HP Archive

This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com

Please visit us on the web!

On-line curator: Glenn Robb

This document is for FREE distribution only!

INSTRUCTION AND OPERATING MANUAL

TABLE OF CONTENTS

CAUTION 1
SPECIFICATIONS. 3
operating instructions. 4
Inspection
Initial Installation Controls
GENERAL INFORMATION 5
look Oscillator CircuitFrequency Divider CircuitPower Supply and VoltageRegulator Circuit
BLOCK DIAGRAM OF MODSL 100 C $6 a$
STANDARDIZATION WITH WWV 7
SCHEMATIC DIAGRAM FOR USE WITHMULTIPLIER WITH MODEL 100C, 100D. . . . 9
APPLICATION 10
TYPICAL LISSAJOUS FIGURE SHOWING. 11
POINTS OR TANGENCY
MA INTENANCE 11
SCHEMATIC WIRING DIAGRAM. 14
table or replaceable parts 15

PRODUCTION CHANGES

Serial 57 and Above

Table of Replaceable Parts

Change V7, V8, V9, V10 to: Tube: 6 CB6, HP stock \#212-6CB6

Change Vl4 tō:
Tube: 6AV6: HP stock \#212-6AV6

Change R9, R18, R27 to:
Resistor: fixed, composition, 3900 ohms, $\pm 10 \%$, lW HP stock \#24-3900, Mfr. Allen-Bradley, \#GB-392l

Change R5, R15: R24 to:
Resistor: fixed, composition, 39,000 ohms, $\pm 10 \%$, lW HP stock \#24-39K. Mfr. Alien-Bradley, \#GB-3931

C A UII OX
 READ BEFORE TURNING ON THE INS TRUNENT

The heating of the crystal oven in this instrument is regulated by a mercury-column switch. Occasionally the mercury column is separated by jarring and vibration of the unit in shipment.

After turning the instrument on for the first time, keep a close check on the temperature of the crystal oven as indicated by the thermometer in the front panel. When the instrument has been on about 30 minutes, the crustal oven should remain automatically at a constant temperature. This condition will be indicated by a shutting of f of the crystal oven indicator lamp fron time to time, and by the fact that the thermometer will reach a steady reading of $65^{\circ} \mathrm{C} \pm 20 \mathrm{C}$.

However, if the crystal pilot light stays on continuously, or the thermometer goes up beyond 70 degrees, the mercury column in either the thermostat or the thermometer has probably separated in shipment. Turn the instrument off immediately and proceed as follows:

1. Remove the instrument from the cabinet and remove the crystal oven unit which plugs into tube socket adjacent to thermometer window.
2. Disconnect the thermostat wires from the terminals (\#3, Fig。 1). Remove the thermostat clamp by unscrewing the two screws (int, Fig. 1). Draw the thermostat out of the oven. (荕, Fig. 1)
3. Inspect the thermostat for mercury column separation and minute air bubbles in the mercury bulb.
4. If either air bubbles or separation are present, place the mercury switch bulb in ice water until mercury occupies only the

Then place the bulb in a vessel of water and heat until mercury completely fills column and a small portion of the enlargement at the top of the column. Then remove the thermostat and watch the mercury descent to room temperature. If there is no separation or bubbles present, the thermostat may now be put back in service. It may be necessary to repeat the above procedure more than once to unite all the mercury and remove all bubbles.

CAUTION: Immerse only the bulb portion of the thormostat. If the thermostat leads get wet or any moisture collects beneath the plastic insulator covering the contact rings, remove the plastic
insulator and dry tube and insulator and leads thoroughly before placing back in service. Otherwise, leakage between leads may cause heater relay to remain open.
5. Unscrew the two nuts holding the thermometer clamps (\#2, Fig.1), and withdraw thermometer from the oven.
6. To unite the mercury column and remove air bubbles in the thermoneter, use the same procedure as that used on the thermostat.
7. Replace the thermostat and thermometer in the crystal oven; turn on the instrument and observe oven temperature and operation of the oven indicator lamp.

INSTRUCTIONS

MODEL 100C

SECONDARY FREQUENCY STAIDIIRD

SPECIFICATIONS

Output Rating--

Output Frequency

100 cycles per second
1000 cycles por second
10,000 cycles per sccond
100,000 cycles per second

Volts into 5000 ohms load
5 minimum
5 minimum
5 minimum
5 minimum

Distortion--

4\% at all frequencies with 5000 ohrms load.
Internal impedance - 200 ohms load.
Quartz Crystal--
100 kc
Quartz Crystal Oven--
Heater voltage 6.3 v
oven temperature $65^{\circ} \mathrm{C}$
Power Supply Rating--
Voltage - - 105 to 125 volts
Frequency - - 50 to 60 cycles
Wattage - - - 140 watts
Overall Dimensions-- Weight
Cabinet Model - $23 \frac{13}{4}$ " $\lg \times 12 \frac{1}{4}$ " $\mathrm{h} \times 14-7 / 16^{\prime \prime} \mathrm{d} \quad 38$ Ibs.
Rack Model- - $19^{\prime \prime} 1 \mathrm{~g} \times 10_{\frac{1}{2}}{ }^{\prime \prime} \mathrm{h} \times 14-7 / 16^{\prime \prime} \mathrm{d} 28 \mathrm{lbs}$.

Tube Complement--

V1	6BH6	Oscillator
v2a, b	6AL5	Rectifier
V3	6AS6	Frequency Divider
V4	6AS6	Frequency Divider
V5a	6 AL5	Rectifier
V6	6436	Frequoncy Dividor
V7	6AH6	100 kc isolating amplifier
V8	6AH6	10 kc output isolating amplifier
V9	6AH6	1000 cycles output isolating amplifier
V10	6ain6	100 cycles output isolating amplificr
V11	5R4GY	Power Supply Rectificr
V12	6L6G	Voltage Regulator
V13	6L6G	Voltage Regulator
V14	GAQ6	Voltage Regulator
V15	0 A 2	Voltage Regulator
		OPERATING INSTRUCIIONS

Inspection--

This instrunent has been thoroughly tested and inspected before being shipped and is ready for use when received.

After the instrument is unpacked, the cover should bo removed (See Maintenance Section) so that the instrument may be carefully inspected for damage roceived in transit. While tho cover is off, the tubes should be checked to see that they are firmly seated in their sockets. If any shipping damage is found, follow the procedure outlined in tho "Claim for Damage in Shipment" page at the back of this instruction book.

Initial Installation--

Before installing the Model 100C, make sure that the tubes and relay are secure in their sockets.

The instrument should be situated so that there is adequate ventilation. Lack of proper ventilation may cause the ambient temperature in the instrument to rise high enough so that the oven thermostat will lose control.

Observe the "Caution" regarding the crystal oven, in the front of this book, before turning on tho power.

After tho power is on, several hours will elapge before the crystal oven temperature becomes constant. The instrument should be run continuously so that the temperature of the components reaches a steady state and constant output frequencies will be maintained. Continuous operation of the instrument, will also improve the stability of the crystal.

Low capacity shielded wire should be used to distrib-
ute the output voltages to the equipmont under test as it will prevent the pick-up of extrancous voltages. Tho shicld braid on the wire is connected to the " G " binding posts of the instrument. To maintain a minimum output voltage of 5 volts, at each frequency, a load of not less than 5000 onms impedance may be connected across the output torminals. The following table gives the maximum capacity that can bo tolerated wi thout excceding the above conditions.

$$
\begin{array}{lc}
\text { Frequency } & \text { Capacity for Capacitive Reactance }=5000 \text { ohms } \\
100 \mathrm{KC} & .0003 \mathrm{mf} \\
10 \mathrm{KC} & .003 \mathrm{mf} \\
1 \mathrm{KC} & .03 \mathrm{mf} \\
100 \text { cycles } & .3 \mathrm{mf} \\
\text { Maximum capacity across output terminals }=\text { Max. leng th of } \\
\text { Capacity }(\mathrm{mf} & \text { per foot) of wire }
\end{array}
$$

The length of the shielded line, carrying the looke may be extended by connecting a 100 KC tuned circuit across tho lino. This tuned circuit consists of an inductance in parallel with a variable capacitor. Tune the capacitor for maximum output.

Controls and Terminals--
FREQ. ADJ. - Sec section on "Standardization with WVV" for the use of this control.

POWER - This switch controls all power supplied to the instrument from the power line.

OUTPUT SELECTOR - This switch connects any one of the four frequencies to the "output" binding posts on the front panel.

FUSE - the fuscholder, located on the back of the chassis, contains a 1.5 ampere cartridge fuse. The fuse may be replaced by unscrewing the fuse holder cap and inserting a new fuse.

Power Cable - The power cable consists of three conductors. Two of these conductors carry power to the instrument while the third conductor (green wire) is connected to the instrument chassis. The third wire projects from the cable near the plug end of the cable and may be connected to a ground whon it is desirable to have a grounded instrument chassis.

Output Binding Posts - The four sots of binding posts on the back of the chassis are the output torminals for the four frequencies generated by the instrument. The binding posts markod "G" are connected to the chasses.

GENERAL INFORMATION

The Hewlett-Packard Low Frequency Standard Model 100C is an accurate and stable secondary frequency standard. It may
be standardized with the Bureau of Standards transmissions from WNV at intervals to maintain a high order of accuracy.

The hodel looc consists of a crystal-controlled oscillator operating at 100 KC which controls the stability of all frequencies generated by the instrument. The frequencies of 10KC, 1KC and 100 cps are produced by 10:1 cascaded frequency dividers which are driven by the look precision oscillator. Each divider oporatos its own isolating amplifier so that all sine waves generated by the instrument are independently availalbe for external use.

A rogulated yower supply delivers all nocessary voltages to the instrument and maintains a constant voltage which contributes to the excellent stability of the instrument.

100KC Oscillator Circuit--

The 100KC oscillator is a modified Piorce circuit. This circuit allows the frequency to be changed $\pm 1 \mathrm{cps}$ by changing the capacity across the crystal. A very low temperature coefficient crystal held at a constant temperature controls the frequency to within 10 parts per million at normal room temperature.

Frequency Divider Circuit--
The frequency divider circuit is composed of (see Fig. 2) tubes V2, V3 and associated components. Tube V3 is the actual frequency divider, operating as a controlled one-shot multivibrator. The time constants of the circuit are adjusted so thet the circuit is triggered by everytenth cycle of the oscillator.

Assuming for a moment that the oscillator is not operating, the operation of the circuit can be described as follows: In a quiescent state tube V3 operates in such a manner that the plate is at a higher voltage than the screen grid but draws no current. This is explained by the fact that the suppressor grid is sufficiently nogative with respect to the cathode to cut off the plate current. Therefore the screen grid acts as a plate for tho space curront. The control grid is at cathodo potential and is thus drawing hoavy current. The cathode of Diode V2 is connected to a higher dc voltage than its plate so that V2 is an open circuit to positive voltages and to small negative voltages applicd to its cathode. The negative portion of the oscillator is large onough to pass through diodo V2 and trigger a multivibrator action in V3: The negative voltage is passed from the plate of V3 to the control grid through Cl. The negative control grid reduces the space current, causing the screen voltage to risc and the cathode voltage to fall. This action reduces the suppressor bias with respect to the cathode sufficiently that current passes through the suppressor grid to the plate. The plate voltage therefore drops rapidly, reinforcing the orig. inal negative voltage on the control grid. Because the plate voltage on V3 is now low, the plote of V2 is at a lower voltage than its cathode and no negative trigger voltages can pass through diode V2.

FIG. 1 BLOCK DIANRAN OF MODEL 100 C

The circuit remains in this condition as the negative charge on the control grid loaks off through resistor R2. As the grid voltage slowly risos, the space current in the tube slowly increases, causing the plate voltage to drop somewhat more. At the same time the cathode voltage slowly rises, increasing the bias on the suppressor grid. Finally, a critical point is reached where the screen has moro attraction for tho space current than the plate.

When this critical point is reached, the second portion of the multivibrator action occurs: The screen voltage falls rapidly and plate curront coases. This action transfers a positive voltage to the control grid, resulting in more space current and reinforcing the drop in scroen voltage. The circuit then becomes quiescont and is prepared for the next negative pulse through Diode V2a. The time constants in the circuit are adjusted so that the total multivibrator action requires slightly more than nine cycles of tho oscillator frequency, the circuit bcing again ready for triggoring on the tenth cycle. Thus, a frequency-dividing action has occurred.

This divider circuit is highly stable and will operate for long periods of time without correction.

The sinusoidal output from the divider is obtained from a tuned circuit that is connected to the screen grid of V3 through a large isolating resistor. This sinusoidal wave is relatively harmonic-free, having less than 4% distortion.

The remaining dividor circuits are connectod in casdade and are driven from the cathode oircuit of V3. A rectangular wave is present at the cathode and this wave, after differontiation, triggers the following divider. The remaining divider circuits operate in a manner similax to the circuit of V3, the major difference being that the time constants are adjusted to accomodate the lower repetition rates involved.

Each divider is connected to its own isolating amplifier. This amplifier isolates the divider from variable external loads and provides a low impedance output.

Power Supply and Voltage Regulator Circuit--
The power supply consists of a transformer to supply the necessary voltagos and a conventional full-wave rectifier and filtor system to convert alternating current to direct current.

STANDARDIZATION WITH NWV

The look oscillator circuit of the Model looc is set to lookC at the factory and it will maintain this frequency within $\pm .001 \%$ (10 parts por million) on the range of normal
room temperatures. This degree of accuracy is sufficient for many purposes. For a greater degree of accuracy the look oscillator should be standardized with a primary frequency standard at frequent intervals.

The most accessible primary frequency standard is the standard frequencies broadcast by the National Bureau of Standards Station WV at Washington, D.C. This service may be utilized to check tho Model looC by cnploying a short wave radio receiver and a frequency multiplier.

Station $W W$ broadcasts standard frequencies twentyfour hours a day on the following frequencies: $2.5,5,10,15$, $20,25,30$ and 35 megacycles. For the latest information on using this service a Bureau of Standards Circular "Methods of Using Standard Frequencies Broadeast by Radio" may be purchased from the Superintendent of Documents, Government Printing Offic, Washington, D. C. A detailod announcemont of WWV broadcast services, LC886 will be provided upon request from the National Bureau of Standards, Washington 25, D.C.

A schematic wiring diagram for a suitable multiplier is shown in the accompanying illustration. This circuit will give multiples of 100 KC so that a signal is obtained on all the WV transmission frequencies. A wirc from the antenna terminal of the short wave recciver loosely coupled to Coil Ll provides a signal to mix with tho signal from WWV. This coupling should be varied until it is approximately the same strength as WiV.

The adjustment of the 100KC oscillator on the Model 100 C is performed as follows:

1. Feed the lookC oscillator output through the multiplier to the redio rccoiver tuned to the highest WIV frequency providing the best signal. The higher the WWV frequency used, the greater the accuracy obtainod in calibrating the lookC oscillator. Headphones or loudspeaker may be used to indicate the prosenco of a beat between the look oscillator and inv.
2. If a beat note is present the lookC oscillator has drifted from its correct frequency. To return the Hodel 100 C oscillator to exactly look it is necessary to tune the "FREQ. ADJ." capacitor in the lower left corner of the front panel. Turn this control in the direction that produces a decreasc in the pitch until the zero beat point is reached and then increase in pitch as rotation is continued. At the zero beat point the lookC oscillator will bo standardized with WWV.
3. Should it be impossible to reach zero beat with the "FREQ. ADJ." control, then set the control to approximately oneholf capacity. Next rotate the screwdriver adjustments C2 and C4 located on the chassis in rear of crystal oven, together and in the same direction until the zero beat point is reached.

The accuracy of the 10KC, 1 KC and 100 cycles outputs may be determined by comparing them with the look output by means of an oscilloscope.

APPLICATION

The Low Frequency Standard is applicable to nost frequency measurements from very low audio frequencies up to about twenty megacycles. It may be used as a source of constant frequency voltage to operate timing circuits and modulate radio frequency generators.

The Model $100 C$ is most useful for the calibration of audio, supersonic and radio frequency generators. Also as a corparison device to dotermine the frequency stability of all kinds of radio equipment.

A typical arrangement for the use of the standard in low-frequency measurements is shown in Figure 4. Low frequencies are most conveniently measured by means of Lissajous figures on an oscilloscope. However for very complex Lissajous figures it is desirable to use a large-screen oscilloscope.

An external oscillator can be used to advantage to increase the ease of identification of the more complex patterns. For exanple, when measuring "inconvenient" frequencies such as 210 cps , the oscillator can bo adjusted to 200 cps against the 100 cps output of the standard, resulting in a simple figure-eight pattern on the oscilloscope. By then switching the standard to 10 cps and adjusting the oscillator to the first frequency above 200 cps that results in a sinusoidal pattern, a frequency of 210 cps can be accurately obtained on the oscillotor. The oscillator frequency is then comparod with the unknown frequency.

High frequency measurements are best made with the aid of a suitable receiver. The transition point between low and high frequency measurements is determined by the characteristics of the cquipment at hand, by the stability of the unknown frequency, and by the complexity of the ratio of the unknown frequency to the standard frequency. With modern oscilloscopos and stable frequencios the transition point is above 1 megacycle. The rolatively pure sine wave output of tho Modol 100 C may have to be distorted to produce harmonics for some of the predeeding applications. This may be accomplished by inserting a germanium crystal in tho output circuit of the Model looc or by using an amplifier which draws grid current.

Figure 4.
Lissajous figures are produced on the screen of cathode ray tube when an alternetingcurrent voltage is corrected to both the horizontal and vertical deflecting plates of the tubc. When a standard frequency voltage is fed to one set of plates and a voltage of unknown frequency is connected to the other set, the resultant figure identifies the ratio botween the standard and unknown frequencies

TYPICAL LISSAJOUS FIGURE SHOWING POINTS OF TAIGENCY

Unknown
Frequency
(connectod to vortical plates of oscilloscope)
loKC (connected to horizontal plates of oscilloscope)

No of horizontal tangencies No. of vertical tangencios
x Frequency of standard - Unknown Prequoncy $\frac{2}{1} \times 10 \mathrm{kc}=20 \mathrm{kc}$

Poriodically the Model 1000 should havo the dust blown from tho chassis and the tubes should be chocked to see they are firmly seated in their sockots.

The following is a listing of possible symptoms and their remedies:

SYMPTOM:

Fusc Failure

Low Output Voltage: (100KC output)

Low Output Voltage: (100KC output normal)

Lack of Synchronism:

Crystal Oven overheating:

1. Connect loKC output to oscilloscope vertical plates and loOKC output to horizontal platos. Adjust R6 ("10 KC divider") so that a Lissajous figure for a 10 to 1 ratio is obtained.
2. Follow the above procedure for lOKC and 1KC, 1 KC and 100 cycles. Adjust R14 (1KC Divider) and R23 (100~ Divider) respectively.
3. While the instrunent is in operation, remove crystal oven from its socket. If relay is operating correctly, the crystal oven pilot lamp should burn. Clean relay contacts if relay is dofective.
4. If relay is correct, follow procedure of "Caution" section in front of this book.

REMEDY:

Inspect the instrument for a short circuit in the power circuits and clear the short before replacing fuse.

1. Check for too low an impodance load or a short circuit across the loOKC output terminals.
2. Check VI and V7 by replacing with new tubes. Also tunc C5 for peak voltage.
3. Measure voltage from pin 8 of V13 to chassis. Should be 225 V . If voltage is too low, check power circuit for short circuit.
4. Determine which frequencies have subnormal output and check for too low an impedance load for a short circuit across the output terminals.
5. Check the tubes and voltages in the divider and isolating amplifior of the highest frequoncy with subnormal output.
6. Adjust the proper divider adjustment for synchronism. Those adjustments are screwdriver adjustments located on top of the chassis near the panel and are labeled "IOKC Divider", IKC Divider" and"100n Divider".
7. See "Coution" Section.

Cover and Bottom Plate Removal--

The cover may be romoved from the irstrument without taking the instrument out of the wooden cabinet. The instrument must be romoved from the cabinet when it is necessary to ronove the bottori plate.

To remove the covor, unserew the four screws holding the covor to the back of the instrument, This releases the cover so that it can be drawn out the back of the cabinet.

The bottom plato is romoved by unscrewing the four screws, one in each cornor of the plate.

Crystal Oven Disassombly--

Tho following is the step-by-step procedure necessary to disassemble the crystal oven to the point that the heater and socket connections aro oxposod. See Figure 1 for parts numbers referred to in this procedure.

1. Remove the four wing nuts (\#1), the cover, and the insulating pad.
2. Remove the four spade screws and ring on top of the oven.
3. Romove the two nuts holding tho themometer (\#2) and the thermometer.
4. Disconnect the thormostat wires at point \#3.
5. Ronove the two screws (/\#4) and the thermostat guard. Draw out the thermostat.
6. Remove the four screws (${ }^{[16} 6$) at the bottom edge of the oven and slide clamp (\#7) off of the housing. The housing will unwrap from around the bottom casting.
7. Unwrap the insulation and the heat wires and socket are exposed.

CONDITIONS OF DC VOLTAGE MEASUREMENT 1. 115 VOLTS, $50-60$ CYCLE POWER SUPPL
 A VOLTMETER
RESISTANCE.
CAPACITY in uhf unless otherwise
$k=1000 \mathrm{OHM}$
$=1$ MEGOHM
$*=$ ELECTRICAL
$=$ ELECTRICAL VALUE ADJUSTED AT THE

$\stackrel{1}{2}$ CHASSIS
 SERIAL 60 TO

table of replaceable parts

Circuit Rof.	Description	-hpStock No.	Mfr. ${ }^{2}$ Mfrs. Dosigna tion
RI	Resistor: fixed; composition; 1 mogohm $\pm 10 \%$; 1 wa.tt	24-1M	$\begin{aligned} & \text { Allen-Bradley } \\ & \mathrm{GB}-1051 \end{aligned}$
R2	Resistor: fixcd; composition: 560,000 ohns; $\pm 10 \%$; 1 watt	24-560K	A-B $\quad \mathrm{GB}-564 \mathrm{I}$
R3	Rosistor: fixed; composition; 10,000 ohns; 810%; 1 watt	24-10K	A-B BG-1031
R4	Resistor: fixed; composition; 4,700 ohms; $\pm 10,0 ; 1$ watt	24-4700	A-B CB-4721
R5	Resistor: fixed; composition; 33,000 ohns; $410, \%$ I watt	24-33	A-B GB-3331
R6	Resistor: variable; wirowound; 5,000 ohms ; $\pm 10 \%$	210-8	$\begin{aligned} & \text { Clarostat } \\ & \text { Typo } 58 \end{aligned}$
R7	Resistor: 39,000 ohms; $\pm 10 \%$; 1 watt; Pactory Adjustment	24-39K	A-B CB-3932
R8	Resistor: fixed; composition 47,000 ohns; $\pm 10 \%$; 1 watt	24-470K	A-B $\quad \mathrm{CB}-474$
R9	Resistor: fixed; composition; 3,300 ohrs; $\pm 10 \%$; 1 watt	24-3300	A-B GB-3321
R10	Resistor: fixed; composition; 22,000 ohns; $\pm 10 \% ; 2$ watts	25-22K	A-B HB-2231
R11	Resistor: fixed; composition; 1.2 negohms; $\pm 10 \% ; 1$ watt	24-1.2M	A-B GB-1251
R12	Resistor: fixed; composition 1.5 mogohns; $\pm 10 \% ; 1$ watt	24-1.5M	A-B GB-1551
R13	Resistor: 39,000 ohms; Factory Adjustmont	24-39K	A-B GB-3931
R14	Resistor: variable; wirewound; 5,000 ohns	210-8	$\begin{aligned} & \text { Clarostat } \\ & \text { Type } 58 \end{aligned}$
R15	Resistor: fixed; composition; 33,000 ohms; $\pm 10 \%$; 1 watt	24-33K	A-B GB-3331
R16	Resistor: fixed; composition; 4,700 ohras; $\pm 10,0$; 1 watt	24-4700	$A-B \quad G B-4721$
R17	Resistor: fixed; composition; 470,000 ohas ; $\pm 10 \%$; I watt	24-470K	$A-B \quad G B-4741$.
R18	Resistor: fixed; composition; 3,300 ohas; 210%; I wa.tt	24-3300	A-B GB-3321

table of replaceable parts

Circuit Ref.	Description	-hp- Stock No.	$\begin{aligned} & \text { Mfr. } \\ & \text { Dosi } \end{aligned}$	\& Mfrs. gnation
R19	Resistor: fixed; composition; 22,000 ohns; $\pm 10 \% ; 2$ watts	25-22K	$A-B$	GB-2231
R20	Resistor: fixed; composition; 750,000 ohns; $\hat{5} 5 \%$; 1 watt; Factory Adjustment	24-90	$A-B$	$\mathrm{GB}-7545$
R21	Resistor: fixed; composition; 1.5 nc gohm; $\pm 10 \%$; 1 watt	$24-1.5 \mathrm{M}$	A-B	GB-1551
R22	Resistor: fixed; composition; 39,000 ohrss; $\pm 10 \%$ I watt; Factory Adjustment	24-39K	$A-B$	GB-3931
R23	Resistor: variable; wircwound; 5,000 ohris	210-8		$\begin{aligned} & \text { ostat } \\ & =58 \end{aligned}$
R24	Resistor: fixed; composition; 33,000 ohns; $\pm 10 \%$; 1 watt	24-33K	A-B	GB-3331
R25	Resistor: fixed; composition; 4,700 ohins; $\pm 10 \%$; 1 watt	24-4700	$A-B$	GB-4721
R26	Resistor: fixed; composition; 470,000 ohns; $\pm 10 \%$; I watt	24-470K	A-B	GB-4741
R27	Resistor: fixed; composition; 3,300 ohms; $\pm 10 \%$; 1 watt	24-3300	A-B	GB-3321
R28	Resistor: fixed; composition; 22,000 ohns; $三 10 \% ; 2$ watts	25-22K	A-B	HB-2231
R29	Resistor: fixed; composition; 1 negohm; $\pm 10 \%$; 1 watt; Factory Adjustment	24-1M	A-B	GB-1051
R30	Resistor: fixed; composition; 1.5 megohns; $\pm 10 \% ; 1$ watt	$24-1.5 \mathrm{M}$	A-B	GB-1551
R31	Resistor: fixed; composition; 2.2 negohns; 亡 10%; 1 watt	24-2.2M	A-B	GB-2251
R32	Resistor: fixed; composition; 33 ohns; $\pm 10 \%$; l watt	24-33	$A-B$	CB-3301
R33	Resistor: fixed; composition; 330,000 ohras; $\ddagger 10 \%$; 1 watt	24-330K	A-B	GB-3341
R34	Resistor: fixed; composition; 220 ohns; $\pm 10 \% ; 1$ watt	24-220	A-B	GB-2211
R35	Resistor: fixed; composition; 8,200 ohms; $\pm 10 \%$; 2 watts	25-8200	$A-B$	HB-8231

TABLE OF RJPLACEABLE PARTS

Circuit Ref.	Doscription	- hpStock No.		. \& Mifrs. ignation
R36	Resistor: fixed; composition; 10,000 ohns; $410 \% ; 1$ watt	24-10K	A-	GB-1031
R37	Rosistor: fixed; composition 330,000 ohris; $\pm 10 \%$; 1 watt	$24-330 \mathrm{~K}$	$A-B$	GB-3341
R38	Resistor: fixed; conposition; 220 ohms; $\pm 10 \%$; 1 watt	24-220	A-B	GB-2211
R39	Resistor: fixed; composition; 8,200 ohrs; $\pm 10 \% ; 2$ watt	25-8200	A-B	HB-8231
R40	Resistor: fixed; composition; 10,000 ohris; $\pm 10 \%$; 1 watt	24-10K	A-B	GB-1033.
R 41	Resistor: fixed; composition; 330,000 ohris; $\pm 10 \%$; 1 watt	24-330K	$A-B$	GB-3341
R 42	Resistor: fixod; composition; 220 ohas ; $\pm 10 \%$; 1 watt	24-220	A-B	GB-2271
843	Resistor: fixed; composition; 8,200 ohrs: $\pm 10 \% ; 2$ watt	25-8200	$A-B$	HS-8231
R44	Resistor: fixed; composition; 10,000 ohms; $\pm 10,0 ; 1$ watt	24-10K	$A-B$	GB-1031
R45	Resistor: fixcd; composition; 330,000 ohas ; $\pm 10 \%$; 1 watt	$24-330 \mathrm{~K}$	h-B	GB-3341
R 46	Resistor: fixed; composition; 220 ohms; $\pm 10 \%$; 1 watt	24-220	$A-B$	GB-2211
R47	Resistor: fixed; composition; 8,200 ohiss; $\pm 10 \%$; 2 watt	25-8200	A-B	HB-8231
R48	Resistor: fixed; composition; 10,000 ohrs; ± 10; 1 watt	24-10K	A-B	GB-1031
R49	Resistor: fixed; composition; 33 ohms; $\pm 10 \%$; 1 watt	24-33	$A-B$	GB-3311
R50	Resistor: fixed; composition; 1,000 ohns; $\pm 10 \%$; $\frac{1}{2}$ watt	23-1000	$A-B$	EB-1021
R51	Resistor: fixed; composition; 1,000 ohras; $\pm 10 \%$; $\frac{1}{2}$ watt	23-1000	A-B	EB-1021
R52	Resistor: fixed; composition; 1,000 ohms: $\pm 10 \%$; $\frac{1}{2}$ watt	23-1000	$A-B$	EB-1021
R53	Resistor: fixed; composition; 560,000 ohns; $\pm 10 \%$; 1 watt	$24-560 \mathrm{~K}$	A-B	GB-5641

TABLIE OP REPLACEABLE PARTS

Circuit Ref.	Description	$\begin{aligned} & \text {-hp- } \\ & \text { Stock No. } \end{aligned}$	Mfr. \& Mfrs. Designation
R54	Resistor: fixed; composition; 10,000 ohins; $\pm 10 \% ; 2$ watts	25-10K	A-3 HB-2531
R55	Resistor: fixed; composition; 270,000 ohns; $\pm 10 \%$; 1 watt	24-270K	A-B GB-2741
R56	Resistor: fixed; composition; 33,000 ohas; $\pm 10 \% ; 1$ watt	24-33K	A-B GB-3331
R57	Resistor: variable; 25,000 ohms; Composition	210-11	$\begin{aligned} & \text { Contralab: } \\ & \text { BAl-010-1990 } \end{aligned}$
R58	Resistor: fixed; composition; 47,000 ohas; $\pm 10 \% ; 1$ watt	24-47K	A-B GB-473]
R59	Resistor: 56,000 ohms; $\pm 10 \%$; $\frac{1}{2}$ watt; fixed; composition	23-56K	A-3 EB-5631
R60	Resistor: 56,000 ohms; $\pm 10,7$; $\frac{1}{2}$ watt; fixed; composition	23-56K	A-B EB-5631
R61	Resistor: 56,000 ohms; $\pm 10,5 ;$ $\frac{1}{2}$ watt; fixed; composition	23-56K	A-B EB-5631
Cl	Capacitor: variable; air; 10 mmf	12-9	$\begin{aligned} & \text { Sarkes-Tarz- } \\ & \text { ian \#A-25L } \end{aligned}$
C2	Capacitor: variablo: air	12-17	S-T J103L
C3	Capacitor: fixed; mica; 5000 mmf ; $\pm 10 \% ; 300 \mathrm{vdcw}$	14-14	$\begin{aligned} & \text { Yinicamold } \\ & \text { Type } V \end{aligned}$
C4	Capacitor: variable; air; 100 maf	12-17	S-T J103L
C5	Capacitor: variable; air ; 100 mmf	12-11	S-T J103L
C6	Capacitor: fixed; mica; 400 ruf; 500 vdew	14-400	$\begin{aligned} & \text { Hi camold } \\ & \text { Type 0XA } \end{aligned}$
C7	Capacitor: fixed; paper; . 01 mf ; $\pm 20 \% ; 600 \mathrm{vdcw}$	16-41	Solar Mfg. Corp.ST-6-01
C8	Capacitor: fixed; mica; 2θ maf; 210\%; 500 vacw	14-20	$\begin{aligned} & \text { Micamold } \\ & \text { Type 0XM } \end{aligned}$
C9	Capacitor: fixed; mica; 100 mmf ; $\pm 10 \% \quad 500 \mathrm{vdcw}$	14-100	$\begin{aligned} & \text { Micanold } \\ & \text { Type 0XM } \end{aligned}$
C10	Capacitor: Pixed; mica; 2000 maf ; $\pm 10 \% ; 500$ vdew	14-13	$\left\lvert\, \begin{aligned} & \text { nicamold: } \\ & \text { Type W } \end{aligned}\right.$
C11	This reforence symbol not assigned		
$\mathrm{Cl2}$	Part of Tuned Circuit Assenbly		

TABL二 OF REPLACA BLE PARTS

Circuit Ref.	Description	-hpStock No.	$\begin{aligned} & \text { Mfr \& Mfrs. } \\ & \text { Designation } \end{aligned}$
C13	Capacitor: fixed; mica; 500 mmf ; $\pm 10 \% ; 500$ vdew	14-500	Micanold Type 0XM
C14	Capacitor: fixed; mica; 1000 maf; $\pm 10 \% ; 500$ vdcw	14-11	Micamold Type W
C15	Capacitor: fixed; mica; 5000 mmf ; $\pm 10 \% ; 300 \mathrm{vdcw}$	$14-14$	$\begin{aligned} & \text { Micamold } \\ & \text { Iype W } \end{aligned}$
C16	Part of Tuned Circuit Assembly		
C17	Capacitor: fixed; mica; 2000 minf; $\pm 10 \% ; 500$ vdew	14-13	M1canold Type W
Cl 8	Capacitor: fixed; mica; . Ol mf; $\pm 10 \% ; 300 \mathrm{vdcw}$	14-23	$\begin{aligned} & \text { Micamold } \\ & \text { Type W } \end{aligned}$
C19	Capacitor: fixed; mica; . 01 mf . $\pm 10 \% ; 300 \mathrm{vdcw}$	$14-23$	Micomola Type W
C20	Part of Tuned Circuit Assomi)ly		
C21	Capacitor: fixed; mica; 500 rmf ; $\pm 10 \% ; 500 \mathrm{vdcw}$	14-500	Micamold Type OXM
C 22	Capacitor: fixed; paper; . Ol mf; $-10 \%+30 \% ; 600$ vdew	16-11	herovox Type 634
C23	Capacitor: fixed; paper; .Ol mf; $-10 \%+30 \% ; 600$ vdew	16-11	Acrovox Iype 684
C24	Cepacitor: fixed; paper; .l mf; $-10+20,0 ; 600$ vdew	16-1	Aerovox Type 684
C25	Capacitor: fixed papor; . Ol mf; $-10+30 \%$; 600 vdew	16-11	Acrovox type 684
C26	Capacitor: fixed; paper; 1 mf ; $\pm 10 \%$; 600 vdcw	17-12	General Elec. 23F467G103
C27	Capacitor: fixcd; paper; . Ol mf; 600 vdcw	16-11	herovox Type 684
C28	Capacitor: fixed; electrolytic; 20 nf; 450 vdcw	18-20	$\begin{aligned} & \text { P.R.Wallory } \\ & \text { FPS-144 } \end{aligned}$
C29	Capacitor: fixed; paper; 4 mf ; $\pm 10 \% ; 600 \mathrm{vdcw}$	17-10	$\begin{aligned} & \text { Corncll-Dubi- } \\ & \text { lier TLA6040 } \end{aligned}$
C30	Capacitor; fixed; paper; 4 raf; $\pm 10 \%$; 600 vdew	17-10	Cornell-Dubi- lior TLA6040
C31	Capacitor: fixed; papor; . 05 mf ; \qquad 10\%; 600 vdew	16-15	herovox Type P6888

TABLE OF REPLACEABLE PARTS

TABLE OT RIPLACEABLE PARTS

Circuit Ref.	Description	$-h p-$ Stock No.	Mfr. \& Mfrs. Designation
	TUBES: Sce NOTE bolow		
V1	6BH6, Oscillator	212-6BH6	See Note
V2	6aL5, Rectifier	212-6AL5	See Note
V3	6.56, Frequency Divider	212-6AS6	Western Elec.
V4	6156, Frequency Divider	212-6..56	Western Elece
V5a	6AL5, Roctifier	212-6AL5	See Note
V6	6AS6, Frequency Divider	212-6AS6	Western Elec.
V7	6, $\mathrm{H6} 6,100 \mathrm{kc}$ isolating amplifier	212-6AH6	Sce Note
V8	6aH6, 10 kc output isolating amplifier	212-6AH6	See lote
V9	6aH6, 1000 cycles ontput isolating amplifier	212-6AH6	Sce Note
V10	6AH6, 100 cycles output isolating amplifier	212-6AH6	See Note
V11	5R4GY, Power Supply Rectifier	212-5R4GY	See Note
V12	6L6G, Voltage Regulator	212-6L6G	See Note
V13	6L6G, Voltage Regulator	212-6L6G	See Note
V14	61Q6, Voltage Regulator	212-6AQ6	See liote
V15	OA2, Voltage Regulator	212-0A2	See Note
	NOTE: Any tube with RMA standard characteristics may be used excopt as listed for V3, V4, and V6́.		

LIST OF MANUFACTURERS CODE LETTERS FOR REPLACEABLE PARTS TABLE

Code Letter	Manufacturer
A	Aerovox Corp.
B	Allen-Bradley Co.
C	Amperite Co.
D	Arrow, Hart and Hegeman
E	Bussman Manufacturing Co.
F	Carborundum Co.
G	Centralab
H	Cinch Manufacturing Co.
I	Clarostat Manufacturing Co.
J	Cornell Dubilier Electric Co.
K	Electrical Reactance Co.
L	Erie Resistor Corp.
M	Federal Telephone and Radio Corp.
N	General Electric Co.
O	General Electric Supply Corp.
P	Girard-Hopkins
HP	Hewlett-Packard
Q	Industrial Products Co.
R	International Resistance Co.
S	Lectrohm, Inc.
T	Littelfuse, Inc.
U	Maguire Industries, Inc.
V	Micamold Radio Corp.
W	Oak Mfg. Co.
X	P.R. Mallory Co., Inc.
Y	Radio Corp. of America
Z	Sangamo Electric Co.
AA	Sarkes Tarzian
BB	Signal Indicator Co.
CC	Sprague Electric Co.
DD	Stackpole Carbon Co.
EE	Sylvania Electric Products, Inc.
FF	Western Electric Co.
GG	Wilkor Products, Inc.
HH	Amphenol
II	Dial Light Co. of America
JJ	Leecraft Manufacturing Co.
Z Z	Any tube having RMA standard characteristics

