision Coil Spring Co. El Monte, Calif.	14655				78790			
0487	P. M. Motor Company Chicago 44, III.	14960		$\begin{aligned} & 71482 \\ & 71590 \end{aligned}$			Ucinite Co.		
05006	Twentieth Century Plastics, Inc. Los Angeles, Calif.	15203	Webster Electronics Co. Inc. Brooklyn, N. Y. Adjustable Bushing Co. N. Hollywood, Calif.	71616	Centralab Div. of Globe Union Inc.	79142	Veeder Root, Inc. Hartford, Conn. Wenco Mg. Co. Chicago, III.		
05277	use Electric C	15772	Twentieth Century Coil Spring Co. Santa Clara, Calif.	71700	Commercial Plastics Co. Chicago, III.		Continental-Wirt Electronics Corp. Philadelphia, Pa .		
	Semi-Conductor Dept. Youngwood, Pa.				The Cornish Wire Co. New York, N. Y. Chicago Miniature Lamp Works Chicago, III.				
05347	Ultronix, Inc. San Mateo, Calif.	15909	The Daven Co. Livingston, N.J. Spruce Pine Mica Co. Spruce Pine, N. C. Computer Diode Corp. Lodi, N. J. De Jur-Amsco Corporation	$\begin{aligned} & 71744 \\ & 71753 \end{aligned}$		$\begin{aligned} & 79963 \\ & 80031 \end{aligned}$	Zierick Mfg. Corp. New Rochelle, N.Y. Mepco Division of Sessions		
05593	Illumitronic Engineering Co. Sunnyv	16037			A. O. Smith Corp., Crowley Div. West Orange, N.J.				
05616	Cosmo Plastic (c o Electrical Spec. Co.) Cleveland, Ohio	16352		71785	Cinch Mfg. Corp. $\begin{array}{r}\text { West Orange, N.J. } \\ \text { Chicago, Ill. }\end{array}$		Clock Co.	Morristown, N.J.	
05624	Barber Colman Co. Rockfor		gg Is land City 1, N. Y.	71984	Dow Corning Corp. Midand, Mict				
05728	Tiffen Optical Co. Roslyn Heights, Long island, N.Y.	16758 17109 17074	Delco Radio Div, of G.M. Corp. Kokomo, Ind. Thermonetics inc. Canoga Park, Calif.	72136	Electro Motive Mig. Co., Inc. Willimantic, Conn	801	Electronic Industries Associatio tube meeting EIA standards	tion. Any brand S Washington, D.	
05729	Metropolitan Telecommunications Corp. Metro Cap. Division Brooklyn, N. Y.	17474 18486	Tranex Company Mountain View, Calif. Radio Industries Des Plaines, III.	71707	Willimantic, Conn Coto Coil Co., Inc. Providence, R.I	802	Unimax Switch, Div. of W. L. Maxson Corp.	Wallingford, Conn.	
05783	Stewatt Engineering Co. Santa Cruz, Calif.	18583	Curtis instrument inc. M. Kisco, N.Y.	72354	John E. Fast \& Co. Chicago, II	802	W. L. Maxson Corp. United Transformer Corp.	Wallingford, Conn. New York, N, Y.	
05820	Waketield Engineering inc. Wakefield, Mass.	18873	E.I. DuPont and Co., Inc. Wilmington, Del.	7265		802			
06004	The Bassick Co. Bridgeport, Conn.	19315	Eclipse Pioneer, Div. of	72699	General Instrument Corp	80294	Bourns Laboratories, Inc.	verside, Calit	
06175	Bausch and Lomb Optical Co. Rochester, N. Y.		Bendix Aviation Corp. Teterboro, N.J.	7269	Semiconductor Div. Newark, N.	804	Acio Div. of Robertshaw		
06402	E.T. A. Products Co. of America Chicago, III.	19500	Thomas A. Edison Industries,				Fulton Contols Co.	Columbus 16. Ohio	
06475	Western Devices, Inc. Inglewood, Calif.		Div. of McGraw-Edison Co. West Orange, N.J.	$\begin{aligned} & 72758 \\ & 72765 \end{aligned}$		80486	All Star Products Inc.	Defiance, Ohio	
06540	tom E	19701	Electra Manutacturing Co. Kansas City, Mo.		Orake MIg. Co. \quad Chicago, Hugh H . Eby Inc.	80509	Avery Adhesive Label Corp.	Monrovia, Calif.	
	Hardware Co. Inc. New Rochelle	183	Electronic Tube Corp. Philadelohia, Pa.			8058	Hammerlund Co., Inc.	New York, N.Y.	
555	Beede Electrical Instiument Co., Inc.	21226	Executive, Inc. Fansteel Metallurgical Coro. Now York, N. Y. No. Norago, III.	72928	Gudeman Roder M. Hadley Co. Los Angeles, Cali	80640	Stevens, Arnold, Co.., Inc.	Boston, Mass	
				72982	Resistor Corp. Erie,	8103	ional Instruments, lic.		
	of America Phoenix, Arizona	21964	Fed. Telephone and Radio Corp. Clifton, N.J.	73061					
06812	Torrington Mfg. Co., West Div. Van Nuys, Calif.	24446	General Electric Co. Schenectady, N.Y.	73076	1 Co	$\begin{aligned} & 81073 \\ & 81095 \end{aligned}$	riad Transformer Corp.	Lagrange, III. Venice, Calif.	
088	Kelvin Electric Co. Van Nuys, Calif.	24455	G.E., Lamp Division Nela Park. Cleveland, Ohio	73138	ald Instruments, Inc.	81312	Winchester Electronics Co_{0}		

APPENDIX
 CODE LIST OF MANUFACTURERS (Sheet 2 of 2)

MODEL 200S

WIDE RANGE OSCILLATOR

Manual Serial Prefixed: 332-
-hp- Part No. 00200-91902
This manual backdating sheet makes this manual applicable to earlier instruments. Instrument-component values that differ from those in the manual, yet are not listed in the backdating sheet, should be replaced using the part number given in the manual.

Instrument Serial Prefix Make Manual Changes Instrument Serial Prefix Make Manual Changes

$229-$	1
$129-$	1,2
$103-$	$1,2,3$
$001-$	$1,2,3,4$

NOTE: -hp- Part No. and 友 Stock No. are synonymous.
CHANGE \#1 Table of Replaceable Parts, under miscellaneous, Add the following:

Disc, vernier drive 5020-0236
Disc, vernier drive 5040-0211 Spring, compression 1460-0019

Delete the following:
Disc Ass'y Vernier Drive; -hp- Part No. 5040-0607; Mfr. 28480; TQ 1. Bearing, Capacitor Drive; -hp- Part No. 5020-0618; Mfr. 28480; TQ 1. Spring Thrust; -hp- Part No. 5000-0637; Mfr. 28480; TQ 1.

Table 5-1, under miscellaneous,
Add: Coupler, flexible, for $1 / 4^{\prime \prime}$ shaft; -hp- Part No. 1500-0009 and delete the following: Coupler, yoke; -hp- Part No. 1500-0002; Mfr. Millen; TQ 2.

R30, 31: Change to resistor, fixed, matched pair, 2500 ohms; -hp- Part No. 200J-26.
R35: Delete.
R50: Change to resistor, variable, composition, 250,000 ohms $\pm 20 \%, 1 / 4 \mathrm{~W}$; -hp- Part No. 2100-0175.

CHANGE \#4
Section IV, Paragraph 4-7,
Change step D to read:

CHECK FOR CAUSE OF DISTORTION

A. GENERAL

To check for the cause of distortion, the dc voltage between the cathodes of V2 and V4 should be measured. There should be less than 1 volt between the V2-V4 cathodes, and the voltage read with the RANGE switch on X100 should be the same as that read with the switch on X10. A 20,000 ohms-per-volt, or better, voltmeter may be used for making the measurements. Proceed as follows:

1) Set the RANGE switch on X10. Turn the frequency dial to " 20 ".
2) Allow a five-minute warm-up period before making the voltage measurements. Connect one terminal of the voltmeter to pin 3 of V 2 and the other to pin 3 of V4.

$229-$	1
$129-$	1,2
$103-$	$1,2,3$
$001-$	$1,2,3,4$

B. EXCESSIVE GRID CURRENT IN V3

1) Note the voltmeter reading with the RANGE switch on X10.
2) Set the RANGE switch on X100, and note the meter reading: if it differs from that obtained with the switch on X10, excessive grid current in V3 is indicated.
a. Before replacing V3 with a new tube, interchange V1 and V3, and again measure the voltage between the V2-V4 cathodes with the RANGE switch on X10 and X100.
b. If the V1-V3 interchange has not corrected the trouble, replace V3.

To determine whether the replacement tube has the proper characteristics for the oscillator circuit again measure the distortion.

C. BAD TUBE IN OSCILLATOR

If more than 1 volt is measured between the V2-V4 cathodes, a bad tube in the oscillator is indicated.

To determine which tube is not operating properly, substitute another tube of corresponding JEDEC standard characteristics for each tube, in turn. After each tube substitution, measure the distortion.

NOTE

It is recommended that substitution be made first for V1 or V3 since the characteristics of these tubes more greatly affect the distortion in the output waveform than the characteristics of V2 and V4.

C7: Change to capacitor, variable, ceramic, 1.5-7 pf, 500 vdcw ; -hp- Part No. 0130-0003.
C8 and C9: Change to capacitor, fixed, paper, $0.047 \mu \mathrm{f} \pm 10 \%, 600 \mathrm{vdcw} ;-\mathrm{hp}-$ Part No. 0160-0005.
R11: Change to resistor, variable, composition, 1000 ohms $\pm 20 \%, 1 / 2 \mathrm{~W}$; -hpPart No. 2100-0036.
RT1, RT2: Change to R13, R14 lamp, incandescent, 250V, 10 W ; -hp- Part No. 2140-0007.
R19, R22: Change to resistor, fixed, composition, 10 megohms $\pm 5 \%, 1 / 2 \mathrm{~W}$; -hp- Part No. 0686-1065.
R23, R24: Change to resistor, fixed, composition, matched pairs, 8.2 megohms, 1/2W; -hp- Part No. 200CD-67.
R50, R51: Delete.
V1, V3: Change to tube, electron, 6SH7; -hp- Part No. 1923-0036.
V2-4: Change to tube, electron, 6AU5GT; -hp- Part No. 1923-0020.

[^0]: *See introduction to this section

