HP Archive

This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com

Please visit us on the web!

On-line curator: Glenn Robb

This document is for FREE distribution only!

INSTRUCTION AND OPERATING MANUAL FOR

MODEL 100D
LOW FREQUENCY STANDARD

Serial 142 and Above

$$
\begin{aligned}
& \text { FILE Copy } \\
& \begin{array}{c}
\text { PROPERTY OF } \\
\text { TECHIICAL RECORD }
\end{array} \\
& \text { - CODE SFBS BRAM. } \\
& \text { TECHNICALL CLEGOUED BY } \\
& \text { Branch }
\end{aligned}
$$

PRODUCTION CHANGES

Serial 142 and Above

Table of Replaceable Parts ...
Change V9, V10, V11, V12, V13 to:
Tube: 6CB6, HP stock \#212-6CB6

Change V17 to:
Tube: 6AV6, HP stock \#212-6AV6
Change R9, R18, R27, R36 to:

Resistor: fixed, composition, 3900 ohms, $\pm 10 \%$, 1 W , HP stock \#24-3900, Mfr. Allen-Bradley \#GB 3921

Change R5, R15, R24, R33 to:

Resistor: fixed, composition, 39,000 ohms, $\pm 10 \%$ HP stock \#24-39K, Mfr. Allen-Bradiey \#GB 3931.

Change R20 to:

Resistor: fixed, composition, 1.2 megohms, $\pm 10 \%$ HP stock \#24-1. 2M, Mfr. Allen-Bradley GB 1251 Electrical value adjusted at the factory

CAUTION I
SPECIFICATIONS 3
OPERATING INSTRUCTIONS 5
Inspection 5
Initial Installation 5
Controls 6
Operation 7
GENERAL INFORMATION 8
100 kc Oscillator Circuit 9
Frequency Divider Circuit 9
Power Supply and Voltage Regulator Circuit 12
BLOCK DIAGRAM OF MODFL IOOD 10
STANDARDIZATION WITH WWV 12
SCHEMATIC DIAGRAM FOR USE WITH MULTIPLIER WITH MODEL IOOD 13
APPIICATION 15
TYPICAL LISSAJOUS FIGURE SHOWINGPOINTS OF TANGENCY16
SERVICE NOTES 16
TABLE OF REPLACEABLE PARTS 20

C. A.UTIUN

READ BEFURE TURNING ON THE IISTRUENT

The heating of the crystal cven in this instrument is regulated by a mercury-column switch. Occasionally, the mercury column is separated by jarring and vibration of the unit in shipment.

After turning the instrument on for the first time, keep a close check on the temperature of the crystal oven as indicated by the thermometer in the front panel. When the instrument has been on about 30 minutes, the crystal oven sinuld remain automatically at a constant temperature. This crndition will be indicated by a shutting off of the crystal oven indicator lamp from time to time, and by the fact that the thermometer will reach a steady reading of $65^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$.

However, if the crystal pilot light stays on continuously, or the thermometer goes up beynnd 70 degrees, the mercury column in either the thermestat or the thermon meter has probably been separated in shipment. Iurn the instrument off immediately and prnceed as fnllows.

1. Remove the instrument from the cabinet and renove the crystal oven unit which plugs into tube socket adjacent to thermometer window.
2. Disconnect the thermostat wires from the terminals (\#3,Fig.l). Remove the thermostat clamp by unscrewing the two screws (i, Fig.1). Draw the thermostat cut of the cven. (\#\#5, Fig. 1)
3. Inspect the thermostat for mercury column separation and minute air bubbles in the mercury bulb.
4. If either air bubbles or separation are present, place the mercury switch bulb in ice water until mercury occupies cnly the bulb compartment. Tap lightly to remove any air bubbles or mercury globules left in column.

Then place the bulb in a vessel of water and heat until mercury completely fills column and a small portion of the enlargement at top of column. Then remove the thermostat and watch the mercury descent to room temperature. If there is no separation or bubbles present, the thermostat may now be put back in service. It may be necessary to repeat the above procedure more than once to unite all the mercury and remove all bubbles.

CAUTIUN: Immerge only the bulb portion of the thermostat. If the thermestat leads get wot or any meisture collects beneath the plastic insulator covering the contact rings, remove the plastic insulator and dry tube and insulator and leads thoroughly before placing back in service. ctherwise, leakage between leads may cause leater relay to remain npen.
5. Unscrew the twn nuts hrlding the thermometer clamps ($\frac{11}{\pi 2}$, Fig.1) and withdraw thermometer ircm the oven.
6. To unite the mercury column and remove air bubbles in the thermometer, use seme procedure as that used on the thermestat.
7. Replace the themostat and themmeter in the crystal oven; turn on the instrument and coserve nven temperature and operation of the oven indicator lamp.

INSTRUCTIONS

MODET, 100D
SECCNDARY FREQUEIKCY ST:ITDARD

Specifications

Output Rating --

output Frequency

10 cycles per second
100 cycles per second
1,000 cycles per second
10,000 cycles per second
100,000 cycles per second

Volts into 5000 ohms load 5 minimum 5 minimum

5 minimum
5 minimum
5 minimum

Distortion --

4% at all irequencies with 5000 ohms 10ad. Internal impedance - 2000 ohms lead.

Quartz Crystal
100 kc
Quartz Crystal uven --
Heater voltage 6.3V Gven temperature $65^{\circ} \mathrm{C}$.

Power Supply Rating --
Voltage - 105 to 125 volts
Frequency - 50 to 60 cycles
Wattage - 145 watts
Overall Dimensions --

Inspection --

This instrument has been thornughly tested and inspected before being shipped and is ready frr use then received.

After the instrument is unpaci:ed, the cover should be removed (see Maintenance section) so that the instrument may be carefully inspected for camage receivod in transit. While the cover is off, the tubes shruld be checked to see that they are firmly seated in their sockets. If any shipping damage is found, follow the rocedure outlined in the "Claim for Damage in Shipment" page at the back of this instruction brok.

Initial Installation --

Before installing the lodel 100 D make sure that the tubes and relay are secure in their sockets.

The instrument should be situated so that there is adequate ventilation. Lack of proper ventilation may cause the ambiont temperature in the instrument to rise high ennugh so that the oven thermostat wili lose control.

Ubserve the "CAUTIUN" regarding the crystal oven, in the front of this brok, before turning on the power.

After the power is n , several hours will elapse before the crystal cven temporature becomes onnstent. The instrument sheuld be run continunusly so that the temperature of the compnnents reaches a steady state and constant output frccuencies will be maintaincd. Continunus oporation of the instrument will also improve the stability of the crystal.

Low capacity shielded wire should be used to distribute the cutput voltages to the equipment under tests as it will prevent the pick-up of extraneous voltages. The shield braid on the wire is connected to the "G" binding posts of the instrument. To maintain a minimum cutput voltage of 5 volts, at eaci frequency, a load of not loss than 5000 chms impedance may be connected across the nutput terminals. The following table gives the maximum capacity that can be tolerated witheut exceeding the abrve conditions.

Frequency	Capacity for Capacitive Reactance $=$
100 kc	.0003 mf
10 kc	.003 mf
1 kc	.03 mf
100 cycles	.3 mf
10 cycles	3 mf

Initial Instsllation -- (continued)
Maximum capacity across output terminals $=$ Max. Capacity (mf per foct) of wire length of shielded wire

The length of the shielded line, carrying the 100 kc may be extended by connecting a 100 kc tuned circuit across the line. This tuned circuit consists of an inductance in parallel with a variable capacitor. Tune the capacitor for maximum output.

Controls --
FREQ.ADJ. - See section on "Standardizacion with WWV" for the use of this control.

PRESS FCR - $\triangle F$ - Pressing this contrel lowers the frequency of the 100 kc oscillater apprexinately che cycle per secona.

CUTPUT WAVE - This switch provides a choice of sine or rectangular wave shape in the output voltage at all froquencies.

PUWER ON - This switch controls all power supplied to the instrument from the power line.

ALL FREQUNNCIES - $10 \mathrm{kc} \& 100 \mathrm{kc}$ CNLY - This switch disconnects the $225 v$ supply from the 1000,100 , and 10 cycles frequency dividers when it is in the " 10 kc and 100 kc unly" position. This also removes the 1000 and 10,000 microsecond pips.

TIMING PIPS - The three types of timing pips are available simultanoously at these binding posts.

CUTPUT SELECTOR - This switch onnnects anyone nitho five frequencies to the "LUTPUTM" binding jests on the control panel, and the oscilloscope input switches.

INTENSITY - This variable resistor controls the brightness of the image on the cathode range tube screen.

FUCUS - The "PUCUS" control adjusts the focus of the elect... ron beam on the cathode ray tube screen.

HURIZ. GAIN - This variable resistor controls the voltage admitted to the amplifior feeding the horizontal plates of the cathode ray tube.

BEAM UN - In the "BZAM LN" position this toggle switch applies voltage from the "IMTENSITY" control, to the cathode ray tube and ceusing the electren beam to hit the

BEAM UN - (continuod)
screen. The eff position applies to a higher voltage to the grid cutting off the beam.

VRRT.GAIN - This variable resistor centrols the voltage admitted to the amplifier feedine the vertical plates of the cathode ray tube.

HURIZ. INPUT - These binding posts are connected through the "Hiliz. SCOPE INPUT" switch, in the "Sxt." position, to the oscilloscope horizontal amplifier.

VERT. ITPUT - These binding posts are cranected thrnugh the "VERT. SCUPE INPUT" switch, in the "Ixt." prsition, to the oscilloscope vertical amplifier.

HURIZ. SCUPE INPUT - EXT. INT. - This switch connects the horizontal amplifier of the cscillosocee to the "LIVPUPT SELECTUR" switch or to "FLZRIZ. INPUT" binding pnsts.

VERT. SCLPE INPUP - XXT. INT. - This switch connects the vertical amplifier of the oscillescope to the "UUTPUT SELECTUR" switch or to the "VERT. INPUT" binding prsts.

FUSE - The fuseholder, located on the back of the chassis, contains 2.1 .5 ampere cartridge fuse. The fuse may be replaced by unscrewing the fusezolder cap and inserting a new fuse.

Power Cable - The power cable consists of three conductors. Two of these conductors carry bower to the instrument while the third conductor (green vire) is connected to the instrument chassis. The third wire projects from the cable near the plug end of the cable and may be connected to a greund when it is desirable to have a grounded instrument chassis.

Cutput Binding Posts - The five sets of binding prsits on the back of the chassis are the cutput terminals for the five frequencies generated by the instrument. The binding posts marked "G" are connected to the chassis.

(peration --

The positions of the Model 100D ernitrcls for typical measurements are as follows:

Standard Frequency Uutput (uscilinscove Uff) -

1. "LUTPUT WAVE" contrel set at the "SINE" or "RECT." position, depending on the type of nutput wave desired.

Standard Frecuency (utput (iscillosenge (iff) - (continued)
2. Connect the "LUIFUT" binding pests on the panel with the "cUTPUT SuLICLR" switch set at the frequency desired or if scveral frecue cics are tr be used simultanenusly, connect to the binding posts at the rear of the instrument.
3. "BJAM LN" switch at the rff position.

Comparision of an Unknown Frecuency with
the Standard

1. "uUPPUT WAVE" contrnl set at the "SIME" position and "IURIZ. SCLPD IMPUT" at "IMT."
2. Connect the source of unknown frequency to the "VERT. INIUT" binding posts and the "VIRT. SCUPH INPUT" switch to the "EXT." position.
3. "BEAM LN" switch at the "LN" position.
4. Rotate the "MRIZ. GAIN" and "VEAT. GaIN" to their extrene crunter-cloclwise positiens.
5. Adjust the "INTENSITY" and "PuCUS" ccntrels for the optimm brightness and clarity of the spot on the catinde ray tube screen. Do not allow the spet to remain in one pesition more than five minutes, othorvise the phosphor on the cathode ray screen may be destroyed. The life of the cathode ray tube may be longthened by keeping the "BEAM UIT" switch in the "UFF" position except when making measurements.

General Information

The Ilewlett-Packard Lov Frecuency Standard iodel lOOD is an accurate and stable secndory frequency standard. It may be standardized with the Bureau of Standards transmissinns Ir om WWV at intervels to maintain a high order of accuracy.

The lindel lood consists nf a crystal-controlled oscillator operating at 100 kc which controls the stability of all frequencics generatod by the instrument. The frequencies of $10 \mathrm{kc}, 1 \mathrm{kc}, 100 \mathrm{cps}$, and 10 cps , are produced by 10:1 cascaded frecuency dividers which are driven by the 100 kc jrecision escillatcr. Each divicuer eperates its own isclating amolifier so that all sine and rectangular waves generated by the instrument are independently available for external use. The cutput voltages may alse be applied to the self-containcd oscillnscope to permit comperision with external unknown frequencies by means of Lissajous figures.

General Information (ontinued)

The self-contained oscilloscrpe consists of a $2^{\prime \prime}$ cathode ray tube with a hcrizontal and a vertical amplifier. The input of the oscilloscope circuits are arranged so that standard frequencies from the isclating amplifiers may be supplied to the horizental amplifier and either standard frecuencies or external vnltages may be applied to the vertical amplifier.

A regulated pever supply delivers all necessary voltages to the instrument and maintains a constant voltage which contributes to the excellent stability of the instrument.

100 kc Uscillator Circuit --

The 100 kc oscillator is a modified Pierce circuit. This circuit allows the frequency to be changed $\pm 1 \mathrm{cps}$ by changing the capacity across the crystal. A very low tempera ure coefficient crystal held at constant temperature controls the frcquency to within 2 parts per million per week. This accuracy is attained when the crystal is nperated constantly anc after a thirty day run in period.

Frequency Divider Circuit --

The frequency divider circuit is composed of (see Fig. 2) tubes V2, V3 and asscciated comonents. Sube V3 is the actual frequency divider, cperating as a controlled one-shet multivibrator. The time onnstants of the circuit are adjusted so that the circuit is triggerod by every tenth cycles of the oscillator.

Rssuming for a moment that the oscillator is rent cperating, the cperation of the circuit can be described as follows: in a quicscent state tube V3 nerates in such a manner that the plate is at a higher voltage than the screen grid but draws no current. This is explained by the fact that the suppresscr erid is sufficiently negative with respect to the cathode to cut off the plate current. Therefore the screen grid acts a plate for the space current. The onntrol grid is at cathode potential and is thus drawing heavy current. The cathrde of the dicde V2 is onnnected to a higher do voltage then its plate so that V2 is an open circuit to pesitive voltages and to small negative voltages applied to its cathode. The negative portion of the oscillator is large enough to pass through diode V2 and trigger a multivibrator action in V3: The negative voltage is pass:d. Irom the plate of V3 to the control grid through Cl. The nogative control grid reduces the space current, causing the screen voltage to rise and the cathrde voltage to fall. This action reduces the suppresser bias with respect th the cathoce sufficiently that the current passes tircugh the suppressor grid to the

FIG. 1 BLOCK DIAGRAM OF MODEL MOD

FIG. 2 BASIC CIRCUIT OF FREQUENCY DIVIDER

1 O-

100 KC scillator

V2

$-10-$

Frequency Divider Circuit -- (continued)

plate. The plate voltage thereiore drops rapidly, reinforcing the original negative voltage on the control grid. Because the plate voltage on V3 is now low, the plate of V2 is at a lower voltage than its cathode and no negative trigger voltages can pass thrnugh dicde V2.

The circuit remains in this condition as the negative charge on the contrel grid lealss off threugh resistor R2. As the grid voltage slnwly rises, the space current in the tube slowly increases, causing the plate voltage to drop semewhat more. At the sane time the cathcde vnltage slowly rises, increasing the bias on the suppressor grid. Finally, a critical print is reachod where the screen has more attraction for the space current than the plate.

When this critical point is reached, the second portion of the multivibrator action occurs: the screen voltage falls rapidly and plate current coases. This action transfers a positive voltage to the control grid, resulting in more space current and roinfrrcing the crep in screen voltage. The circuit then becomes quiescent and is propared for the next negative pulse thrnugh diode V2A. The time constants in the circuit are adjusted sc that the total multivibrator actirn recuires slightly more than nine cycles of the oscillator frequency, the circuit being again ready $\hat{f o r}$ triggering r n the tenth cycle. Thus a frequency-dividing action has occurcd.

This divider circuit is highly stable and will cperate for long periods of time without correction.

The sinusoidal output from the divider is obtained frrm a tuned circuit that is connected in the screen grid of V3 thrnugh a large isclating resister. This sinusoidal wave is relatively harmonic-free, having less than 4% distortion.

The sinuscidal output from the 10 cycles divider is rbtained by means of a resistance capacity filter and negative feedback rather than by an inductance capacitance filter as used in the higher frequency dividers. The rectangular wave from the 10 cycles divider is applied to the grid of the tube V8.

The remaining divider circuits are onnnected in cascade and are drivon from the cathode circuit of V3. A rectangular wavo is present at the cathode and this wave, after differentiation, origgers the following divider. The remaining divider circuits operate in a manner similar to the circuit of V3, the major difference being that the time constants are adjusted to accomodate the lower repetition rates invelved.

Each divider is connected to its own isclating amplifier. This anplifier isclates the divider frrm variable external loads and provides a low impedance output.

The rectangular wave cutput from the plate of the tube V8 is sent through the resistance capacitance filter and negative feedback circuit to the grid, where the components of the rectangular wave, passed by the filter, ere cancolled. The 10 cycles sine wave is rejected by the filter and is applicd to the isclating amplifier.

Timing pips are produced by crmbining the nutputs of all the dividers except the 10 cycles divider and rectifying the pesultant wave with a crystal rectifier.

Power Supply and Voltage Regulator Circuit --
The power supply consists of a transicrmer to supply the necessary voltages and a convontional fullwave roctifier and filter system to convert alternating current to direct current.

Standardizaticn Vith WWV
The 100 kc oscillator circuit of the Model 100D is set to 100 kc at the factory and it will maintain this frequency within $\pm .001 \%$ (10 parts per million) on the range of normal rōom temperatures. This degree of accuracy is sufficient for most purposes. For a erecter degree of accurecy the 100 kc cscillator shuld be standardized with a primary frequency standard at frecuency intervals.

The most accessible primary frequency standard is the standard fiequencies broadcast by tho liaticnal Bureau of Standards Station WWV at Washington, D.C. Whis service may be utilized to check the ICodel l00D by employing a shert wave radio receiver and a frequency multiplier.

Station WWV broadcasts standard frequencies twenty-four hrurs a day n the inllowing frequencies: 2.5, 5 , $10,15,20,25,30$, and 35 megacycles. For the latest information on using this service, a Bureau of Suandards Circular "liethods of Using Standerd Prequencies Broadeast by Radioll may be purchased from the Superintendent of Decuments, Geverment Printing Lffice, Weshington, D.C. A detailed anmuncement of WWV breadcest services, LC886 will be provided upon request from the Natinnal Bureau of Standards, Washington 25, D.C.

Standardization with WWV -- (continued)
A schematic wiring diagram for a suitable multiplier is shown in the acompenying illustraticn. This circuit will give multiples of 100 kc so that the signal is cbtaincd on all the WWV transmissien frequencies. A wire from the antenna terminal of the shrrt wave receiver loosely coupled Coil Ll providos a signcl to mix with the signal from WWV. This coupling should be varied until it is appreximately the same strength as WWV.

The adjustment of the 100 kc oscillater in the Model looD is performed as follows:

1. Feed the 100 kc oscillator cutput through the multiplier to the radio receiver tuned to the highest TWW frequency providing the best signal. The highor the WN frecuency used, the greater the accuracy cbtained in calibrating the 100 kc escilletor. Teadphones or loudspeaker may be used to indicate the presence rf a bcat between the 100 kc oscillator and WWV.
2. If a beat note is present the 100 kc oscillator has driftcd from its correct froquency. lioxt dotermine whether the 100 kc oscillator has drifted to a higher or lower frecuency by pressine the "PRESS FUR - \triangle F" switch. If the 100 kc escillator has drifted th a higher frequency than WWV thon the " AF" control will lower the frequency of tho bcat note. If tho nscillator hes driftod tc a lower frequency, the " ΔF " control will change the beat note to a higher pitch. To return the lodel 100D escillator to exactly 100 kc it is necessary to tunc the "FREQ. ADJ." capacitcr in the lower left corncr of the front panel. Turn this control in the dircotion that producos a decrease in pitch until the zere boet point is reached and then an incroesc in pitch as rotation is continued. At tho zorn beat point the 100 kc escillator will be standarcized with WTV.
3. Should it be impossible tr rcach zero beat with the "FXiEQ. ADJ." control, then set the control to approximately one-half capacity. Next, rotate the screvdriver adjustments $C 2$ and C : located on the chassis in the rear of the crystal oven, together and in the samo direction until the zero beat print is reached.

The accuracy of the $10 \mathrm{kc}, 1 \mathrm{kc}, 100$ cycles, end 10 cyclos outputs may be deternincd by crinparing them wit' the noxt higher frequency by moans ne the built-in cscilloscope.

Application

The Low Frequency Standard is applicable to most frecuency measurements from very low audio frequencies up to about trenty megacycles. It may be used as a source of crnstant frecuency voltage to cperate timing circuits and medulate radio frecuency generators.

The Model 100D is most useful for the calibration of audic, superscnic and radin frecuency generators. Also as a comparison device to determine the frecuency stability of all kinds of radio equipment.

Low irequencies are most onnveniently neasured by means of Lissajous figures on an nscilloscrpe. Nowever, for very complex Lissajous figures it is desircble to use a large-screen iscilloscoje.

An external rscillator can be used to advantage to increase the ease of identification of the more craplex patterns. Frr exemple, when measurinc "inonnvenient" frecuencies such as 210 cps , the oscillator can be adjusted to 200 cps against the 100 cps cutput of the standard, resulting in a simple figure-eight pattern on the cscillnscope. By then switching the standard to 10 cps and adjusting the nscillator to the first frecuency above 200 cps that results in a sinusoidal pattern, a frequency of 210 cps can be accurately obtained on the oscillator. The oscillator frequency is then ermpared with the unknown frequency.

High frecuency measurenents are best made with the aid of a suitable receiver. The tronsition point between low and high frequency measurenents is determined by the characteristics of the equipment at hand, by tize stability of unknown frequency, and by the complexity of the ratio of the unknown frequency to the standard frecuency. With medern cscilloscopes and stable frequencies the transition point is above one megacycle. The relatively pure sine wave output of the liodel looD may have to be distorted to produce harmonics for some of the preceeding applications. This may be accomplished by inserting a. germanium crystal in the output circuit of the Model 100D or by using an amplifier which draws grid current.

Lissajous figures are produced on the screen of cathode ray tube when an alternating current voltage is corrected to beth the herizontal and vertical deflecting plates of tie tube. When a standard frecuency voltage fed to che set of plates and a voltage of unknown frequency is connected to the other set, the resultant figura identifies the ratio between the standard and unknown frequencies.

10 KC
(Connected to horizontal plates of cscilloNo. of horizontal tangencies x Frequency $=$ Unknown No. of vertical tangencies x of Standard $=$ Frequency

$$
\frac{2}{1} \times 10 \mathrm{kc}=20 \mathrm{kc}
$$

Service Notes --

Pericdically the Model 100D shculd have the dust blewn from the chassis and the tubes should be checked to see that they are fimly seated in their socke ts.

The following is a listing of possible symptoms and their remedies.

Symptom
Instrument inoperative Pilct lamps and tubes do not light

Low (utput Voltage: (100 kc cutput)

Remedy

1. Check for blown fuse or defective onwer cord. Locate and clear shrrt circuit in the power circuits before replacing the fuse.
2. Check for ton low an imyedance load or a short circuit across the 100 kc output terminals.
3. Check VI and V9 by replacing with new tubes. Alsc tune C5 for peak voltage.
4. Measure voltage from pin 8 of V16 to chassis. Should be +225 v . If voltage is too Iow, check power circuit for short circuit.

Symptom

Low uutput Voltage: (100 kc output normal)

Lack of Synchronism

Remedy

1. Determine which frequencies have sub-normal cutput and check for too low an impedance load frr a short circuit across the nutput terminals.
2. Check the tubes and voltages in the divider and isclating amplifier of the highest frequency with subnormal output.
3. Adjust the proper divider adjustment for synchronism. These adjustments are screw. driver adjustments located on the top of the chassis near the panel and are labelled: 10 kc DIVIDER, 1 kc DIVIDER, IOOn DIVIDRR, and ION DIVIDER.
4. Set the "UUTPUT WAVE" switch to the "SINE" position and the "UUTPUI SuLSCTUR" switch to the 10 kc position. (The "LUTPUT SELECTCR" switch is so arranged that a frequency ten times the indicated frequency is connected thru the "VERT. SCLPE INPUT" switch, to the vertical amplifier of the oscilloscope. The vertical amplifier is not connected on the 100 kc pesition.
5. Set the oscilloscope control as follows:

Control Position
"Beam ON" "ON"
"Horiz.Scope "Int." Input"
"Vert.Scope "Int.
Input"
Adjust "INTENSITY," "FOCUS", "HLRIZ.GAIN", "VERT.GATN", for best results.
Symptom (continued)

Remedy (continued)

Lack of Synchronism (continued)

Crystal Oven Not Heating
3. Adjust R6 (10 kc DIVIDER) so that a Lissajous figure for a 10 to 1 ratio is nbtained.
4. Repeat the procedure of step 3 and change the "UUTPUT SELECIUR" to the proper frequency for 10 kc and 1 kc , 1 kc and 100 CYCLSS, 100 CYCIES and 10 CYCLES. Adjust R14 (1 kc DIV IDER), R23 (100wDIVIDER) and R32 (ION DIVIDER) respectively.

1. While instrument is in operation, remeve crystal oven from its socket. If relay is operating correctly, the crystal oven pilot lamp should. burn. Clean relay contacts if relay is defective.
2. If relay is correct follow
procedure of CAUTIUN section in the frent of this book.
3. See CAUTIUN section

Crystal Cven Cverheating
Cover and Bottom Plate Removal --
The cover may be removed from the instrument without taking the instrument out of the wooden cabinet. The instrument must be removed from the cabinet when it is necessary to remove the bottom plate.
To remove the cover, unscrev the four screws helding the cover to the back' of the instrument. This releases the cover so that it can be drawn cut of the back of the cabinet.
The bottom plate is removed by unscrewing the four screws, one in each ocrner of the plates.

The following is the step-by-step procedure necessary to disassemble the crystal oven to the point that the heater and socket connections are exposed. See Figure 1 for the parts numbers referred to in this procedure.

1. Remeve the four wing nuts (洪1), the cover, and the insulating pad.
2. Remove the four spade screws and ring on top of the oven.
(\#2) and then the thermometer.
3. Disconnect the thermostat wires at point $/ 33$.
4. Remove the two screvs ($\pi^{\prime \prime} 4$) and the thermosta: guard. Draw out the thermestat.
5. Remove the four screws (${ }^{\prime \prime}$ 6) at the bottom edge of the cven and slide the clamp (学7) off of the housing. The housing will unvrap from around the bottom casting.
6. Unvrap the insulation and the heat wires and socket are exposed.

FIGURE I
MODELS IOOC,IOOD
CRYSTAL OVEN ASSEM.
STK. ${ }^{\#}$ M-69A

$\begin{gathered} \text { Circuit } \\ \text { Ref. } \end{gathered}$	Description	-hpStock No.	Mfr. \& Mfrs. Designation
R1	Resistor: fixed, composition, 1 megohm; $\pm 10 \%$ IW	24-1M	$\begin{aligned} & \text { Allen- } \\ & \text { Bradley (AB) } \\ & \text { GB I051 } \end{aligned}$
R2	Resistor: fixed, composition, $560,000 \mathrm{chms} ; \pm 10 \% \mathrm{IW}$	$24-560 \mathrm{~K}$	$\begin{array}{ll} \mathrm{AB} \\ \mathrm{CB} & 564 \mathrm{I} \end{array}$
R3	Resistor: fixed, composition, 10,000 chms; $\pm 10 \% \mathrm{IW}$	$24-10 \mathrm{~K}$	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \\ & 103 \mathrm{I} \end{aligned}$
R4	Resistor: fixed, composition, 4700 chms; $\pm 10 \% 1 \mathrm{~W}$	$24-4700$	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \end{aligned} 4721$
R5	$\begin{array}{\|l} \text { Resistor: Pixed, composition, } \\ 33,000 \text { chms } ; \pm 10 \beta 1 W \end{array}$	$24-33 \mathrm{~K}$	$\frac{A B}{G B} 3331$
R6	Resistor: variable, wirewcund, 5,000 rhms; linear taper	210-8	Clarostat Mfr. Cn. Type 58
R.7	Resistrr: fixed, composition, $39,000 \mathrm{chms} ; 10 \% \mathrm{IW}$	24-39K	${ }_{G B}^{A B} 3931$
R8	Resistor: fired, composition, 470,000 chms; $\pm 10 \% \mathrm{IW}$	24-470\%	${ }_{\mathrm{CBB}}^{\mathrm{AB}} 4741$
R9	Resistor: fixed, composition, 3300 chns; $\pm 10 \%$ 1W	$24-3300$	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \\ & 3321 \end{aligned}$
R10	Resistor: fixed, composition, 22,000 ohms $\ddagger \pm 10 \% 2 \mathrm{~W}$	25-22K	$\frac{A B}{I B} 2231$
Rll	Resistor: fixed, composition, 1.2 megchms; $\pm 10 \% \mathrm{IW}$	$24-1.2 \mathrm{M}$	$\underset{G B}{A B} 1251$
R12	Resistor: fixed, composition, 1.5 megchms; $\pm 10 \% \mathrm{IW}$	24.1 .518	$\underset{\mathrm{GB}}{\mathrm{AB}} 1551$
R13	$\begin{aligned} & \text { Resistor: fixed, composition, } \\ & 39,000 \text { chms } \pm 10 \% \mathrm{IW} \end{aligned}$	24-39K	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \end{aligned} 3931$
R14	Resistor: variable, wirewcund, 5,000 chms; linear taper	$210-8$	Clarnstat Type 58
R15	$\begin{gathered} \text { Resistor: fixed, compesition, } \\ 33,000 \text { ohms; } \pm 10 \% 1 W \end{gathered}$	$24-33 \mathrm{~K}$	$\frac{\mathrm{AB}}{\mathrm{~GB}} 3331$
R16	$\begin{gathered} \text { Resistor: fixed, composition, } \\ 4700 \text { ohms } \ddagger \pm 10 \% \mathrm{IW} \end{gathered}$	$24-4700$	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{CB} \end{aligned}+721$
R17	Resistor: fixed, composition, 470,000 ohms ; $\pm 10 \% \mathrm{IW}$ -20-	$24-470 \mathrm{~K}$	$\frac{A B}{G B} 4741$

Circuit Ref.	Description	-hpStock No.	Mrr. \& Mifrs. Designation
R18	Resistor: fixed, composition, 3300 ohrss; $\pm 10 \%$ IW	$24-3300$	$\mathrm{AB} 3321$
R19	Resistor: fixed, composition, 22,000 ohms; $\pm 10 \% 2 \mathrm{~W}$	25-22K	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{HB} 2231 \end{aligned}$
R20	Rosistor: fixed, composition, $750,000 \mathrm{ohms} ; \pm 5$ IW FACTURY ADJUSTMENT	24-90	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \\ & 7545 \end{aligned}$
821	Resistor: fixed, composition, 1.5 megehms; $\pm 10 \% \mathrm{IW}$	$24-1.5 \mathrm{M}$	AB
R22	Resistor: fixed, composition, 39,000 chms; $\pm 10,0 \mathrm{IW}$	$24-39 \mathrm{~K}$	$\begin{aligned} & A B \\ & G B \\ & \hline \end{aligned}$
R23	Resistor: variable, wirewound, 5000 ohms; linear taper	210-8	Clarostat Type 58
R24	Resistor: fixed, composition, 33,000 ohms; $\pm 10 \% \mathrm{IW}$	24-33K	$\underset{G B}{A B} 31$
R25	Resistor: fixed, composition, 4700 ohms ; $\pm 10 \% \mathrm{IW}$	$24-4700$	$\underset{C B}{ } \operatorname{AB} 421$
R26	Resistor: fixed, composition, $470,000 \mathrm{chms} ; \pm 10 \% \mathrm{lW}$	24-470K	${ }_{G B}^{A B} 4741$
R27	Resistor: fixed, composition, 3300 olms ; $\pm 10 \% \mathrm{~W}$	$24-3300$	$\frac{A B}{G B} 3321$
R28	Resistor: fixed, composition, 22,000 ohms; $\pm 10 \% 2 \mathrm{~W}$	25-22K	$\begin{aligned} & A B \\ & H B 223 I \end{aligned}$
R. 29	Resistor: fixed, compositicn, 1 megohm; $\pm 10 \% 1 \mathrm{~W}$	24-1M	$\frac{\mathrm{AB}}{\mathrm{CB}} 105 \mathrm{I}$
R30	Resistor: fixed, composition, 1.5 megohrs: $\pm 10 \% 1 \mathrm{~W}$	24-1.5M	$\frac{A B}{G B} 1551$
231	Resistor: fixed, composition, $39,000 \mathrm{chms} ; \pm 10 \% \mathrm{IW}$	24-39K	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} 3931 \end{aligned}$
R32	Resistor: variable, wirewcund, 5000 chms; linear taper	210-8	$\begin{aligned} & \text { Clarostat } \\ & \text { Type } 58 \end{aligned}$
R33	$\begin{aligned} & \text { Resistor: fixed, composition, } \\ & 33,000 \text { chms } ; \pm 10 \% 1 \mathrm{~W} \end{aligned}$	$24-33 \mathrm{~K}$	$\frac{\mathrm{AB}}{\mathrm{~GB}} 3331$
R34	```Resistor: fixed, composition, 4700 ohms; \pm 10% 1W -21-```	24-4700	$\frac{A B}{C B} 4721$

$\begin{gathered} \text { Circuit } \\ \text { Ref. } \end{gathered}$	Description	Stock Nro.	Pir. \& LIfs. Designatina
R35	Resistor: fixed, compesition, 470,000 chms; $\pm 10 \%$ IW	24.470 K	$\begin{aligned} & A B \\ & G B \\ & \hline \end{aligned}$
R36	Resistor: fixed, composition, 3300 chms; $\pm 10 \% \mathrm{~W}$	24-3300	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \\ & 3321 \end{aligned}$
237	Resistor: fixed, composition, 22,000 chms; $\pm 10 \% 2 \mathrm{~W}$	25-22K	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{BB} \\ & 223.1 \end{aligned}$
R38	Resistor: fixed, compositicn, 1.2 megohms; $\pm 10 \% 1 W$	24-1.211	$\frac{A B}{G B} 1251$
R39	Resistor: fixed, composition, 560,000 ohms; $\pm 10 \% \mathrm{IW}$	$24-560 K$	$\stackrel{\mathrm{AB}}{\mathrm{~GB} 5641}$
R40	Resistor: fixed, composition, 1.5 megchms $; \pm 10 \% 1 W$	24-1.514	$\begin{array}{ll} A B \\ G B \\ & 1551 \end{array}$
R41	Resistor: fixed, composition, 1 megohm; $\pm 10 \%$ iW	$24-1 \mathrm{M}$	$\begin{array}{ll} A B \\ G B & 1051 \end{array}$
R42	Resistor: fixed, composition, 180,000 chms ; $\pm 10 \% \mathrm{IW}$	$24-180 \mathrm{~K}$	$\begin{array}{ll} \mathrm{AB} \\ \mathrm{~GB} & 1841 \end{array}$
R 4.3	Resistor: fixed, composition, 1500 chms: $\pm 10 \% \mathrm{~W}$	$24-1500$	$\begin{aligned} & A B \\ & G B \quad 1521 \end{aligned}$
R44	Resistor: fixed, compositicn, 800,000 chas: $\pm 1 \%$ IW	31.800 K	Wilkor Type CP-1
R45	Resistor: fixed, compositinn, 3.05 megohm ; $\pm \mathrm{IW}$	$31-3.05 \mathrm{M}$	$\begin{aligned} & \text { Tilkor } \\ & \text { Type CP-1. } \end{aligned}$
R 46	Resistcr: fixed, compositinn, 3.28 megohms; $\pm 1 / \mathrm{IW}$	3I-3.28M	Wilkor Type CP-I
R47	Resistor: fixed, composition, 220,000 chms; $\pm 10 \%$ IW	24-220K	$\frac{A B}{G B} 2241$
R48	Resistor: fixed, ecmposition, 560,000 chms; $\pm 10 \%$ IW	$22-50 \mathrm{~K}$	$\begin{aligned} & A B \\ & G B \\ & 5041 \end{aligned}$
R49	This circuit reference not assigned		
R50	Resistor: fixed, composition, 1 megohm; $\pm 10 \% \mathrm{IW}$	24-120	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \quad 1051 \end{aligned}$
R51	Resistor: fixed, composition, 330,000 ohms; $\pm 10 \% \mathrm{IW}$	$24-330 K$	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \\ & 3341 \end{aligned}$

Circuit Ref.	Description	-hp- Stock No.	Mfr. \& MPrs。 Designation
R52	Resistor: fized, composition, 220 chms; $\pm 10 \%$ 1W	24-220	$\frac{A B}{G B} 2211$
R53	Resistor: fixed, composition, 8200 chms; $\pm 10 \% 2 \mathrm{~W}$	25-8200	$\begin{aligned} & A B \\ & H B \\ & \hline \end{aligned}$
R54	Resistor: fixed, composition, 10,000 ohms ; $\pm 10 \% 1 / 2 \mathrm{~W}$	23-10K	$\begin{aligned} & A B \\ & \mathbb{E B} \\ & \hline \end{aligned}$
R 55	Resistor: fixed, composition, $330,000 \mathrm{chms} ; \pm 10 \% \mathrm{lW}$	$24-330 \mathrm{~K}$	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \\ & 33^{2}-1 \end{aligned}$
R56	Resistor: fixed, composition, 220 ohms; $\pm 10 \% \mathrm{IW}$	24-220	$\underset{G B}{A B} 2211$
R57	Resistor: fixed, composition, 8200 chms ; $\pm 10 \% 2 \mathrm{~W}$	25-8200	$\begin{aligned} & A B \\ & H B 221 \end{aligned}$
R58	Resistor: fixed, composition, 10,000 chms ; $\pm 10 \% \mathrm{FW}$	24-10K	$\frac{A B}{G B} 1031$
R59	Resistor: fixed, composition, $330,000 \mathrm{chms} ; \pm 10 \% \mathrm{IW}$	$24-330 \mathrm{~K}$	$\frac{A B}{G B} 3341$
8.60	Resistor: fixed, composition, $220 \mathrm{chms} ; \pm 10 \% \mathrm{~W}$	24-220	$\frac{\mathrm{AB}}{\mathrm{~GB}} 22 I 1$
R61	Resistor: fixed, composition, $8200 \text { chras ; } \pm 10 \% 2 \mathrm{~W}$	25-8200	$\begin{aligned} & A B \\ & I B B \\ & I \end{aligned}$
R62	Resistor: Pired, composition, $10,000 \mathrm{chms} ; \pm 10 \% \mathrm{l} / 2 \mathrm{~W}$	23-10K	${ }^{A B}$
R63	Resistor: fixed, composition, 330,000 chms; $\pm 10 \% \mathrm{lW}$	$24-330 \mathrm{~K}$	$\frac{\mathrm{AB}}{\mathrm{~GB}} \quad 3341$
R64	Resistor: fixed, composition, 220 ohms; $\pm 10 \% 1 \mathrm{~W}$	24-220	$\begin{aligned} & A B \\ & G B \\ & \\ & 2211 \end{aligned}$
R65	Resistcr: fixed, composition, 8200 ohms; $\pm 10 \% 2 \mathrm{~W}$	25-8200	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{FB} \\ & 8221 \end{aligned}$
R66	Resistor: fixed, composition, 10,000 chms: $\pm 10 \% 1 / 2 \mathrm{~W}$	23-10K	$\begin{aligned} & A B \\ & P B \\ & \hline \end{aligned}$
R67	Resistor: fixed, compositicn, 330,000 ohms ; $\pm 10 \%$ IW	24-330K	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \\ & 3341 \end{aligned}$
R68	Resistor: fixed, composition, 220 chrs; $\pm 10 \%$ iv	24-220	${ }_{\mathrm{GB}}^{\mathrm{AB}} 221 \mathrm{I}$

Circuit	Description	Stock No.	MPr. \& MPrs. Designaticn
R69	Resistor: fixed, composition, 8200 chms; $\pm 10 \% 2 \mathrm{~W}$	25-8200	$\frac{4 B}{I 3} 8221$
R70	Resistor: fixed, composition, 10,000 clms; $\pm 10 \% 1 / 2 \mathrm{~W}$	23-10K	$\begin{array}{ll} A B \\ Z B \\ \hline \end{array} 031$
871	Resistor. fixed, composition, 33 ohms; $\pm 10 \%$ 1w	$24-33$	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \\ & 3301 \end{aligned}$
R72	Resistor: fixed, composition, 10,000 chms ; $\pm 10 \%$ 1W	2-10K	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \\ & 1031 \end{aligned}$
R73	Resistor: fixed, composition, 33 ohms; $\pm 10 \%$ 17	$2^{2}-33$	$\underset{G B}{A B} 3$
874	Resistcr: fixed, composition, 1000 chms; $\pm 10 ; 21 / 2 \mathrm{~W}$	23-1000	$\frac{A B}{E B} 1021$
275	Resistor: fixed, composition, 1000 chms; $\pm 10 \%$ I/2W	23-1000	$\frac{A B}{A B \quad 1021}$
R76	Resistor: fixed, oomposition, 1000 chms; $\pm 10 \% 1 / 2 \mathrm{~W}$	23-1000	$\frac{\mathrm{AB}}{\mathrm{BB}} 1021$
R77	Resistor: fixed, composition, 560,000 ohms: $\pm 10 \% \mathrm{IW}$	24-55015	$\begin{gathered} \mathrm{GB} \\ \mathrm{~GB} \\ 5041 \end{gathered}$
R78	Resistcr: fixed, composition, 10,000 ohms: $\pm 10 \% 1 \mathrm{~W}$	$24-10 \mathrm{~K}$	$\frac{\mathrm{AB}}{\mathrm{~GB}} 1031$
R79	Resistor: fixed, compcsition, $270,000 \mathrm{chms} ; \pm 10 \% \mathrm{IW}$	$24-270 K$	$\frac{A B}{G B} \quad 27^{2}+1$
R80	Resistor: fixed, composition, 33,000 ohms: $\pm 10 \% \mathrm{IW}$	$24-33 \mathrm{~K}$	${ }_{G B}^{A B} \quad 3331$
R81	Resistor: variable, crmposition, 25,000 chms; linear taper	210-11	$\begin{aligned} & \text { Centralab } \\ & \text { BAI-010-1990 } \end{aligned}$
R82	$\begin{aligned} & \text { Resistor: fixed, crmposition, } \\ & 47,000 \text { chrns } \pm 10 \% \\ & \hline W \end{aligned}$	$24-47 \mathrm{~K}$	$\frac{A B}{G B}+73 I$
R83	Resistcr: fixed, composition, 100,000 ohms ; $\pm 10 \% \mathrm{IW}$	24-100\%	$\frac{A B}{G B} 1041$
284	Resistor: fixed, composition, 100,000 ohms; $\pm 10 \% \mathrm{IVI}$	24-100K	$\frac{A B}{G B} 1041$
R85	Resistor: fixed, composition, 220,000 chms ; $\pm 10 \% \mathrm{IW}$	24-220K	$\frac{\mathrm{AB}}{\mathrm{~GB}} 2241$

$\begin{gathered} \text { Circuit } \\ \text { hef. } \end{gathered}$	Description	-hpStrci 1 Ne .	$\begin{aligned} & \text { ifir C Mfrs. } \\ & \text { Designation } \end{aligned}$
R86	Resistor: variable, composition, 50,000 chms; Iinear taper	210-8	$\begin{aligned} & \text { Centralab } \\ & 33-010-175 \end{aligned}$
R87	Resistrr: fixed, ermposition, 100,000 cims; $\pm 10 \% 1 \mathrm{~W}$	24-100K	$\begin{aligned} & A B \\ & G B \quad 10 j 1 \end{aligned}$
P88	Resistor: variable, composition, 50,000 chms; linear taper	210-18	$\begin{aligned} & \text { Centralab } \\ & 33-010-176 \end{aligned}$
R89	Resistnr: variable, ormpositinn, 500,000 chms; Iinear taper	210-20	$\begin{aligned} & \text { Centralab } \\ & 33-010-255 \end{aligned}$
R90	Tesistor: fired, composition, 2.2 meghhm; $\pm 10 ; \mathrm{IW}$	$24-2.21$	$\begin{aligned} & A B \\ & G B \quad 2251 \end{aligned}$
R91	Resistor: variable, omposition, 500,000 chms; linear taper	210-20	$\begin{aligned} & \text { Centraleb } \\ & 33-010-255 \end{aligned}$
R92	Resistor: fixed, enmossition, 2.2 megohms; $\pm 10,5 \mathrm{~W}$	$24-2.21$.	$\begin{aligned} & A B \\ & G B 2251 \end{aligned}$
193	Rosistor: Iixed, emposition, $56,000 \mathrm{hms} ; \pm 10 \% \mathrm{IW}$	$24-56 \mathrm{~K}$	${ }_{C B}^{A B} 5631$
R94	Resistcr: Sixed, composition, 100,000 ohms; $\pm 10,5 \mathrm{~W}$	$24-100 \mathrm{~K}$	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{~GB} \quad 1041 \end{aligned}$
R95	Resister: fixed, ermposition, 560 chms; $\pm 10 \%$ IW	24-560	$\begin{array}{ll} A B \\ C B & 501 \end{array}$
R96	Resistor: variable, crmposition, 500,000 oims; linear taper	210-20	Centralab 33-010-255
R97	Resistor: fized, ermposition, 560 rims; $\pm 10 \% 1 \mathrm{~W}$	$24-560$	$\frac{A B}{G B} 5611$
R98	Resistor: Iixed, compositinn, 56,000 nims; $\pm 10,5 \mathrm{IW}$	$24-56 \mathrm{~K}$	$\begin{aligned} & \text { AB } \\ & G B 31 \end{aligned}$
R99	Resistor: fixed, composition, 100,000 rhms; $\pm 10,0 \mathrm{IW}$	$24-1.00 \mathrm{~K}$	$\begin{array}{ll} \mathrm{AB} \\ \mathrm{~GB} & 1041 \end{array}$
2100	Jesistor: variable, crmpositirn, 500,000 chms; inear taper	210-20	$\begin{aligned} & \text { Centralab } \\ & 33-010-255 \end{aligned}$
R101	Resister: fived, empnsition, $47,000 \mathrm{chms}: \pm 10, \mathrm{IW}$	$24-47 \mathrm{~K}$	$\begin{aligned} & A B \\ & G D \\ & \hline 1 \end{aligned}$
2102	Resistra: fixed, composition, 2.700 ohms ; $\pm 10,5 \mathrm{IW}$	$24-4700$	$\begin{aligned} & A B \\ & G B \quad 721 \end{aligned}$

$\begin{gathered} \text { Circuit } \\ \text { Ref. } \end{gathered}$	Descrizticn	Sinctive.	$\begin{aligned} & \text { Mific a Mirs } \\ & \text { Designation } \end{aligned}$
R103	Resister: fixed, cempesition, 22,000 chns; $\pm 10,01 / 2 \mathrm{~W}$	23-22K	$\frac{A B}{S E} 2231$
R104	Resistor: fixed, craposition, 55,000 chms $\pm 10,51 / 2 \mathrm{~W}$	23-56k	$\frac{A B}{B B} 5531$
2105	Resistor: fixed, crmposition, 56,000 chms ; $\pm 10 \% 1 / 2 \mathrm{~W}$	$23-56 \mathrm{~K}$	$\begin{array}{ll} A B \\ & \\ \end{array}$
RI06	hesistor: fired, enmposition, 56,000 chms $; \pm 10 \% 1 / 2 W$	23-56I	$\underset{\sim}{A B} 5631$
R107	Resistre: fized, compositicn, 4,000 chms $+10,1 W$ 4,000 chms; $\pm 10 \% \mathrm{~W}$	24-4.7\%	${ }_{C B}^{A B} 431$
R108	Resistor: fired, ermposition, 10,000 chms $\pm 10,5 \mathrm{~W}$	24-10K	$\frac{A B}{G B} 1031$
Cl	Capacitor: variable, air, 25 mmf	12-9	$\begin{aligned} & \text { Rewleti- } \\ & \text { Pactard } \end{aligned}$
C2	Capacitor: variable, air, 100 mmf	12-17	$\left\|\begin{array}{l} \text { Sarkes-aar- } \\ \text { Jian } \\ J-103 \text { \#2arm } \end{array}\right\|$
C3	Capacitcr: fixed, mica, $5000 \mathrm{mmf} ; \pm 10 ; 3300 \mathrm{vacw}$	25-14	$\begin{aligned} & \text { Micamn Ia } \\ & \text { Radio Cro. } \\ & \text { Type W } \end{aligned}$
C_{4}	Capacitor: variable, air, 100 mmf	12-17	$\begin{aligned} & \text { Sarkes- } \\ & \text { Tarzian } \\ & \text { J-103 } \because 2 T e r m \end{aligned}$
C5	Capacitor: variable, air, 100 mmi	12-11	$\begin{aligned} & \text { Sarkes- } \\ & \text { Aarzian } \\ & \text { A-103L } \end{aligned}$
C6	Cavacitry: fixcd, mica, 400 mmf $\pm 10 \% 500 \mathrm{vdcw}$	14-4+00	Micam $1 d$ Type LXM
C7	Capacitor: rised, paper, . Ol mf: $\pm 20 ; 600 \mathrm{vdcw}$	16-41	$\begin{aligned} & \mathrm{Srlar} \operatorname{lifg} . \\ & \mathrm{ST}-0-0 \end{aligned}$
C8	$\begin{aligned} & \text { Capacitcr: fixed, rica, } 20 \mathrm{mmfi} \\ & \quad \pm 10,3500 \mathrm{vdcw} \end{aligned}$	14-20	Micomeld Type LXI
C9	$\text { Capacitor: fixea, mica, } 100 \mathrm{mmf}$ $\pm 10 \% 500 \mathrm{vacw}$	14-100	icamold Type Uxi
C10	```Capacitor: fixed, mica, 2000 mmi; \pm 10% 500 vdcw```	14-13	$\begin{aligned} & \text { inicam } 1 \mathrm{l} \\ & \text { Iype } \end{aligned}$

Circuit Ref.	Description	$\begin{gathered} -\mathrm{hp}- \\ \mathrm{Stcck} \mathrm{Hc} . \\ \hline \end{gathered}$	Mrr. 2 Ifrs. Desicnaticn
Cl1	This circuit reference not assigned		
C12	Part of Tuned Circuit Assembly		
C13	$\begin{aligned} & \text { Capacitor: fixed, mica, } 500 \mathrm{mmf} ; \\ & \pm 10 \% 500 \mathrm{vdcw} \end{aligned}$	14-500	Micannld Type LM
Cll	$\begin{aligned} & \text { Capacitor: rixed, mica, } 10 \mathrm{mmf} ; \\ & \pm 10 \% 500 \mathrm{vdcw} \end{aligned}$	24-10	iincanrld rype Unill
C15	Capacitor: fixed, nica, 1000 mmP : $\pm 10 \% 500$ vdew	$12-11$	$\begin{aligned} & \text { Iicameld } \\ & \text { Iype } T \end{aligned}$
C16	Capacitor: fixed, mica, 5000 mmf ; $\pm 10, \% 300 \mathrm{vdcw}$	14-14	Iicancld Type W
C17	Part of Tuned Circuit Assembly		
C18	$\begin{aligned} & \text { Capacitor: fixed, mica, } 1000 \mathrm{mmf} \text {; } \\ & \pm 10 \% 500 \mathrm{vdcw} \end{aligned}$	14-11	Micameld Type W
C19	$\begin{aligned} & \text { Capacitor: fixed, mica, } 10 \mathrm{mmi} ; \\ & \pm 10 ; 500 \mathrm{vdcw} \end{aligned}$	14-10	$\begin{aligned} & \text { Micam ld } \\ & \text { Qype CNM } \end{aligned}$
C20	Capacitcr: fixed, mica, . Ol mf; $\pm 10 ; 300 \mathrm{vdcw}$	14-23	IIicanrld Type W
C 21	$\begin{aligned} & \text { Capacitor: fixed, mica, . Ol mí; } \\ & \pm 10 \% 300 \mathrm{vdcw} \end{aligned}$	14-23	$\begin{aligned} & \text { Iicam Id } \\ & \text { Type W } \end{aligned}$
C 22	Part of Iuned Circuit Assembly		
C23	```Capacitor: fixec, paper, .Ol maf; -10% +30%```	16-11	Aerovex Type 684
C24	Capacitor: fixed, mica, 10 mmf ; 500 vdew	14-10	Micameld Type LXM
C25	Capacitor: fixed, paper, .I mf; -10% +20, 500 vdcm	16-1	Aerovox Type 684
C26	Capacitor: fixed, paper, . 5 mf ; 200 vccm	16-37	$\begin{aligned} & \text { Sprague } \\ & \text { LIect. Cr. } \\ & \text { 68P25 } \end{aligned}$
C27	$\begin{aligned} & \text { Capacitor: fixed, paper, } 1 \mathrm{mf} ; \\ & \quad \pm 10,600 \mathrm{vdcw} \end{aligned}$	17-12	$\begin{aligned} & \text { Gen. FIect.Co } \\ & 23 F 467 \mathrm{GlO3} \end{aligned}$
C28	This circuit reference not assigned		

Circuit Ref.	Description	-hp- Stock No.	Mer. C Mifrs. Designatirir
C29	Capacitor: fixed, paper, . 25 mí 200 vdcw	16-36	$\begin{aligned} & \text { Sprague } \\ & 68 \mathrm{P} \end{aligned}$
C30	$\begin{aligned} & \text { Capacitor: fixed, mica, . } 01 \mathrm{mf} ; \\ & \pm 1,300 \mathrm{vdcw} \end{aligned}$	15-41	Aerovox Type $1464 x$
C3I	Capacitor: fixed, mica, . 01 mí; $\pm 1 \% 300 \mathrm{vd} . \mathrm{cw}$	15-41	Aercvox Type 1464X
C32	Capacitor: fixed, mica, . 01 mf ; $\pm 1 \% 300 \mathrm{vdcw}$	15-41	Aercvox Type 1464X
C33	Capacitor: fixed, paper, . 1 mf ; $-10 \%+20 \% 600$ vdcw	16-1	Aerovex Type 684
C34 abc	Capacitor: fixed, electrnlytic, $20 \mathrm{mf} ; 450 \mathrm{vacw}$	18-42	$\begin{aligned} & \text { PR Mallory } \\ & \text { FPQ-44. } \end{aligned}$
C35	This circuit reference not assigned		
C36	Capacitor: fixed, mica, 500 mmf; $\pm 10 \% 500 \mathrm{vdcw}$	14-500	$\left\lvert\, \begin{aligned} & \text { IIicameld } \\ & \text { Iype UXI } \end{aligned}\right.$
C37	Capacitor: fixed, paper, . 01 mir; $-10 \%+30 \% 600 \mathrm{vdcw}$	16-11	Aercvex Iype 684
C38	Capacitor: fixed, paper, . 01 mP ; $-10 \%+30 \% 600 \mathrm{vdcw}$	16-11	Aerover Type 684
C39	Capacitor: fixed, paper, I mf; $-10, \%+20 \% 600$ vdew	16-1	Aerovox Iype 684
Clo	Capacitcr: fixer, paper, . 01 mf ; $-10 ;{ }^{\circ}+30 \% 600 \mathrm{vdcv}$	16-11	Aerovex Type 684
C41	$\begin{aligned} & \text { Capacitor: fixed, paper, I mf; } \\ & \pm 10,600 \mathrm{vdcw} \end{aligned}$	17-12	$\begin{aligned} & \text { Gen. DIect.Cn } \\ & 23 F^{4} 67 \mathrm{GIO} \end{aligned}$
Cl_{4}	$\begin{gathered} \text { Capacitor: fixed, paper, } 0.01 \mathrm{mf} ; \\ -10,3+30,600 \text { vdcw } \end{gathered}$	16-11	Aercvox I'ype 684
C43	Capacitcr: rixed, electrolytic, $20 \mathrm{mP} ; 450 \mathrm{vacm}$	18-20	$\begin{aligned} & \text { PR Mallory } \\ & \text { FPS-144 } \end{aligned}$
C4.4	Capacitor: fixec, electrolytic, $40 \mathrm{mf} ; 40$ vácw	18-40	
C45	$\begin{aligned} & \text { Capacitor: fixed, paper, } 4 \mathrm{mfi} ; \\ & \pm 10 \% 600 \text { vdew } \end{aligned}$	17-10	$\begin{aligned} & \text { Crinell- } \\ & \text { Dubilier } \\ & \text { TLA- } 50^{2} \end{aligned}$

$\begin{gathered} \hline \text { Circuit } \\ \text { Zef. } \\ \hline \end{gathered}$	Description	$\begin{aligned} & \operatorname{hnp}- \\ & \text { stcok inn. } \end{aligned}$	Mrr. \because Lifs Designait
REL -1	Relay: SPST normally closed	49-6	$\begin{aligned} & \text { Sisma Inst. } \\ & \text { Co. } 1.107-1 \\ & 10,000-5 \end{aligned}$
31	Toggle Switch: SPST	310-11	
S2	Retary Switch:	310-73	IVerlett- Paclard
S3	Toggle Switch: SPDT	310-12	$\begin{aligned} & \text { Arrow-Aart } \\ & \text { Ci Tegenan } \\ & 21350 \end{aligned}$
S4	Toggle Switch: SPDE	310-12	$\begin{aligned} & \text { Arrow-Eart } \\ & 2 . \text { Eegenan } \\ & 21350 \end{aligned}$
S 5	Toggle Switch: SPDT	310-12	$\begin{aligned} & \text { Arrow-Iart } \\ & \text { Q Tegenan } \\ & 21350 \end{aligned}$
S6	Rotary Switch:	310-39	HewlettPackard
S7	Trggle Switch:	310-11	Arrov-Hart \& Zegeman 20994-7IV
S8	Pushbutton Switch:	310-75	$\begin{aligned} & \text { Arpaw-Hart } \\ & \text { ع Fegeman } \\ & 339 \mathrm{~m} \end{aligned}$
VI	Tube: Type 6BIT6	212-6B126	
V2A, V2B	Qube: Type 6aL5	212-6AL5	
V3	Tube: Type 6as6	212-64S6	Western Blectric Co
V4	Tube: Type 6AS6	212-6AS6	Western -Iectric Cr
V5A, V5B	Tube: Type 6aL5	212-6AL5	
V6	Tube: Cype GAS6	212-J́AS6	Western Ilectric Co

LIST OF MANUFACTURERS CODE LETTERS FOR REPLACEABLE PARTS TABLE

$\underline{\text { Code Letter }}$	Manufacturer
A	Aerovox Corp.
B	Allen-Bradley Co.
C	Amperite Co.
D	Arrow, Hart and Hegeman
E	Bussman Manufacturing Co.
F	Carborundum Co.
G	Centralab
H	Cinch Manufacturing Co.
I	Clarostat Manufacturing Co.
J	Cornell Dubilier Electric Co.
K	Electrical Reactance Co.
L	Erie Resistor Corp.
M	Federal Telephone and Radio Corp.
N	General Electric Co.
O	General Electric Supply Corp.
P	Girard-Hopkins
HP	Hewlett-Packard
Q	Industrial Products Co.
R	International Resistance Co.
S	Lectrohm, Inc.
T	Littelfuse, Inc.
U	Maguire Industries, Inc.
V	Micamold Radio Corp.
W	Oak Mfg. Co.
X	P.R. Mallary Co., Inc.
Y	Radio Corp. of America
Z	Sangamo Electric Co.
AA	Sarkes Tarzian.
BB	Signal Indicator Co.
CC	Sprague Electric Co.
DD	Stackpole Carbon Co.
EE	Sylvania Electric Products, Inc.
FF	Western Electric Co.
GG	Wilkor Products, Inc.
HH.	Amphenol.
II	Dial Light Co. of America
JJ	Leecraft Manufacturing Co.
Z Z	Any tube having RMA standard characteristics

CLAIM FOR DAMAGE IN SHIPMENT

The instrument should be tested as soon as it is received. If it fails to operate properly, or is damaged in any way, a claim should be filed with the carrier. A full report of the damage should be obtained by the claim agent, and this report should be forwarded to us. We will then advise you of the disposition to be made of the equipment and arrange for repair or replacement. Include model number, type number and serial number when referring to this instrument for any reason.

WARRANTY

Hewlett-Packard Company warrants each instrument manufactured by them to be free from defects in material and workmanship. Our liability under this warranty is limited to servicing or adjusting any instrument returned to the factory for that purpose and to replace any defective parts thereof (except tubes, fuses and batteries). This warranty is effective for one year after delivery to the original purchaser when the instrument is returned, transportation charges prepaid by the original purchaser, and which upon our examination is disclosed to our satisfaction to be defective. If the fault has been caused by misuse or abnormal conditions of operation, repairs will be billed at cost. In this case, an estimate will be submitted before the work is started.

If any fault develops, the following steps should be taken:

1. Notify us, giving full details of the difficulty, and include the model number, type number and serial number. On receipt of this information, we will give you service instructions or shipping data.
2. On receipt of shipping instructions, forward the instrument prepaid, and repairs will be made at the factory. If requested, an estimate of the charges will be made before the work begins provided the instrument is not covered by the warranty.

SHIPPING

All shipments of Hewlett-Packard instruments should be made via Railway Express. The instruments should be packed in a wooden box and surrounded by two to three inches of excelsior or similar shock-absorbing material.

DO NOT HESITATE TO CALL ON US

