HP Archive

This vintage Hewlett Packard document was preserved and distributed by
 www. hparchive.com
 Please visit us on the web!

On-line curator: Tony Gerbic

Model 150A/AR
Oscilloscope
Serial No. 40 thru 3189
150A/AR-901

- special note -

RACK MOUNT MODEL ONLY

With RACK MOUNT Model $150 A^{\prime}$ s only, remove the two LARGE screws at the rear of the cabinet before installation. This permits the chassis to slide forward for servicing.

HIGH FREQUENCY OSCILLOSCOPE
SERIAL 40 THROUGH 3189

SPECIFICATIONS

SWEEP GENERATOR

INTERNAL SWEEP:

MAGNIFICATION:

TRIGGERING:

TRIGGER POINT: Sweep can be triggered from either a positive or a negative going voltage; the triggering voltage level if external sync signals is continuously adjustable from -30 to +30 volts.

Switch position automatically provides optimum sync stability for majority of uses.

SINGLE SWEEP: Switch provides single-sweep operation.
SAWTOOTH OUTPUT: +20 to -20 volt sawtooth output available concurrent with sweep.
GATE OUTPUT: 20 -volt positive pulse for duration of sweep.
24 calibrated ranges provide sweep times from $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$; accurate to within 3\%.

A vernier control provides continuous adjustment of sweep speed between calibrated ranges and extends slowest sweep to $15 \mathrm{sec} / \mathrm{cm}$.

5 calibrated ranges; X1, X5, X10, X50 and X100 magnifies center portion of unmagnified trace, increases fastest sweep speed to $.02 \mu \mathrm{sec} / \mathrm{cm}$ except $1 \mu \mathrm{sec}$ X50 magnification and $2 \mu \mathrm{sec} \mathrm{X} 100 \mathrm{mag}-$ nification. X1 and X5 ranges retain accuracy of original sweep.

Internal, from line power or vertical input signal which causes $1 / 2 \mathrm{~cm}$ or more vertical deflection.

External, either capacitive or direct coupled, with $1 / 2 \mathrm{~V}$ p-p or more. majority of uses.

HORIZONTAL AMPLIFIER

BANDWIDTH: Direct current to 500 kilocycles.
SENSITIVITY: $\quad 5$ ranges provide sensitivities from 0.2 volt/ cm to 5 volts $/ \mathrm{cm}$. A vernier control provides continuous adjustment between ranges and extends the minimum sensitivity to 15 volts $/ \mathrm{cm}$.

INPUT IMPEDANCE: 1 megohm shunted by approximately $27 \mu \mu \mathrm{f}$.

VERTICAL AMPLIFIER
Used with plug-in preamplifier units. See instruction manual for particular model used.

CALIBRATOR

OUTPUT: Nominal 1000-cycle square wave having approximately $1 \mu \mathrm{sec}$ rise and decay time available at front-panel connector.

18 calibrated ranges provide from 0.2 millivolt to 100 volts peak-to-peak, accurate to within 3%.

CONTENTS

SECTION V TABLE OF REPLACEABLE PARTS
5-1 Table of Replaceable Parts V V - 1

SPECIFICATIONS (CONT'D.)

CATHODE RAY TUBE

TYPE: 5AMP- mono-accelerator, flat face, available with P1, P2, P7 or P11 screen. 5000 -volt accelerating potential.

FILTER SUPPLIED: Compatible with phosphor, green with P1 and P2, amber with P7, and blue with P11.

GRATICULE: $\quad 10 \mathrm{~cm}$ long $\times 6 \mathrm{~cm}$ high marked in centimeter squares; 2 mm subdivisions on horizontal and vertical axes. Controlled edge lighting.

DEFLECTION PLATE CONNECTIONS:

Both screw and pin type terminals to receive wires or special connector assembly for connection to plates.

DEFLECTION SENSITIVITY:

20 volts/cm approximately.
INTENSITY MODULATION: $\quad+20$ volt pulse required to blank CRT trace of normal intensity.
REPLACEABILITY: CRT bezel removes with 15° twist for replacement of graticule or for replacement of the CRT without removing the cabinet of the 150 A or without removing the 150 AR from the rack.

CRT bezel provides firm mounting for standard oscilloscope cameras.

GENERAL

POWER REQUIREMENTS:
DIMENSIONS: Cabinet Mount: $13-3 / 4^{\prime \prime}$ wide, $17^{\prime \prime}$ high, $24-3 / 4^{\prime \prime}$ deep. Rack Mount: $\quad 19^{\prime \prime}$ wide, $15-3 / 4^{\prime \prime}$ high, $24-3 / 4^{\prime \prime}$ deep. Depth behind panel is 23 inches.

WEIGHT: Cabinet Mount: Net 65 lbs., shipping 105 lbs. Rack Mount: Net 85 lbs., approximately.

PLUG-IN AMPLIFIERS: Model 151A High Gain Amplifier, de to $10 \mathrm{mc}, 5 \mathrm{mv} / \mathrm{cm}$. Model 152A Dual Trace Amplifier, de to $10 \mathrm{mc}, 50 \mathrm{mv} / \mathrm{cm}$. Model 152B Dual Trace Amplifier, dc to 10 mc , differential input. Model 153A High Gain Differential Amplifier, dc to $500 \mathrm{kc}, 1 \mathrm{mv} / \mathrm{cm}$.

ACCESSORIES AVAILABLE: Model 115A Testmobile, Model 116A Testmobile Storage Unit, Model AC-117A Accessory Storage Drawer, AC-83A Viewing Hood, $460 \mathrm{~B}-95 \mathrm{~A}$, Oscilloscope adapter for connecting the output of a 460 B Fast Pulse Amplifier to the $150 \mathrm{~A} /$ AR Deflection Plates, AC-21A Probe, $10: 1$, specify grey or black lead, AC-21C Probe, $50: 1$, specify grey or black lead, AC-76A BNC to binding post adapter.

ACCESSORIES FURNISHED: Two AC-21A Probes. Two AC-76A BNC to binding post adapters.

SECTION I GENERAL DESCRIPTION

1-1 GENERAL INFORMATION

The Model 150 A dc to 10 mc oscilloscope is angeneral purpose oscilloscope employing a 5 AMP- monoaccelerator type cathode ray tube with unitized, plugin construction for maximum accessibility and flexibility. It can be used with either internal or external sweeps which can be either internally or externally synchronized. The horizontal amplifier incorporates magnification circuitry which is capable of expanding basic internal sweeps up to 100 times. The internal sweep range extends from $.02 \mu \mathrm{sec} / \mathrm{cm}$ to 15 $\mathrm{sec} / \mathrm{cm}$.

The Model 150A uses a variety of vertical amplifier plug-in units to perform different functions. The various plug-in amplifiers available are described in the table of specifieations. picturne rac

Since operation of the rack model is similar to that of the cabinet model, the operation of the instrument will be described without regard to style of mounting

1-2 DAMAGE IN TRANSIT

Should any shipping damage become evident refer to the "Claim for Damage in Shipment" paragraph on the warranty sheet in this manual.
'trical Manufacturers' Association. The third contact is an offset round pin, added to a standard twoblade ac plug, which grounds the instrument chassis when used with the appropriate receptacle. An adapter should be used to connect the NEMA plug to a standard two contact output. When the adapter is used, the ground connection becomes a short lead from the adapter which should be connected to a suitable ground for the protection of operating personnel.

On the rack mount Model 150 AR , the instrument is connected to the ac receptacle in the cabinet by means of a_{9} retracting coil cord. This permits the instrument to slide out of the cabinet while still in operation.

1-5: COOLING

The Model 150A employs a forced draft cooling system to maintain satisfactory operating temperatures within the case. The air intake and filter are located under the instrument case and adequate cooling will take place as long as:the case is on the instrument and nothing obstructs the filter. Generally, the height of the cabinet feet provides such clearance. Thus, the Model 150A canbe used in a confined bench set-up as long as the underside of the cabinet is clear, and ambient temperatures are not extreme.

1-3 POWER LINE VOLTAGES

The Oscilloscope is shipped from the factory wired for 115 volt ac line operation, unless otherwise specified, However, the instrument may also be operated fromia 230 voltac line source if the proper conversion is made to the power transformer. Refer to the conversion instructions in paragraph 1-7 and the appropriate schematic diagram in Section \mathbb{I},

1-4 POWER CORD

The three conductor power cable supplied with the instrument is terminated in a polarized three prong male connector recommended by the National Elec-

1-6 OVERIOAD RELAY

The Model 150 A has an overload relay which interrupts operation when:
1.f Any series tube on the regulated dc heater string is removed while the instrument is on.
2. A plug-invertical amplifier is removed while the instrument is on.
13.) A shortcircuit or excessive loading of any posi-tive-voltage supply occurs.

To reset the overload relay remove the cause, and turn the instrument off for one minute or more. The

Sect. I Page 2

instrument may then be turned on again and operated normally.

1-7 230-VOLT OPERATION

The 150 A is normally shipped from the factory with the dual primary windings of the two power transformers connected in parallel for use on 115 -volt ac lines. The windings can easily be reconnected
in series for use on 230 -volt power, if desired. The primary connections to both power transformers are identical, and each requires the same change in connections. To reconnect the primary windings of T2 and T3 for use on 230 volts, on each transformer disconnect the jumpers which join terminals 1 to 4 and 2 to 5 . Connect $10-0 h m$ disk thermistors, RT301 to T2 and RT302 to T3, between terminals 4 and 5. Replace the $6-1 / 4 \mathrm{amp}$ fuse with a 3 -amp fuse and the 150 A can now be operated from 230 volt lines with no change in operation.

SECTION II OPERATING INSTRUCTIONS

2-1 INSTRUMENT SAFETY DEVICES

The Model 150A contains circuits which delay the application of dc operating voltages for approximately 30 seconds. This delay allows all tube heaters to reach operating temperature before power is applied to the instrument. In addition, protective relays are provided which disconnect the dc operating voltages when overloads or other potentially dangerous conditions occur. When the instrument is turned off these circuits require at least one minute to re-cycle. For this reason you should always wait at least one minute after turning the power switch off before turning it back on. If you do not allow adequate time the protective relays will lock out the operating voltages and the instrumentwill not come on. The protective circuits will operate whenever the plug-in amplifier, or any tube with a regulated dc heater supply is disconnected when the unit is turned on.

In addition this instrument is provided with a thermal cutout switch which opens the main power circuit if the internal temperature exceeds a safe value. If the instrument has been operating and suddenly goes off, the cutout may have operated. Remove the cause of the overheating and reset the cutout shown in Figure 2-10.

2-2 CONTROLS AND TERMINALS

The controls and terminals of both the cabinet and rack models operate identically. The controls and terminals of the central section of the rack mount model front panel are the same as those on the panel of the cabinet model. However, the controls and terminals inside the access hatch in the cabinet model are mounted on the front panel in the rack mount model. Directions in this manual refer to both models unless otherwise specified.

The illustrations that follow explain the operation of the controls and terminals for the various methods of operation. If the instrument does not function properly, refer to the Maintenance Section in this manual.

CAUTION

Turn the INTENSITY control to minimum before turning on the instrument and when the unit is not in actual use. Excess intensity, particularly with only a spot on the screen, can rapidly damage the cathode ray tube screen.

2-3 VERTICAL AMPLIFIERS

Vertical amplifiers for the Model 150A are built in the form of plug-in units for the bottom section of the oscilloscope. This permits selection of the proper vertical amplifier for a particular purpose. See the instruction manual for the particular plugin amplifier in use for operating information.

2-4 AC OR DC COUPLING

Under most conditions ac coupling will be used. It permits high gain to be employed without regard for the dc levels involved. In the AC position the input signal (vertical or external sync) is coupled to the instrument through a capacitor which removes the dc component from the input wave. Because of the low frequency cut-off of this circuit it is advisable to use dc coupling to view complex waves below approximately 200 cps . Use dc coupling to look at waveforms relative to a dc level. WHEN USING DC COUPLING THE POSITION OF THE TRACE ON THE SCREEN IS DE TERMINED BY THE DC LEVEL. IF THE TRACE CANNOT BE ADJUSTED TO PLACE IT ON THE SCREEN, CHECK THE LEVEL TO DETERMINE IF THE INPUT STAGES ARE OVERLOADED.

2-5 AC-21 LOW-CAPACITY PROBES

The probe's alligator-clip jaws are opened by squeezing together the flanges on the probe body.

Typical step-by-step instructions for adjusting the probe for flat response are presented in Figure 2-5.

INTERNAL SWEEP - INTERNAL SYNCHRONIZATION

1. Connect vertical input signal to the plug-in amplifier.
2. Set SYNC selector to INT.
3. Set HORIZ. SENSITIVITY to INT. SWEEP X1
4. Set SWEEP MODE to PRESET.
5. Set TRIGGER SLOPE for triggering on
positive or negative slope, as desired.
6. Set TRGGGER LEVEL to 0 .
7. Select desired sweep speed with SWEEP TIME/CM switch.
8. Adjust TRIGGER LEVEL to start trace at desired level. In some cases, it may be necessary to switch SWEEP MODE from PRESET to an individual adjustiment for the particular trace being viewed.

Figure 2-1

INTERNAL SWEEP - EXTERNAL SYNCHRONIZATION

1. Connect vertical input signal to the plug-in amplifier.
2. Set HORIZ. SENSITIVITY to INT SWEEP X1.
3. Connect exterrnal sync signal to EXT SYNC INPUT terminals.
4. Set SWEEP MODE to PRESET,
5. Set TRIGGER SLOPE for triggering on posi-tive-or negative slope ${ }_{\text {ce }}$ as desired.
6. Set SYNC selector to EXT AC or EXT DC, as required.
7. Set TRIGGER LEVEL to 0 .
8. Select desired sweep speed with SWEEP TIME/CM switch.
9.x Adjust TRIGGER' LEVEL to start trace at desired level. In some cases it may be necessary to switch SWEEP MODE from PRESET to an individual adjustment for the particular trace being viewed.

Figure 2-2

INTERNAL SWEEP MAGNIFICATION

1. Select sweep speed with SWEEP TIME/CM switch.
2. Set VERNIER in CAL when direct reading of SWEEP TIME/CM switch is desired.
3. Set HORIZ. SENSITTVITY to INT SWEEP X1 (X1 is the unmagnified sweep position).
4. Adjust horizontal position of trace. To magnify a portion of a wave or a particular wave in a train, place it under vertical graticule
center line with HORIZ POSITION control.
5. Switch HORIZ SENSITIVITY to desired magnification (X5 or above).
6. SWEEP MAGNIFIED indicator will light.
7. If combination of sweep speed and degree of magnification exceeds maximum calibrated sweep speed (. $02 \mu \mathrm{sec}$ onds/cm) the MAGNIFIER UNCALIBRATED indicator will light.

EXAMPLE

SWEEP TIME/CM $=0.5 \mu \mathrm{sec} / \mathrm{CM}$ MAGNIFICATION $=\mathbf{X 5 0}$

SWEEP TIME/CM $=0.5 \mu \mathrm{sec} / \mathrm{CM}$ MAGNIFICATION $=\mathbf{X 1 0}$

Actual Sweep Time $=0.5 \mu \mathrm{sec} / \mathrm{cm} \div(\mathrm{X} 10)$

$$
=0.05 \mu \mathrm{sec} / \mathrm{cm}
$$

(Sweep time $>0.02 \mu \mathrm{sec} / \mathrm{CM}, \mathrm{MAGNIFIER}$ UNCAL IBRATED lamp sțays off.)
(MAGNIFIER UNCALIBRATED lamp will light. Increase sweep time or reduce degree of magnification.)

Figure 2-3

Figure 2-4

ADJUSTING hip MODEL $^{\text {AC-21 PROBES }}$

1. Connect the AC-21 Probe to the desired vertical input, and set the VERTICAL PRESENTATION selector to the corresponding input.
2. Set the CAIIBRATOR selector to $2 v$. Set the vertical VOLTS/CM selector to .05 L
3. Set theSWEEP TIME/CM selector to. 5 MILLISECOND/CM: set the SYNC selector to INT: the SYNC control to PRESET.
4. Touch the probe to the CALIBRATOR connector and observe the $1-\mathrm{kc}$ square wave.
5. Loosen probe locknut by unscrewing.
6. Adjust probe to obtain flattest top on square wave by turning rear flange on probe.
7. Tighten locknut to retain adjustment.

Figure 2-5

DIRECT CONNECTION TO DEFLECTION PLATES

CAUTION - The deflection plates of the oscillöscope. operate at a d-c potential of approximately +250 volts. Therefore, there can be no common chassis connection between the signal source and the oscilloscope. In most cases the signal source chassis will assume the deflection plate potential. Turn off the instrument before making connection to deflection plate terminals.

To connect an external signal directly to vertical deflection plates.

A. Balanced Input

1. Connect signal to terminals A and E.
2. Relocate leads from F, I, D3 and D4 as shown by dashed lines.
B. Single-Ended Input
3. Connect the signal to A for fup deflection (to E for + down deflection). 23 , 2942
4. Connect an appropriate bypass capacitor between C and E for + up deflection (between: C and A for +down deflection). Signal source return connects to E or A, whichever is bypassed.
5. Relocate leads from F, I, D3 and D4 as shown by dashed lines.

Figure 2-6:

CAPACITIVE CONNECTION TO DEFLECTION PLATES

CAUTION - Turn off instrument before making connection to deflection plate terminals.

To ac couple a signal to the vertical deflection plate:
A. Single-Ended Input

1. Connect external signal to B for + up deflection (to D for + down deflection) and the signal return to C .
2. Connect an appropriate bypass capacitor between C and E for + up deflection (between C and A for + down deflection).
3. Connect an appropriate d-c blocking capacitor
between A and B for + up deflection (between D and E for + down deflection).
4. Relocate leads from F, I, D3 and D4 as shown by dashed-lines.

B. Balanced Input

1. Connect external balanced signal to terminals B and D .
2. Connect appropriate $\mathrm{d}-\mathrm{c}$ blocking capacitors between terminals A and B and between terminals D and E.
3. Relocate leads from F, I, D3 and D4 as shown by dashed lines.

Figure 2-7

2. Pull bezel straight from panel, as shown.

Figure 2-8

1. Set selector switch to SINGLE OR EXT. sweep.
2. Select sweep speed.
3. Set SYN switch to INT. and SWEEP MODE to PRESET.
4. Select desired vertical sensitivity.
5. Adjust TRIGGER LEVEL to ZERO and SLOPE as desired. (In some applications it may be convenient to establish desired TRIGGER LEVEL in NORMAL operation.)
6. Switch SWEEP MODE control out of PRESET and back to PRESET to arm sweep circuit.
7. Indicator should light as soon as SWE EP MODE control is returned to PRESET. When input signal is received, sweep will fire once, indicator (7) will extinguish, and sweep will remain locked out until reset as described in step 6; or
8. Resetting can be accomplished by placing 1-200 μ sec width, +12 to +18 volts peak pulse into RESET terminal.

To intensity modulate the CRT with external signals:
a) Seet INT.Z~EXT.Z switch to EXT.Z.
b) Connect modulating signal to input terminals.
c) A positive voltage of 20 volts peak will blank the CRT trace:from normal intensity. A negative input will brighten the trace.

Figure 2-10

1. Set selector switch to NORMAL or INT.
2. Select sweep speed.
3. Set SYNC switch to INT and SWEEP MODE to PRESET.
4. Select desired vertical sensitivity.
5. Adjust TRIGGER LEVEL and SLOPE for desired triggering.
6. Set selector switch to SINGLE SWEEP.
7. Connect output of DELAY GENERATOR to RESET terminal inside top access hatch.
8. Connect signal to be observed to scope input.
9. Connect trigger source to input of delay generator. Trigger-source signal in some applications may be same as signal to be observed (step 8) or it may be some other signal. This signal serves as a single sweep retriggering source. (See SINGLE SWEEP OPERATION.)
10. It may be desired to have the sweep start immediately at end of delay period instead of awaiting the arrival of signal to be observed. To accomplish this, follow steps 1 through 9 , except that after step 6, set SWEEP MODE control to FREE RUN.

Figure 2-11

Sect. III Page 0

Figure 3-1. Block Diagram Complete Oscilloscope

SECTION III THEORY OF OPERATION

3-1 OVER-ALL OPERATION

The block diagram in Figure 3-1 shows the basic signal circuits in the Model 150A Oscilloscope: the Vertical Amplifier, Horizontal Amplifier, Sweep Generator and Cathode Ray Tube.
a. Vertical Amplifier - The complete vertical amplifier receives the input signal, amplifies it, and drives the vertical deflection plates. It provides attenuation of the input signal if necessary; determines the direction of spot deflection for a given input signal polarity; determines the vertical position of the spot on the screen; supplies a signal for internal synchronization; and incorporates a $0.25 \mu \mathrm{sec}$ delay in the input waveforms.

The complete Vertical Amplifier circuit is in separate parts: first the input attenuators, phase inverter, vertical position controls and amplifiers in the Vertical Amplifier Plug-In Unit, and second the intermediate and final amplifiers on the instrument chassis.
b. Horizontal Amplifier - The horizontal amplifier is driven either from the HORIZ. INPUT jack or from the internal sweep generator.

The complete Horizontal Amplifier consists of the main amplifier, and a preamplifier (used only for external signals applied to the HORIZ. INPUT connector). The preamplifier stage includes the VOLTS/CM portion of the HORIZ. SENSITIVITY selector switch and is not in use when the switch is set to one of the MAGNIFICATION positions. The MAGNIFICATION circuit of the HORIZ. SENSITIVITY selector is in the Main Horizontal Amplifier. The sawtooth sweep is applied directly to the Main Horizontal Amplifier while external signals are first applied to the HORIZ. SENSITIVITY switch and the preamplifier.
c. Sync Circuit - The Synchronizing Circuit receives a signal either from the Vertical Ampli-
fier for internal synchronization, from the EXT. SYNC INPUT or from an internal power line source. The Sync Circuit amplifies all input signals, and determines the level and polarity which will start a sweep.
d. Sweep Generator - The Sweep Generator starts on receiving a sync pulse from the Sync Circuit and generates a sawtooth to drive the Horizontal Amplifier. The Feedback Integrator determines the basic sweep time per centimeter, and the SWEEP MODE control selects triggered or freerunning operation. A SINGLE SWEEP switch provides either single or repetitive sweeps. The sweep generator also supplies unblanking pulses to the CRT, a timing signal (during each sawtooth flyback) to the Dual Channel Vertical Amplifier Plug-In Unit for ALTERNATE operation, and sweep and gate signals to output connectors.
e. The CRT - The CRT is a type 5AMP - monoaccelerator tube with the cathode operated at -4800 volts. The mono-accelerator anode makes possible a simple astigmatism adjustment (located inside the access hatch) which requires no resetting when adjusting the FOCUS or INTENSITY. The deflection plate terminals located on the periphery of the tube neck are connected through removable jumpers directly to the Main Vertical Amplifier, Horizontal Amplifier, and Astigmatism control.

3-2 VERTICAL AMPLIFIER

The signal from the plug-in vertical amplifier is coupled through a connector on the plug-in unit chassis to the Main Vertical Amplifier on the instrument chassis.

Input amplifiers V1 and V2 provide a maximum gain of approximately 20 db . The gain adjustment potentiometer R 5 has a range of approximately 4 db obtained by varying V1 and V2 cathode circuit degeneration.

SECTION IV MAINTENANCE

4-1 GENERAL INFORMATION

This section contains instructions for testing, adjusting and trouble-shooting the Model 150A Oscilloscope. If the instrument is operating, the Condensed Test and Adjustment Procedure, paragraph $4-3$, is a fast method of checking the basic adjustments and operation. The Trouble-Shooting Procedure, paragraph 4-4, is a rapid means of isolating a section of the instrument that is not functioning. Paragraph 4-2 deals with the physical layout of the instrument and routine maintenance procedures.

Schematic Diagrams and the Table of Replaceable Parts are located at the end of this section.

The following test equipment is used for testing and adjusting the Model 150A Oscilloscope during manufacture. Equivalent test equipment may be used.

1) A test oscilloscope such as the (b2) Model 150A equipped with an (60) Model 152 Dual Trace Amplifier.
2) A high impedance dc vacuum tube voltmeter calibrated to an accuracy of $\pm 1 \%$, such as an (bp) Model 410B with an (50) Model 459A DC Voltage Muitiplier.
3) A high impedance ac vacuum tube voltmeter, such as an (60) Model 400D/H/L.
4) A variable power line transformer with a minimum rating of 7.5 amps , equipped with a voltmeter, accurate within 1 volt.
5) A square wave generator such as an Model 211A.
6) A sine wave oscillator with a maximum frequency of at least 50,000 cycles, such as an (20) Model 200 CD .
7) An accurate time mark generator suitable for sweep speed calibration.
8) A voltmeter calibration generator such as an 50 Specification 23678.
9) A frequency response generator such as an (40) Specification 23679.

4-2 ROUTINE SERVICING

Routine servicing covers air filter cleaning, cabinet removal, adjustments required when tubes are changed, and CRT replacement.

Each of the major sections of the instrument is $10-$ cated in a particular area. Figure 4-1 indicates the location of these sections. The Horizontal Amplifier and the Sweep Generator and Sync Amplifier sections will swing out when the instrument is out of the cabinet. These sections are held in place by fasteners near the panel.

A. CLEANING THE AIR FILTER

Inspect the air filter often when the Oscilloscope is in constant use.

The air-filter element in the 150 A is a reuseable type. It is located in the bottom of the instrument cabinet and is removed by pulling straight down. In the rack mount pull the filters to the rear. To clean the filter element, wash in warm water and detergent, then recoat with an adhesive made for this purpose. Filter Coat No. 3 made by Research Products Corp., Madison 10, Wisconsin is suitable. If you have difficulty obtaining it, see your HewlettPackard Field Sales Engineer.

Apply Filter Coat No. 3 with the HANDIKOTER spray applicator directed at the intake side of the filter until visible baffles are liberally coated. Do not spray to the extent that adhesive runs or drips off the surface of the filter. Filter is now ready for service.

B. REMOVING THE CABINET

CAUTION
When the cabinet is removed, dangerous voltages are exposed. Observe adequate safety precautions.

TABLE 4-1. TUBE REPLACEMENT CHART (CONT"D)

[^0]
4-3 CONDENSED TEST AND ADJUSTMENT PROCEDURE

All the basic tests and adjustments are covered in
the following Table 4-2. This procedure is for instruments that are functioning. If the instrument is not operating, refer to Paragraph 4-4, Trouble Shooting Procedure.

TABLE 4-2. MODEL 150A CONDENSED TEST AND ADJUSTMENT PROCEDURE

TEST	EXTERNAL EQUIPMENT REQUIRED	PROCEDURE	ADJUST	NOTES
1. Low Voltage Power Supply	Dc vivm with 1\% accuracy	Measure all low voltage power supply outputs, should be within the following limits --	Do not adjust if within limits. Adjust R379 for -150 and R382 for -78, repeat as necessary.	Check CALIBRATOR and SWEEP TMME calibration if $\mathbf{- 1 5 0}$ volt is adjusted.
2. Horizontal Amplifier Gain	None	Connect 10 volts from CALIBRATOR to EXT. HORIZ. INPUT. HORIZ. SENSITIVITY to unmarked vertical position.	Set R199 for 5.0 cm or 5.6 cm between spots. Set C80 or C82 (whichever is variable) to eliminate "tails" on spots.	(*) Depends on SWEEP GENERATOR timing components. Refer to SWEEP TDME/CM SWITCH DETALL drawings.
3. Horizontal Amplifier Balance	None	No INPUT, no sweep, HORIZ. SENS. X100, position spot on screen. Switch to X5 and note spot location. Return to X100 and move spot to position noted in X5 with HORIZ. POSITION.	Center spot with R207. Switch to X1 and center spot with R189.	Check HORIZ. GANN if adjustments are made. (*)
4. Plug-In Vertical Amplifier		See plug-in amplifier manual for balance and calibration adjustment s.		
5. Main Vertical Amplifier Gain	Plug-in amplifier with accurately adjusted 20 db gain in 0.05 VOLTS/CM position.	Connect 0.2 VOLTS from CALIBRATOR to INPUT with VERT. SENS. on 0.05 VOLTS/CM and VERNIER in CAL.	Adjust R5 for exactly 4 cm vertical deflection.	(*)
6. Sync Circutts	Insulated dc voltmeter, 50 kc sine wave source, ac coupled test oscilloscope with 10:1 probe.	Connect dc voltmeter between pins 1 and 6 of V8 and with no external INPUT.	Adjust TRIGGER LEVEL for zero volts on meter.	(*) $4 \div 1$
		Connect 50 le sine wave With 2 volt peak-to-peak amplitude to EXTV SYNC. INPUT. Calibrate test oscilloscope for $1 \mathrm{volt} / \mathrm{cm}$ and connect to junction of R65 and 82 .	Adjust R66 and R72 for pips spaced exactly $1 / 2$ volt above ahd $1 / 2$ volt below center of waveform.	II parasitic oscillations present rotate R66 max. CCW. II no ptps.visible rotate R66 CW juet short of oscillation then adJust R72 for pips. (*)
7. Sweep. Amplitude and StartStop Trigger	Dc vtrmi test oscilloscope with 10:1 probe.	With no INPUT set SWEEP TIME to $2 \mathrm{SEC} / \mathrm{CM}$, EXT AC SYNC, SWEEP MODE in FREE RUN. Connect vtvm between ground and pin 2 of V10.	Adjust R88 Jor:-15.volt at end of sweep. This. control is hot 'présent in all units.	If unable to set adjust R135 until apleto set $R 88$. (*)
		Move vtvm to pin 8 of V15.	Adjust R135 (R122 in some units) for -110 to -115 V at end of sweep.	(*) 3 : 1×1.1
	$\because 0,1=$	Change SWEEP TDME to 0.1 MICROSECONDS/CM with VERNIER on CAL. and HORIZ. SENS, on X1. Remove vtvm and connect test oscilloscope probe to pin 8 of V15.	Adjust C40 for maximum amplitude with no distortion on negative tip.	
8. Sweep Preset	DC vtvm	With no INPUT set SWEEP TIME to 0.1 MIL LISECONDS, SWEEP MODE in PRESET, and SYNC. selector to INT. Connect dc vtym between ground and pin 2 of V10. \qquad	Slowly adjust R103 until sweep begins. Repeat several times and note voltage. Set R103 for 1.5 volts more positive than voltage level just before sweep starts.	(*)
${ }^{(*)}$) If you change a tube, see the Tube Replacement Chart, Table 4-1.				

4-4 TROUBLE-SHOOTING PROCEDURE

The Model 150A Oscilloscope is composed of several basic sections or circuits. Repair and test time can be minimized by following a procedure that will isolate the section needing repair. It is important to isolate the problem before changing any internal adjustments. In the majority of cases, only a tube change will be required.

A. CHECK AC POWER CIRCUIT

All ac power circuits are normal if the fan will operate with the instrument turned on and connected to a suitable power source.

If the fan will not operate:

1) Check the power line fuse mounted near the base of the CRT. Access in cabinet models is through the top hatch and in rack models by sliding the instrument out of the rack.

The cause of a blown line fuse can usually be found in the low voltage regulator input circuits. Check silicon rectifiers, filter capacitors, etc.
2) Check the thermal overload on the top of the instrument at the rear of the hinged sweep generator chassis Access to the thermal overload is same as for the line fuse. To reset, push the small button.

The thermal-overload will trip when the cabinet-temperatare exceeds approximately $150^{\circ} \mathrm{F}$. A dirty or obstructedair filter or a high ambient temperature are the usual causes of excessive cabinet temperature.

B. CHECK DC LOW VOLTAGE CIRCUITS

Check de voltages at marked test points on the CALIBRATORAND HIGH VOLTAGE board at the top rear of the instrument.

If all voltagesare correct, check the two fuses for the plug-in amplifier. These fuses are located at the rear of the opening for the plug-in amplifier.

If the voltages are incorrect, turn off power for a full minute and turn on again. If the instrument fails to come on the overload relay may have tripped. Check for a resistance of about 30 ohms between the -78 volt test point and ground with a plug-in amplifier installed and the line cord disconnected. A resistance of 1,000 ohms or more indicates an open heater. A heater-cathode short in any tube may operate the overload relay.

If you replace any tubes refer to Table 4-1, Tube Replacement Chart and Table 4-2, Condensed Test and Adjustment Procedure.

C. CHECK HIGH VOLTAGE CIRCUITS

If a spot or trace is visible on the face of the tube, the high voltage circuits are operating.
If a spot or trace is not present, short circuit the horizontal deflection plates of the CRT with an insulated clip lead. With a second clip lead short circuit the vertical deflection plates. This should produce a spot near the center of the CRT at some setting of the IN'TENSITY control. If not, check the high voltages on the High Voltage and Calibrator board at the test points marked CRT CATHODE and CRT GRID. The cathode should measure -4800 volts. With the INTENSITY control at minimum, the grid should measure approximately -5000 volts.

Resistors R261, 266, or 276 located on the High Voltage and Calibrator board, may cause incorrect high voltage. Check V28 if R261 is defective.

If you replace any tubes or components, refer to Table 4-1, Tube Replacement Chart and Table 4-2, Condensed Test and Adjustment Procedure.

D. CHECK HORIZONTAL AND VERTICAL AMPLI FIER

The Horizontal and Vertical Amplifiers are functioning properly when a spot on the face of the CRT can be easily and smoothly positioned by the horizontal and vertical position controls.
If a spot is not visible on the screen:

1) Short the horizontal deflection plates together; if this produces a spot that can be positioned and deflected by a vertical input, the vertical amplifier is functioning properly.
2) Short the vertical deflection plates together, if this produces a spot that can be positioned and deflected by a horizontal input, the horizontal amplifier is functioning properly.

The amplifiers in the instrument are direct coupled and balanced, and corresponding voltages in each side of the circuit must remain balanced to keep the spet on the screen. The settings of gain, balance and positioning controls can introduce unbalanced voltages and should be considered when checking an amplifier.

To check an inoperative amplifier, short circuit corresponding points in each stage until a point is reached where the spot does not returnto the screen. For example, in the Horizontal Amplifier, if the spot is on the screen when the deflection plates are connected together, remove the jumper from between the deflection plates and connect it between the plate (pin 6) of V23 and the plate (pin 6 of V24). Work toward the input, shorting plate-to-plate, until a
point is reached where the spot does not appear. This locates the unbalanced portion of the circuit.

E. CHECK SWEEP GENERATOR

1) Set the HORIZ. SENSITIVITY selector to X1 and the SWEEP MODE control maximum clockwise to
FREE RUN. In cabinet models, set the SINGLE SWEEP-NORMAL switch at NORMAL ; or in rack models set the SWEEP RESET switch to INT.
2) A repetitive sweep should be obtained in each position of the SWEEP TIME/CM selector. If the generator is inoperative, try the following steps in the order listed.

NOTE

Turn the Model 150A Oscilloscope power off before removing or installing the tubes discussed in this procedure. All voltages are measured between ground and the indicated point with an (bp Model 410B High Impedance Vacuum Tube Voltmeter.
3) Check tubes V10 through V17, one at a time by substitution. Always replace the original tube if proper operation is not restored.
4) Check the adjustment of R135 (R122 in some units), SWEEP AMPLITUDE ADJ., by rotating through the entire range of adjustment.
a. If the generator operates at some setting, complete adjustment Number 7, described in Table 4-2.
b. If adjustment does not restore operation, set R135 near the mechanical center of the adjustment range.
5) Check the adjustment of R88 (not in all units), UPPER HYSTERESIS LIMIT ADJ., by rotating through the entire range of adjustment.
a. If the generator operates at some setting, complete adjustment Number 7, described in Table 4-2.
b. If adjustment does not restore operation, set R88 near the mechanical center of the adjustment range.
6) When the sweep generator will not 'free run' the dc feedback loop can be opened and the generator forced into two specific conditions. Any analysis of voltage measurements, in these two conditions, will help in isolating the problem. The change in voltage between the two conditions is far more significant than the absolute voltages.

Table 4-3 contains the procedure for forcing the sweep generator as well as a tabulation of all the significant voltages.

4-5 DETAILED TEST AND ADJUSTMENT PROCEDURES

The complete test and adjustment procedures for the oscilloscope follow. In general, only one or two of the procedures will be needed and they can be done without completing all other tests.

A ten to fifteen minute warm-up and a check of the power supply output voltages is always recommended before making any other tests or adjustments.

The specifications for your instrumentare given in the front of this manual. The following test procedure contains extra checks to help you analyze a particular instrument. These extra checks and the data they contain cannot be considered as specifications.

This detailed procedure is outlined in the Condensed Test and Adjustment Procedure, Table 4-2.

4-6 LOW VOLTAGE POWER SUPPLY

The low voltage power supply regulator circuits are located on an etched circuit board on the right side at the rear of the instrument. Figure 4-2 locates the adjustments on this board.

A. TEST LOW VOLTAGE POWER SUPPLY
 CAUTION

Affer repair work in any power supply circuit, turn the intensity control full counterclockwise before applying power. Failure to do this may result in a damaged cathode ray tube.

Figure 4-2. Low Voltage Power Supply Adjustments

TABLE 4-3. SWEEP GENERATOR FORCED VOLTAGES

Set oscilloscope controls as follows:

SWEEP MODE REE RUN (maximum clockwise)

SINGLE SWEEP-NORMAL (cabinet) ... or

REMOVE V17 and compare measured voltages with those listed below.
The "SWEEP RESET" condition is obtained by connecting V10 pin 2 to ground.
The "SWEEP COMPLETED" condition is obtained by disconnecting V10 pin 2 from ground.

MEASURE THE VOLTAGE AT	SWEEP RESET		SWEEP COMPLETED		$\begin{gathered} \text { AVERAGE } \\ \triangle E \\ \hline \end{gathered}$
$\begin{array}{r} \text { V11 pin } 3 \\ 8 \end{array}$	$\begin{aligned} & +47 \\ & +53 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & +132 \\ & +135 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & +85 \\ & +82 \end{aligned}$
V12 pin 2	-25	± 5	+0.4	± 0.2	$+25$
V13 pin 5	-2	± 1	$+3$	± 1	+ 5
$\mathrm{V} 14 \operatorname{pin} \frac{1}{5}$	$\begin{aligned} & -2.5 \\ & +165 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 10 \end{aligned}$	$\begin{array}{r} -0.5 \\ +30 \end{array}$	$\begin{aligned} & \pm 1 \\ & \pm 10 \end{aligned}$	$\begin{array}{r} 2 \\ +135 \end{array}$
V15 pin 8	- 2	± 1	- -125	± 5	-123
V16 pin 1	+87 -80	± 5 +5	$\begin{array}{r} +160 \\ -\quad 7 \end{array}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & +73 \\ & +73 \end{aligned}$

REPLACE V17, REMOVE V11 and compare measured voltages with those listed below.
The "SWEEP RESET" condition is obtained automatically.
The "SWEEP COMPLETED" condition is obtained by connecting V14 pin 1 to ground.

| MEASURE THE | SWEEP RESET | SWEEP COMPLETED | AVERAGE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VOLTAGE AT | | | |

B. ADJUST THE CALIBRATOR OUTPUT

1) Set the CALIBRATOR switch to the 6.3 V AC position and check the voltage at the calibrator output terminal; it should be approximately 6.3 volts rms.
2) Remove tube V32. Connect a dc vacuum tube voltmeter with a high input resistance to the CALIBRATOR output terminal.
3) Set CALIBRATOR to 100 volts output. Adjust R290 to set the dc voltage at the CALIBRATOR output terminal to +100 volts. If R290 adjustment range is rot wide enough to permit setting this voltage, tsy replacing CR1 and/or CR2 diodes. Diode CR1 is located on the underside of the high voltage power supply and calibrator board at the top rear of the instrument. Diode CR2 is located on the CALIBRATOR switch.
4) The remaining voltages, measured with a dc voltmeter, should fall within $\pm 3 \%$ of the indicated CALIBRATOR output. Checking the accuracy of the 50 through. 1 volt ranges will verify all ranges.
5) Replace V32.

C. TEST THE CALIBRATOR GROUND CLAMP

1) The CALIBRATOR square wave symmetry should be better than $40-60 \%$. Replacing V32 will usually restore symmetry.
2) Set CALIBRATOR to 1 VOLT and connect the CALIBRA TOR output to the test oscilloscope vertical input.
3) Set the testoscilloscope for positive-updc and a vertical deflection sensitivity of 1 volt per centimeter. Position the bottom of the square wave CALIBRATOR signal across the center of the test oscilloscope screen.
4) Rotate the CALIBRATOR to 20 VOLTS If the bottom of the square wave shifts vertically more than 1 centimeter, diode CR2 is defective and must be replaced. A certain amount of shift can be expected due to overload of the test oscilloscope vertical amplifier.

4.8 HORIZONTAL AMPLIFIER

The horizontal amplifier is located on the left side of the instrument on a swing out chassis. The chassis is locked in place by a captive fastener, or a screw near the center of the board next to the panel.

Physical location and numbering of the Horizontal Amplifier adjustments has varied with production. Assembly No. 150A-65B is shown in Figure 4-4A, Assembly No. 150A-65F is shown in Figure 4-4B.

A. ADJUST HORIZONTAL AMPLIFIER GAIN

Gain adjustment is keyed to Sweep Generator timing components. Refer to the different SWEEP TIME/CM SWITCH DETAIL drawings (Figure 4$12 \mathrm{~A}, 4-12 \mathrm{~B}$ and $4-12 \mathrm{C}$) and compare circuits to find one that agrees with the oscilloscope being adjusted. Circuit configuration and notes on the switch drawings indicate proper setting for gain adjustment.

1) Set the HORIZ. SENSITIVITY control to the unmarked vertical test position.
2) Set the CALIBRATOR to 10 VOLTS and connect to the EXT. HORIZ. INPUT.
3) Slowly adjust R199 to give a horizontal deflection of 5.0 or 5.6 centimeters. It will be necessary to adjust the HORIZ. POSITION control to keep the spots centered.
4) Adjust C80 or C82 (whichever is variable) to eliminate any overshoot or undershoot on the spots. Proper adjustment produces well defined spots with no "tails."
5) Disconnect all cables.

B. ADJUST HORIZONTAL AMPLIFIER BALANCE

1) Set the HORIZ. SENSITIVITY control to X100 and adjust the HORIZ. POSITION to bring the spot to the approximate center of the CRT. Keep the INTENSITY low to avoid burning the phosphor.
2) Switch to the $X 5$ range and note the location of the spot. Switch back to X100 and return the spot to the location noted when on the X5 range using the HORIZ. POSITION control
3) Center the spot with R207.
4) Switch from X5 to X1 and note the spot shift. Adjust R189 for minimum spot shift when switching between X1 and X5.
5) Repeat paragraphs $4-8 \mathrm{~A}$ and 4-8B until both balance and gain are correct.
C. TEST HORIZONTAL AMPLIFIER FOR HUM
6) Set the HORIZ. SENSITIVITY switch to XI, stop

Figure 4-4A. Horizontal Amplifier Adjustments Assembly No. 150A-65B

Figure 4-4B. Horizontal Amplifier Adjustments
Assembly No. $150 \mathrm{~A}-65 \mathrm{~F}$
c. Attach Alignment Attenuator to EXT. HORIZ. INPUT and adjust C74 for the best possible square wave.
19) Switch the HORIZ. SENSITIVITY to 2 VOLTS/ $C M$ and set the Square Wave Generator amplitude for maximum or approximately 3 centimeters.
20) Adjust C71 and C72 to obtain the best possible square wave.
21) Disconnect all cables and test instruments.

4-9 MAIN VERTICAL AMPLIFIER

The main vertical amplifier is located on the left side of the instrument near the terminals on the neck of the cathode ray tube. Figure 4-6 shows the location of all adjustments on the amplifier.

Figure 4-6. Main Vertical Amplifier Adjustments

A. ADJUST PLUG-IN AMPLIFIER

You should set the Balance and Calibration of the plug-in amplifier before continuing. Follow the instructions that are given in the Operating Instructions for the plug-in amplifier used.

B. TEST VERTICAL AMPLIFIER FOR LINEARITY

CAUTION

The voltmeter used for this check must not be grounded. The voltmeter case is 400 volts above ground.

1) Connect a 400 cps signal to the plug-in vertical amplifier.
2) Connect an isolated ac voltmeter between the vertical deflection plates of the CRT.
3) Set the SWEEP MODE control full counterclockwise but not on PRESET. Adjust the HORIZ. POSITION and VERTICAL POSITION controls to center the vertical trace. Keep intensity low.
4) Adjust VERTICAL POSITION for a maximum voltmeter indication. The center of the oscilloscope pattern should be within 1 centimeter of the graticule vertical center. Set the amplitude of the input signal to obtain a 1.0 volt indication on the voltmeter.
5) Adjust the trace to the top and bottom of the graticule. Note the voltmeter indication in both positions. The voltage should not drop below 0.95 volts. A voltage drop of more than 5% is usually caused by V5 and/or V6.

C. TEST VERTICAL AMPLIFIER FOR DRIFT

1) Center a low intensity spot on the face of CRT with the line voltage set at 102 volts.
2) Vary the power line voltage between 102 and 128 volts and closely observe spot for any shift in vertical position,
3) Spot shift should not exceed 0.5 centimeters. Excessive shift is usually caused by $V 1$ and/or V2.

D. ADJUST VERTICAL AMPLIFIER GAIN

A 2 volt peak-to-peak (0.707 rms volt sine wave) input signal to the main vertical amplifier will produce a 4 centimeter peak-to-peak deflection when R5 is properly adjusted. Before starting the following procedure the voltage gain of the plug-in amplifier should be adjusted to exactly 10 (20 db) with the VOLT/CM selector set to ". 05 "?

1) Connect a 400 cps sine wave signal to the vertical input of the plug-in amplifier.
2) Set the input signal level to 300 millivolts peak-
to peak (0.106 rms volt sine wave). Set the oscilloscope vertical VOLTS/CM to 0.05 and VERNIER to CAL.
3) Adjust R5 for a peak-to-peak deflection of 6 centimeters.
E. ADJUST VERTICAL AMPLIFIER SQUARE-WAVE RESPONSE
4) Set POLARITY to POS. UP-AC, TRIGGER SLOPE to + , SYNC. to INT , and SWEEP TIME/ CM to 0.2 MICROSECONDS
5) Set vertical VOLTS/CM at 0.05 and vertical VERNIER at CAL.
6) Connect a 100 kc square wave from the 75 -ohm output of an (bp) Model 211A Square Wave Generator to the vertical input of the plug-in amplifier. Adjust the square wave generator output level to obtain a 6 centimeter peak-to-peak pattern.
7) Adjust C 8 for the best rise time along the leading edge of the square wave. Crest variation should not exceed 0.12 centimeters ($\pm 2 \%$).
8) Set the square wave generator to 100 cps .
9) Switch POLARITY to POS, UP-DC and SWEEP TIME/CM to 2 MILLISECONDS.
10) Adjust C15 (when variable) for best possible square wave.
11) Set Square Wave Generator to 10 cps .
12) Switch SWEEP TIME/CM to 20 MILLISECONDS.
13) Adjust $R 42$ for best possible square wave.

F, TEST INTERNAL SYNC AMPLIFIER

1) Connect $\mathrm{a} \cdot 1-\mathrm{kc}$ sine wave signal to the vertical amplifier input.
2) Set the SYNC. selector to INT : Adjust the oscilloscope controls to display the sine wave signal with a vertical deflection of 6 centimeters peak-topeak.
3) Connect an ac voltmeter between ground and the long bare wire at the bottom of the sweep generator board. The voltage on this wire should be at least 5 volts rms, if not check $V 7$ in the main ver: tical amplifier.

G. TEST VERTICAL AMPLIFIER BANDWIDTH

1) Connect a frequency response generator to the vertical input. Set this generator to 1 MC and adjust the amplitude to produce a peak-to-peak deflection of 4 centimeters. This deflection must be vertically centered on the graticule.
2) Increase the generator frequency until the peak-to-peak deflection has decreased to 2.8 centimeters. Maintain generator output at the level established in step 1. This is a drop of 3 db and should occur at a frequency above 10 mc . If this drop occurs at a frequency below 10 mc , clean the CRT deflection plate connecting pins and clips. In addition, dress the two yellow leads between the amplifier and the CRT neck connectors as far from each other and surrounding metal as possible.

If the above steps do not improve the bandwidth, it may be necessary to replace V5 and/or V6, or to recheck the plug-in amplifier frequency response in another oscilloscope.

4-10 SWEEP GENERATOR AND SYNC CIRCUITS

The Sweep Generator and Sync Circuits are located on the right side of the instrument on a swing out chassis. The chassis is held in place by a captive fastener or a screw located in the center of the board near the panel.

A. ADJUST SYNC CIRCUITS

1) Connect a dc voltmeter between plate pins 1 and 6 of V8 inverter amplifier tube. These points each have a blue wire from the TRIGGER SLOPE switch connecting to them. The voltmeter must be isolated from ground.
2) Remove any external connection to EXT. SYNC. INPUT jacks and set SYNC. selector switch to EXT. AC.
3) Rotate the TRIGGER LEVEL control to obtain an indication of zero volts on the dc voltmeter.
4) The TRIGGER LEVEL control must not be moved until R66 and R72 háve been adjusted.
5) Connect a 50 kc sine wave signal with an amplitude of 2 volts peak-to-peak to the EXT, SYNC: INPUT jack or terminals.
6) Calibrate the testoscilloscope with probe to have

Figure 4-7A. Sweep Generator Adjustments

Figure 4-7B. Sweep Generator Adjustments
a vertical deflection sensitivity of 1 volt per centimeter.
7) Connect test oscilloscope probe to junction of R65 and arm of S2 TRIGGER SLOPE switch (use ac coupling). This point can be identified as the connector approximately midway between tubes V9 and V17 to which a green wire from the TRIGGER SLOPE switch is connected. If high frequency oscillations are present, rotate R66 maximum counterclockwise.
8) Refer to Figures 4-7 and 4-8. Adjust potentiometer R66 and R72 for pips vertically spaced exactly 1 volt apart on the displayed sine wave. In addition, the pips must be exactly 0.5 volt above and below the center of the wave. The upper pip must be on the positive slope portion of the sine wave and the lower on the negative slope.

These two controls interact but pip vertical separation is primarily controlled by R66 and vertical position of both pips by R72. Repeated adjustments of both controls may be required.

Figure 4-8. Sync Trigger Hysterisis Limits

If pips are not visible, set R66 as far clockwise as possible without introducing oscillation and then slowly rotate R72 until the pips appear.

B. ADJUST START-STOP TRIGGER AND SWEEP AMPLITUDE

1) With no input to the oscilloscope, set the SYNC selector to EXT. AC.
2) Set the SWEEP TTME/CM to 2 SECONDS/ CM and rotate SWEEP MODE maximum clockwise to FREE RUN.
3) This step is for Sweep Generator Assemblies

No. 150A-65 E, L or LR only. See Figure 4-7B.
a. Connect a dc VTVM between ground and pin 2 of V10. The voltmeter indication will swing between approximately -40 and -15 volts.
b. Adjust R88 to obtain -15 volts at the end of the sweep. If unable to set R88, rotate R135 until R88 may be set properly.
4) Connect the dc VTVM between ground and pin 8 of V15. The violet wire terminated above V15 connects to pin 8.
5) The voltmeter indication will rise and fall with the sweep. Adjust R122 or R135 (see Figure 4-7) until the end of the sweep occurs between -110 and -115 volts.
6) Set the SWEEP TIME/CM to 1 MICROSECONDS, SWEEP VERNIER to CAL. and HORIZ. SENSITIVITY to X1. Connect the test oscilloscope to pin 8 of V15 through a low capacity probe and observe the sweep waveform. Adjust C 40 for maximum undistorted amplitude. Undesirable distortion will appear at the most negative point on the waveform.

C. ADJUST SWEEP PRESET

1) Disconnect any external vertical input to oscilloscope. Set SWEEP TIME/CM switch to . 1 MILLISECONDS and SWEEP MODE control maximum counterclockwise to PRESET. Set SYNC. selector to INT.
2) Connect the dc voltmeter between ground (+) and pin $2(-)$ of V10. Slowly adjust R103 until the sweep generator begins to free-run. The voltmeter indication will increase, as R103 is rotated, to a maximum and then suddenly drop, when the sweep generator begiñs to free-run.

Repeat this several times and note the average maximum voltmeter indication. The exact value of this voltage is not critical and will vary with individual characteristics of tubes V10 and V11.
3) Set R103 to give a voltmeter indication exactly 1.5 volts less negative than the maximum noted before the sweep began to free-run. For example: if the maximum voltage noted was -37 volts, R 103 should be set for -35.5 volts.

D. ADJUST SWEEP CALIBRATION

Physical location of the variable capacitors for Sweep Calibration has varied with production. Compare the configurations shown in Figure 4-9 to find

Figure 4-9A

Figure 4-9C

Figure 4-9B

Figure 4-9D

Figure 4-9. Sweep Calibration Adjustments
one that agrees with the oscilloscope being adjusted.

1) Set the SWEEP TIME/CM switch to 0.1 MICROSECONDS, VERNIER to CAL., HORIZ. SENSTTIVITY to X5, and the SWEEP MODE maximum clockwise to FREE RUN.
2) Connect the output of a Marker Generator to the vertical input.
3) Set the Marker Generator for a 10 me sime wave: output and adjust the oscilloscope controls for a
steady display 5 to 6 centimeters high.
4) Adjust C67 (C63 in Figure 4-9A) so two cycles of the sine wave are 10 centimeters long.
5) Set the HORIZ. SENSITIVITY switch to X1.
6) Adjust C78, located on the Horizontal Amplifier chassis, so each cycle of the sine wave is exactly one centimeter long. If the total sweep length is less than 10 centimeters, check the sweep length adjustment C40.

NOTE

Skip Steps 7, 8, and 10 if Sweep Switch has configuration shown in Figure 4-9A.
7) Set the Marker Generator for a 5 mc sine wave.
8) Set the SWEEP TIME/CM to $Q 2$ MICROSECONDS and adjust C65 so each cycle of the sine wave is exactly one centimeter long.
9) Set the Marker Generator for 1 microsecond pips and rotate the SWEEP MODE into PRESET.
10) Set the SWEEP TIME/CM switch to 0.5 MICROSECONDS and adjust C64 until the pips are exactly 2 centimeters apart.
11) Set the SWEEP TIME/CM switch to 1 MICROSECONDS and adjust C61 to space the pips exactly 1 centimeter apart.
12) Set the Marker Generator for 10 microsecond pips.
13) Set the SWEEP TIME/CM switch to 10 MICROSECONDS and adjust C59 to space the pips exactly 1 centimeter apart.
14) Set the Marker Generator for 100 microsecond pips.
15) Set the SWEEP TIME/CM switch to 0.1 MILLISECONDS and adjust R157 to space the pips exactly 1 centimeter apart.
16) Set the Marker Generator for 5 microsecond pips.
17) Set the HORIZ. SENSITIVITY switch to X5, X10, X50, and X100. This should produce pips spaced every $0.25,0.5,2.5$, and 5 centimeters.

If the expanded sweep ranges are out of calibration, set the HORIZ. SENSITIVITY to X100 and adjust R213, located on the Horizontal Amplifier chassis, to space the pips exactly 5 centimeters apart.

Return the HORIZ. SENSITIVITY switch to X1.
18) Set the Marker Generator for 1 millisecond pips.
19) Rotate the sweep VERNIER control from one extreme to the other: Pip spacing should change from 10 centimeters to between 2.9 and 3.3 centimeters. If the spacing is less than 2.9 centimeters, connect a 120,000 ohm or higher resistor in parallel
with the VERNIER control. If the spacing is more than 3.3 centimeters, reduce the value of R147 which is in series with the VERNIER control.
20) Set the SWEEP TIME/CM switch to 1 MILLISECONDS and adjust R145 to space the pips exactly 1 centimeter apart.
21) Set the Marker Generator for 10 millisecond pips.
22) Set the SWEEP TIME/CM switch to 10 MILLISECONDS and adjust R144 to space the pips exactly 1 centimeter apart.
23) Set the Marker Generator for 100 millisecond (0.1 second) pips.
24) Set the SWEEP TIME/CM switch to 0.1 SECOND and adjust R143 to space pips exactly 1 centimeter apart.
E. TEST SINGLE SWEEP OPERATION

1) Set the SWEEP TIME/CM switch at 10 MILLISECONDS or longer.
2) Set TRIGGER LEVEL to 0 and SYNC. to INT. Apply a signal with a frequency of 1 mc . or below. Adjust signal amplitude to obtain 4 centimeters peakto p eak vertical deflection.
3) Set the NORMAL-SINGLE SWEEP (SWEEP RESET, INT-EXT) switch to SINGLE SWEEP (EXT).
4) Rotate the SWEEP MODE control maximum clockwise, then counterclockwise into PRESET. A single sweep will be obtained on switching into PRESET.
5) Rotate SWEEP MODE off of PRESET, lamp I6 should go on, Continued clockwise rotation of this control should produce one sweep after which lamp I6 will be off. Leave the SWEEP MODE control rotated maximum clockwise.

The spet should return to the sweep starting point. This may be determined by temporarily increasing intensity.
6) It should be possible to complete steps 4 and 5 with the SWEEP TIME/CM switch in any position. As the sweep time is shortened it becomes progressively difficult to see the trace.

THE REMAINING:STEPS CHECK SINGLE SWEEP OPERATION BY USING AN EXTERNAL PULSE TO RESET THE SWEEP.
7) Connect the positive sync output from an (50) Model 212A Pulse Generator to oscilloscope vertical input.
8) Set the Pulse Generator for a positive output pulse and connect output to oscilloscope RESET connector.
9) Set the Pulse Generator for a 500 per second repetition rate and a 3 microsecond pulse width.
10) Set the NORMAL SINGLE SWEEP (SWEEP RESET, INT-EXT) switch to NORMAL (INT), the TRIGGER SLOPE to + , and SWEEP TIME/CM to 0.2 MICROSECONDS. Adjust vertical VOLTS/CM to 20 with VERNIER at CAL.
11) Set TRIGGER LEVEL to obtain a display of the 212A sync pulse.
12) Set the SINGLE SWEEP-NORMAL switch for SINGLE SWEEP and the 212A pulse position control for maximum delay.
13) Advance the Pulse Generator output from minimum until the sync output pulse is displayed on the oscilloscope. Usually the amplitude of this pulse will be approximately 10 volts peak-to-peak. The start of the oscilloscope sweep and the start of the pulse should approximately coincide and should not change with a change in the Pulse Generator pulse delay time.
14) Disconnect all instruments and return the SINGLE SWEEP-NORMAL switch to NORMAL.
F. TEST OPERATION OF MAGNIFIED AND UNCALIBRATED LIGHTS

1) The SWEEP MAGNIFIED light should be ON with the HORIZ. SENSITIVITY control in the X5, X10, X50, and X100 position.
2) The MAGNIFIER UNCALIBRATED light should be ON with SWEEP TIME/CM and the HORIZ. SENSITIVITY control set to the combinations shown in Table 4-5.
3) If lights fail to operate as above, switches may be defective or connectors from SWEEP TIME/CM and HORIZ. SENSITIVITY switches may be disconnected or transposed.

TABLE 4-5. MAGNIFIER UNCALIBRATED LIGHT

$X 10$	ON				
$X 50$	ON	ON	ON	ON	
X100	ON	ON	ON	ON	ON

SWEEP TIME - MICROSECOND/CM

G. TEST GATE OUTPUT WAVEFORM

1) Set the SWEEP TIME/CM switch to . 1 MICROSECONDS and the SWEEP MODE to FREE RUN.
2) Connect a test oscilloscope through a low capacity probe to the GATE OUTPUT connector. The test oscilloscope should be set for positive up deflection.
3) This waveform should be a nonsymmetrical square wave with a peak-to-peak amplitude of 60 to 70 volts. Ripple on the top of the waveform should not exceed 2% of the total amplitude.
4) The square wave rise time should be less than approximately 0.15 microseconds, and the decay time should be less than approximately 0.7 microseconds.
5) Overshoot in the waveform may be due to CR3 being defective.

H. TEST SWEEP OUTPUT WAVEFORM

1) Attach the test oscilloscope to the SWEEP OUTPUT connector.
2) The sweep output waveform should have a peak amplitude of at least 40 volts and may be considerably higher.

SCHEMATIC DIAGRAM NOTES

1. Heavy solid line shows main signal path; heavy dashed line shows control, secondary signal, or feedback path.
2. Heavy box indicates front-panel engraving; light box indicates chassis ma rking.
3. Arrows on potentiometers indicate clockwise rotation as viewed from the round shaft end, counterclockwise from the rectangular shaft end.
4. Resistance values in ohms, inductance in microhenries, and capacitance in micromicrofarads unless otherwise specified.
5. Rotary switch schematics are electrical representations.
6. Relays shown in condition prevailing during normal instrument operation.
7. $\quad+$ indicates a selected part. See parts list.
8. * Value adjusted at factory. Part may be omitted.

VOLTAGE AND RESISTANCE DIAGRAM NOTES

1. Each tube socket terminal is numbered and lettered to indicate the tube element and pin number, as follows:

$*$	no tube element	$\mathrm{P}=$	plate
H	$=$ heater	$\mathrm{T}=$	target (plate)
K	$=$ cathode	$\mathrm{R}=$	reflector or repeller
G	$=$ control grid	$\mathrm{A}=$	anode (plate)
Sc	screen grid	$\mathrm{S}=$	spade
Sp	$=$ suppressor grid	$\mathrm{Sh}=$	shield
Hm	heater mid-tap	$\mathrm{NC}=$	no external connection to socket
IS	$=$ internal shield	$\Delta=$ indefinite reading due to circuit (See 2.)	

The numerical subscript to tube-element designators indicates the section of a multiple-section tube; the letter subscript to tube-element designators indicates the functional difference between like elements in the same tube section, such as t for triode and p for pentode.

A socket terminal with an asterisk may be used as a tie point and may have a voltage and resistance shown.
2. Voltages values shown are for guidance; values may vary from those shown due to tube aging or normal differences between instruments: Resistance values may vary considerably from those shown when the cireuit contains potentiometerst crystal diodés, or electrolytic capacitors.
3. Voltage measured at the terminal is shown above the line, resistance below the line; measurements made with an electronic multimeter, from terminal to chassis ground unless otherwise noted.
4. A solid line between socket terminals indicates a connection external to the tube between the terminals; a dotted line between terminals indicates a connection inside the tube. Voltage and resistance are given at only one of the two joined terminals.

Sect. IV Page 24

MAIN VERTICAL AMPLIFIER voltage-resistance diagram

MAIN VERTICAL AMPLIFIER
voltage-resistance diagram

SWEEP GENERATOR
voltage-resistance diagram (viewed from outside)

SWEEP TIME/CM SWITCH DETAIL (SWITCHES WITH 5 VARIABLE CAPACITORS)
FOR SWEEP GENERATOR ASSEMBLIES WITH

SWEEP TIME/CM SWITCH DETAIL

SWEEP TIME/CM SWITCH DETAIL

HORIZONTAL AM PLIFIER
HORIZONTAL AMPLIFIER ASSEMBLY $150 A-65 F$
CALIbRATOR AND HIGH VOLTAGE REGULATED POWER SUPPLY
voltage - resistance diagram

Sect. IV Page 46

Sect. IV Page 48

POWER SUPPLY

voltage - resistance diagram

AND
CALIBRATOR

V28 (60J8) \pm
HIGH VOLTAGE CONTROL TUBE

CALIBRATOR AND HIGH VOLTAGE SUPPLY

Sect. IV Page 50

Sect. IV Page 52

VOLTAGE-RESISTANCE DIAGRAM (VIEWED FROM OUTSIDE)

LOW VOLTAGE POWER SUPPLY
SERIAL NO. 1390 THROUGH NO. 1439

COMPLETE AC HEATER DETAIL
REGULATED DC HEATER DETAIL
12 FILAMENT DETAIL AND CONNECTORS

T2 FILAMENT DETAIL AND CONNECTORS

SECTION TABLE OF REPLACEABLE PARTS

NOTE

Readily available standard-components have been used in this instrument, whenever possible. However, special components may be obtained from your local HewlettPackard representative or from the factory.

When ordering parts always include:

1. (6) Stock Number.
2. Complete description of part including circuit reference.
3. Model number and serial number of instrument.
4. If part is not listed give complete description, function, and location of part.

If there are any corrections for the Table of Replaceable Parts they will be listed on an Instruction Manual Change sheet at the front of this manual.

TABLE OF REPLACEABLE PARTS

table of replaceable parts

TABLE OF REPLACEABLE PARTS

TABLE OF REPLACEABLE PARTS

$\begin{aligned} & \text { CIRCUIT } \\ & \text { REF. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { (20) STOCK } \\ & \text { NO. } \end{aligned}$				
C57	Capacitor: fixed, mylar, $0.01 \mu \mathrm{f}, \pm 5 \%, 200 \mathrm{vdcw}$	16-101				
C58	Capacitor: fixed, silver mica, $1000 \mu \mu \mathrm{f}, \pm 5 \%$, 500 vdcw	15-57				
C59	Capacitor: variable, ceramic, $7-45 \mu \mu \mathrm{f}$, 500 vdcw	13-1				
C60	Capacitor: fixed, ceramic, $82 \mu \mu \mathrm{f}, \pm 5 \%$, NPO temp coef	15-7		\because		
C61	Capacitor: variable, ceramic, 8-50 $\mu \mu \mathrm{f}$, N750 temp coef	13-23				
C61A	Capacitor: variable, ceramic, $7-45 \mu \mu \mathrm{f}, 500$ vdcw	13-1				
C62	Capacitor: fixed, ceramic, $82 \mu \mu \mathrm{f}, \pm 5 \%$, NPO temp coef, 500 vdcw	15-7				
C63	Capacitor: fixed, mica, $39 \mu \mu \mathrm{f}, \pm 5 \%, 300 \mathrm{vdcw}$	14-70				
C63A	Capacitor: variable, ceramic, $1.5-7 \mu \mu \mathrm{f}$; NPO temp coef	13-27				
C63B	Capacitor: fixed, mica, $22 \mu \mu \mathrm{f}, \pm 5 \%, 500 \mathrm{vdcw}$	14-69				
C64	Capacitor: variable, ceramic, $5-25 \mu \mu \mathrm{f}, \mathrm{NPO}$ temp coef	13-28				
C65	Capacitor: variable, ceramic, $3-12 \mu \mu \mathrm{f}$, NPO temp coef	13-29				
C66	Capacitor: fixed, ceramic, $5 \mu \mu \mathrm{f}, \pm .5 \%$, NPO temp coef, 500 vdcw	15-29				
C67	Capacitor: variable, ceramic, $1.5-7 \mu \mu \mathrm{f}$, NPO temp coef	13-27	V			
C68,69	Circuit references not assigned					
C70	Capacitor: fixed, mica, $27 \mu \mu f \pm 5 \%, 300 \mathrm{vdcw}$	14-78				
C71	Capacitor: variable, ceramic, $1.5-7 \mu \mu \mathrm{f}, \mathrm{NPO}$ temp coef	13-27				
C71A	Capacitor: yariable, ceramic, $5-25 \mu \mu \mathrm{f}$, NPO temp coef	13-28				
C72	Capacitor: variable, ceramic, $1.5-7 \mu \mu \mathrm{f}$; NPO temp coef	13-27				
C72A	Capacitor: variable, ceramic, $5-25 \mu \mu \mathrm{f}$, NPO temp coef	13-28				
C73	Capacitor: fixed, mica, $47 \mu \mu \mathrm{f}, \pm 10 \%, 500$ vdcw	14-67				

TABLE OF REPLACEABLE PARTS

TABLE OF REPLACEABLE PARTS

TABLE OF REPLACEABLE PARTS
$\left.\left.\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{c}\text { CIRCUIT } \\ \text { REF. }\end{array} & \text { DESCRIPTION }\end{array}\right] \begin{array}{c}\text { STOCK } \\ \text { NO. }\end{array}\right]$

TABLE OF REPLACEABLE PARTS

TABLE OF REPLACEABLE PARTS

table of replaceable parts

$\begin{aligned} & \text { CIRCUIT } \\ & \text { REF. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { (40) STOCK } \\ & \text { NO. } \end{aligned}$				
$\begin{aligned} & \text { R280, } \\ & \text { R281, } \\ & \text { R282 } \end{aligned}$	$\begin{aligned} & \text { Resistor: fixed, composition, } 1 \text { megohm, } \\ & \pm 10 \%, 1 / 2 \mathrm{~W} \end{aligned}$	23-1M				
R283	Resistor: variable, composition, linear taper, 500,000 ohms, $\pm 20 \%$	210-20				
R284	$\begin{aligned} & \text { Resistor: fixed, composition, } 39,000 \text { ohms, } \\ & \pm 10 \%, 1 \mathrm{~W} \end{aligned}$	24-39K				
R284A	$\begin{aligned} & \text { Resistor: fixed, composition, 22, } 000 \text { ohms, } \\ & \pm 10 \%, 1 / 2 \mathrm{~W} \end{aligned}$	23-22K				
R285	$\begin{aligned} & \text { Resistor: fixed, composition, } 6.8 \text { megohms, } \\ & \pm 10 \%, 1 / 2 \mathrm{~W} \end{aligned}$	23-6.8M				
R285A	Resistor: fixed, composition, 3 megohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$	23-3M-5				
R286	Resistor: fixed, composition, 18,000 ohms, $\pm 10 \%, 1 \mathrm{~W}$	$24-18 \mathrm{~K}$				
$\begin{aligned} & \text { R287, } \\ & \text { R288 } \end{aligned}$	Resistor: fixed, metal film, 20,000 ohms, $\pm 5 \%, 3 \mathrm{~W}$	333-20K-5				
R289	Resistor: fixed, deposited carbon, 7500 ohms, $\pm 1 \%, 1 \mathrm{~W}$	31-7500				
R290	Resistor: variable, composition, linear taper, 500,000 ohms, $\pm 30 \%, 1 / 4 \mathrm{~W}$	210-146				
R291	Resistor: fixed, deposited carbon, 5000 ohms, $\pm 1 \%, 1 \mathrm{~W}$	31-5000				
R292	Resistor: fixed, composition, 4.7 megohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-4.7M				
R292A	Resistor: fixed, composition, 6.8 megohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$	23-6. 8M-5				
R293	Resistor: fixed, composition, 330,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-330K				
R293A	$\begin{aligned} & \text { Resistor: fixed, composition, } 220,000 \text { ohms, } \\ & \quad \pm 10 \%, 1 / 2 \mathrm{~W} \end{aligned}$	23-220K				
R294	Resistor: fixed, deposited carbon, 100,000 ohms, $\pm 1 \%, 1 \mathrm{~W}$	$31-100 \mathrm{~K}$				
R295	Resistor: fixed, deposited carbon, 100 ohms, $\pm 1 \%, 1 / 2 \mathrm{~W}$	33-100				
R296	Resistor: fixed, deposited carbon, 10, 200 ohms, $\pm 1 \%, 1 \mathrm{~W}$	$31-10.2 \mathrm{~K}$				

TABLE OF REPLACEABLE PARTS

TABLE OF REPLACEABLE PARTS

TABLE OF REPLACEABLE PARTS

TABLE OF REPLACEABLE PARTS

tABLE OF REPLACEABLE PARTS

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION,	$\begin{aligned} & \text { (6p) STOCK } \\ & \text { NO. } \end{aligned}$					
R388	Resistor: fixed, wirewound, 2500 ohms, $\pm 10 \%, 10 \mathrm{~W}$	26-7					
R389	Resistor: fixed, wirewound, 2000 ohms, $\pm 5 \%, 40 \mathrm{~W}$	27-40					
R390	$\begin{aligned} & \text { Resistor: fixed, composition, } 100 \text { ohms, } \\ & \pm 10 \%, 1 \mathrm{~W} \end{aligned}$	24-100R					
R391	$\begin{aligned} & \text { Resistor: fixed, composition, } 100,000 \text { ohms, } \\ & \pm 10 \%, 1 / 2 \mathrm{~W} \end{aligned}$	23-100K					
R392	Circuit reference not assigned						
R393	Resistor: fixed, composition, 100 ohms, $\pm 10 \%, 1 \mathrm{~W}$	24-100R					
R394	Resistor: fixed, composition, 22 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	23-22					
$\begin{aligned} & \text { R395, } \\ & \text { R396 } \end{aligned}$	Resistor: fixed, composition, 100 ohms, $\pm 10 \%, 1 \mathrm{~W}$	24-100R					
R397	Resistor: fixed, wirewound, 5000 ohms, $\pm 10 \%, 20 \mathrm{~W}$	27-3					
$\begin{aligned} & \text { R398, } \\ & \text { R399 } \end{aligned}$	Resistor: fixed, wirewound, 1000 ohms, $\pm 5 \%, 40 \mathrm{~W}$	27-37					
R400 thru R1300	Circuit references not assigned						
R1301	Resistor: fixed, composition, 100,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	$23-100 \mathrm{~K}$					
R1302	Resistor: fixed, composition, 68, 000 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	$23-68 \mathrm{~K}$					
R1303 thru R1322	Circuit references not assigned						
R1323	Resistor: variable, wirewound, linear taper, 4 ohms, $\pm 10 \%, 4 \mathrm{~W}$	210-187					
R1324	Resistor: fixed, wirewound, 14 ohms, $\pm 10 \%, 10 \mathrm{~W}$	26-90					
$\begin{aligned} & \text { RT301, } \\ & \text { RT302 } \end{aligned}$	Thermistor: disc type, 10 ohms, $\pm 10 \%$, at $25^{\circ} \mathrm{C}$, supplied on instruments wired for 230 V operation only.	211-73					
RT303	Thermistor: disc type, 1000 ohms, $\pm 10 \%$, at $25^{\circ} \mathrm{C}$	211-81					

TABLE OF REPLACEABLE PARTS

Sect. V Page 42

TABLE OF REPLACEABLE PARTS

list of Code letters used in table of replaceable parts TO DESIGNATE THE MANUFACTURERS

$\begin{aligned} & \text { CODE } \\ & \text { LETTER } \end{aligned}$	MANUFACTURER
A	Aerovox Corp.
B	Allen-Bradley Co.
C	Amperite Co.
D	Arrow, Hart \& Hegeman
E	Bussman Manufacturing Co.
F	Carborundum Co.
G	Centralab
H	Cinch-Jones Mfg. Co.
HP	Hewlett-Packard Co.
1	Clarostat Mfg. Co.
J	Cornell Dubilier Elec. Co.
K	Hi-Q Division of Aerovox
L	Erie Resistor Corp.
M	Fed. Telephone \& Radio Corp.
N	General Electric Co.
0	General Electric Supply Corp.
P	Girard-Hopkins
Q	Industrial Products Co.
R	International Resistance Co.
S	Lectrohm Inc.
T	Littlefuse Inc.
U	Maguire Industries Inc.
V	Micamold Radio Corp.
W	Oak Manufacturing Co.
X	P. R. Mallory Co., Inc.
Y	Radio Corp. of America
Z	Sangamo Electric Co.
AA	Sarkes Tarzian
BB	Signal Indicator Co.
CC	Sprague Electric Co.
DD	Stackpole Carbon Co.
EE	Sylvania Electric Products Co.
FF	Western Electric Co.
GG	Wilkor Products, Inc.
HH	Amphenol
II	Dial Light Co. of America
JJ	Leecraft Manufacturing Co.
KK	Switcheraft, Inc.
LL	Gremar Manufacturing Co.
MM	Carad Corp.
NN	Electra Manufacturing Co.
OO	Acro Manufacturing Co.
PP	Alliance Manufacturing Co.
QQ	Arco Electronics, Inc.
RR	Astron Corp.
SS	Axel Brothers Inc.
TT	Belden Manufacturing Co.
UU	Bird Electronics Corp.
VV	Barber Colman Co.
WW	Bud Radio Inc.
XX	Allen D. Cardwell Mfg. Co.
YY	Cinema Engineering Co.
ZZ	Any brand tube meeting
	RETMA standards.
$A B$	Corning Glass Works
AC	Dale Products, Inc.
AD	The Drake Mfg. Co.
AE	Elco Corp.
AF	Hugh H. Eby Co.
AG	Thomas A. Edison, Inc.
AH	Fansteel Metallurgical Corp.
AI	General Ceramics \& Steatite C
AJ	The Gudeman Co.

CODE LETTER

MANUFACTURER

Hammerlund Mfg. Co., inc.
Industrial Condenser Corp.
Insuline Corp. of America
Jennings Radio Mfg. Corp.
E. F. Johnson Co.

Lenz Electric Mfg. Co.
Micro-Switch
Mechanical Industries Prod. Co.
Model Eng. \& Mfg., Inc.
The Muter Co.
Ohmite Mfg. Co.
Resistance Products Co.
Radio Condenser Co.
Shalleross Manufacturing Co.
Solar Manufacturing Co.
Sealectro Corp.
Spencer Thermostat
Stevens Manufacturing Co.
Torringtón Manufacturing Co.
Vector Electronic Co.
Weston Electrical Inst. Corp.
Advance Electric \& Relay Co.
E. I. DuPont

Electronics Tube Corp.
Aircraft Radio Corp.
Allied Control Co., Inc.
Augat Brothers, Inc.
Carter Radio Division
CBS Hytron Radio \& Electric
Chicago Telephone Supply
Henry L. Crowley Co., Inc.
Curtiss-Wright Corp.
Allen B. DuMont Labs
Excel Transformer Co.
General Radio Co.
Hughes Aircraft Co.
International Rectifier Corp. James Knights Co.
Mueller Electric Co.
Precision Thermometer \& Inst. Co. Radio Essentials Inc.
Raytheon Manufacturing Co
Ung-Sol Lamp Works, Inc.
Varian Associates
Victory Engineering Corp.
Weckesser Co.
Wilco Corporation
Winchester Electronics, Inc
Malco Tool \& Die
Oxford Electric Corp.
Camloc-Fastener Corp.
George K. Garrett
Union Switch \& Signal
Radio Receptor
Automatic \& Precision Mfg. Co.
assick Co
Birnbach Radio Co.
ischer Specialties
Telefunken (c/o MVM, Inc.)
Potter-Brumfield Co
Cannon Electric Co
Dynac, Inc.
Good-All Electric Mfg. Co.

ADDRESS

Now York I, N. Y.
Chicago 18, III.
Manchester, N: H.
San Jose, Calif.
Waseca, Minn.
Chicago 47, III.
Freeport, III.
Akron 8, Ohio
Huntington, Ind.
Chicago 5, III.
Skokie, III.
Harrisburg, Pa.
Camden 3, N. J.
Collingdale, Pa.
Los Angeles 58, Calif.
New Rochelle, N. Y.
At+leboro, Mass.
Mansfield, Ohio
Van Nuys, Calif.
Los Angeles 65, Calif.
Newark 5, N. J.
Burbank, Calif.
San Francisco, Calif.
Philadelphia 18, Pa.
Boonton, N. J.
New York 21, N. Y.
Attleboro, Mass.
Chicago, III.
Danvers, Mass.
Elkhart, Ind
West Orange, N. J.
Caristadt, N. J.
Clifton, N. J.
Oakland, Calif.
Cambridge 39, Mass.
Culver City, Calif.
El Segundo, Calif.
Sandwich, III.
Cleveland, Ohio
Philadelphia 30, Pa.
M + . Vernon, N, Y
Newton, Mass.
Newark 4, N. J.
Palo Alto, Calif.
Union, N. J.
Chicago 30, III.
Indianapolis, Ind.
Santa Monica, Calif.
Los Angeles 42, Calif.
Chicago 15, III.
Paramus, N. J.
Philadelphia 34, Pa.
Swissvale, Pa.
New York II, N. Y.
Yonkers, N. Y.
Bridgeport 2, Conn.
New York 13, N. Y.
Cineinnati 6, Ohio
New York, N. Y.
Princeton, Ind.
Los Angeles, Calif.
Palo Alto, Calif.
Ogallala, Nebr.

MODEL 150A
OSCILLOSCOPE
Manual Serial•40 through 3189

To adapt this manual to instruments with other serial prefixes check for errata below, and make changes shown in tables.

Instrument Serial Number Make Manual Changes

40 through 3189	ERRATA

Instrument Serial Prefix Make Manual Change;

ERRATA:	J18: Change to binding post: red; Stock No. AC-10D.
	K4E: Change coil description to 115 VAC.
	R325A, B: Change R325A to resistor, fixed, wirewound, 110 ohms $\pm 10 \%$, 10W; Stock No. 26-130. Delete R325B.
	Section IV, Page 22, Under G, (TEST GATE OUTPUT WAVEFORM): Correct the first sentence in step 3) as follows: "This waveform should be a nonsymmetrical square wave with a peak-to-peak amplitude of 20 to 30 volts.

[^0]: * Replace with same tube type found in instrument. Tube types 6BQ7A, 6DJ8 and 6 BK 7 are not directly interchangeable.
 **3A2 used in some instruments.

