HP Archive

This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com
Please visit us on the web.
For free distribution only!

Thanks to on-line curator: Bernhard Voss for supplying and scanning this vintage document.

OPERATING AND SERVICING MANUAL

MODEL 120A/AR OSCILLOSCOPE

SERIALS PREFIXED: 051 -

Stock No. 120A-900

SWEEP

Sweep Range: $\quad 1 \mu \mathrm{sec} / \mathrm{cm}$ to at least $0.5 \mathrm{sec} / \mathrm{cm} .15$ calibrated sweeps, accurate to within $\pm 5 \%$, in a $1,2,5,10 \ldots$ sequence, $5 \mu \mathrm{sec} / \mathrm{cm}$ to $200 \mathrm{millisec} / \mathrm{cm}$. Vernier permits continuous adjustment of sweep time between calibrated steps and extends the 200 millisec $/ \mathrm{cm}$ step to at least $0.5 \mathrm{sec} / \mathrm{cm}$.

Sweep Expand: X5 sweep expansion may be used on all ranges and expands fastest sweep to $1 \mu \mathrm{sec} / \mathrm{cm}$. Expansion is about the center of the CRT and expanded sweep accuracy is $\pm 10 \%$.

Synchronization: Automatic from 50 cps to 250 kc ; internally from vertical deflection signals causing $1 / 2 \mathrm{~cm}$ or more vertical deflection; from external signals at least 2.5 volts peak-to-peak, and from line voltage.

Trigger Point: Zero crossing, negative slope of external sync signals, zero crossing, positive or negative slope of vertical deflection signals. Screwdriver operated control overrides automatic and permits the trigger point to be set between -10 to +10 volts. Turning fully counterclockwise into auto restores automatic operation.

VERTICAL AMPLIFIER

Bandwidth: DC coupled: dc to 200 kc . AC coupled: 2 cps to 200 kc . Bandwidth is independent of sensitivity setting.

Sensitivity: $\quad 10$ millivolts $/ \mathrm{cm}$ to 100 volts $/ \mathrm{cm}$. Four calibrated steps accurate within $\pm 5 \%, 10 \mathrm{mv} / \mathrm{cm}, 100 \mathrm{mv} / \mathrm{cm}, 1 \mathrm{v} / \mathrm{cm}$, and $10 \mathrm{v} / \mathrm{cm}$. Vernier permits continuous adjustment of sensitivity between steps and extends $10 \mathrm{v} / \mathrm{cm}$ step to at least $100 \mathrm{v} / \mathrm{cm}$.

Internal Calibrator: Calibrating signal automatically connected to vertical amplifier for standardizing of gain, accuracy $\pm 2 \%$.

Input Impedance:
1 megohm, approximately 50 pf shunt.
Balanced Input: On $10 \mathrm{mv} / \mathrm{cm}$ range. Input impedance 2 megohms shunted by approx. 25 pf .

Common Mode Rejection: Rejection at least 40 db . Common mode signal must not exceed ± 3 volts peak.
Phase Shift: Vertical and horizontal amplifiers have same phase characteristics within $\pm 2^{\circ}$ to 100 kc when verniers are fully clockwise.

HORIZONTAL AMPLIFIER

Bandwidth:
DC coupled: dc to 200 kc . AC coupled: 2 cps to 200 kc . Bandwidth is independent of attenuator setting.

Sensitivity: $\quad 0.1$ volt $/ \mathrm{cm}$ to 100 volts $/ \mathrm{cm}$. Three calibrated steps, accurate within $\pm 5 \%$, $0.1 \mathrm{v} / \mathrm{cm}, 1 \mathrm{v} / \mathrm{cm}$, and $10 \mathrm{v} / \mathrm{cm}$. Vernier permits continuous adjustment of sensitivity between steps and extends $10 \mathrm{v} / \mathrm{cm}$ step to at least $100 \mathrm{v} / \mathrm{cm}$.

Input Impedance:
1 megohm, nominal, shunted by approximately 60 pf .
Horizontal and vertical amplifiers have same phase characteristics within $\pm 2^{\circ}$ to 100 kc when verniers are fully clockwise.

SPECIFICATIONS (Cont'd)

GENERAL

Cathode Ray Tube:

CRT Bezel:

CRT Plates:

Intensity Modulated:

Filter Supplied:

Illuminated Graticule:

Dimensions:
5AQP1 mono-accelerator normally supplied; 2500 volt accelerating potential. P7 and P11 phosphors are also available. P2 is available if desired for special applications.

Light proof bezel provides firm mount for oscilloscope camera and is removed easily for quick change of filter.

Direct connection to deflection plates via terminals on rear. Sensitivity approximately $20 \mathrm{v} / \mathrm{cm}$.

Terminals on rear. +20 volts to blank trace of normal intensity.

Color of filter compatible with CRT Phosphor supplied:
Green with P1 and P2
Amber with P7
Blue with P11

Edge lighted with controlled illumination, $10 \mathrm{~cm} \times 10 \mathrm{~cm}$, marked in cm squares. Major horizontal and vertical axes have 2 mm subdivisions.

Cabinet Mount: 9-3/4 in. wide, 15-5/8 in. high, 20-3/4 in. deep.

Weight: Cabinet Mount: Net 34 lbs ; shipping 43 lbs . Rack Mount: Net $32 \mathrm{lbs} ;$ shipping 48 lbs.

Power: $\quad 115 / 230$ volts $\pm 10 \%, 50-1000 \mathrm{cps} ; 130$ watts.

Equipment Slides:

Accessories Available:

CONTENTS

SECTION I GENERAL DESCRIPTION Page
1-1 General Information I - 1
1-2 Damage in Transit I - 2
1-3 Power Cord I - 2
SECTION II OPERATING INSTRUCTIONS
2-1 Controls and Terminals II - 1
2-2 Synchronization II - 1
2-3 Calibrator II - 1
2-4 AC or DC Coupling II - 1
2-5 Operating Procedures II - 1
SECTION III CIRCUIT DESCRIPTION
3-1 General Content III - 1
3-2 Over-All Operation III - 1
3-3 Vertical Channel III - 2
3-4 Horizontal Channel III - 3
3-5 Sweep Generator III - 3
3-6 Low Voltage Power Supplies III - 5
3-7 High Voltage Power Supply III - 6
3-8 Calibrator III - 6
SECTION IV MAINTENANCE
4-1 Introduction IV - 1
4-2 Removing the Cabinet IV - 1
4-4 Tube Replacement IV - 1
4-5 Isolating Troubles to Major Sections IV - 3
4-7 Adjustment Procedure IV - 5
4-8 Turn On IV - 5
4-9 Power Supplies IV - 5
4-11 Vertical Amplifier IV - 7
4-12 Horizontal Amplifie IV - 8
4-13 Sweep Generator IV - 9
SECTION V TABLE OF REPLACEABLE PARTS
5-1 Table of Replaceable Parts V - 1

SECTION I
 GENERAL DESCRIPTION

1-1 GENERAL INFORMATION

The Model 120 Adc to 200 kc Oscilloscope is a general purpose oscilloscope employing a 5AQP-monoaccelerator precision type cathode-ray tube. It can be used with either internal or external sweeps which can be either internally or externally synchronized and it can be obtained in either the cabinet or rack type mounting. Because of its high sensitivity and balanced input, the Model 120A may often be used directly with transducers, enabling you to seea direct presentation of phenomena desired without having to resort to preamplifiers. The balanced vertical amplifier may also be used as a differential amplifier amplifying the desired signals and rejecting extraneous induced signals.

The operation of all panel controls is discussed in Section II. Because of the straight-forward arrangement of the panel and conventional designations, the Oscilloscope is easy to operate.

Some of the special features of this oscilloscope are as follows:

DIRECT READING SWEEP TIMES

When you are using the 120 A computations are avoided and possibilities of error are reduced by direct reading, calibrated sweeps. A single knob selects 15 calibrated sweeps from 5 microseconds $/ \mathrm{cm}$ to 200 milliseconds/cm or determines the calibrated sensitivity of the horizontal amplifier. Continuous control of sweep time and horizontal sensitivity between calibrated steps is provided by a vernier control which also extends the 200 milliseconds $/ \mathrm{cm}$ sweep time to at least $0.5 \mathrm{sec} / \mathrm{cm}$ and lowers the sensitivity of the $10 \mathrm{volt} / \mathrm{cm}$ step of the horizontal amplifier to at least 100 volts $/ \mathrm{cm}$.

LINEAR INTEGRATOR SWEEP GENERATOR

The accurate direct reading sweeps are obtained from a feedback type integrator winich insures a high order linearity and stability. This type of sweep generator is more reliable and independent of tube characteristics than other types of sweep generator.

X5 SWEEP EXPANSION

You speed observation and analysis of transients by expanding a two centimeter segment of the trace to 10 centimeters for easy viewing of detail. This X5 sweep expander, may be used on all sweep time settings and expands the fastest sweep time to 1 microsecond/cm.

UNIQUE AUTOMATIC TRIGGERING

No time is wasted adjusting trigger controls on the (5p Model 120A, it's automatic, just connect the synchronizing signal to obtain a stable, steady trace. The automatic trigger ends hunting for the spot and facilitates establishing a base line when a synchronizing signal is not present because this circuit triggers the sweep generator to provide a baseline on the CRT in the absence of a synchronizing signal. The automatic baseline provision may be easily and quickly locked-out and an adjustable trigger level established. This lockout is located just behind the front panel where it is easily accessible with a screwdriver.

CALIBRATED AMPLIFIERS

Accurate voltage measurements on all kinds of waveforms are quickly made with the 120 A , the amplifiers are calibrated and accurate within $\pm 5 \%$. A built-in calibrator which is accurate within $\pm 2 \%$ permits quick verification and standardization of vertical amplifier sensitivity.

Phase shift measurements can be made accurately with this oscilloscope over a wide range of input frequencies. Relative phase shift between the vertical and horizontal amplifiers is less than 2° at 100 kc .

CABINET AND RACK MOUNTING

The (${ }^{20}$) Model 120A Oscilloscope is available as a cabinet mount for bench or portable use and as a rack mount for installation in a standard 19 inch equipment rack. Only 7 inches of rack space is required for the 120 AR and it may be supported in
the rack by the front panel or on slides for easy withdrawal from the rack. Since both models are electrically identical and differ only in mechanical placement, this book applies to both models.

The equipment slides are available for the rack mount model at extra cost. They can also be installed at the factory on special order.

1-2 DAMAGE IN TRANSIT

After unpacking this instrument should any shipping damage become evident, refer to the "Claim for Damage in Shipment" paragraph on the warranty sheet in this manual.

1-3 POWER CORD

The three conductor power cable supplied with the instrument is terminated in a polarized three prong male connector recommended by the National Electrical Manufacturer's Association. The third contact is an offset round pin added to a standard two-blade ac plug which grounds the instrument chassis when used with the appropriate receptacle. To use this plug in a standard two contact outlet an adapter should be used to connect the NEMA plug to the two contact system. When the adapter is used the ground connection becomes a short lead from the adapter which can be connected to a suitable ground for the protection of operating personnel.

SECTION II OPERATING INSTRUCTIONS

2-1 CONTROLS AND TERMINALS

Refer to Figure 2-1 for a complete explanation of the panel controls and terminals.

2-2 SYNCHRONIZATION

The Model 120A Oscilloscope may be adjusted to synchronize in reference to the input signal, the power line frequency or from an external signal.

In addition, in the internal synchronization positions, the slope and trigger level point may be adjusted. First, the polarity of the presentation on the screen of the cathode-ray tube may be adjusted by turning the SYNC switch to start the sweep on either a positive going (INT+) or a negative going (INT-) part of the waveform. If automatic sweep triggering at a zero voltage level is not desired, rotate the TRIGGER LEVEL control out of the AUTO position. Further rotation of the control will adjust the trigger level point on the incoming waveform at which the sweep will start.

The 120A features automatic sweep. This special circuit presents a trace on the face of the cathoderay tube in the absence of an input. As soon as a signal is fed in the input the signal takes control of the sweep and triggers the sweep generator at the frequency of the input signal.

2-3 CALIBRATOR

An internal square-wave calibrator, with a nominal frequency of 400 cps , is provided for checking vertical amplifier calibration accuracy. The calibrator 60 millivolt output is connected internally to the vertical amplifier when the VERT. SENSITIVITY switch is placed in the CAL. position. No provision is made for internal connection between the horizontal amplifier and the calibrator. Horizontal amplifier calibration can be checked easily, since an external signal can be measured on the vertical amplifier and then applied to the horizontal amplifier.

2-4 AC OR DC COUPLING

AC coupling permits highgain to be employed without regard for the de level involved. In the AC position the input signal (vertical or horizontal) is coupled to the amplifier through a capacitor which removes the dc component from the input. This coupling circuit has a low frequency cut-off at 2 cps . To avoid degrading input pulses or square waves below 200 cps it is advisable to use dc coupling. WHEN USING DC COUPLING THE DC COMPONENT MAYBE LARGE ENOUGH TO DEFLECT THE TRACE OFF THE FACE OF CRT. IF YOU ARE UNABLE TO FIND THE TRACE WITH THE VERTICAL POSITION CONTROL TRY AC COUPLING. When AC coupled the maximum dc that may be applied is 600 volts.

2-5 OPERATING PROCEDURES

Basic operating procedures are illustrated in the drawings that follow. Directions are given for the cabinet model but are the same for the rack mount model except that the placement of the controls is different.

The first two procedures are complete. The others are arranged to supplement the first two by showing the variations possible in using the oscilloscope. An index to these illustrations follows:

FIG.

2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12

TITLE
Internal Sweep-Internal Synchronization Internal Sweep-External Synchronization AC Coupling-Balanced Input External Horizontal Input Vertical Balance Adjustment Vertical Sensitivity Calibration Internal Sweep Magnification Connection to Deflection Plates Intensity Modulation Operation Aligning Scope Trace with Graticule Connecting External Capacitors to Extend Sweep Time

Figure 2-1. Front Panel Control Diagram
P)

INTERNAL SWEEP-INTERNAL SYNCHRONIZATION

1. Feed vertical input signal to vertical INPUT terminals. Remove jumper to use balanced input (10 mv only).
2. Set AC-DC switch for type coupling desired.
3. Adjust VERTICAL SENSITIVITY control for desired sensitivity.
4. Set SYNCHRONIZATION switch to INTERNAL + or - , depending upon slope of trigger point desired.
5. Adjust SWEEP TIME-HORIZONTAL SENSITIVITY control for desired sweep speed.
6. If AUTOMATIC sweep is not desired, rotate TRIGGER LEVEL control to select level of trigger point.

Figure 2-2

INTERNAL SWEEP - EXTERNAL SYNCHRONIZATION

1. Feed vertical input signal to vertical input terminals. Remove jumper for balanced input (10 mv only).
2. Set AC-DC switch to type of input coupling desired.
3. Adjust VERTICAL SENSITIVITY control for desired deflection.
4. Feed external synchronization signal to horizontal input terminals (ac coupling only with external synchronization).
5. Set SYNCHRONIZATION switch to EXTERNAL.
6. Adjust SWEEP TIME HORIZONTAL SENSITIVITY control for desired sweep speed.
7. Set TRIGGER LEVEL control to AUTOMATIC sweep or rotate TRIGGER LEVEL control to desired trigger-level point.

This procedure is useful when it is desired to observe phenomena occurring at random intervals.

Figure
2-3

AC COUPLING-BALANCED INPUT

1. Set VERTICAL SENSITIVITY control to 10 millivolts/cm, input not balanced on higher ranges.
2. Set AC-DC switch to AC.
3. Disconnect shorting strap.
4. Connect 0.1 microfarad capacitor to bottom red terminal.
5. Connect input signal to A and B.
6. Ground input at the black terminal.

The capacitor must be used to block any dc.

Figure 2-4

EXTERNAL HORIZONTAL INPUT

1. Apply signal to horizontal input terminals. 3. Set SWEEP TIME-HORIZONTAL SENSISIVITY control for desired sensitivity.
2. Set AC-DC switch for type input coupling desired.
3. Adjust horizontal position of pattern with HORIZONTAL POSITION control.

Figure 2-5

VERTICAL BALANCE ADJUSTMENT

RO/B

1. Set VERTICAL SENSITIVITY control to OFF.
2. Turn VERNIER full counter-clockwise.
3. Center trace or spot vertically with VERTICAL POSITION control.
4. Turn VERNIER full clockwise.
5. Adjust VERTICAL DC BALANCE control to center trace or spot.

Repeat steps 2 through 5 until the trace or spot doesn't move as the VERNIER control is rotated.

Figure 2-6

VERTICAL SENSITIVITY CALIBRATION

1. Set VERTICAL SENSITIVITY control to CAL.
2. Set VERNIER to CAL.
3. Adjust VERT. GAIN control to give a pattern height of 6 centimeters.

The vertical amplifier is now calibrated so that the engraved markings on the VERTICAL SENSITIVITY control are accurate within $\pm 5 \%$ whenever the VERNIER control is in the CAL. position.

Figure 2-7

INTERNAL SWEEP MAGNIFICATION

1. Set the SWEEP EXPAND switch to X5.
2. Position the trace with the HORIZ. POS. control to view the desired portion of the trace.

With the SWEEP EXPAND switch in X5, the true sweep speed is the SWEEP TIME switch indication divided by 5.

Figure 2-8

CONNECTION TO DEFLECTION PLATES

CAUTION - Deflection plates of cathode-ray tube operate at high dc potentials. TURN 120A OFF BEFORE REMOVING COVER PLATE FROM DEFLECTION PLATE TERMINALS.

To connect an external signal to the deflection plates:

A. AC COUPLED

1. Remove the jumpers going to terminals D1 and D2 for horizontal input and/or D3 and D4 for vertical input.
2. Connect 1 megohm $1 / 2$ watt resistors in place of the jumpers removed in step 1.
3. Connect the vertical input blocking capacitors to terminals D3 and D4 and the horizontal input blocking capacitors to D3 and D4.

The POSITION controls on the 120A will still control the pattern and good focus will be maintained.

B. DIRECT COUPLED

1. Remove the jumpers going to terminals D1 and D2 for horizontal input and/or D3 and D4 for vertical input.
2. Connect leads from the vertical input directly to D3 and D4 and the lead from the horizontal input directly to D1 and D2.

POSITION controls will no longer control pattern. Position voltages must be furnished by the signal source. Best picture focus is obtained when plates are at +275 V with respect to 120 A chassis.

Figure 2-9

INTENSITY MODULATION OPERATION

CAUTION - The deflection plates of the oscilloscope operate at a dc potential above ground. TURN THE INSTRUMENT OFF BEFORE REMOVING THE COVER PLATE FROM THE DEFLECTION PLATE TERMINALS, TO AVOID COMING IN CONTACT WITH HIGH VOLTAGES.

To intensity modulate with an external signal:

1. Remove the vertical jumper marked Z -axis.
2. Connect the external intensity modulation signal to these terminals (a negative signal will brighten the trace).

Figure 2-10

ALIGNING SCOPE TRACE WITH GRATICULE

To align oscilloscope trace with graticule, remove oscilloscope from cabinet; then

1. Loosen locking clamp with screwdriver.
2. Adjust fiber lever to adjust position of cathoderay tube in both radial and longitudinal direc-
tions. CAUTION HIGH VOLTAGE. TAKE CARE NOT TO TOUCH TERMINALS WHICH HAVE A HIGH POTENTIAL ON THEM.

When the cathode-ray tube is in desired position tighten locking clamp and replace instrument in cabinet.

Figure 2-11

CONNECTING EXTERNAL CAPACITORS TO EXTEND SWEEP TIME

To extend the sweep time, remove chassis from cabinet,

1. Connect external capacitor across capacitor shown on SWEEP TIME/CM switch.
2. Connect external capacitor from point shown to ground.

Values of both capacitors are the same and will be determined by the sweep speed desired. Note that the only ranges that these capacitors will
affect are the 50, 100 and 200 MICROSECONDS/CM ranges. The extension of the sweep time is in proportion to the amount of capacity added to the circuit. For example, since the largest capacity in the circuits are . 2 and . $22 \mu \mathrm{fd}$, using $2 \mu \mathrm{fd}$ capacitors will increase the calibration of the above ranges to approximately .5, 1 , and 2 seconds/cm respectively.

This method will make no great sacrifice in linearity.

Figure

Figure 3-1. Model 120A Block Diagram

SECTION III CIRCUIT DESCRIPTION

3-1 GENERAL CONTENT

This section contains a brief description of the over-all operation of the Model 120A Oscilloscope, descriptions of each major section and detailed descriptions of Schmitt triggers.

3-2 OVER-ALL OPERATION

The block diagram, Figure 3-1, shows the basic signal circuits in the Model 120A Oscilloscope.

A. VERTICAL AMPLIFIER

The vertical amplifier receives the input signal, amplifies it, and drives the vertical deflection plates. It provides attenuation of the input signal, determines the vertical position of the spot on the screen, and supplies a signal for internal synchronization.

B. HORIZONTAL AMPLIFIER

The horizontal amplifier receives an input signal either from the horizontal input terminals or from the internal sweep generator, amplifies the signal and drives the horizontal deflection plates. The horizontal amplifier provides attenuation of the horizontal input signal, magnification of the internal sweep, and determines the horizontal position of the spot on the screen.

C. SWEEP GENERATOR

The sweep generator consists of a trigger generator and a sawtooth generator. The trigger generator receives the synchronizing signal, either internally or externally, and converts it into a pulse which initiates the action of the sawtooth generator. The sawtooth generator will then go through one complete cycle. The sawtooth generator has feedback which automatically shuts itself off upon the completion of one cycle. Another pulse from the trigger generator will be needed before the action will start again. Thus the action of the sweep generator is precisely controlled.

The sweep only starts when a synchronizing signal is received and then only at the same point on the waveform every time.

Trigger Generator - The trigger generator consists of a synchronizing circuit and a trigger generator. The synchronizing circuit receives a signal either from the vertical amplifier for internal synchronization (+ or -), from an internal 6.3 volt source for line frequency synchronization, or from the horizontal input terminals for external synchronization. The trigger generator converts the signal into a fast, constant amplitude pulse for operation of the start-stop trigger. The particular voltage which will trigger the trigger generator is determined by the trigger level control, when AUTOMATIC sweep is not in use.

Sawtooth Generator The sawtooth generator consists of a start-stop trigger, an integrator switch, a sawtooth integrator, and a hold-off cathode follower.

The pulse from the trigger generator controls the start-stop trigger which in turn controls the integrator switch. The start-stop trigger also furnishes an unblanking pulse through the gate inverter to turn the trace on while the sweep is in progress.

The integrator switch controls the action of the sawtooth integrator. When this switch is closed the integrator output is effectively held at a reference voltage, thereby disabling the integrator. When a sweep signal is received this switch opens, permitting the sawtooth integrator to commence its sweep. Sweep speed is determined by the value of resistance and capacitance in the grid circuit of the sawtooth integrator and the voltage supplying the grid resistor.

To permit all circuits to recover after a trace, a bias voltage is applied to the start-stop trigger by the hold-off cathode follower, making the sawtooth generator insensitive to incoming signals during the hold-off time.

D. POWER SUPPLIES

This oscilloscope has two low voltage power supplies supplying +380 volts and -150 volts. Both of these supplies are fully regulated. The high voltage power supply is regulated and has an output of $\mathbf{- 2 2 5 0}$ volts for the cathode-ray tube. The filament supply to the input tubes of the vertical amplifier is regulated by transistors.

E. CATHODE-RAY TUBE

The cathode-ray tube is a 5AQP- monoaccelerator type. It is normally supplied with a P1 phosphor screen but is available in the P7 and P11 phosphors also and P2 upon special order. P2 is not recommended because of low accelerating voltage. All are electrically interchangeable and the tube is easily changed. The mono-accelerator anode makes possible a simple astigmatism adjustment which requires no resetting when adjusting the FOCUS or INTENSITY controls. The deflection plate terminals are connected through removable jumpers at the rear of the instrument so that direct connections to the plates can be made easily.

F. CALIBRATOR

This oscilloscope has a built-in calibrator with which you can calibrate the sensitivity of the vertical amplifier ranges. The calibrator output is a 60 mv peak-to-peak square wave.

3-3 VERTICAL CHANNEL

The vertical amplifier consists of three parts, ACDC switch, the input attenuator and the amplifier section proper.

A. INPUT ATTENUATOR

The Input Attenuator is a six position switch having CALIBRATOR, 10 and 100 MILLIVOLTS/CM, 1 and 10 VOLTS/CM and OFF positions. When the switch is in the CALIBRATOR position the input of the amplifier is directly connected to the output of the calibrator. Since the square-wave output of the calibrator is set to 60 millivolts, the gain of the amplifier should be adjusted to show a pattern height of 6 centimeters, with the VERNIER in the CALIBRATED position. This will calibrate the basic sensitivity of the oscilloscope. When used on the other ranges, precision, frequency adjusted attenuators.are inserted ahead of the vertical amplifier. These attenuators give a ten to one attenuation between adjacent ranges. The sensitivity may be varied continuously between ranges by means of the VERNIER control. This control reduces the sensitivity of any range down to at least ten to one.

Normally, the VERNIER control will be calibrated only in the CALIBRATED switch position. However, it may be calibrated to have a known fraction of the sensitivity of the ranges by setting the VERTICAL SENSITIVITY range switch to the CALIBRATOR position and adjusting the VERNIER control to the desired fraction of the normal six centimeter pattern. As long as the VERNIER control is left at this setting all ranges will have the same fractional sensitivity. The original sensitivity may be restored by merely rotating the VERNIER to the CALIBRATED position.

For ac coupling a. $1 \mu \mathrm{fd}$ capacitor is switched into the signal path by means of the AC-DC switch. This coupling has a low frequency cut-off at approximately 2 cycles per second. However, degradation of input pulses and other complex waveforms, such as square waves, occurs long before the cut-off frequency is reached. Therefore, use dc coupling for any such waveforms below about 200 cycles per second or whenever degradation of waveform is suspected.

Balanced input may be used by removing the jumper to the ground terminal. Balanced input will be found useful in applications where it is desired to amplify the out-of-phase (differential) signal and attenuate the in-phase (common mode) signal at the same time. This rejection is an inherent property of differential amplifiers such as are used in the vertical amplifier. Thus you can reject by better than 100 times any common-mode portion of the input signal while at the same time passing and a mplifying the differential portion of the signal. This will prove to be advantageous very often. Many of the unwanted signals picked up along with desired differential signals are of the common-mode type. Noise, hum, etc., are in this class. By the use of balanced input to the differential amplifiers the picture obtained on the screen of the oscilloscope will improve considerably over that obtained using single-ended input.

The common-mode signal rejection is at least 40 db (100 times). When using balanced dc input certain limitations must be met. The proper operating points must be maintained on the input amplifier. The COMMON-MODE SIGNAL VOLTAGE EITHER POSITIVE OR NEGATIVE ON EITHER GRID MUST NOT EXCEED 3 VOLTS MINUS THE PEAK AMPLITUDE OF THE DIFFERENTIAL SIGNAL.

In addition, it may be found desirable to use differential input with a lower sensitivity input. The easiest way to desensitize up to one order of magnitude (ten times) is to use SENSITIVITY VERNIER. The amplifier is still balanced and signals up to 1 volt peak-to-peak can be easily handled provided the maximum common-mode signal is not exceeded.

B. VERTICAL AMPLIFIER

The vertical amplifier consists of three sets of balanced differential amplifiers in cascade. The last two stages are neutralized by plate-to-grid cross-neutralization. The first stage, with a 12AU7, has the balance and gain adjustments. The balance adjustment is a potentiometer in the cathode circuit which adjusts the current distribution between the two halves of the stage. The two gain adjustments consist of potentiometers connected between the two plates which adjust the resistance between the plates. The screwdriver adjustment, VERT.GAIN, R18, adjusts the basic gain of the amplifier. The front panel control, VERTICAL SENSITIVITY VERNIER, controls the gain over a ten-to-one range and varies the gain between step ranges of the main VERTICAL SENSITIVITY switch. The second balanced differential amplifier, V2, a 12AU7, has a potentiometer between its cathodes which controls the vertical position of the pattern (VERTICAL POSITION). The third balanced differential amplifier, V3, a 12AT7, is the output stage. The resistance between cathodes of this stage provides gain stability and improved linearity. The variable capacitor across this resistance adjusts the frequency response of this stage. In addition, synchronization signals are coupled from the plates of this tube and fed into the sweep generator to trigger the sweep for either INTERNAL + or INTERNAL - synchronization. Since the sweep generator triggers only on the negative slope of the signal, provision is made so that the synchronizing signal can be taken inverted from the opposite half of the tube for INTERNAL+ synchronization.

3-4 HORIZONTAL CHANNEL

The Horizontal Amplifier consists of three parts, the AC-DC coupling switch, the Input Attenuator, and the Amplifier proper.

A. AC-DC COUPLING SWITCH

In the DC position the signals are fed directly into the grid of the first balanced amplifier. In the AC position the signals are fed in through a $.1 \mu \mathrm{fd}$ capacitor.

B. INPUT ATTENUATOR

The Input Attenuator consists of a three-position switch in decade steps, . 1, 1, 10 VOLTS/CM. The attenuator is frequency compensated.

C. HORIZONTAL AMPLIFIER

The horizontal amplifier consists of two crossneutralized balanced differential amplifiers in cascade. When the SWEEP TIME HORIZ. SENS.
switch is moved from the sweep ranges to the horizontal sensitivity ranges the resistance between the cathodes of input amplifier V101, a 6DJ8, is switched to a leg having the horizontal sensitivity VERNIER control in series with the horizontal gain control from the SWEEP EXPAND switch which has either the X1 or X5 SWEEP EXPAND gain controls. The X1 leg has the X1 sweep gain adjustment to calibrate the unmagnified (X1) sweep while the X5 leg has the X5 sweep gain adjustment to calibrate the magnified (X5) sweep. The plates of the input amplifier (grids of the output amplifier) are connected with a variable capacitor to adjust the frequency response. The plates of the output amplifier V102, connect to the horizontal deflection plates through the direct connection links on the rear of the instrument.

3-5 SWEEP GENERATOR

The Sweep Generator consists of a trigger generator, a start-stop trigger, a gate inverter, an integrator switch, a sawtooth integrator and a hold-off cathode follower.

A. TRIGGER GENERATOR

The purpose of the trigger generator is to receive the synchronization signal and convert it into a fast, constant amplitude, pulse for operation of the start-stop trigger. Since the trigger generator and the start-stop trigger are forms of Schmitt trigger circuits a discussion of them follows:

A Schmitt trigger consists of two amplifiers A and B having a dc plate-to-grid coupling from amplifier A to amplifier B and dc cathode-to-cathode coupling. In the case of the Model 120A amplifier A is the pentode and amplifier B is the triode in both the Trigger Generator and the Start-Stop Trigger. The circuit has two stable states: A-side conducting, B-side cut off; B-side conducting, A-side cut off. Due to regenerative action the change-over from one state to the other is very rapid, producing fast rise and decay times from each side of the circuit, either of which can be used for triggering subsequent circuits.

If the A-side, the input side, is conducting and the grid voltage is driven lower than the lower hysteresis limit the circuit will switch state rapidly. The circuit will stay in this state until the input grid is driven above the upper hysteresis limit. At this time the circuit will switch back to its original state. The levels at which this switching action takes place can be adjusted to be close together, such as in the Trigger Generator, or widely spaced, such as in the Start-Stop Trigger. The dc voltage applied to the input grid will determine the state of the circuit.

To trigger the circuit, the A-side grid voltage must cross the particular hysteresis limit which will change the state of the circuit. If A-side is already conducting, which is the normal case in the Model 120 A , driving the grid voltage positive through its upper hysteresis limit will have no effect, but driving the grid voltage negative through its lower hysteresis limit will put A-side out of conduction, and B -side into conduction.

The initial A-side grid bias can be placed inside or outside the hysteresis area, thus establishing the input voltage level required to change A's state. In the Trigger Generator the A-side grid bias is adjusted with the TRIGGER LEVEL control and is placed midway between the narrow upper and lower hysteresis limits in the AUTOMATIC position. Narrow limits are used so that the Trigger Generator will be sensitive and start the synchronizing action with a small input signal.

B. TRIGGER GENERATOR

The Trigger Generator is designed to be triggered on the negative slope of the synchronizing signal. In the AUTOMATIC position the bias on the input pentode stage is adjusted so that the pentode is conducting when waiting for a synchronizing signal and the triode section is cut off. In addition, the bias point is automatically adjusted to an optimum point where the Trigger Generator will trigger on most waveforms. A negative trigger pulse is needed to start the action of the sawtooth generator. When the pentode section of the Schmitt trigger is turned off and the triode is turned on, a negative pulse is produced. This pulse is differentiated in the output circuit of the Schmitt trigger and fed into the sawtooth generator to start the generator. Thus, an input signal which crosses the lower hysteresis limit will start the sweep. When the TRIGGER LEVEL control is turned to its extreme counterclockwise position (AUTO. position) the switches associated with the TRIGGER LEVEL control convert the Trigger Generator into a free-running multivibrator which operates at a frequency of approximately 100 cps . Thus the TriggerGenerator in effect generates its own trigger in the absence of a signal and presents a trace on the face of the cathode-ray tube. As soon as a synchronizing signal is received the applied signal takes control of the synchronization.

In the variable TRIGGER LEVEL control position the feedback for self-triggering is disconnected and the bias level is adjustable. As this control is turned clockwise from the AUTOMATIC position, first the feedback is disconnected and then the control varies the bias level. As the bias is made more and more positive it will require a more negative signal to trigger the Trigger Generator. A differentiating
circuit has been placed in the plate circuit of the final tube (triode) of the Trigger Generator to convert the output into a sharp spike.

C. START-STOP TRIGGER

This sharp output spike is then fed into the Start-Stop Trigger. This is another Schmitt trigger but it has rather wide hysteresis limits. The wide hysteresis limits are needed so that the generated sawtooth can be fed back to the start-stop trigger and thus terminate itself. The integrator output is fed back via the hold-off cathode follower to drive the start-stop trigger past the upper hysteresis limit. When this point is reached the Trigger changes state, causing the Integrator Switch to conduct. Then the voltage discharges through the resistance-capacitance network of the circuit. This voltage is not permitted to reach the lower hysteresis limit, however. A voltage is applied by the HoldOff Cathode Follower to prevent this. Since this hold-off voltage is developed later on in the circuit, it will be explained later.

D. INTEGRATOR SWITCH

The Integrator Switch is controlled by the square-wave output of the Start-Stop Trigger. The Integrator Switch consists of two triodes, one of which is connected as a diode. While the circuit is awaiting a trigger, the diode is normally conducting, thus shorting out the Sawtooth Integrator. When a negative synchronizing signal is received, the Trigger Generator converts it into a negative pulse operating the Trigger Generator which, in turn, puts out a pulse. The negative pulse applied to the plate of the diode causes it to cut-off permitting the Sawtooth Integrator to commence operation. The triode section of the Integrator Switcl: serves to hold the output of the Sawtooth Integrator at a definite voltage (approximately 50 volts) $s^{\prime \prime}$ that the sawtooth will always start from the same point.

E. SAWTOOTH INTEGRATOR

The Sawtooth Integ rator consists of a triode, and a pentode, Miller-type integrator, which generates essentially a linear, positive, rising, waveform which sweeps the trace across the face of the cathode-ray tube at a linear rate. The rate at which this sweep takes place is determined by the values of R and C in the grid circuit of the pentode. These values are varied for each range of the SWEEP TIME switch. When the Integrator Switch opens, the voltage applied to the resistancecapacitance combination tries to charge the capacitor through the resistance. However, the capacitor is connected between the grid and plate of an amplifier. As the voltage across the capacitor starts to change, the change, amplified by the tube
and the output polarity reversed, is applied to the grid thus keeping the voltage relatively constant. Since there is a constant voltage across the resistance, a constant charging current must be flowing into the capacitor. Since the charging current is constant, and the values of the capacitor and charging circuit are constant, the voltage increase across the capacitor is linear.

The rising output waveform of the Sawtooth Integrator is fed through two neon bulbs to the triode section of the 6U8. The signal is then cathodecoupled through another bulb to the Hold-Off Cathode Follower which is used for isolation. Neon bulbs are used to drop the voltage down to the proper levels while at the same time furnishing a directcoupled path for the signal. In general, the neon bulbs are shunted with a capacitor to improve the high-frequency response of the circuit. A resistance is also used in series to prevent the possibility of the neons oscillating.

F. HOLD-OFF CATHODE FOLLOWER

The rate at which the rising output Sawtooth Integ rator reaches the upper hysteresis limit of the Start-Stop Trigger will be determined mainly by the resistance and capacitance in the grid circuit of the Sawtooth Integrator. However, after this signal has triggered-the Start-Stop Trigger, this voltage will be returned to its original value fairly rapidly by the Integrator Switch. It is desired to prevent triggers from initiating another sawtooth until the integrator has time to discharge the timing capacitor and recover fully. The resistancecapacitor combination in the cathode of the holdoff cathode-follower accomplishes this by permitting only a slow decay on the grid voltage of the startstop trigger to a voitage level 2 volts above the lower hysteresis limit. This level is set by the sweep stability control so that negative triggers from the trigger generator will reach below the lower hysteresis limit to trigger the start-stop trigger generator thus initiating a sweep.

The sweep length adjustment in the grid circuit of the Hold-Off Cathode Follower adjusts the voltage supplied to the circuit and thus the length of time that it will take the sweep to reach its upper hysteresis limit. The sweep stability control, in the cathode circuit of the Hold-Off Cathode Follower adjusts the bias on the Start-Stop Trigger. This is adjusted to place the voltage just above the lower hysteresis limits.

G. GATE OUT CATHODE FOLLOWER

Another function of the Start-Stop Trigger is to furnish a pulse to unblank the cathode-ray tube. The Gate Out Cathode Follower, V203A, couples
the required positive pulse from the Start-Stop Trigger to the grid of the CRT for the duration of the sweep.

3-6 LOW VOLTAGE POWER SUPPLIES

The Low Voltage Power Supply consists of two separate supplies furnishing plate voltages, a regulated dc filament supply, and the usual ac filament supplies.

A. PLATE VOLTAGE SUPPLIES IN THE LOW VOLTAGE POWER SUPPLY

The Low Voltage Power Supply contains two plate voltage supplies, one furnishing +380 volts and +100 volts and the other furnishing -150 volts.

The positive plate supply voltage supply consists of a transformer, a 5 Y 3 rectifier, a 6 U 8 (pentode section) amplifier, and a 12B4A control tube in the usual regulated power supply configuration followed by a 6U8 (triode section) cathode follower. This supply has a +380 volts regulated and a +100 volt low-impedance supply from the cathode of the cathode follower.

The negative voltage supply consists of a transformer, a 6X4 rectifier, a 6AU6 amplifier, a 5651 voltage reference tube and a 12B4A control tube in the usual regulated power supply configuration. This supply has a single output at -150 volts. This supply is used for reference and in addition as a negative return for the circuits.

B. TRANSISTORIZED FILAMENT SUPPLY

This supply furnishes regulated +24 volts for use as a filament supply for two twelve-volt filament tubes in series. These tubes are the first two tubes in the Vertical Amplifier. Any change in the filament voltage of these tubes will be greatly amplified and appear as drift on the face of the cathode-ray tube. By supplying this filament voltage from a regulated source the possibility of drift due to the filament supply is greatly reduced.

The supply consists of a silicon power rectifier and two pnp transistors. A power transistor, Q301, connected as a grounded emitter amplifier, acts much the same as the series tube in a conventional vacuum-tube regulator. The control transistor, Q302, compares the regulated filament voltage with the -150 volt regulated supply and provides suitable bias for the power transistor to maintain the filament supply at +24 volts.

3-7 HIGH VOLTAGE POWER SUPPLY

The High Voltage Power Supply consists of a Hartley oscillator, two separate secondary winding supplies and two tube regulators.

The Hartley oscillator consists of a 6AQ5 oscillator tube, and a tapped winding on the high voltage transformer which is series fed from the +380 volt supply. This circuit oscillates at approximately 60 kc . This supply has two separate secondaries and two separate 5642 rectifier tubes. One of these supplies is connected to the grid. The INTENSITY and Intensity Limit potentiometers in series with the ground return of this supply determine the voltage on the intensity grid and thus the brilliance of the pattern.

The other secondary is connected to the cathode of the Cathode-Ray Tube. It is also connected to the regulator resistor string. Voltage is taken from this string and fed into the input of a two tube dccoupled regulator (both sections of a 12AU7). The output of this regulator is then fed back to the screen of the Hartley oscillator in the proper phase to oppose any change in the dc output of the cathode supply

The Intensity Modulation terminals are also ac coupled to the cathode of the Cathode-Ray Tube. A negative voltage input will brighten the trace while a positive voltage of approximately twenty volts will blank the Cathode-Ray Tube from normal intensity.

3-8 CALIBRATOR

The Calibrator consists of two neon bulbs connected to put out a square wave with an amplitude of $60 \mathrm{mil}-$ livolts. When the VERTICAL SENSITIVITY control is switched into the CALIBRATOR position this
signal is applied to the vertical amplifier input. The pattern on the face of the Cathode-Ray Tube should then be adjusted to give a height of six centimeter (VERNIER in CALIBRATED). The oscilloscope will then be calibrated within $\pm 5 \%$ to the sensitivities engraved on the front panel.

Operation of the calibrator is explained, with reference to the schematic of the Calibrator (on the Low Voltage and Filament Supply schematic), as follows:

When the switch, S2, is in the off position both sides of the neons are at the same potential, so there is no action.

When the switch is turned to the on position, the voltage at the top of the neons will try to go to +380 volts since no current is being drawn. I301 will fire first as the voltage across it will increase more rapidly because it is returned to the negative supply. When 1301 fires it will draw current through R358. However, the voltage across R358 will build up slowly because C334 must be charged at the same time. When this capacitor allows the voltage drop across R358 to rise, the voltage at the top of the neons will also rise. When this voltage rises to 70 volts (approximately) above ground, I302 will fire and stay lit until the voltage across C334 discharges through R358 to a voltage approximately 70 volts below the voltage at the top of the neons. I301 will now fire and the action will repeat itself.

I302 is thus alternately turned off and on at a rate of about 400 cps . The output of the calibrator is taken from the current passing through this neon. The output is approximately a square wave which can be set witi R365 to be of exactly 60 millivolts in amplitude. When the output of this calibrator is fed into the vertical amplifier it will show a pattern six centimeters in height when the amplifier is calibrated.

SECTION IV MAINTENANCE

4-1 INTRODUCTION

This section contains instructions for adjusting and servicing the Model 120A Oscilloscope. Whenever possible standard, readily obtainable, components have been used. Other special components may be obtained directly from the Hewlett-Packard Company. When ordering directly from (6P) be sure to specify model and serial number of instrument and description of component as given in Table of Replaceable Parts together with the stock number.

In general, sections in the Model 120A will be found behind the front panel controls for that section. The power supplies are in the rear. Controls and tubes are marked on the chassis. The material in this section is divided according to circuit functions, each section having a complete set of adjustment instructions. The material in this section is as follows:

4-2 Removing the Cabinet

4-3 Connecting for 230-Volt Power Lines
4-4 Tube Replacement
4-5 Isolating Troubles to Major Sections
4-6 Condensed Test and Adjustment Procedure
4-7 Adjustment Procedure
4-8 Turn On
4-9 Power Supplies
4-10 Trigger Generator
4-11 Vertical Amplifier
4-12 Horizontal Amplifier
4-13 Sweep Generator

4-2 REMOVING THE CABINET

Disconnect power cord and remove two large screws on rear of cabinet. Do not remove any front panel screws. Slide oscilloscope forward out of cabinet.

CAUTION

When the cabinet is removed, dangerous voltages are exposed. Take adequate safety precautions, especially when working around the CRT terminals and power supplies.

4-3 CONNECTING FOR 230-VOLT POWER LINES

The 120A is normally shipped from the factory with the dual primary of the power transformer windings connected in parallel for use on 115 -volt ac lines. The windings can easily be reconnected in series for use on 230 -volt power, if desired. First find the power supply input terminal strip located next to the power transformer. Notice that the two outer terminals on each side are jumpered together, connecting the windings in parallel. Remove these jumpers and connect an insulated jumper between the second and fourth terminals, connecting the windings in series.

4-4 TUBE REPLACEMENT

Tubes with standard EIA characteristics can be used for replacement. In a great number of cases, malfunction can be traced to a defective or weak tube. Check tubes by substitution and replace only those proven to be weak or defective. Results obtained by the use of a "tube checker" can be erroneous and misleading. Mark original tubes to insure their being returned to the same socket if not replaced.

The heaters of V1 and V2 are in series and a burnout of either one will turn off the other. See tube replacement chart Table 4-1.

When replacing the CRT, see steps 2,3 , and 4 of paragraph 4-8.

TABLE 4-1. TUBE AND TRANSISTOR REPLACEMENT CHART

Circuit Ref.	Tube or Transistor Type and Function	Tests and/or Adjustments
Q301	2N301 Regulator	Check +24 volt power supply output
Q302	2N383 Amplifier	12AU7 Vert.Input Amp.
V1	Check Vertical Balance and Gain	

TABLE 4-1. CONT'D.

Circuit Ref.	Tube or Transistor Type and Function	Tests and/or Adjustments
V3	12AT7 Vert. Output Amp.	Check Vertical Gain, Balance \& Square Wave Response
V101 V102	6DJ8/ECC88 Horiz. Amp. 12AT7 Horiz. Output Amp.	Entire Horiz. Amp. test procedure, X1 \& X5 sweep calibration and compensation.
V201	6AN8 Trigger Generator	Check Trigger sensitivity
V202	6U8 Start-Stop Trigger	Check Sweep Stability Control adjustment
$\begin{aligned} & \text { V203 } \\ & \text { V204 } \\ & \text { V205 } \end{aligned}$	12AU7 Gate-Out \& Hold-Off Cathode Follower 12AU7 Integrator Switch 6U8 Sawtooth Generator	None
V301 V302 V303 V304	12AU7 Amplifier 6AQ5 Oscillator 5642 H.V.Rectifier 5642 H.V.Rectifier	Check H.V.Power Supply Output
V305	5AQP1, 2, 7, or 11 CRT	See adjustments under "TURN ON" \& also check Vert. \& Horiz. Gain
V306	5AR4/GZ34 Rectifier	None
V307	12B4A Regulator	Check +380 volt power supply output
V308	6U8 Amplifier	Check +380 \& +100 volt power supply output voltages
V309	6X4 Rectifier	None
$\begin{aligned} & \text { V310 } \\ & \text { V311 } \\ & \text { V312 } \\ & \hline \end{aligned}$	12B4A Regulator 6AU6 Amplifier 5651 Reference	Check - 150 volt power supply output

4-5 ISOLATING TROUBLES TO MAJOR SECTIONS

NOTE

IF NO TRACE CAN BE OBTAINED ON THE CRT FACE, SET ALL CONTROLS EXACTLY AS SHOWN IN FIGURE 2-1.

IF THE INSTRUMENT WILL NOT OPERATE, check that power is being applied to the instrument and that the power cord is making good contact. Check the fuse by substitution. If still inoperative, remove cabinet and check continuity through ac power circuit.

IF INSTRUMENT TURNS ON BUT WILL NOT PERFORM SOME FUNCTION, be sure that the cause is not maladjustment of the front panel controls. Set the TRIGGER LEVEL control to AUTO. Try to localize the trouble to a particular main section by checking the controls and how well they perform their functions.

AFTER DETERMINING INOPERATIVE SECTION, visual and electrical inspection will pinpoint the repair that is necessary. Avoid making any adjustment until the cause of the malfunction has been corrected.

Check tubes as described in paragraph 4-4. Return tubes to their original sockets unless replaced.

The two sides of the differential amplifier circuits are normally balanced to position the spot in the center of the CRT. A fault in either side will usually unbalance the circuit and cause the spot to move off the screen. To bring the spot back, short together the control grids (or the plates) of the two sides of one stage. This eliminates signals of all types, dc unbalance, jitter, etc. originating prior to the shorted points. If shorting the two halves of a stage together does not bring the spot on the screen and hold the spot motionless, a subsequent circuit is faulty. Continue this process through the amplifier until the spot does appear. After isolating the fault to a particular stage, check plate, grid, and cathode circuits of the stage and the preceding stage for the cause of the unbalanced condition.

4-6 CONDENSED TEST AND ADJUSTMENT PROCEDURE

All the basic tests and adjustments are covered in
the following Table 4-2. This procedure is for instruments that are functioning. If the instrument is not operating, refer to paragraph 4-5, Isolating Troubles to Major Sections.

TABLE 4-2. MODEL 120A CONDENSED TEST AND ADJUSTMENT PROCEDURE

Test	External Equipment Required	Procedure	Adjust	Notes
1. Low Voltage Power Supply	DC vtvm with 1\% accuracy	Measure all low voltage power supply outputs, should be within the following limits: $\begin{array}{ll} -150 & \pm 4 \text { volts } \\ +100 & \pm 3 \text { volts } \\ +380 & \pm 10 \text { volts } \\ +24 & \pm 1 \text { volt } \end{array}$	Do not adjust if within limits. Adjust R344 for -150 volts.	Check sweep calibration if -150 V is adjusted.
2. Vertical Amplifier Balance	None	VERT. SENS to $10 \mathrm{mv} / \mathrm{cm}$, VERNIER full cew	Position spot in center of screen with VERT. POS.	Repeat as required
		Rotate VERNIER full cw	Center spot with VERT.DC BAL.	
3. Vertical Amplifier Gain	400 cycle voltage Calibration Generator	VERT.SENS. to $10 \mathrm{mv} / \mathrm{cm}$, VERNIER to CAL. Connect $100 \mathrm{mv} \mathrm{p}-\mathrm{p}$ from Calibration Generator to vertical input	Adjust VERT. GAIN (R18) for 10 cm deflection	.
4. Calibrator	None	VERT.SENS. switch and VERNIER to CAL.	Adjust CALIBRATOR SET (R356) for 6.0 cm dellection	
5. Horizontal Balance	None	HOR.SENS. to $10 \mathrm{v} / \mathrm{cm}$, VERNIER to CAL., VERT.SENSto OFF	Center spot with HOR. POS.	Repeat as required
		Turn VERNIER full cew	Center spot with HORIZ. BALANCE (R110)	
6. Horizontal Amplifier Gain	400 cycle Voltage Calibration Generator	HOR.SENS to . $1 \mathrm{v} / \mathrm{cm}$, VERNIER to CAL., VERT.SENS. to OFF Connect 1.0 volt p-p from Calibration Generator to horizontal input.	Set HORIZ. GAN (R114) for 10 cm deflection	.
7. Horizontal Amplifier Sweep Gain	Time Marker Generator	SWEEP TME 5 MS/CM, SWEEP EXPAND X 1. Apply 5 ms markers to vertical input.	Adjust trigger level for stable pattern. Adjust R107 for marker coincidence with 1 cm graticule marks	
		Change time markers to 1 ms . SWEEP EXPAND to X5.	Adjust R108 for marker coincidence with 1 cm graticule marks	
8. Horizontal Amplifier Compensation	Oscilloscope with low capcity probe	SWEEP TIME $10 \mu \mathrm{sec} / \mathrm{cm}$. , SWEEP EXPAND to X1 Connect probe to either horizontal deflection plate terminal pin 1 or 6 of V102 Adjust sweep start to center of screen.	Adjust C105 to compensate ayback	
		SWEEP EXPAND to X5. Adjust sweep start to center of screen.	Adjust C106 to compensate flyback	
9. Trigger Sensitivity	1) Oscilloscope with 10:1 probe 2) 50 cps to 250 kc oscillator 3) AC VTVM	SYNC to EXT., TRIGGER LEVEL to AUTO. DC couple a 250 kc sine wave of .7 volts rms into the EXT.SYNC input. Couple scope to body of R204 (a $3.6 \mathrm{~K}, 1 / 2 \mathrm{~W}$ resistor on pin 6 of V201).	Set trigger sensitivity control (R247) just clockwise of the point where stable triggers are obtained.	Check for stable triggers from 50 cps to 250 kcs with 0.5 volt rms
10. Sweep Stability	DC VTVM	Disconnect all ext. inputs. Connect VTVM (-100 volt scale) to pin 8 of V203, VERT.SENS. to OFF, SWEEP TMME 0.5 ms , SYNC.INT., TRIGGER LEVEL full cew but not in AUTO.	Slowiy adjust SWEEP STABILITY (R228) until sweep begins. Repeat several times and note voltage just prior to sweep start. Set R228 for 2 volts more positive.	
11. Sweep Length	250 kc sine wave Oscillator	SWEEP TME switch to 200 microsecond/cm. Connect 250 kc sine wave to vertical input.	Adjust signal voltage or VERT. SENS. to produce 4 to 10 cm dellection. Adjust SWEEP LENGTH control for 10.5 cm trace length.	.

4-7 ADJUSTMENT PROCEDURE

Usually a particular oscilloscope will not need complete testing and calibration. Only one or two tests will be needed and they can be done without completing the entire test procedure.

The following procedures are listed in a recommended sequence for a complete test and calibration operation. In general, tubes are the main cause of trouble and new ones should be tried before making adjustments or other component replacements.

Specifications for the (bp Model 120A Oscilloscope are given in the front of this manual. The following test procedure contains extra checks to help you analyze a particular instrument. These extra checks and the data they contain can not be considered as specifications.

A fifteen minute warm-up and power supply output voltage measurements are always recommended before making any other test or adjustment.

4-8 TURN ON

1) Measure resistance from the power supplies to ground with an (ap) Model 410B Voltmeter. They should be within 25% of the following:

+380 volt supply	50 K ohms
+100	50 K ohms
-150	12 K ohms
+24	5.5 K (remove 12AU7)

Measure resistances to ground into the vertical and horizontal input terminals for all switch positions, place AC-DC switches in DC position. As measured with an (5p Model 410B Voltmeter these resistances should read:

$$
\begin{aligned}
\text { VERT. SENSITIVITY } & =1 \text { megohm } \\
\text { OFF } & =\infty \\
\text { CAL. } & =\infty \\
\text { SWEEP TIME HOR.SENS. } & =1 \text { megohm }
\end{aligned}
$$

When turning the oscilloscope on for the first time after repair in any power supply circuit, turn the intensity and one positioning control full counterclockwise before applying power. Failure to follow this precaution may cause permanent cathode-ray tube damage.
2) Turn instrument on (see precaution above) and measure the output voltage of the internal power supplies. If you are able to get a small, round,
and sharply focused spot with good brilliance, the high voltage power supply can be assumed to be operating properly.

If necessary, the high voltage can be measured at the FOCUS control terminal with the orange wire. Control R308 can be adjusted to set this voltage to -2250 volts.
3) If R308 setting is changed, adjust FOCUS and ASTIGMATISM (R316) controls at low intensity to obtain a small, round, and sharply focused spot.
4) If the cathode-ray tube physical position has been changed, check trace alignment with bezel. Turn TRIGGER LEVEL control fully counterclockwise to AUTO. Set SWEEP TIME switch to 50 MICROSECONDS/CM. The CRT trace should be parallel with the graticule. The CRT face should be positioned just behind the filter in the bezel. If CRT face and filter touch, Newton rings will occur.

4-9 POWER SUPPLIES

The power supplies in the oscilloscope are extremely stable and will require infrequent adjustment. The output voltages should be measured at regular intervals but unnecessary adjustments should be avoided.

CAUTION

When first turning an oscilloscope on after power supply repairs, turn the intensity and either positioning control full counterclockwise before applying power. Failure to follow this precaution can cause permanent cathode-ray tube damage.

1) Turn instrument on and allow at least 15 minutes for warm-up.
2) Turn sweep generator off by turning the SWEEP TIME - HOR. SENS. switch to 10 VOLTS/CM.
3) Measure power supply output voltages with line voltage set to 115 volts. The points at which the various voltages appear can be identified by the wire color code given in Table 4-3. The voltages will normally be within the limits given in Table 4-3. Control R344 can be adjusted if necessary to set the -150 volt supply within limits.

If adjustment of the -150 volt supply was necessary, you will also have to check all Sweep Generator and Calibrator adjustments.

TABLE 4-3. REGULATED POWER SUPPLY TOLERANCES

Nominal Voltage	Normal Ripple*	Color Code	Voltage Tolerance*
-150	3 mv	Purple	± 4 volts
+380	40 mv	Red	± 10 volts
+100	4 mv	Yellow	± 3 volts
+24	40 mv	White**	± 1 volt

* With line voltage set to 115 volts.
** In vertical amplifier.

4) You may wish to check regulation of each power supply voltage as the power line voltage is varied between 103 to 127 volts. All regulated voltages should remain within $\pm 1 \%$ over this range of line voltage.
5) Measure the ripple voltage on the various supplies, they should approximate the values given in Table 4-3 with the line voltage set to 115 volts.
6) Measure CRT cathode voltage at FOCUS control terminal with the orange wire. Añ (tp 410B VTVM with a 459A Voltage Multiplier Probe is recommended. If necessary, control R308 can be adjusted to set this voltage to $\mathbf{- 2 2 5 0}$ volts.
7) Adjust FOCUS control for best focus and set ASTIGMATISM control R316 for a small round spot. Set pointer on INTENSITY knob to 90^{\prime} clock and adjust Intensity Limit control R322 so that the CRT spot is just extinguished. These adjustments are usually required only if the setting of the high voltage control has been changed.

4-10 TRIGGER GENERATOR

The Trigger Generator must be working in order to adjust the Vertical and Horizontal Amplifiers. Also, these amplifiers must be adjusted before the Sawtooth Generator can be adjusted. To check the Trigger Generator proceed as follows:

1) Check power supply according to paragraph 4-9.
2) Stability Adjustment:

Set controls as follows,

Connect (40 410B (-100v range) to pin 8 V203。 Rotate Sweep Stability Control, R228, ccw until sweep is triggered, then back off until it just stops. Take a voltage reading which should be about -72 volts. Now connect a clip lead from pin 1 V201 to ground. Slowly rotate R228 ccw until the sweep starts freerunning, then back off until it just stops. Take a voltage reading which should be about -78 volts. The difference between these two readings is the amplitude of the triggers and must be between 5 and 7 volts. While the triggers are shorted (clip lead from pin 1 V201 to ground) set R223 to 2.0 volts more positive than the last reading. This is the proper setting for the stability control.

3) External Trigger Sensitivity:

Set controls as follows,

Connect a 250 kc sine wave of 0.7 v rms into the SYNC terminals. With a $10: 1$ or better a $50: 1$ probe and oscilloscope observe the output triggers from the Trigger Generator as you increase the Trigger Sensitivity control R247. Increase trigger sensitivity until stable triggers are obtained. Check trigger sensitivity from 50 cps to 250 kc . Stable triggering should be obtained with less than 0.7 vrms over this range. Disconnect input, set TRIGGER LEVEL to AUTO -- the Trigger Generator should free-run.

A useable indication for this adjustment can also be obtained by clipping the oscilloscope probe over the body of resistor R204. This is the plate resistor for V201A.

4) TRIGGER LEVEL:

Set controls as follows,
SYNC $\quad \ldots \ldots$. INT+
Adjust input for 8 cm of deflection. Rotate TRIGGER LEVEL control clockwise and see that the starting point of sweep moves upward. The range of this control should be at least +2 cm from the average value of the signal. Switch SYNC switch to EXT. Adjust input signal for 20 v peak-to-peak. Range of TRIGGER LEVEL control should exceed this signal.
5) Internal Trigger Sensitivity:

Set controls as follows,

Figure 4-1. Most Internal Calibration Controls are Located in an Easily-Reached Row along side of Chassis. (See also Figure 4-2.)

With a 10 kc sine wave fed into the Vertical Amplifier, decrease the input to the point where the triggers are becoming unsteady (observe triggers as above). Vertical deflection should be less than 0.5 cm when the triggers become unsteady. Check triggering from 50 cps to 250 kc .
6) Trigger Level Sensitivity:

Repeat tests in the two previous paragraphs using TRIGGER LEVEL control (adjust for maximum sensitivity). Check using same sensitivity specifications over range from 10 cps to 250 kc .
7) Line Synchronization:

Set controls as follows,

```
SYNC - - . - . . . - . - . . . - LINE
TRIGGER LEVEL - - - - - - - - - - AUTO
```

The normal 60 cycle pickup in Vertical Amplifier should give a stable pattern.

4-11 VERTICAL AMPLIFIER

1) Balance:

Set controls as follows,
VERT. SENSITIVITY - - - - - 10 VOLTS/CM HOR. SENS. - . . - . - - - 10 VOLTS/CM

Turn VERT. SENSITIVITY VERNIER full counterclockwise and position spot to center with VERT. POS. control. Turn VERNIER clockwise and reposition spot to center with VERT. DC BAL. control. Repeat this sequence until there is no movement of spot as VERNIER is rotated. Set VERT. POS. control to the center. Spot should now be on the screen.
2) Gain:

Set controls as follows,
VERT. SENSITIVITY - - 10 MILLIVOLTS/CM VERT. SENSITIVITY VERNIER - . - - CAL

With 100 millivolts peak-to-peak from a Voltmeter Calibration Generator set Vertical Amplifier VERT. GAIN control to give exactly 10 cm of deflection. Check this setting at high and low line voltage.

3) Calibrator:

Set controls as follows,
VERT. SENSITIVITY $-\ldots \ldots$ VAL
VERT. SENSITIVITY VERNIER $-\ldots-\quad$ CAL
SWEEP TIME $-\ldots \quad 2 \mathrm{MHLISECONDS/CM}$
Check deflection polarity by varying R356. The top of the calibrator square wave should move. Set R356 for 6.0 cm of calibrator deflection. Check symmetry -- should be $40-60 \%$ or better.
4) Square Wave Response:

Set controls as follows,
VERT. SENSITIVITY - - 10 MILLIVOLTS/CM
VERT. SENSITIVITY VERNIER - - - - CAL

TRIGGER LEVEL - . . - - AUTO
SWEEP TIME - - - - 10 MICROSECONDS/CM
Apply 50 kc square wave to vertical input terminals. Adjust generator for 8 cm deflection. Adjust C15 (see Figure 4-2) for best square wave response. A maximum of 2% overshoot is permitted.
5) Attenuator Compensation:

Set controls as follows,
VERT. SENSITIVITY - - 100 MLLLIVOLTS/CM VERT. SENSITIVITY VERNIER - - - - CAL SYNC - - - - - - - - - - - - INT TRIGGER LEVEL - - AUTO SWEEP TIME - - - 200 MICROSECONDS/CM

Apply 5 kc square wave to vertical input terminals. Adjust for 8 cm deflection. Adjust C 6 on vertical attenuator for a flat top square wave. Switch VERT. SENSITIVITY control to 1 VOLT/CM and increase input to give 8 cm deflection. Adjust C 2 for flat response. Switch Vertical Sensitivity to 10 VOLT/CM and check for flat response. Should be within 1%. Now switch back through the four attenuator positions and check for $10: 1$ steps. All should be $10: 1$ within 1%.
6) Frequency Response:

Set controls as follows,
VERT. SENSITIVITY - - 10 MILLIVOLTS/CM
VERT. SENSITIVITY VERNIER - . . . - CAL

Apply 2 kc sine wave to vertical input terminals and also measure this input with an (2p Model 400D. Adjust input signal for exactly 10 cm deflection. Note reading on 400D. Apply 200 kc sine wave and adjust the input to the same reading on 400D. Deflection on screen should be greater than 8 cm .

4-12 HORIZONTAL AMPLIFIER

1) Balance:

Set controls as follows,
HOR. SENS. - - - 10 VOLTS/CM
HOR. SENS.VERNIER - - CAL
VERT. SENSITIVITY - OFF
Position spot to center of screen with HORIZ. POS. control. Turn HOR. SENS. VERNIER full counterclockwise position and reposition with Horizontal Balance Adjustment, R110. Turn HOR. SENSITIVITY VERNIER to CAL and center spot with HORIZ. POS. control. Repeat until there is no movement of spot when VERNIER is rotated. Set HORIZ. POS. control to center. The spot should now be on the screen.
2) Gain:

Set controls as follows,
HOR. SENS. - - 0.1 VOLTS/CM
HOR. SENS. VERNIER - - - - - - - CAL
Apply 1.0 v peak-to-peak from a Voltmeter Calibration Generator to the Horizontal input terminals. Set Horiz. Gain Adjustment, R114, for exactly 10 cm of deflection. Check this setting at high and low line voltages.
3) Square Wave Response:

Set controls as follows,
HOR. SENSITIVITY - - - 0.1 VOLTS/CM
HOR. SENSITIVITY VERNIER - - - - - CAL
Connect 8 kc (approximately) sine wave to Vertical input terminals and sync-in terminal of square wave generator. Adjust the gain on the oscillator for 10 cm deflection. Apply 50 kc square wave to Horizontal input terminals, and adjust the square wave amplitude for 6 to 8 cm deflection. Adjust C107 for minimum capacity. Adjust C110 for best square wave response. A maximum of 2% overshoot is permitted.
4) Attenuator Compensation:

Set controls as follows,
HOR. SENSITIVITY - - - - - - 1 VOLTS/CM
HOR. SENSITIVITY VERNIER - . . - - CAL

Connect 800 cps (approximately) sine wave to Vertical input terminals and sync-interminal of square wave generator. Adjust the gain on the oscillator for 10 cm deflection. Apply 5 kc square wave to Horizontal input terminals and adjust the square wave amplitude for 6 to 8 cm deflection. Adjust C235 on horizontal attenuator for flat response. Set HOR. SENS. to 10 VOLTS/CM and adjust C233 for flat response. Now switch back through the three attenuator ranges and check for 10:1 division. Division should be within 5%.

5) Phase Adjustment:

Set controls as follows,
HOR. SENS. $-\ldots 0.1$ VOLTS/CM
HOR. SENS. VERNIER
VERT. SENSITIVITY -100 MILLIVOLTS/CM
VERT. SENSITIVITY VERNIER $\ldots \ldots-. \quad$ CAL
Apply 100 kc sine wave to both Vertical and Horizontal inputs. Adjust amplitude to give about 6 cm of deflection in each direction. Adjust C107 for closure of the pattern. Switch both VERT. SENSITIVITY and HOR. SENS. to 10 VOLTS/CM. Increase input to obtain approximately the same pattern as before. Adjust C18 for closure of pattern. Increase the input frequency until the pattern just opens. This frequency should be greater than 150 kc . Check phase adjustment on. 1 VOLT/CM and 1 VOLT/CM ranges also.

4-13 SWEEP GENERATOR

The Vertical and Horizontal amplifiers must be adjusted before the Sweep Generator can be adjusted completely.

1) X 1 Calibration:

Set controls as follows,

```
SWEEP TIME - . - - }10\mathrm{ MILLISECONDS/CM
SWEEP EXPAND ............... X1
```

Connect 10-millisecond time marker to Vertical input terminals. Adjust TRIGGER LEVEL control and choose either INT + or - for best pattern. Adjust X1 Sweep Gain Adjustment, R107, for 1 marker per centimeter.
2) X5 Calibration:

Set controls as follows,
SWEEP EXPAND X5

Apply 10-millisecond time marker to Vertical input terminals. Adjust TRIGGER LEVEL control for best pattern. Adjust X5 Sweep Gain Adjustment R108, for 1 marker per 5 centimeter.
3) Sweep Linearity Adjustments:

Set controls as follows,
SWEEP TIME - - 10 MICROSECONDS/CM VERNIER to CALIBRATE
SWEEP EXPAND …............... X1
Connect 10 -microsecond time marker to Vertical input terminals and adjust VERTICAL SENSITIVITY, SYNC, and TRIGGER LEVE L for best presentation. Adjust HORIZONTAL POSITION so last marker on the trace is aligned with last graticule marking. Adjust C226 (see Figure 4-2) so last five markers coincide with every major graticule divisions (one marker per centimeter). Set R225, Sweep Length Adjustment, to obtain approximately 10 cm of sweep. Adjust C214 (see Figure 4-2) so first five markers on the trace coincide with every major graticule divisions. If necessary adjust HORIZONTAL POSITION so last marker on the trace is always aligned with last graticule marking.
Change SWEEP TIME to 5 MICROSECONDS/CM and apply 1-microsecond time marker to Vertical input terminals. Adjust VERTICAL SENSITIVITY, SYNC, and TRIGGER LEVEL for best presentation. Adjust HORIZONTAL POSITION so sweep starts on left-hand graticule mark. Adjust C105 (see Figure 4-2) for equal spacing of markers on first portion of sweep (five markers per centimeter).
Change SWEEP TIME to 20 MICROSECONDS/CM and SWEEP EXPAND TO X5. Apply 1 -microsecond time marker to Vertical input and adjust for best presentation. Adjust HORIZONTAL POSITION so sweep starts on left-hand graticule mark. Adjust C106 (see Figure 4-2) for equal spacing of markers on first portion of sweep (four markers per centimeter)。
4) Calibrate 50 -microseconds/cm Sweep:
Set controls as follows,
SWEEP TIME - - $\quad 50$ MICROSECONDS/CM
SWEEP EXPAND - \quad VERNIER to CALIBRATE

Connect 100-microsecond time marker to Vertical input terminals and adjust VERTICAL SENSITIVITY, SYNC, and TRIGGER LEVEL for best presentation. Adjust C225 (see Figure 4-1) for marker coincidence with every other major graticule division (one marker per 2 centimeters).
5) Calibrate 0.5-millisecond/cm Sweep: Set controls as follows,

```
SWEEP TIME - - - . }5\mathrm{ MILLISECONDS/CM
    VERNIER to CALIBRATE
SWEEP EXPAND - . - . . . . . . - X1
```

Connect 1-millisecond time marker to Vertical input terminals and adjust VERTICAL SENSITIVITY, SYNC, and TRIGGER LEVEL for best presentation. Adjust C223 (see Figure 2-1) for marker coincidence with every other major graticule division (one marker per 2 centimeters).
6) Calibrate 50 -milliseconds/cm Sweep

Set controls as follows,

> SWEEP TIME - -- 50 MLLLISECONDS/CM VERNIER to CALIBRATE

SWEEP EXPAND $\ldots \ldots$. $\ldots \ldots$
Connect 100 -millisecond time marker to Vertical input terminals and adjust VERTICAL SENSITIVITY, SYNC, and TRIGGER LEVEL for best presentation. Adjust R251, 50 msec Calibrate, for marker coincidence with every other major graticule division (one marker per 2 centimeters).

7) Sweep Length:

Set controls as follows,
SWEEP TIME - - - 200 MICROSECONDS/CM
Connect 1-microsecond time markers to the Vertical input terminal. Adjust TRIGGER LEVEL control for stable pattern, if necessary. Adjust Sweep Length Adjustment, R225, for 10.5 cm of sweep.
8) Hum:

Set controls as follows,
SWEEP TIME - - - - 1 MILLISECOND/CM
SYNC - - INT
TRIGGER LEVEL - AUTO
SWEEP EXPAND - X1
Connect 1 kc sine wave to the Vertical input terminals. Turn the SWEEP TIME VERNIER down approximately $3: 1$ and tune to observe hum modulation on sweep. Switch SWEEP EXPAND switch to X5. Adjust Hum Balance control, R360, for minimum hum. In addition, there should be less than .05 cm shift in the trace.

Mechanical shock can magnetize the CRT shield and destroy its shielding properties. Demagnetization is most easily accomplished by annealing.
9) Common-mode Rejection: Set controls as follows, VERT. SENSITIVITY - - 10 MHLIVOLTS/CM VERT.SENSITIVITY VERNIER - . . - CAL SWEEP TIME - - 0.5 MILLISECOND/CM

Check balance of vertical amplifier (paragraph 4-11 step 1). Apply 1 kc sine wave from (70) 200CD to Vertical input terminals through an (tp) 350B Attenuator with 600 ohm termination. With the 200 CD at maximum output, switch in attenuation until 1 cm of signal is displayed. Change input to balanced (remove jumper) and feed same signal into both grids. Remove attenuation until a 1 cm of deflection is again achieved. The attenuation removed should be greater than 40 db .

SCHEMATIC DIAGRAM NOTES

1. Heavy solid line shows main signal path; heavy dashed line shows control, secondary signal, or feedback path.
2. Heavy box indicates front-panel engraving; light box indicates chassis marking.
3. Arrows on potentiometers indicate clockwise rotation as viewed from the round shaft end, counterclockwise from the rectangular shaft end.
4. Resistance values in ohms, inductance in microhenries, and capacitance in micromicrofarads unless otherwise specified.
5. Rotary switch schematics are electrical representations; for exact switching details refer to the switch assembly drawings.
6. Relays shown in condition prevailing during normal instrument operation.
7. \ddagger indicates avselected part. See parts list.
8. Interconnecting parts and assemblies are shown on cable diagram.
9. * Value adjusted at factory. Part may be omitted.

VOLTAGE AND RESISTANCE DIAGRAM NOTES

1. Each tube socket terminal is numbered and lettered to indicate the tube element and pin number, as follows:
$*=$ no tube element
H $=$ heater
$\mathbf{K}=$ cathode
$\mathbf{G}=$ control grid
Sc $=$ screen grid
Sp $=$ suppressor grid
$\mathbf{H m}=$ heater mid-tap
IS $=$ internal shield

\mathbf{P}	$=$ plate
\mathbf{T}	$=$ target (plate)
\mathbf{R}	$=$ reflector or repeller
\mathbf{A}	$=$ anode (plate)
\mathbf{S}	$=$ spade
$\mathbf{S h}=$ shield	
$\mathbf{N C}=$ no external connection to socket	
$\mathbf{\Delta}=$ indefinite reading due to circuit (see 2.)	

The numerical subscript to tube-element designators indicates the section of a multiple-section tube; the letter subscript to tube-element designators indicates the functional difference between like elements in the same tube section, such as t for triode and p for pentode.

A socket terminal with an asterisk may be used as a tie point and may have a voltage and resistance shown.
2. Voltages values shown are for guidance; values may vary from those shown due to tube aging or normal differences between instruments. Resistance values may vary considerably from those shown when the circuit contains potentiometers, crystal diodes, or electrolytic capacitors.
3. Voltage measured at the terminal is shown above the line, resistance below the line; measurements made with an electronic multimeter, from terminal to chassis ground unless otherwise noted.
4. A solid line between socket terminals indicates a connection external to the tube between the terminals; a dotted line between terminals indicates a connection inside the tube. Voltage and resistance are given at only one of the two joined terminals.

VIEWED FROM BELOW

Figure 4-2. Adjustment Location and Voltage Resistance Diagram

Figure 4-3. Vertical Amplifier

Figure 4-4. Horizontal Amplifior

Figure 4-5. Sweep Generator

Figure 4-6. Sweep Time Switch

Figure 4-7. High Voltage Powor Supply

Figure 4-8. Low Voltage and Filament Supplies

NOTE

Standard components have been used in this instrument, whenever possible. Special components may be obtained from your local Hewlett-Packard representative or from the factory.

When ordering parts always include:

1. (ap) Stock Number.
2. Complete description of part including circuit reference.
3. Model number and serial number of instrument.
4. If part is not listed, give complete description, function and location of part.

Corrections to the Table of Replaceable Parts are listed on an Instruction Manual Change sheet at the front of this manual.

RECOMMENDED SPARE PARTS LIST

Column RS in the Table lists the recommended spare parts quantities to maintain one instrument for one year of isolated service. Order complete spare parts kits from the Factory Parts Sales Department. ALWAYS MENTION THE MODEL AND SERIAL NUMBERS OF INSTRUMENTS INVOLVED.

TABLE OF REPLACEABLE PARTS

* Refer to "List of Manufacturers' Codes".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to "List of Manufacturers' Codes".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to 'List of Manufacturers' Codes".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to '"List of Manufacturers' Codes".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to 'List of Manufacturers' Codes''.

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to "List of Manufacturers' Codes".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to "'List of Manufacturers' Codes".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to "List of Manufacturers' Codes'".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to 'List of Manufacturers' Codes'".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to "List of Manufacturers' Codes'".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

[^0]TABLE OF REPLACEABLE PARTS

* Refer to "List of Manufacturers' Codes".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to "List of Manufacturers' Codes".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to 'List of Manufacturers' Codes''.

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to 'List of Manufacturers' Codes".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to 'List of Manufacturers' Codes".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to "List of Manufacturers' Codes".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

TABLE OF REPLACEABLE PARTS

* Refer to "List of Manufacturers' Codes".

TQ Total Quantity used in the instrument.
RS Recommended spares for one year isolated service for one instrument.

LIST OF MANUFACTURERS

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H 4 handbooks.

CODE

NO. MANUFACTURER
00334 Humidial Co.
00335 Westrex Corp.
00656 Aerovox Corp.
00781 Aircraft Radio Corp
00853 Sangamo Electric Co, Cap. Doonton, N.J.
Marion, III.
00891 Carl E. Holmes Corp. Los Angeles, Calif. 01121 Allen Bradley Co. Milwaukee, Wis. 01255 Litton Industries, Inc. Beverly Hills, Calif. 01281 Pacific Semiconductors, Inc.

01295 Texas Instruments, Inc.

Dallas, Texas
01349 The Alliance Mfg. Co. Alliance, Ohio 02114 Ferroxcube Corp. of America

Saugerties, N.Y. 02286 Cole Mfg. Co. Palo Alto, Calif. 02660 Amphenol Electronics Corp. Chicago, III. 02735 Radio Corp. of America Semiconductor and Materials Div.

Somerville, N.J.
02777 Hopkins Engineering Co.
San Francisco, Calif. 03508 G.E. Semiconductor Products Dept.

Syracuse, N.Y.
03705 Apex Machine \& Tool Co. Dayton, Ohio 03797 Eldema Corp. El Monte, Calif. 04009 Arrow, Hart and Hegeman Elect. Co.
$04222 \mathrm{Hi}-Q$ Division of Aerovox Myrtle Beach, S.C. 04404 Dymec Inc. Palo Alto, Calif.
04651 Special Tube Operations of
Sylvania Electronic Systems Mountain View, Calif.
04713 Motorola, Inc., Semicanductor $04777 \begin{aligned} & \text { Prod. Div. } \\ & \text { Automatic Electric Sales Corp. }\end{aligned}$

Northlake, III.
05624 Barber Colman Co. Rockford, III.
05783 Stewart Engineering Co. Soquel, Calif.
06004 The Bassick Co. Bridgeport, Conn.
06812 Torrington Mfg. Co., West. Div. Van Nuys, Calif.
07115 Corning Glass Works
Electronic Components Dept. Bradford, Pa.
07261 Avnet Corp.
Los Angeles, Calif.
07263 Fairchild Semiconductor Corp.
Mountain View, Calif.
07933 Rheem Semiconductor Corp.
Mountain View, Calif.
07980 Boonton Radio Corp. Boonton, N.J.
08718 Cannon Electric Co. Phoenix, Ariz.
08733 Camloc Fastener Corp. Los Angeles, Calif.
08792 CBS Electronics Semiconductor
Operations, Div. of C.B.S. Inc. Lowell, Mass.
09134 Texas Capacitor Co. Houston, Texas
09250 Electro Assemblies, Inc. Chicago, III.
10646 Carborundum Co. Niagara Falls, N.Y.
12697 Clarostat Mfg. Co. Dover, N.H.
14655 Cornell Dubilier Elec. Corp.
15909 The Daven Co .
16758 Delco Radio Div. of G. M. Corp.
18873 E. I. DuPont and Co., Inc.
19315 Eclipse Pioneer, Div. of
Bendix Aviation Corp. Teterboro, N.J.

CODE

 MANUFACTURER
 ADDRESS

19500 Thomas A. Edison Industries,
Div. of McGraw-Edison Co. Orange, N.J.

19701 Electra Manufacturing Co. Kansas City, Mo.
20183 Electronic Tube Corp. Philadelphia, Pa.
21520 Fansteel Metallurgical Corp.
No. Chicago, III.
21335 The Fafnir Bearing Co. New Britain, Conn.
21964 Fed. Telephone and Radio Corp.
Clifton, N.J.
24446 General Electric Co. Schenecłady, N.Y.
24455 G. E., Lamp Division
Nela Park, Cleveland, Ohio
24655 General Radio Co. West Concord, Mass. 26462 Grobet File Co. of America, Inc.
26992 Hamilton Watch Co. Lancaster, Pa.
Co. Lancaster, Pa. 28480 Hewlett-Packard Co. Palo Alto, Calif.
33173 G. E. Receiving Tube Dept. Owensboro, Ky. 35434 Lectrohm Inc. Chicago, III. 37942 P. R. Mallory \& Co., Inc. Indianapolis, Ind. 39543 Mechanical Industries Prod. Co.

Akron, Ohio
40920 Miniature Precision Bearings, Inc.

42190 Muter Co.

 Chicago, III 4655 Ohmite Mfg. Co. Skokie, III. 48620 Precision Thermometer and Inst. Co.Philadelphia, Pa. 54294 Shalleross Mfg. Co. Selma, N.C. 55933 Sonotone Corp. Elmsford, N.Y 6137 Spaulding Fibre Co. Inc. Tonawanda N.Y 56289 Sprague Electric Co. North Adams, Mass. 61775 Union Switch and Signal, Div. of Westinghouse Air Brake Co.

Pittsburgh, Pa. 62119 Universal Electric Co. Owosso, Mich. 64959 Western Electric Co., Inc. New York, N.Y. 65092 Weston Inst. Div. of Daystrom, Inc.

70119 Advance Electric and Relay Co.

70276 Allen Mfg. Co.

70309 Allied Control Co., Ine
70563 Amperite Co., Inc
70903 Belden Mfg. Co.
70998 Bird Electronic Corp.
71002 Birnbach Radio Co.
71218 Bud Radio Inc. Newark, N.J.

71286 Camloc Fastener Corp
71313 Allen D. Cardwell Electronic Prod. Corp Plain of
$71400 \begin{gathered}\text { Bussmann Fuse Div. of McGraw- } \\ \text { Edison Co. }\end{gathered}$
71450 Chicago Telephone Supply Co. Elkhart, Ind.
71468 Cannon Electric Co. Los Angeles, Calif. 71471 Cinema Engineering Co. Burbank, Calif. 71482 C. P. Clare \& Co. Chica
71590 Centralab Div. of Globe Union Inc. $\underset{\text { Milwaukee, Wis. }}{ }$
71700 The Cornish Wire Co. New York, N.Y. 71744 Chicago Miniature Lamp Works

71753 A. O. Smith Corp., Crowley Div. $\begin{gathered}\text { West Orange, N.J. }\end{gathered}$
Chicago, III.
71785 Cinch Mfg. Corp. Chicago, III.

71984 Dow Corning Corp. Midland, Mich.
72136 Electro Motive Mfg. Co., Inc. Willi
Willimantic, Conn.

CODE
NO. MANUFACTURER ADDRESS
72619 Dialight Corp.
Brooklyn, N.Y.
Keasbey, N.J.
72656 General Ceramics Corp.
72758 Girard-Hopkins
72765 Drake Mfg. Co.
72825 Hugh H. Eby Inc.
72928 Gudeman Co.
72982 Erie Resistor Corp.
73061 Hansen Mfg. Co., Inc.
73138 Helipot Div. of Beckman
Instruments, Inc.
73293 Hughes Products
Div. of Hughes Aircraft Co

Newport Beach, Calif.
73445 Amperex Electronic Co., Div. of
North American Phillips Co., Inc.
73506 Bradley Semiconductor Corp.

73682 George K. Garrett Co., Inc.
Philadelphia, Pa.
73743 Fischer Special Mfg. Co. Cincinnati, Ohio
73793 The General Industries Co. Elyria, Ohio
73905 Jennings Radio Mfg. Co. San Jose, Calif.
74455 J. H. Winns, and Sons Winchester, Mass.
74861 Industrial Condenser Corp. Chicago, III.
74868 . Industrial Products Co. Danbury, Conn.
74970 E. F. Johnson Co. Waseca, Minn.
75042 International Resistance Co. Philadelphia, Pa.
75378 James Knights Co. Sandwich, III.
75382 Kulka Electric Mfg. Co., Inc.
Mt. Vernon, N.Y.
75818 Lenz Electric Mfg. Co. Chicago, III
75915 Littlefuse Inc. Des Plaines, III.
76005 Lord Mfg. Co. Erie, Pa.
76210 C. W. Marwedel San Francisco, Calif
76433 Micamold Electronic Mig. Corp. Brooklyn, N.Y.
76487 James Millen Mfg. Co., Inc. Malden, Mass. 76530 Monadnock Mills San Leandro, Calif. 76545 Mueller Electric Co. Cleveland, Ohio
76854 Oak Manufacturing Co. Chicago, III
77068 Bendix Corp., Bendix Pacific Div. 77221 Phaostron Instrument and $\begin{gathered}\text { Electronic Co. } \\ \text { South Pasadena, Calif. }\end{gathered}$ 77342 Potter and Brumfield, Inc. Princeton, Ind.
77630 Radio Condenser Co. Camden, N.J.
77634 Radio Essentials Inc. Mt. Vernon, N.Y
77638 Radio Receptor Co., Inc. $\begin{array}{r}\text { Brookiyn, N.Y. } \\ 77764\end{array}$
$\begin{array}{lll}77764 & \text { Resistance Products Co. } & \text { Harrisburg, Pa. } \\ 78283 & \text { Signal Indicator Corp. } & \text { New York, N.Y. }\end{array}$
78471 Tilley Mfg Co
78488 Stackpole Carbon Co.
San Francisco, Calif
St. Marys, Pa
79251 Wenco Mfg. Co. Chicago, III.
79963 Zierick Mfg. Corp. New Rochelle, N.Y. 80130 Times Facsimile Corp. New York, N.Y. 80248 Oxford Electric Corp. Chicago, III. 80411 Acro Manufacturing Co. Columbus, Ohio 80486 All Star Products Inc. Defiance, Ohio 80583 Hammerlund Co., Inc. New York, N.Y. 80640 Stevens, Arnold, Co., Inc. Boston, Mass. 81030 International Instruments, Inc.
ew Haven, Conn. 81415 Wilkor Products, Ine. Cleveland, Ohio
81453 Raytheon Mfg. Co., Industrial Quincy, Mass.

LIST OF MANUFACTURERS

CONTINUED

	MANUFACTURER ADDRESS
81483	International Rectifier Corp. El Segundo, Calif.
82042	Carter Parts Co. Skokie, III.
82170	Allen B. DuMont Labs., Inc. Clifton, N.J.
82209	Maguire Industries, Inc. Greenwich, Conn.
82219	Sylvania Electric Prod. Inc., Electronic Tube Div. Emporium, Pa.
2376	Astron Co. East Newark, N.J.
82389	Switcheraft, Inc. Chicago, III.
82647	Spencer Thermostat, Div. of Texas Instruments, Inc. Attleboro, Mass.
2866	Research Products Corp. Madison, Wis.
82893	Vector Electronic Co. Glendale, Calif.
83148	Electro Cords Co. Los Angeles, Calif.
83186	Victory Engineering Corp. Union, N.J.
83298	Bendix Corp. Red Bank Div. Red Bank, N.J.
83594	Burroughs Corp., Electronic Tube Div. Plainfield, N.J.
83	Model Eng. and Mfg., Inc. Huntington, Ind.
8382	Loyd Seruggs Co. Festus, Mo.
84171	Arco Electronics, Inc. New York, N.Y.
84396	A. J. Glesener Co., Inc. San Francisco, Calif
84411	Good All Electric Mfg. Co. Ogallala, Neb.
84970	Sarkes Tarzian, Inc. Bloomington, Ind.
85474	R. M. Bracamonte \& Co. San Francisco, Calif.
85660	Koiled Kords, Inc. New Haven, Conn.
86684	Radio Corp. of America, RCA Electron Tube Div. Harrison, N.J.
88140	Cutler-Hammer, Inc. Lincoln, III.
89473	General Electric Distributing Corp. Schenecłady, N.Y.
90179	U.S. Rubber Co., Mechanical Goods Div. Passaic, N.J.
90970	Bearing Engineering Co. San Francisco, Calif.
91418	Radio Materials Co. Chicago, III.

CODE

NO. MANUFACTURER ADDRESS
91506 Augat Brothers, Inc.
91637 Dale Products, Ine.
91662 Elco Corp.
Philadelphia, Pa
91737 Gremar Mfg. Co., Inc. Wakefield, Mass
91929 Miero-Switch Div. of Minneapolis
Honeywell Regulator Co. Freeport, III.
93332 Sylvania Electric Prod. Inc., Semiconductor Div.

Woburn, Mass.
93410 Stevens Mfg. Co., Inc. Mansfield, Ohio
9383 Insuline-Van Norman Ind., inc. Electronic Division Manchester, N.H.
94144 Raytheon Mfg. Co., Receiving Tube Div.
94145 Raytheon Mfg. Co., Semi-
94145 Raytheon Mfg. Conductor Div.
Quincy, Mass.
Newton, Mass. Newark, N.J.
94154 Tung-Sol Electric, Ine. Carlstadt, N.J.
94310 Tru Ohm Prod. Div. of Mode
Engineering and Mifg. Co. Chicago, III.
95236 Allies Products Corp.
Miami, Fla.
95238 Continental Connector Corp.
95263 Leecraft Mfg. Co., Inc. New York, N.Y
9265 National Coil Co. Sheridan, Wyo
95987 Weckesser Co.
Chicago, III.
96067 Huggins Laboratories
Sunnyvale, Calif
$96095 \mathrm{Hi}-\mathrm{Q}$ Division of Aerovox Olean, N.Y 96296 Solar Manufacturing Co. Lus Angeles, Calif 96341 Microwave Associates, Inc. Burlington, Mass. 96501 Excel Transformer Co. Oakland, Calif. 97539 Automatic and Precision Mfg. Co.
97966 CBS Electronics,
9796 CBS Electronics,
Yonkers, N.Y
Danvers, Mass. Jamaica, N.Y. 98220 Francis L. Mosley Pasadena, Calif.
98291 Sealectro Corp. Row Rolle, N.Y. rad Corp.

CODE
NO. MANUFACTURER
ADDRESS
98734 Palo Alto Engineering

Palo Alto, Calif

$98925 \begin{gathered}\text { Clevite Transistor Prod. } \\ \text { Div. of Clevite Corp. Waltham, Mass. }\end{gathered}$
99313 Varian Associates Palo Alto, Calif.
99800 Delevan Electronics Corp. East Aurora, N.Y.
99848 Wilco Corporation Indianapolis, Ind.
9934 Renbrandt Inc. on Mass. 99957 Technology Instruments Corp. of Calif.

No. Hollywood, Calif.

HE FOLLOWING H-P VENDORS HAVE NO NUM THE FOLLOWING H.P VENOORS HAVE NO NUM BER ASSIGNE FUN HANDBOOK.

0000 A Amp, Inc. Hawthorne, Calif. 0000 B Chicago Telephone of Calif.
. Pasadena, Calif
0000 Connor Spring Mfg. Co

0000 Connex Corp
000 E Fisher Switches, Inc. San Francisco, Calif
0000 F Malcs Tool and Die Los Angeles, Calif.
0000 G Microwave Engineering Co. Palo Alto, Calif.
0000 H Philco Corp. (Lansdale
Lansdale, Pa.
00001 Telefunken (c / o American elefunk
Elite)

New York, N.Y
$0000 \mathrm{~J} \mathrm{Ti} \mathrm{Tal}, \mathrm{Inc}$.
0000 K Transitron Electronic Sales Corp.
000 L Winchester Electronics, Inc
Santa Monica, Calif
0000 M Western Coil Div. of Automatic
Redwood City Calif
0000 N Nahm-Bros. Spring Co. San Leandro, Calif
0000 P Ty-Car Mfg. Co., Inc. Holliston, Mass.

MANUAL CHANGES

MODEL 120A

OSCALLOSCOPE

Manual Serial Prefixed: 051-
Manual Printed: 1/61
To adapt this manual to instruments with other serial prefixes check for errata below, and make changes shown in tables.

Instrument Serial Prefix	Make Manual Changes	Instrument Serial Prefix	Make Manual Changes
ALL SERIALS	ERRATA		
138-	1		
149-	1,2		

ERRATA: Figure 4-5 (sweep Generator schematic),
Change reference designator DS to read I, i. e., DS201 to I201, DS202 to I202, etc.
Figure 4-8, The value of R354 should be 4440 ohms.
Table of Replaceable Parts,
C205, 206: Change to capacitor, fixed, electrolytic, $20 \mu \mathrm{f}, 25 \mathrm{vdcw} ;$ (40) Stock No. 0180-0076; Mfr. 56289.

C335: Change to capacitor, fixed ceramic, $0.02 \mu \mathrm{f}, \pm 10 \%, 600 \mathrm{vdcw}$; (40) Stock No. 0150-0024; Mfr. 91418.
Δ R29: Change (5P) Stock No. to 0692-2235.
Under MISCELLANEOUS: Fuseholder: Change (bp) Stock No. to 1400-0084.
CHANGE 1 R119, 124: Change to resistor, fixed composition, 36,000 ohms $\pm 5 \%, 2 \mathrm{~W}$; (40) Stock No. 0692-3635; Mfr. 01121.

R122: Change to resistor, fixed, composition, 2400 ohms $\pm 5 \%, 1 / 2 \mathrm{~W}$; (50) Stock No. 0686-2425; Mfr. 01121.

CHANGE 2 Figure 4-8 (Low Voltage and Filament Supplies), make the following changes in the transformer connections for T302.

SECONDARY CONNECTIONS

Primary	CONNECTIONS	TERMINAL	SCHEMATIC WIRE COLOR	WINDING
		$\begin{aligned} & 5 \\ & 6 \end{aligned}$	Red-Yellow Red	450 volts rms at 150 ma
		7	Yellow	5.0 volts rms at 2 amps
		9	Orange	
		10	Gray	2.5 volts rms at 115 ma
115/230V		11	Blue	
		12	Blue	6.3 volts rms at 3.3 amps
		13	Green	
		14	Green	6.3 volts rms at 3.3 amps
		15	White	6.3 volts rms at 0.6 amps
		16	White	6.3 volts rms at 0.6 amps
		18	Brown	6.3 volts rms at 0.6 amps
		19	Violet	27.3 volts rms at 330 ma
		20	White	27.3 volts rms at 330 ma

Table of Replaceable Parts,
T302: Change to transformer, power; (h) Stock No. 9100-0158; Mfr. 98734.
20 September 1967

(10) MANUAL CHANGES

MODEL 120A
OSCILLOSCOPE

Manual Serial Prefixed: 051-

To adapt this manual to instruments with other serial prefixes check for errata below, and make changes shown in tables.

Instrument Serial Number	Make Manual Changes	Instrument Serial Number	Make Manual Changes
All	ERRATA	951 to 1150	1, 2, 3, 4, 5
2753 to 5751	1	551 to 950	1, 2, 3, 4, 5, 6
1952 to 2572	1,2	451 to 550	$1,2,3,4,5,6,7$
1752 to 1951	1,2,3	351 to 450	$1,2,3,4,5,6,7,8$
1151 to 1751	1, 2, 3, 4	1 to 350	1,2,3,4,5,6,7,8,9

ERRATA:
To clarify the locations of the multisection filter capacitors, change reference designators as follows:

Old Ref. Des.	New Ref. Des.	Capacity	Capacitor Marking
	$\begin{aligned} & \mathrm{Cl7A}, \mathrm{~B} \\ & \mathrm{Cl17C} \\ & \mathrm{Cl} 7 \mathrm{D} \end{aligned}$	$\begin{aligned} & 2 \times 20 \mu f \\ & 20 \mu f \\ & 20 \mu f \end{aligned}$	
$\begin{aligned} & \text { C322 } \\ & \text { C324 } \end{aligned}$	$\begin{aligned} & \text { C322A } \\ & \text { C322B } \end{aligned}$	$\begin{array}{r} 120 \mu \mathrm{f} \\ 40 \mu \mathrm{f} \end{array}$	
$\begin{aligned} & \text { C328 } \\ & \text { C331 } \end{aligned}$	$\begin{aligned} & \text { C328A } \\ & \text { C328B } \end{aligned}$	$\begin{array}{r} 120 \mu \mathrm{f} \\ 40 \mu \mathrm{f} \end{array}$	
C321	-	-	$\begin{aligned} & +=\square \\ & -=\triangle \end{aligned}$

[^1]
(over)

Instrument Serial Number Make Manual Changes Instrument Serial Number Make Manual Changes

All	ERRATA
2753 to 5751	1
1952 to 2572	1,2
1752 to 1951	$1,2,3$
1151 to 1751	$1,2,3,4$

951 to 1150	$1,2,3,4,5$
551 to 950	$1,2,3,4,5,6$,
451 to 550	$1,2,3,4,5,6,7$
351 to 450	$1,2,3,4,5,6,7,8$
1 to 350	$1,2,3,4,5,6,7,8,9$

CHANGE 1 (cont.) R228: Change to 10 K ohms, Stock No. 2100-0167.
R249: Change to 270K ohms, Stock No. 0686-2745.
S202: Change portion of S202 circuit containing R210 to the following:

CHANGE 2

Change 3
Change 4

CHANGE 5

CHANGE 6

6/27/62

R121:: Change value to 6.8 K ohms.

Add R326: 150K ohms (same as R302), in parallel with R302.
C110: Change to 50 to 380 pf, Stock No. 0131-0001.
Clll: Change to 680 pf, 9 Stock No. 0140-0007.

L301, R327: Delete and replace with a wire jumper.
R254: Change to 12M, Stock No. 0730-0145. Change connection from R255 to R257 rotor,

Add DS208: 1/25W neon lamp, 0 Stock No. 2140-0008, between V205, pin 8 and pin 9.
Add DS300: 1/25W neon lamp, Stock No. 2140-0008, between V301, pin 3 and pin 2.
V306: Change to type 5Y3 tube.

Instrument Serial Number	Manual Changes Make Manual Changes	1 120A Page 3 Instrument Serial	Number Make Manual Changes
A11	ERRATA	951 to 1150	$1,2,3,4,5$
2753 to 5751	1	551 to 950	$1,2,3,4,5,6$
1952 to 2572	1,2	451 to 550	$1,2,3,4,5,6,7$
1752 to 1951	1, 2, 3	351 to 450	$1,2,3,4,5,6,7,8$
1151 to 1751	1, 2, 3, 4	1 to 350	$1,2,3,4,5,6,7,8,9$

CHANGE	7	$\begin{aligned} & \text { C218: } \\ & \text { R200: } \\ & \text { R223: } \end{aligned}$	Delete Delete Change	and replace with wire jumper. to 1,500 ohms, (45 Stock No. 0730-0017.
CHANGE	8	R309: R312: R313:	Change Change Change	to 5.6M, (19) stock No. 0693-5651. to 3.5 M , 6 Stock No. 2100-0172. to 470K ohms, Stock No. 0687-4741.
CHANGE	9	$\begin{aligned} & \text { C204: } \\ & \text { C225: } \\ & \text { C237: } \end{aligned}$	Change Change Delete Change	```to 10\muf, (4if) Stock No. 0140-0002. to 50 to' }380\mathrm{ pf, (24) Stock No. 0131-0001. to 3000 ohms, (4) Stock No. 0686-3025.```

[^0]: * Refer to "List of Manufacturers' Codes".

 TQ Total Quantity used in the instrument.
 RS Recommended spares for one year isolated service for one instrument.

[^1]: CHANGE 1
 C329: Delete
 C330: Change to $0.1 \mu \mathrm{f}$, (Ptock No. 0160-0013.

