
H E W L E T - P A C K A R D

JOURNAL
J u n e 1 9 9 4

H E W L E T T *
P A C K A R D

© Copr. 1949-1998 Hewlett-Packard Co.

T h e H e w l e t t - P a c k a r d J o u r n a l i s p u b l i s h e d b i m o n t h l y b y t h e H e w l e t t - P a c k a r d C o m p a n y t o r e c o g n i z e t e c h n i c a l c o n t r i b u t i o n s m a d e b y H e w l e t t - P a c k a r d
(H P) p e r s o n n e l . W h i l e t h e i n f o r m a t i o n f o u n d i n t h i s p u b l i c a t i o n i s b e l i e v e d t o b e a c c u r a t e , t h e H e w l e t t - P a c k a r d C o m p a n y d i s c l a i m s a l l w a r r a n t i e s o f
m e r c h a n t a b i l i t y a n d f i t n e s s f o r a p a r t i c u l a r p u r p o s e a n d a l l o b l i g a t i o n s a n d l i a b i l i t i e s f o r d a m a g e s , i n c l u d i n g b u t n o t l i m i t e d t o i n d i r e c t , s p e c i a l , o r
c o n s e q u e n t i a l d a m a g e s , a t t o r n e y ' s a n d e x p e r t ' s f e e s , a n d c o u r t c o s t s , a r i s i n g o u t o f o r i n c o n n e c t i o n w i t h t h i s p u b l i c a t i o n .

S u b s c r i p t i o n s : T h e H e w l e t t - P a c k a r d J o u r n a l i s d i s t r i b u t e d f r e e o f c h a r g e t o H P r e s e a r c h , d e s i g n a n d m a n u f a c t u r i n g e n g i n e e r i n g p e r s o n n e l , a s w e l l a s t o
q u a l i f i e d a d d r e s s i n d i v i d u a l s , l i b r a r i e s , a n d e d u c a t i o n a l i n s t i t u t i o n s . P l e a s e a d d r e s s s u b s c r i p t i o n o r c h a n g e o f a d d r e s s r e q u e s t s o n p r i n t e d l e t t e r h e a d (o r
i nc lude the submi t t i ng ca rd) to the HP headquar te rs o f f i ce i n you r coun t ry o r t o the HP address on the back cove r . When submi t t i ng a change o f add ress ,
p l e a s e n o t y o u r z i p o r p o s t a l c o d e a n d a c o p y o f y o u r o l d l a b e l . F r e e s u b s c r i p t i o n s m a y n o t b e a v a i l a b l e i n a l l c o u n t r i e s .

S u b m i s s i o n s : w i t h a r t i c l e s i n t h e H e w l e t t - P a c k a r d J o u r n a l a r e p r i m a r i l y a u t h o r e d b y H P e m p l o y e e s , a r t i c l e s f r o m n o n - H P a u t h o r s d e a l i n g w i t h
H P - r e l a t e d c o n t a c t o r s o l u t i o n s t o t e c h n i c a l p r o b l e m s m a d e p o s s i b l e b y u s i n g H P e q u i p m e n t a r e a l s o c o n s i d e r e d f o r p u b l i c a t i o n . P l e a s e c o n t a c t t h e
E d i t o r b e f o r e a r t i c l e s s u c h a r t i c l e s . A l s o , t h e H e w l e t t - P a c k a r d J o u r n a l e n c o u r a g e s t e c h n i c a l d i s c u s s i o n s o f t h e t o p i c s p r e s e n t e d i n r e c e n t a r t i c l e s
a n d m a y a r e l e t t e r s e x p e c t e d t o b e o f i n t e r e s t t o r e a d e r s . L e t t e r s s h o u l d b e b r i e f , a n d a r e s u b j e c t t o e d i t i n g b y H P .

Copyr ight publ icat ion granted Hewlett-Packard Company. Al l r ights reserved. Permission to copy without fee al l or part of th is publ icat ion is hereby granted provided
that 1 } advantage; Company are not made, used, d isplayed, or d istr ibuted for commercial advantage; 2) the Hewlet t -Packard Company copyr ight not ice and the t i t le
o f t h e t h e a n d d a t e a p p e a r o n t h e c o p i e s ; a n d 3) a n o t i c e s t a t i n g t h a t t h e c o p y i n g i s b y p e r m i s s i o n o f t h e H e w l e t t - P a c k a r d C o m p a n y .

P lease Jou rna l , i nqu i r i es , submiss ions , and reques ts t o : Ed i t o r , Hew le t t -Packa rd Jou rna l , 3000 Hanove r S t ree t , Pa lo A l t o , CA 94304 U .S .A .

June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

JOURNAL June 1994 Volume 45 â€¢ Number 3

Articles

Corporate Business Servers: An Alternative to Mainframes for Business Computing,
by Thomas B Alexander, Kenneth G. Robertson, Dean T. Lindsay, Donald L Rogers, John R.
Obermeyer, John R. Kel ler, Keith Y. Oka, and Mart in M. Jones, I I

Package Design Using 3D Solid Modeling

PA-RISC Symmetr ic Mul t ip rocess ing in Midrange Servers , by K i rk M. Bresn iker

SoftBench Message Connector: Customizing Software Development Tool Interactions,
by Joseph J. Courant

S ix -S igma Sof tware Us ing C leanroom Sof tware Eng ineer ing Techn iques, by Grant E. Head

Legal Primitive Evaluation

Fuzzy Fami ly Setup Ass ignment and Mach ine Ba lanc ing, by Jan Krucky

The Greedy Board Family Assignment Heuristic

Departments

6 I n t h i s I s s u e
7 C o v e r
7 W h a t ' s A h e a d

6 5 A u t h o r s

Editor Production P Dolan â€¢ Associate Editor, Charles L. Leath â€¢ Publication Production Manager. Susan E. Wright â€¢
Illustration, Ã±enÃ©e D. Pighini â€¢ Typography/Layout, Cindy Rubin

Advisory Steven Thomas Beecher, Open Systems Software Division. Chelmsford. Massachusettes â€¢ Steven Brittenham, Disk Memory Division. Boise. IdahoÂ» Wil l iam W.
Brown. J Circui t Business Div is ion, Santa Clara. Cal i fornia * Frank J CalvÃ¼lo, Greeley Storage Div is ion. Greeley. Colorado â€¢ Harry Chou. Microwave Technology
Division, Santa nosa. California * Derek T. Dang. System Support Division, Mountain View, California â€¢ Rajesn Oesai. Commercial Systems Division, Cupertino, California
* Kevin Fischer, Medical Integrated Systems Division, Sunnyvale, California â€¢ Bernhard Fischer, Boblingen Medical Division, Boblingen, Germany * Douglas Gennetten. Greeley
Hardcopy Divis ion. Greeley. Colorado Gary Gordon. HP Laborator ies. Palo Alto. Cal i fornia* MattJ. Harlme. Systems Technology Divis ion, Rosevi l le, Cal i fornia* Bryan
Hoog, Lake Santa Instrument Division, Everett, Washington â€¢ Roger L Jungerman, Microwave Technology Division, Santa Rosa, California * Paula H. Kanarek, InkJet
Components Networked Corvatlis, Oregon * Thomas F. Kraemer, Colorado Springs Division, Colorado Springs. Colorado * Ruby B. Lee. Networked Systems Group. Cupertino.
Cal i fo rn ia V iew, Maute, Waldbronn Analy t ica l D iv is ion. Waldbronn, Germany* Dona L Mi l le r . Wor ldwide Customer Suppor t D iv is ion, Mounta in V iew, Cal i fo rn ia*
Michael P Division. VXi Systems Division, Loveland, Colorado * Shelley I. Moore. San Diego Printer Division. San Diego, California â€¢ Steven J Narciso. VXl Systems
Division. Phua, Colorado * Garry Orsol ini , Software Technology Division, Rosevi l le. Cal i fornia Â«Han Tian Phua, Asia Peripherals Divis ion, Singapore * Ken Poul lon, HP
Laboratories, Division. Alto, California â€¢ Giinter Riebesell, Boblingen Instruments Division, Boblingen, Germany * Marc Sabatella, Software Engineering Systems Division. Fort
Col l ins, Phi l ip Michael B. Saunders, Integrated Circui t Business Div is ion, Corval l is . Oregon* Phi l ip Stenton, HP Laborator ies Br is to l , Br is to l . England* Beng-Hang
Tay, Systems Networks Operation, Singapore Â» Stephen R Undy, Systems Technology Division, Fort Coll ins, Colorado â€¢ Jim Wil l i ts, Network and System Management
Division, Corvallis Collins, Colorado * Koichi Yanagawa, Kobe Instrument Division, Kobe, Japan * Dennis C. York. Corvallis Division, Corvallis, Oregon * Barbara Zimmer,
Corporate Engineering, Palo Alto, California

Â © H e w l e t t - P a c k a r d C o m p a n y 1 3 9 4 P r i n t e d i n U . S . A . T h e H e w l e t t - P a c k a r d J o u r n a l i s p r i n t e d o n r e c y c l e d p a p e r .

June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
I n bus iness comput ing , the t rend i s away f rom cen t ra l i zed ma in f rames and
towards c l ient /server networks that handle the comput ing needs o f an ent i re
enterpr ise. The ar t ic le on page 8 is about the des ign o f a new h igh-end HP
corporate bus iness server that had the ob ject ive of set t ing new standards for
commerc ia l systems per formance and af fordabi l i ty . The des ign is based on the
HP PA 7100 CPU chip, a superscalar implementat ion of HP's PA-RISC processor
archi tecture operat ing at a c lock frequency of 90 megahertz. (Superscalar means
tha t a to can i ssue more than one ins t ruc t ion â€” t yp ica l l y 2 to 4 â€” per c lock
cycle. one PA 7100 can issue two instruct ions â€” one integer instruct ion and one
f loat ing-point instruct ion â€” per c lock cycle.) The new corporate business server

can have in to twe lve PA 7100 processors symmet r ica l l y shar ing the work load, and per fo rmance in
creases approx imate ly l inear ly wi th the number of processors. The in terna l bus s t ructure is new. The
design processors protocol of the processor memory bus, which interconnects the processors and the memory
system, resul t in excel lent onl ine t ransact ion processing per formance and ef f ic ient mul t iprocessor work-
shar ing . a i npu t /ou tpu t th roughpu t i s ach ieved by means o f h igh -s lo t - coun t I /O buses a r ranged in a
two-level tree. Main memory capacity can be as high as 2G bytes (2,147,483,648 bytes) of error-correct ing
memory bytes). disk storage capacity can be as high as 1.9 Tbytes (1,900,000,000,000 bytes). A dedicated
serv ice opera t ing reduces the t ime i t takes to cor rec t hardware fa i lu res . Depend ing on wh ich opera t ing
system i t runs, the new corporate business server is designated the HP 9000 Model T500 or the HP 3000
Series 991/995.

Whi le the was h igh-end corpora te bus iness servers were be ing des igned, another des ign team was
work ing HP making symmetr ic PA-RISC mul t iprocessing avai lable to users of midrange HP 9000 and HP
3000 servers. The ar t ic le on page 31 d iscusses the design of a new processor board using two PA 7100
ch ips . one proces one processor the "monarch" and the o ther the "ser f " and dec id ing tha t i f one proces
sor fa i led the other would not cont inue to operate, the designers e l iminated most of the complex i ty in
symmetr ic mul t ip rocess ing and were ab le to prov ide the bas ic per formance advantages qu ick ly and a t
low cost . The midrange servers that use th is board are the HP 9000 Models G70, H70, and I70 and the
H P 3000 Series 982.

The HP Sof tBench Framework is w ide ly used in the sof tware deve lopment indust ry to c reate custom
so f tware deve lopment env i ronments by in tegra t ing common so f tware deve lopment too ls such as p ro
gram edi tors , bu i lders , and debuggers, s ta t ic analyzers, e lect ron ic mai l , and others. Sof tBench Message
Connector (page 34) is the new user too l in teract ion fac i l i ty of the Sof tBench Framework. I t a l lows users
o f the f ramework to cus tomize the i r env i ronments qu ick ly w i th s imple po in t -and-c l ick ac t ions . For exam
ple, when text editor and a spell checker can be connected so that when the user saves a f i le with the editor,
the spel l ing is automat ica l ly checked and the user is not i f ied only i f er rors are detected. Tool in teract ion
branch ing and cha in ing are suppor ted so the user can create rout ines that use mul t ip le too ls and exe
c u t e t o o l . w i t h o u t t h e u s e r ' s e x p l i c i t l y i n v o k i n g e a c h t o o l . M e s s a g e C o n n e c t o r i s d e s i g n e d t o
require no t ra in ing.

Contrary develop my initial reaction on hearing the term, cleanroom software engineering doesn't mean develop
men t o f I t ' s f o r t he c lean rooms used in i n teg ra ted c i r cu i t manu fac tu r ing . I t ' s a me taphor fo r so f tware
eng ineer ing that mimics the way processes and the env i ronment are care fu l ly cont ro l led and moni tored
in a c leanroom to ensure that the ch ips produced there are f ree of defects . The goal is near ly defect -
f ree exp la ins whatever i ts func t ion . The ar t ic le on page 40 exp la ins the c leanroom methodo logy and
sof tware l i fe cyc le , and te l ls about the remarkab le resu l ts ach ieved when the methodology was app l ied
in a l imi ted way in a typ ica l HP envi ronment .

6 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

In pr in ted c i rcu i t board manufactur ing, automated h igh-speed assembly machines are used to p lace
components on the boards. In a manufactur ing fac i l i ty that produces mul t ip le products at low to medium
volumes, are machines must be set up in d i f ferent ways to produce d i f ferent products. Whi le they are
being minimize facility they aren't productive, so a major concern is how to minimize the setup time. If the facility
has more than one machine, another major concern is machine ba lanc ing, or how to ass ign products to
the var ious machines most e f f ic ient ly . An exact mathemat ica l model o f these problems is too complex
too solve, so engineers at HP's Colorado Computer Manufactur ing Operat ion resorted to fuzzy logic, a
mathemat ica l too l that 's becoming more widely used for deal ing wi th the inexact aspects of the real
wor ld. c i rcui t fuzzy concepts, they developed an algor i thm for assigning pr inted c i rcui t boards to fami l ies
that famil ies page setups, and an algorithm for assigning the famil ies to machines. The art icle on page 51
expla ins the problem, provides some basic fuzzy logic theory, descr ibes the a lgor i thms, and presents
resul ts. best fuzzy fami ly assignment a lgor i thm outperforms the greedy board algor i thm, former ly the best
avai lable method.

R.P. Dolan
Editor

Cover
The processor board des igned for the new h igh-end HP corpora te bus iness server has up to two pro
cessor hea t based on PA 7100 supersca la r PA-RISC ch ips (under the c i r cu la r hea t s inks) . The se rve r
can have up to twelve processors (s ix boards) for twelve-way symmetr ic mul t iprocess ing.

What's Ahead
Leading of f the August issue wi l l be a design ar t ic le on the HP 48GX scient i f ic graphing calculator . Other
ar t ic les wi l l descr ibe h igh-speed d ig i ta l t ransmi t ter character izat ion us ing eye-d iagram analys is and a
new foam-chassis packaging technology cal led HP-PAC. From the 1993 HP Technical Women's Conference
we'll transducers, papers on the design of linear vascular ultrasound transducers, on temperature control in
supercr i t ica l f lu id chromatography, on data-dr iven test systems, and on the use of s t ructured analys is
and structured design in the redesign of a terminal and pr inter dr iver .

June 1!)94 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Corporate Business Servers: An
Alternative to Mainframes for
Business Computing
With multi hardware, PA-RISC architecture, symmetric multi
processing, a new bus structure, and robust error handling, these systems
provide a wide range of performance and configurability within a single
cabinet. Standard features include one to twelve symmetric PA-RISC 7100
multiprocessors optimized for commercial workloads, main memory
configurations from 128M bytes to 2G bytes, and disk storage up to a
maximum of 1 .9 terabytes.

by Thomas B. Alexander, Kenneth G. Robertson, Dean T. Lindsay, Donald L. Rogers, John R.
Obermeyer, John R. Keller, Keith Y. Oka, and Marlin M. Jones, II

The overall design objective for the HP 9000 Model T500
corporate business server (Fig. 1) was to set new standards
for commercial systems performance and affordability.
Combining expandable hardware, PA-RISC architecture,
symmetric multiprocessing with up to 12 processors, a new
bus design, robust error handling, and the HP-UX operating
system, the Model T500 delivers a cost-effective alternative
to mainframe solutions for business computing.

Users of HP's proprietary operating system, MPE/iX, also
enjoy the benefits of the Model T500 hardware. These sys
tems are designated the HP 3000 Series 991/995 corporate
business systems. They provide high performance by

supporting from one to eight processors with superior value
for their class. The MPE/iX system is designed to support
business-critical data and offers features such as powerful
system management utilities and tools for performance
measurement.

In this paper, the hardware platform for both the HP-UX and
the MPE/iX systems will be referred to as the Model T500.
The Model T500 is an update of the earlier HP 9000 Model
890/100 to 890/400 systems, which supported from one to
four PA-RISC processors operating at 60 MHz. For MPE/iX,
the Series 991/995 is an update of the earlier Series 990/992
systems.

Fig. 1. The HP 9000 Model T500
corporate business server (right)
is designed as an alternative to
mainframe solutions for online
transaction processing and other
business computing applications.
It runs the HP-UX operating sys
tem. The same hardware running
the MPE/iX operating system is
designated the HP 3000 Series
991/995 corporate business sys
tems. The Model T500 SPU (right)
is shown here with various periph
erals and expansion modules.

8 June 1994 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Processor Memory Bus
(16 Slots)

Service Processor Bus

AC Line
(200-240V
1 Phase)

Link

H P - P B H P - P B

HP Precision Buses

HP-PB

Fig. 2. HP 9000 Model T500 system processing unit block diagram.

Standard features of the Model T500 include one to twelve
symmetric PA-RISC multiprocessors optimized for commer
cial workloads and operating at 90 MHz, main memory con
figurations from 128M bytes to 2G bytes,t and disk storage up
to a maximum of 1.9 Tbytes (1900 Gbytes). This expandabil
ity allows the Model T500 to provide a wide range of perfor
mance and configurability within a single cabinet. The Model
TSOO's package minimizes the required floor space, while air
cooling removes the need for expensive mainframe-type
cooling systems.

The Model T500 is designed to provide leading price/
performance. The HP 9000 Model T500 with six PA-RISC
7100 processors operating at 90 MHz has achieved 2110.5
transactions per minute on the TPC-C benchmark (U.S.$21 15
per tpmC).tt The SPECrate (SPECrate_int92 and SPEC-
rate_fp92) benchmark results show linear scaling with the
number of processors, which is expected for CPU-intensive
workloads with no mutual data dependencies. The Model

t Hewlett-Packard Journal memory size conventions:
1 k b y t e = 1 . 0 0 0 b y t e s 1 K b y t e s = 1 , 0 2 4 b y t e s
1 M b y t e = 1 , 0 0 0 . 0 0 0 b y t e s 1 M b y t e s = 1 , 0 2 4 2 b y t e s = 1 . 0 4 8 , 5 7 6 b y t e s
1 Gbyte bytes 1,000,000,000 bytes 1G bytes = 1.0243 bytes = 1,073,741,824 bytes
1 Tbyte = 1 ,000,000,000.000 bytes

t t The tpm Process ing Counc i l requ i res tha t the cos t per tpm be s ta ted as par t o f the
TPC performance results Cost per tpm will vary from country to country. The cost stated here
is for the U.S.A.

T500/400 reaches 38,780 SPECrate_fp92 and 23,717 SPEC-
rate_int92 with twelve processors.

The Model T500 provides this high level of performance by
using a balanced bus architecture. The processor memory
bus currently provides the main processor-to-memory or
processor-to-I/O interconnect with a bandwidth of 500
Mbytes/s and a potential capability up to 1 Gbyte/s. The I/O
buses provide a total aggregate I/O bandwidth of 256
Mbytes/s. These bandwidths satisfy the high data sharing
requirements of commercial workloads.

System Overview
The key to the Model TSOO's expandability and performance
is its bus structure. The processor memory bus provides a
high-bandwidth coherent framework that ties the tightly
coupled symmetrical multiprocessing PA-RISC processors
together with I/O and memory. Fig. 2 shows a block diagram
of the Model T500.

The processor memory bus is a 60-MHz bus implemented on
a 16-slot backplane with eight slots suitable for processors
or memory boards and eight slots suitable for I/O adapters
or memory boards. Each slot can contain as many as four
modules, and can obtain its fair fraction of the bandwidth
provided by the system bus. Custom circuit, designs allow
the bus to operate at a high frequency without sacrificing

.June 1994 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

physical connectivity. To prevent system bus bandwidth
from becoming a bottleneck as the number of processors
increases, the bus protocol minimizes bus contention and
unproductive traffic without adding undue complexity to the
bus modules.

To support such a large number of slots the processor mem
ory bus is physically large and has an electrical length of 13
inches. State-of-the art VLSI design and mechanical layout
allow the processor memory bus to run at 60 MHz â€” a very
high frequency of operation for a bus of this size.

The input/output subsystem links the processors and mem
ory on the processor memory bus to I/O devices, including a
variety of networks. The Model T500 supports attachment of
up to eight Hewlett-Packard precision buses (HP-PB), each
of which connects up to 14 I/O cards. The first HP-PB is in
ternal to the Model T500 and the other HP-PBs would be
located in adjacent racks. Each HP-PB connects to the pro
cessor memory bus through a linked bus converter consist
ing of a dual bus converter, a bus converter link, and an
HP-PB bus converter. Under normal operating conditions
the bus converters are transparent to software.

The service processor consists of a single card whose pur
pose is to provide hardware control and monitoring functions
for the Model T500 and a user interface to these functions.
To achieve this purpose, the service processor has connec
tivity to many parts of the Model T500. The scan bus is con
trolled by the service processor and provides the service
processor with scan access to all of the processor memory
bus modules. The scan bus is used for configuration of pro
cessor memory bus modules and for manufacturing test.
The service processor also provides the clocks used by pro
cessor memory bus modules and controls the operation of
these clocks. The service processor provides data and in
structions for the processors over the service processor bus
during system initialization and error recovery. The service
processor connects to the control panel and provides the
system indications displayed there. The service processor
provides its user interface on the console terminals through
its connection to the console/LAN card.

The service processor also contains the power system con
trol and monitor, which is responsible for controlling and
monitoring the Model T500's power and environmental sys
tem. The main power system receives 200-240V single-phase
mains ac and converts it to SOOVdc. This 300V supply is then
converted by various dc-to-dc converter modules to the
needed system voltages (e.g., one module is SOOVdc to 5Vdc
at 650W.). The power system control and monitor addition
ally controls the system fans and power-on signals. The
power system control and monitor performs its functions
under the processor control and reports its results to the
service processor.

Processor Memory Bus

The present implementation of the Model T500 uses 90-MHz
PA-RISC central processing units (CPUs)1'2'3 interconnected
with a high-speed processor memory bus to support sym
metric twelve-way multiprocessing. This section focuses on
the features and design decisions of the processor memory
bus, which allows the system to achieve excellent online

Address Bus:

' R V R V

Address Quad ["â€” 1 Quad â€” *j

R V R V

Data Bus:
Data Quad

D O D 1 D 2 D 3

Memory Latency â€¢jâ€” 1 Quad -

A = Arbitrat ion
i = I / O
R = Real Address
V= V i r tua l Address

Fig. 3. Processor memory bus pipeline.

transaction processing (OLTP) performance and efficient
multiprocessor scaling.

Bus Protocol
The processor memory bus is a synchronous pipelined bus.
The pipelined nature of the bus protocol places it between a
split transaction protocol and an atomic transaction proto
col. This allows the processor memory bus to have the
performance of a split transaction bus with the lower
implementation complexity of an atomic transaction bus.

The processor memory bus has separate address and data
buses. The address bus is used to transfer address and con
trol information and to initiate transactions. Non-DMA I/O
data is also transferred on the address bus. The data bus
transfers memory data in blocks of 16, 32, or 64 bytes. The
processor data bus in the present implementation is 64 bits
wide, although the protocol, backplane, and memory system
also support 128-bit-wide accesses. For 32-byte transfers on
the data bus, the available bandwidth is 480 Mbytes per sec
ond. If processors use all 128 bits of the data bus to perform
64 byte transfers, the bandwidth doubles to 960 Mbytes per
second.

Fig. 3 shows the processor memory bus pipeline. Four con
secutive processor memory bus states are referred to as a
quad. A transaction consists of a quad on the address bus,
followed at some fixed time by a quad on the data bus.

An address quad consists of an arbitration cycle, an I/O
cycle, a real address cycle, and a virtual address cycle. The
arbitration cycle is used by bus masters to arbitrate for use
of the bus. The I/O cycle is used to transfer data in the I/O
address space. The real address cycle is used to transfer the
memory or I/O address and to indicate the transaction type.
The virtual address cycle is used to transfer the virtual index
for cache coherency checks.

A data quad consists of four data transfer cycles. The fixed
time between address and data quads is programmed at sys
tem initialization. This arrangement allows multiple pipelined
transactions to be in progress at the same time. Since data is
returned at a fixed time after the address quad, the module
returning data automatically gets access to the data bus at
that time. The set of supported transactions includes reads
and writes to memory address space, reads and writes to I/O
address space, and cache and TLB (translation lookaside
buffer) control transactions.

10 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Address Bus:

A ! : R V

Coherent
Read

Third Party
Signals Hit

C o h e r e n c e S i g n a l T i m e * \
 C a c h e - t o - C a c h e T i m e

A R V

Cache-to-Cache
Transfer

Data Bus:

D D D D

Memory
Data

D D D D

Third-Party
Data

Fig. 4. Multiprocessor protocol,
showing cache-to-cache transfer
timing.

If a transaction is initiated on the processor memory bus, but
a module (either the slave or a third party) is not prepared
to participate in the transaction, that module has the option
of busying the transaction. When the master sees that its
transaction is busied, it must retry the transaction at a later
time. Busy is appropriate, for example, when the bus adapter
is asked to forward a read transaction to the lower-speed
precision bus (see "Arbitration" below for more information).

For cases in which a module requires a brief respite from
participating in transactions, it can wait the bus, that is, it
can freeze all address and data bus activity. It does this by
asserting the wait signal on the bus. The wait facility is
analogous to a stall in the processor pipeline.

Multiprocessor Bus Protocol
The processor memory bus provides cache and TLB coher
ence with a snoopy4 protocol. Whenever a coherent transac
tion is issued on the bus, each processor (acting as a third
party) performs a cache coherency check using the virtual
index and real address.

Each third-party processor is responsible for signaling cache
coherency status at a fixed time after the address quad. The
third party signals that the cache line is in one of four states:
shared, private clean, private dirty, or not present. The re
questing processor interprets the coherency status to deter
mine how to mark the cache line state (private clean, private
dirty, or shared). The third party also updates its cache line
state (no change, shared, or not present).

If a third party signals that it has the requested line in the
private dirty state, then it initiates a cache-to-cache transac
tion at a fixed time after the address quad. The requesting
processor discards the data received from main memory for

the initial request and instead accepts the data directly from
the third party in a cache-to-cache transfer. At this same time
the data from the third party is written to main memory. The
timing of these events is shown in Fig. 4.

Since the processor memory bus allows multiple outstand
ing pipelined transactions, it is important that processor
modules be able to perform pipelined cache coherency
checks to take maximum advantage of the bus bandwidth.
Fig. 5 shows an example of pipelined cache coherency
checking.

Programmable Parameters
The processor memory bus protocol permits many key bus
timing parameters to be programmed by initialization soft
ware. Programming allows different implementations to
optimize the parameter values to increase system perfor
mance and reduce implementation complexity. Initialization
software calculates the minimum timing allowed for the
given set of installed bus modules. As new modules are de
signed that can operate with smaller values (higher perfor
mance), initialization software simply reassigns the values.

The programmable parameters include:
Address-to-Data Latency. The time from the real address
of the address quad to the first data cycle of the data quad.
The present implementation achieves a latency of 217
nanoseconds.
Coherency Signaling Time. The time required for a processor
to perform a cache coherency check and signal the results on
the bus.
Cache-to-Cache Time. The time from the address quad of
the coherent read transaction to the address quad of the
cache-to-cache transaction. This value is the time required

Address Bus:

A | R V
S

C o h e r e n t C o h e r e n t C o h e r e n t T h i r d T h i r d P r o c Ã © s
R e a d R e a d R e a d P a r t y P a r t y s o r A

P r o c Ã © s - P r o c Ã © s - P r o c Ã © s - S i g n a l s S i g n a l s S i g n a l s
s o r A s o r B s o r C N o H i t A N o H i t B H i t C

R V

Processor
A to Pro
cessor C
Transfer

Data Bus:

D D D D D D D D D D D

M e m o r y M e m o r y M e m o r y
D a t a f o r D a t a f o r D a t a f o r
P r o c Ã © s - P r o c Ã © s - P r o c e s

s o r A s o r B s o r C

D D D

Processor A
to Processor

C Data Fig. 5. Pipelined cache coherency
checking.

June 1994 Hewlett-Packard Journal 11
© Copr. 1949-1998 Hewlett-Packard Co.

13 Inches

Processor Memory Bus

Transceiver Transceiver Transceiver Transceiver
Fig. 6. Processor memory bus
electrical layout.

for a processor to do a cache coherency check and copy out
dirty data.

> Memory Block Recovery Time. The time it takes a memory
block to recover from an access and become ready for the
next access.
Memory Interleaving. The memory block identifier assign
ments. The assignments depend on the size and number of
memory blocks installed in the system.

Arbitration
The processor memory bus uses three different arbitration
rules to determine when a module can get access to the bus.
The first rule, used for references to memory, states that a
master can arbitrate for a memory block only after the block
has recovered from the previous access. Bus masters imple
ment this by observing all transactions on the processor
memory bus. Since memory references include the block
identifier and the recovery times are known, masters refrain
from arbitration for a busy block. The benefit of this arbitra
tion rule is that memory modules do not have to queue or
busy transactions, and therefore bus bandwidth is conserved
because every memory transaction is a useful one.

The second arbitration rule, used for references to I/O
address space, requires that a master of a busied I/O trans
action not retry the transaction until the slave has indicated
that it is ready to accept the transaction. The slave indicates
readiness by asserting the original master's arbitration bit on
the bus. The master detects that the slave has restarted ar
bitration and continues to attempt to win arbitration. This
rule prevents masters from wasting bus bandwidth by con
tinually retrying the transaction while the slave is not ready
to accept it, and avoids most of the complexity of requiring
slaves to master a return transaction.

The third mechanism, referred to as distributed priority

list arbitration, is invoked when multiple masters simulta
neously arbitrate for the processor memory bus. Distributed
priority list arbitration is a new scheme for general arbitra
tion. It uses a least-recently-used algorithm to determine
priority on the bus. A master implements distributed priority
list arbitration by maintaining a list of masters that have
higher priority than itself and a list of masters that have
lower priority. Thus, an arbitrating master can determine it
has won by observing that no higher-priority master has
arbitrated. The identity of the winning master is driven onto
the processor memory bus in the address quad. Masters
then update their lists to indicate they now have higher

priority than the winner. The winner becomes the lowest
priority on all lists. This arbitration scheme guarantees fair
access to the bus by all masters.

Electrical Design
The processor memory bus has the somewhat conflicting
goals of high connectivity (which implies a long bus length)
and high bandwidth (which implies a high frequency of op
eration and a correspondingly short bus length). A typical
solution to these goals might use custom transceivers and
operate at a frequency of 40 MHz. However, by using custom
VLSI, the wave switching, and state-of-the-art design, the
Model T500 processor memory bus allows reliable operation
at 60 MHz over a 13-inch bus with 16 cards installed.

Each board on the processor memory bus uses two types of
custom bus interface transceiver ICs. The first 1C type incor
porates 10 bits of the processor memory bus (per package),
error detection and correction logic, and two input ports
(with an internal 2: 1 multiplexer) in one 100-pin quad flat
package. This 1C is referred to as a processor memory bus
transceiver in this article. The second 1C type performs all of
the above duties but adds arbitration control logic and con
trol of 20 bits on the processor memory bus in a 160-pin
quad flatpack. This 1C is referred to as an arbitration and
address buffer in this article. The arbitration and address
buffer and the processor memory bus transceivers are
implemented in HP's 0.8-micrometer CMOS process.

Fig. 6 shows the basic processor memory bus design. Each
processor memory bus signal line has a 34-ohm termination
resistor tied to 3V at each end of the bus. Each card installed
on the processor memory bus has a series terminating resis
tor of 22 ohms between the connector and a corresponding
bidirectional buffer transceiver for the processor memory
bus.

For asserted signals (active low) the output driver transistor
in Fig. 7 turns on. This pulls the 22-ohm resistor to approxi
mately ground which (through the resistor divider of 22 ohms
and two 34-ohm resistors in parallel) pulls the processor
memory bus signal to approximately 1.6 volts. On deas-
serted signals the output driver is off and the 34-ohm resis
tors at each end of the bus pull the bus to a high level of
approximately 3V.

The receiver (a greatly simplified version is shown in Fig. 7)
is a modified differential pair. One input of the differential
pair is connected to an external reference voltage of 2.55V.

12 June 1994 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

3 V 3 V

M S I 5 3 4 Q

I
Backplane

Board
Transceiver

2 2 2

Output
Driver

V r e f

Fig. 7. Processor memory bus electrical detail.

The other input of the differential pair is connected to the
processor memory bus. Use of a differential pair receiver
allows incident signal switching (i.e., the first transition of
the signal is detected by the receiver) and precise level
control of the input switch point.

The 22-ohm series resistor performs several important func
tions. First, when a transceiver asserts a signal, the resistor
limits pull-down current. Second, for boards where the trans
ceiver is not driving, the 22-ohm resistor helps isolate the
processor memory bus from the capacitive and inductive load
presented by the inactive buffers and board traces. Lastly,
the 22-ohm resistor helps dampen transient waveforms
caused by ringing.

Processor Board

The processor board used in the Model T500 is a hardware
performance upgrade product that replaces the original pro
cessor board of the HP 9000 Model 890 corporate business
server. With up to two processor modules per processor
board, the dual processor board allows the Model T500 sys
tem to achieve up to twelve processor systems. Additionally,
the use of the PA-RISC 7100 processor improves uniprocessor
performance. The key features of the Model T500 s processor
include:

â€¢ Direct replacement of the original processor board (cannot
be mixed with original processor boards in the same system).

â€¢ Increased multiprocessing performance with support for
one to twelve CPUs.

â€¢ Processor modules based on 90-MHz PA-RISC 7100 CPU
chip8 with on-chip floating-point coprocessor for higher
uniprocessor integer and floating-point performance.

â€¢ Processor modules that allow single-processor and dual-
processor configurations per processor slot. Easy field
upgrade to add a second processor module to a single
processor module board.

â€¢ Processor clock frequency 90 MHz, processor memory bus
clock frequency 60 MHz.

IM-byte instruction cache (I cache) and IM-byte data cache
(D cache) per module.

Performance Improvement
Relative to its predecessor, the Model TSOO's processor
board SPEC integer rate is improved by a factor of 1.9 times
and the SPEC floating-point rate is improved by a factor of
3.4 times. The Model TSOO's processor performance relative
to its predecessor is shown in the table below.

Model T500 Model 890

Hardware Overview
The Model TSOO's processor board consists of one or two
processor modules, a set of 12 processor memory bus trans
ceivers (4 address and 8 data bus transceivers), an arbitra
tion and address buffer, two processor interface chips, two
sets of duplicate tag SRAMs, ECL clock generation circuitry,
four on-card voltage regulators, scan logic circuitry, connec
tors, a printed circuit board, and mechanical hardware. Fig.
8 shows the processor board hardware block diagram. Fig. 9
is a photograph of a processor board with two processor
modules.

Processor Modules
The processor board is centered around two identical, re
movable processor modules based on the HP PA 7100 CPU
chip. Each module consists of a CPU chip, 26 SRAMs which
make up the IM-byte instruction cache (I cache) and IM-byte
data cache (D cache), a 4.1-inch-by-4.4-inch 12-layer printed
circuit board, and a 100-pin P-bus connector.

Each processor module communicates with its processor
interface chip through a 60-MHz, 32-bit multiplexed address/
data bus called the P-bus. Each module has a dedicated

June 1994 Hewlett-Packard .Journal 13
© Copr. 1949-1998 Hewlett-Packard Co.

^â€¢â€¢H
1 M Bytes

 r -
1 M B y t e s 1 M B y t e s

Dupl icate
Cache
Tags

1 M Bytes

Processor
Interface

Chip

D a t a A d d r e s s

Address

Duplicate
Cache
Tags

Address/Control

P-Bus

Processor
Interface

Chip

A d d r e s s D a t a

Data

Processor Memory Bus

P-bus. The P-bus has 35 data and address lines and 18
control lines.

The I cache and D cache each have the following features:
â€¢ 64-bit access (I cache 64-bit double-wide word, D cache two

32-bit words)
â€¢ Direct mapped with a hashed address and virtual index
â€¢ Bandwidth up to 520 Mbytes/s
â€¢ I and D cache bypassing

Parity error detection in both I and D caches (parity errors
in the I cache cause a refetch of the offending instruction)

â€¢ 32-byte cache line size.

The CPU chip has the following features:
â€¢ Level 1 PA-RISC implementation with 48-bit virtual

addressing
o Addresses up to 3.75G bytes of physical memory
â€¢ Multiprocessor cache coherency support
â€¢ TLB (translation lookaside buffer)

o 120-entry unified instruction and data TLB
Fully associative with NUR (not used recently)
replacement

Ã§ 4K page size
Floating-point coprocessor
o Located on-chip

Superscalar operation

Fig. 8. Processor board
organization.

Fig. 9. Model T500 processor board \vil h two processor modules.

Multiply, divide, square root
Floating-point arithmetic logic unit (FALU)

â€¢ P-bus system interface (to bus interface chip)
â€¢ Serial scan path for test and debug
â€¢ Operation from dc to 90 MHz
â€¢- Performance improvements

Load and clear optimizations
Hardware TLB miss handler support
Hardware static branch prediction

â€¢ 504-pin interstitial pin-grid array package.

Processor Interface Chip
Each processor interface chip transmits transactions between
its CPU and the rest of the system (memory, I/O, and other
processors) via the processor memory bus. The processor
interface chip for each processor module interfaces its CPU
(through the P-bus) to the the processor memory bus trans
ceivers and the arbitration and address buffer. The CPU's
line size is 32 bytes, so the processor interface chip provides
a 64-bit data interface to the processor memory bus trans
ceivers. The two processor interface chips communicate
through separate ports on the processor memory bus trans
ceivers, which provide the required multiplexing internally.

Each processor interface chip also contains an interface
that allows it to communicate with self-test, processor de
pendent code (boot and error code), and processor depen
dent hardware (time-of-day clock, etc.) on the service pro
cessor board. The processor interface chip is implemented
in HP's 0.8-micrometer CMOS process and is housed in a
408-pin pin-grid array package.

The processor interface chip has two features to enhance
the multiprocessor performance of the system: duplicate
data cache tags and coherent write buffers. The coherent
buffers support the processor memory bus's multiprocessor
implementation of cache coherence protocol.

Duplicate Data Cache Tags. The interface chip maintains its
own duplicate copy of the CPU's data cache tags in off-chip
SRAMs. The tags contain the real address of each cache line
and the valid and private bits (but not the dirty bit). The du
plicate cache tags are kept consistent with the CPU's data
cache tags based only on the transactions through the inter
face chip. The duplicate tags allow the interface chip to sig
nal the status of a cache line during a coherent transaction

14 June 1994 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

2 3 4 5 6

N u m b e r o f P r o c e s s o r s

Fig. 10. Data sharing in a multiprocessor Model 890 system as
measured by results of cache coherency checks.

without querying the processor (which would require a pair
of transactions on the P-bus). Measurements (using the pro
cessor interface chip's built-in performance counters) for a
wide variety of benchmarks show that for 80 to 90 percent
of coherent transactions, the cache line is not present in a
third-party CPU's data cache, as shown in Fig. 10. The dupli
cate tags increase system performance to varying degrees
for different workloads. Measurements on a four-processor
system show duplicate tags increase system throughput by
8% for a CPU-intensive workload and 21% for a multitasking
workload.

Coherent Write Buffers. To isolate the CPU from traffic on the
bus, the interface chip contains a set of five cache line write
buffers. The buffers are arranged as a circular FIFO memory
with random access. If the CPU writes a line to memory, the
interface chip stores the line in one of its buffers until it can
win arbitration to write the line to memory. While the line is
in a buffer, it is considered part of the CPU's cached data
from the system bus point of view and participates in coher
ence checking on the bus. These buffers are also used for
temporary storage of data sent from the cache as a result of
a coherency check that hits a dirty cache line. By having
many buffers, the interface chip is able to handle multiple
outstanding coherency checks.

Pipeline
The PA 7100 pipeline is a five-stage pipeline. One and a half
stages are associated with instruction fetching and three and
a half stages are associated with instruction execution. The
PA 7100 also has the ability to issue and execute floating
point instructions in parallel with integer instructions. Fig. 1 1
shows the CPU pipeline.

Instruction fetch starts in CK1 of stage F and ends in CK1 of
stage I. For branch prediction, the branch address is calcu
lated in CK1 of I and completes by the end of CK2 of I. This
address is issued to the I cache.

From CK2 of I to CK1 of B, the instruction is decoded, oper
ands are fetched, and the ALU and SMU (shift merge unit)
produce their results. The data cache address is generated

by the ALU by the end of CK1 of B. For branch prediction, the
branch address is calculated in CK1 of B and completes by
the end of CK2 of B.

Data cache reads start in CK2 of B and end in CK2 of A. Load
instructions and subword store instructions read the data
portion of the D cache during this stage. For all load and
store instructions the tag portion of the D cache is read dur
ing this stage. The tag portion of the D cache is addressed
independently from the data portion of the D cache so that
tag reads can occur concurrently with a data write for the
last store instruction. Branch condition evaluation is com
pleted by the end of CK2 of B.

The PA 7100 CPU maintains a store buffer which is set on
the cycle after CK2 of A of each store (often CK2 of R). General
registers are set in CK2 of R. The store buffer can be written
to the D cache starting on CK2 of R and continuing for a total
of two cycles. The store buffer is only written on CK2 of R
when one of the next instructions is a store instruction.
Whenever the next store instruction is encountered, the
store buffer will be written out to the cache.

Clock Generation
The clock generation circuitry provides 60-MHz and 90-MHz
differential clock signals to the processor memory bus inter
face ports and the processor modules, respectively. The
Model TSOO's processor board uses a hybrid phase-locked
loop component developed especially for the Model T500.
The phase-locked loop generates a synchronized 90-MHz
processor clock signal from the 60-MHz processor memory
bus clock. Clock distribution is by differential ECL buffers
with supplies of +2.0V and -2.5V. The use of offset supplies
for the ECL allows optimal termination with the 50-ohm
termination resistors tied directly to ground, and allows
clock signal levels to be compatible with the CMOS clock
receivers.

There is no system support for halting clocks, or for single-
stepping or n-stepping clocks. The scan tools do, however,
allow halting clocks within each of the scannable VLSI chips.

Scan Circuitry
The processor board's scan circuitry interfaces to the service
processor's four-line serial scan port and enables the user,
via the service processor, to scan test each of the VLSI chips
and transceiver groups selectively. The arbitration and ad
dress buffer chip can be scanned independently, whereas the
address (4) and data (8) bus transceivers are chained. This
scan feature is used as a fault analysis tool in manufacturing.

Printed Circuit Board and Mechanical
The processor board uses a 12-layer construction and has an
approximate overall thickness of 0.075 inch. Among the 12
layers are six signal layers, three ground layers, and three

Fig. 11. CPU pipHinr

June 1994 Hewletl-I'arkard Journal 15
© Copr. 1949-1998 Hewlett-Packard Co.

Processor Memory Bus

Processor
Memory

Bus
Converter

Processor
Memory

Bus
Converter

Processor
Memory

Bus
Converter

HP-PB
Bus

Converter

HP-PB
Expansion

Module

HP-PB
Bus

Converter

HP-PB
Expansion

Module

HP-PB
Bus

Converter

HP-PB
Expansion

Module

HP-PB
Bus

Converter

HP-PB
Expansion

Module

HP-PB
Bus

Converter

HP-PB
Expansion

Module

voltage plane layers. Cyanate ester dielectric material is
used for its faster signal propagation speed over FR-4 mate
rial and its ability to achieve reduced board thickness for a
given trace impedance. The nominal signal trace impedance
is 51 ohms for all high-speed signal nets.

Every attempt was made to keep high-speed signal traces
closely coupled to a neighboring ground layer to minimize
signal perturbations and EMI. Bypass capacitors are distrib
uted liberally across the board to suppress high-frequency
noise. EMI decoupling techniques consistent with the other
Model T500 boards are used to direct common-mode noise
to chassis ground.

The dimensions of the processor board are 16.90 inches by
7.35 inches. The two processor modules extend beyond the
7.35-inch dimension by approximately 3.25 inches and are
supported by a sheet-metal extender which effectively
makes the board assembly 14 inches deep. The modules are
mounted parallel to the processor board and the sheet-metal
extender and are secured by screws and standoffs. The
sheet-metal extender also has a baffle which directs forced
air across the modules for increased cooling.

Input/Output Subsystem

The HP 9000 Model T500 represents a major advance in the
areas of high I/O throughput and highly scalable connectiv
ity. The Model T500 system provides large aggregate I/O
throughput through the replication of input/output buses
with large slot counts. These I/O buses are arranged in a
two-level tree. A bus converter subsystem connects the pro
cessor memory bus of the Model T500 system with the
Hewlett-Packard precision bus (HP-PB) I/O buses, as shown
in Fig. 12. The bus converter subsystem consists of a proces
sor memory bus converter, a bus converter link (see Fig. 13),
and an HP-PB bus converter. It translates the logical protocol

Processor
Memory

Bus
Converter

HP-PB
Bus

Converter

HP-PB
Expansion

Module

HP-PB
Bus

Converter

HP-PB
Expansion

Module

HP-PB
Bus

Converter

HP-PB
Expansion

Module
Fig. 12. Model T500 I/O
subsystem.

and electrical signaling of data transfers between the proces
sor memory bus and the I/O cards on the HP-PB bus.

The I/O subsystem guarantees data integrity and provides
high reliability through parity protection of all data and
transactions and through the hardware capability of online
replaceable cards.

The bus converter subsystem is transparent to software
under normal operating conditions. Each I/O module on an
HP-PB bus in the system is assigned a range of physical
memory addresses. I/O modules appear to software as sets
of registers.

All modules can be DMA capable and generally implement
scatter/gather DMA controllers. These scatter/gather DMA
controllers allow virtually contiguous data located in physi
cally noncontiguous pages to be transferred with minimal
CPU assistance. A chain of DMA commands is written into
memory by the processor. The I/O card is notified of the
location of the chain and that it is ready for use. The I/O
card then uses the scatter/gather DMA controller to follow
the chain and execute the commands. In this manner the I/O
card can write data (scatter) to different physical pages dur
ing the same DMA operation. The I/O card can also read
data (gather) from different physical pages during the same
DMA operation. When the I/O card finishes all of the com
mands in the chain, it notifies the processor, usually through
an interrupt.

The processor memory bus converter is a dual bus con
verter that connects to two HP-PB buses through a pair of
cables and the HP-PB bus converter. The HP-PB bus con
verter is plugged into a slot in an HP-PB expansion module
and provides the central HP-PB bus resources of arbitration,
clock generation, and online replacement signals in addition
to the connection to the processor memory bus.

16 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Each HP-PB expansion module is a 19-inch rack-mountable
assembly that connects any combination of up to 14 single-
height or 7 double-height cards to the HP-PB bus. A Model
T500 supports connection of 1 12 single-height HP-PB cards.

Each HP-PB bus is a 32-bit multiplexed address and data bus
with byte-wise parity protection and additional parity protec
tion across the control signals. The frequency of operation is
fixed at 8 MHz, leading to a peak bandwidth of 32 Mbytes/s.
The aggregate I/O rate for the Model T500 system is thus

Mbytes/s.

The HP-PB I/O function cards include SCSI, fast/wide SCSI,
FDDI (doubly connected), Ethernet LAN, token ring LAN,
HP-FL fiber-link disk connect, IEEE 488 (IEC 625), X.25 and
other WAN connects, terminal multiplexer cards, and other
I/O functions. Using HP-FL cards and HP C2250A disk arrays,
the corporate business server hardware can support over
1.9 terabytes of disk storage on over 1000 disk spindles.

Processor Memory Bus Converter
The Model T500 accepts up to four processor memory bus
converters plugged into the processor memory bus back
plane. Each processor memory bus converter consists of
two logically separate upper bus converter modules sharing
a single bus interface (see Fig. 13). This reduces the electri
cal loading on the processor memory bus while providing
the necessary fanout for a high-connectivity I/O subsystem.

The processor memory bus converter provides resource-
driven arbitration and transaction steering on the processor
memory bus for transactions involving the I/O subsystem.
The processor memory bus converter provides a maximum
bandwidth of 96 Mbytes/s. Transactions through the proces
sor memory bus converter are parity protected, and error
correcting code is generated and checked at the processor
memory bus interface to guarantee data and transaction
integrity.

The upper bus converter modules are implemented in cus
tom CMOS26 VLSI chips in 408-pin pin-grid array packages.
They arbitrate with each other for the processor memory
bus interface chips on the processor memory bus side and
implement the bus converter link protocol on the link side.

The processor memory bus interface consists of 12 bus
transceiver chips (eight data and four address) and an ar
bitration and address buffer chip. These chips are used in a
two-module mode. The data bus transceivers drive indepen
dent bidirectional data buses to the two upper bus converter
module chips. The address bus transceivers drive a single
unidirectional address to both bus converter chips, but re
ceive independent address buses from the two upper bus
converter chips.

The processor memory bus converter also provides discrete
industry-standard logic to translate the bus converter link
signals between the CMOS levels of the upper bus converter
chip and the +5V ECL levels of the link cable.

Bus Converter Link
Each of the two upper bus converter modules connects
through two cables to a lower bus converter module, the

See Fig 12

Processor
Memory

Bus
Converter

To Processor Memory Bus

Processor
Memory
Bus
Converter

Processor Memory
Bus Interlace

HP-PB
Bus

Converter

HP-PB
Expansion

Module

HP-PB
Expansion
Module

HP-PB
Bus
Converter

HP-PB Bus Up to 14
Cards

Fig. 13. Detail of Model T500 I/O subsystem.

HP-PB bus converter (see Fig. 13). Each cable is a high-
performance 80-conductor flat ribbon insulation displace
ment connector cable which allows the lower bus converter
module and the HP-PB expansion module to be located up
to 10 meters away. These cables and the protocol that is
used on them make up the bus converter link.

The bus converter link protocol is a proprietary protocol
allowing pipelining of two transactions with positive ac
knowledgment. The signals are point-to-point +5V ECL dif
ferential signals, two bytes wide and parity protected. The
status information from the opposite bus converter module
is embedded in the link protocol. The signaling rate across
the bus converter link is one-half the processor memory bus
frequency or 30 MHz in the Model T500 system. The peak
bus converter link bandwidth is therefore 60 Mbytes/s with
an average protocol overhead of 10%. The address overhead
is on the order of 20% leaving an average data transfer rate
of 42 Mbytes/s.

HP-PB Bus Converter
The HP-PB bus converter connects the bus converter link to
the HP-PB bus in the HP-PB expansion module. In addition
to the bus converter functions, the HP-PB bus converter

June 1994 Hewlett-Packard Journal 17

© Copr. 1949-1998 Hewlett-Packard Co.

Time

Processor Memory Bus
Data (60 MHz)

Processor Memory Bus
Address {60 MHz)

Downbound Link
{30 MHz)

Upbound Link
{30 MHz)

HP-PB
(8 MHz)

Read Request 1
Busied â€” No Data

Transactions from
Other HP-PB Cards

Memory and Bus
"Converter Latency"

No Memory or Bus
Converter Latency
Because of Data
Availabil i ty from

Prefetch Fig. 14. Speculative prefetch.

provides the central resources for the HP-PB bus to which it
connects, including bus clock generation, arbitration logic
and online replacement power-on signals. The bus clock gen
eration and arbitration are performed by discrete industry-
standard components on the board. The HP-PB bus converter
functions are implemented in a custom CMOS26 chip in a
272-pin pin-grid array package. Electrical signal level transla
tion between the CMOS of. the lower bus converter chip and
the +5V ECL of the link cable is performed using the same
discrete industry-standard components as are used on the
processor memory bus converter. The HP-PB bus converter
acts as a concentrator for the I/O traffic from the HP-PB
cards bound for the system memory or the processors.

The HP-PB bus converter implements a speculative prefetch
for DMA reads of memory by HP-PB cards (data transferred
from memory to an I/O device under the I/O card's control).
This provides greater performance by offsetting the transac
tion and memory latency. The prefetch algorithm always has
two read requests in the transaction pipeline to memory (see
Fig. 14). When a read transaction to memory is accepted for
forwarding by the HP-PB bus converter, it forwards the first
read and then issues a second read request with the address
incremented by the length of the original read transaction.
As the data is returned to the requester, a new read transac
tion with the address incremented by twice the length of the
transaction is issued on the bus converter link. The pre-
fetching stops when the I/O card does not request the next
read in the next transaction interval on the HP-PB bus or
when the address generated would cross a 4K page bound
ary. Speculative prefetch increases the possible read data
bandwidth from 3 Mbytes/s to over 18 Mbytes/s.

The HP-PB bus converter supports DMA writes at the full
HP-PB data bandwidth of 18 Mbytes/s for 16-byte writes and
23 Mbytes/s for 32-byte writes. The difference between the
peak bandwidth and the data bandwidth represents the
effects of the address overhead and bus turnaround cycles.

The HP-PB bus converter carries parity through the entire
data path and checks the parity before forwarding any trans
action onto the link or the HP-PB bus to guarantee data and
transaction integrity.

The HP-PB bus converter and HP-PB backplane in the
HP-PB expansion module together provide the hardware
and mechanisms to allow online replacement of HP-PB I/O
cards. The HP-PB bus converter provides a read/write regis
ter through which the power-on signal to each HP-PB card
can be controlled independently. When this signal is deas-
serted to an HP-PB card, the card's bus drivers are tristated
(set to a high-impedance state) and the card is prepared for
withdrawal from the HP-PB expansion module. The HP-PB
backplane provides the proper inductance and capacitance
for each slot so that a card can be withdrawn while the sys
tem is powered up without disturbing the power to the adja-
.cent cards. The hardware online replacement capability
makes possible future enhancements to the Model T500 for
even higher availability.

Logic in the HP-PB expansion module monitors the ac
power into the module and indicates to the HP-PB bus con
verter via a backplane signal when power is about to fail or
when the dc voltages are going out of specification. The
powerfail warning signal is passed up through the bus
converter modules to allow the Model T500 system to
prevent corruption of the machine state.

18 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

HP Precision Bus
The HP-PB is a multiplexed 32-bit address and data bus
with a fixed clock rate of 8 MHz. The HP-PBs in the Model
T500 system are completely independent of the processor
memory bus clocks. The HP-PB bus converter synchronizes
the data between the HP-PB and the bus converter link.

The HP-PB provides for global 32-bit addressing of the I/O
cards and for flexibility in address assignment. Each HP-PB
is allocated a minimum of 2-56K bytes during configuration.
This address space is evenly divided between 16 possible
slots. Each slot on the HP-PB supports up to four I/O mod
ules, each of which is allocated a 4K-byte address space. This
4K-byte space is called the hard physical address space. Any
module that requires additional address space is assigned
address space at the next available bus address. This addi
tional address space is called the soft physical address space.
Soft physical address space assigned to all I/O modules on a
single HP-PB is contiguous. The processor memory bus con
verter determines if a transaction is bound for a given HP-PB
by checking for inclusion in the range determined by the
hard physical address and soft physical address space of the
HP-PB.

The hard physical address of an I/O card contains the con
trol and status registers defined by the PA-RISC architecture
through which software can access the I/O card. Each HP-PB
card has a boot ROM called the I/O dependent code ROM,
which is accessed by indirection through a hard physical
address. This ROM contains the card identification, configu
ration parameters, test code, and possibly boot code. The
I/O dependent code ROM allows I/O cards to be configured
into a system before the operating system is running and
allows the operating system to link to the correct driver for
each card.

The HP-PB transaction set is sufficiently rich to support
efficient I/O. There are three classes of transactions: write,
read, and clear or semaphore. Each transaction is atomic
but the HP-PB bus protocol provides buffered writes for
high performance and provides a busy-retry capability to
allow reads of memory to be split, providing parallelism and
higher bandwidth. Each HP-PB transaction specifies the data
payload. The transaction set supports transactions of 1, 2, 4,
16, and 32 bytes. DMA is performed using 16-byte or 32-byte
transactions initiated under the control of the I/O card. Each
HP-PB transaction contains information about the master of
the transaction so that errors can be reported and data easily
returned for reads.

The HP-PB and I/O subsystem provides an efficient, flexible,
and reliable means to achieve high I/O throughput and
highly scalable connectivity.

Memory System

The memory subsystem for the HP 9000 Model T500 corpo
rate business server uses 4M-bit DRAMs for a 256M-byte
capacity on each board. It is expandable up to 2G bytes of
error-correcting memory. To minimize access latency in a
multiprocessor environment, the memory subsystem is
highly interleaved to support concurrent access from multi
ple processors and I/O modules. A single memory board can

contain 1. 2. or 4 interleaved banks of 64M bytes. The combi
nation of interleaving and low latency for the board provide
a bandwidth of 960 Mbytes/s. Furthermore, different-sized
memory boards using different generations of DRAMs can
coexist in the system, allowing future memory expansion
while preserving customer memory investments.

From the standpoint of complexity, the memory board is the
most sophisticated board in the Model T500 system. To meet
its performance requirements, the design uses leading-edge
printed circuit technologies and new board materials. These
are described under "Manufacturing" later in this article.
The memory board includes 4273 nets (or signals), 2183
components, and over 28,850 solder joints. Double-sided
surface mount assembly provides high component density.
The 2183 components are mounted in an area of only 235
square inches.

The processor memory bus electrical design limits the length
of the bus for 60-MHz operation to 13 inches. Consequently,
the memory board design is considerably constrained. The
limited number of slots requires the capacity of each mem
ory board to be high. The short bus length makes each of the
slots narrow, forcing a low profile for each memory board.
Bus transceivers are located close to the connector on each
daughter card to keep stub lengths to a minimum.

Memory Interleaving
Memory boards are manufactured in 64M-byte, 128M-byte,
and 256M-byte capacities. The 64M-byte and 128M-byte
memory capacities are achieved by partially loading the
256M-byte board. Memory interleaving tends to distribute
memory references evenly among all blocks in the system.
In the event that two processors desire to access memory in
consecutive quads, interleaving provides that the second
access will likely be to an idle bank. The memory design for
the Model T500 allows the benefits of interleaving to be
based on the total number of memory banks installed in the
system, regardless of the number of boards that the banks
are spread across.9 The processor memory bus protocol
maximizes performance by interleaving all the banks evenly
across the entire physical address space, regardless of the
number of banks. This is superior to interleaving schemes
that limit the effect of interleaving to numbers of banks that
are powers of two.

Memory Board Partitioning
Partitioning of the memory board into VLSI chips follows
the requirements of the DRAMs and the bank organization.
This partitioning is illustrated in the memory board block
diagram, Fig. 15. 256M-byte capacity with single-bit error
correction requires 576 4M-bit DRAMs, each of which is
organized as 1M by 4 bits. 64-byte data transfers and mini
mized latency require a 576-bit bidirectional data bus for
each bank's DRAMs. The effort to minimize latency and the
restriction of the processor memory bus to narrow slots pre
vented the use of SIMM modules similar to those used in PCs
and workstations. The fixed timing relationships on the pro
cessor memory bus required that there be four of these 576-
bit data buses for the four banks on the 256M-byte memory
board to prevent contention between writes to one bank and
reads from another bank. A multiplexing function is provided

June 1994 Hewlett-Packard .Journal 19

© Copr. 1949-1998 Hewlett-Packard Co.

4 Total Address
Transceivers

2 0 A d d r e s s

DRAM Array
144 Components

[1 8 * 2 8 8 Â ¡ 1 8
) f J f) f

i " i '
DRAM Array

144 Components

1 8 2 8 8 1 8 2 8 8
> > J f) f

'18 ~288 1 1C 288 j f y >

M A D M M A D M M A D M M A D M

l i l i
_ J - * - U - * - . - ! _ i

MAAD = Memory Array Address Dr iver
M A D M = M e m o r y A r r a y D a t a M u l t i p l i e r

Fig. 15. Memory board block diagram.

between the four slow 576-bit DRAM data buses and the
60-MHz 128-bit data bus of the processor memory bus.

To implement these requirements, a set of five VLSI chips is
used. As identified on the block diagram, these are:
Bus transceivers. This design is also used on the processor
and bus converter boards.
Arbitration and address buffer. This chip provides for arbitra
tion and acts as an additional pair of address transceivers.
This design is also used on the processor and bus converter
boards.
Memory array data multiplexer (MADM). This chip multi
plexes the slow DRAM data signals to a pair of unidirectional
60-MHz, 128-bit buses to and from the data transceivers.
Memory array address driver (MAAD). This chip drives ad
dress and RAS and CAS to the DRAMs. It is a modified version
of a standard commercial part.
Memory access controller (MAC). This chip provides the
overall control function for the memory board. In particular,
the MAC implements the required architectural features of
the memory system and controls DRAM refresh.

Except for the MAAD, which is in a 44-pin PLCC (plastic
leaded chip carrier), each of these ICs is a fine-pitch, quad
flatpack (QFP) component, with leads spaced 0.025 inch
apart. The bus transceiver and MADM are packaged in

One, Two, or Four Memory
Banks Can Be Loaded for
Memory Capacit ies of 64M,
128M, or 256M bytes.

100-pin QFPs and the arbitration and address buffer and
MAC are in 160-pin QFPs. The full 256M-byte board includes
20 bus transceivers, one arbitration and address buffer, 72
MADMs, 16 MAADs, and one MAC as well as the 576 4M-bit
DRAM chips.

Fig. 16 is a photograph of the 256M-byte memory board.

Printed Circuit Board Design
In addition to restrictions on the memory board caused by
the processor memory bus design, there were a significant
number of other electrical design and manufacturing require
ments on the board. The onboard version of the processor
memory bus address bus is a 31.70-inch, 60-MHz unidirec
tional bus with 16 loads on each line. There are two 128-bit,
60-MHz, 9.15-inch buses with five loads on each line. With
the large number of components already required for the
board, it would not have been feasible to terminate these
buses. The clock tree for the VLSI on the board feeds a total
of 94 bidirectional shifted ECL-level inputs and 16 single-
ended inputs, with a goal of less than 250 ps of skew across
all 1 10 inputs. The size chosen for the memory board is
14.00 by 16.90 inches, the maximum size allowed by surface
mount equipment for efficient volume production. Restriction

20 June 1994 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Illlllllllllllll
Illllllllllllll!

Â¡iilillllllÃ¼l nuÃ̄

iiÃœllUU
lllllimm

Fig. 16. 256M-byte memory board.

to this size was an important factor in almost every design
decision made for the board.

Preliminary designs of critical areas of the board showed
that the densest feasible routing would be required. Leading-
edge HP printed circuit production technology allows a
minimum of 0.005-inch lines and 0.005-inch spaces. Vias can
be either 0.008-inch finished hole size with 0.021-inch pads,
or 0.012-inch finished hole size with 0.025-inch pads. Both of
these alternatives are currently limited to a maximum as
pect ratio of 10:1 (board thickness divided by finished hole
size). The aspect ratio also influences the production cost of
the board significantly because of plating yields, as well as
the achievable drill stack height.

With the given layout conditions, several trade-off studies
were done to find the best alternative in terms of electrical
performance, manufacturing cost for the loaded assembly,
reliability, and risk for procurement and process availability
at both fabrication and assembly. The best alternative finally
uses the leading-edge layout geometries, eight full signal
layers, and two partial signal layers. Since the initial projec
tions of the number of layers required to route the board led
to an anticipated board thickness greater than 0.080 inch,
the aspect ratio requirements caused the 0.008-inch finished
hole size via option to be rejected. Even with 0.025-inch
pads and 0.012-inch finished hole size vias, the aspect ratio
approaches 10. Therefore, a sophisticated board material is
required to prevent thermal cycling from stressing vias and
generating distortions on the board by expansion of the thick
ness of the board. Cyanate ester material (HT-2) was chosen
over other substrate alternatives because of its superior
electrical and mechanical performance.10

5 3 +

1

710 Transactions
per Second

1 2 3 4

Number of Processors

Fig. 17. Scaling of online transaction processing (OLTP) performance
with number of processors.

Multiprocessor Performance

Performance
An HP 9000 Model T500 corporate business server, a six-
processor, 90-MHz PA-RISC 7100 CPU with a 60-MHz bus,
achieved 2110.5 transactions per minute (U.S.$2,115 per
tpmC) on the TPC-C benchmark.5 hi the following discus
sions, the available multiprocessor performance data is a
mixture of data from both the Model T500 and the older
Model 890 systems.

Data for the HP 9000 Model 890 (the precursor of the Model
T500, which uses one to four 60-MHz PA-RISC processors
and the same memory, bus, and I/O subsystems as the Model
T500) is available for the TPC-A benchmark and one to four
processors. Fig. 17 shows how multiprocessing performance
scales on a benchmark indicative of OLTP performance.6

The SPECrate performance for the Model T500 is shown in
Fig. 18.7 The SPEC results show linear scaling with the num
ber of processors, which is expected for CPU-intensive work
loads with no mutual data dependencies. The OLTP bench
marks are more typical for real commercial applications.

38780
A
SPECrate Jp92

SPECrate Â¡nt92
O

23717

4 6
Number of Processors

Fig. 18. Model T500 SPECrate performance.

June 1994 Hewlett-Packard Journal 21

© Copr. 1949-1998 Hewlett-Packard Co.

4

3

2 J

1 -

Normal

Interleave Off
Duplicate Tags Off

1 2 3 4
Number of Processors

Fig. 19. Model 890 program development performance.

The losses in efficiency are caused by factors such as serial
ization in the I/O subsystem and contention for operating
system resources.

Fig. 19 shows the performance of the Model 890 on an
HP-internal benchmark representative of 24 interactive
users executing tasks typical of a program development
environment.

The benchmark results confirm the value of key design
decisions. For example, nearly all transactions were use
ful â€” only 6% of all transactions were busied and only 1.5% of
all bus quads were waited. Disabling the interleaving or dis
abling the duplicate cache tags did not affect bus utilization.

The efficiency of the bus was reflected in system through
put. Normal operation showed near-linear multiprocessor
scaling through four processors. Changing the interleaving
algorithm from the normal case of four blocks interleaved
four ways to four blocks not interleaved caused a significant
performance impact. As expected, the penalty was greater
at higher degrees of multiprocessing, peaking at a penalty of
15% in a four-processor system. Disabling the duplicate cache
tags incurred an even greater cost: the decrease in system
performance was as much as 22%, with the four-processor
system again being the worst case.

These tests showed that the high-speed pipelined processor
memory bus, fast CPUs with large caches, duplicate cache
tags in the processor interfaces, and highly interleaved large
physical memory allow the Model T500 system to scale
efficiently up to twelve-way multiprocessing.

Service Processor

As part of the challenge of producing the HP 9000 Model
T500 corporate business server, targeted at demanding busi
ness applications, it was decided to try to make a significant
improvement in system hardware availability. Hardware
availability has two components: mean time between fail
ures (MTBF), which measures how often the computer
hardware fails, and mean time to repair (MTTR), which mea
sures how long it takes to repair a hardware failure once
one has occurred. The service processor makes a significant

improvement in the MTTR portion of the availability equa
tion by reducing the time required to repair the system when
hardware failures do occur.

HP's computer systems are typically supported from our
response centers, where HP has concentrated some of the
most knowledgeable and experienced support staff. These
support engineers generally provide the first response to a
customer problem. They make the initial problem diagnosis
and determine which of HP's resources will be applied to
fixing the customer's system. The greatest opportunity to
improve the system's MTTR existed in improving the ability
of the support engineers at the response centers to access
failure information and control the system hardware. The
following specific goals were set:
All of the troubleshooting information that is available
locally (at the failed system) should be available remotely
(at the response center).

â€¢ Information should be collected about hardware failures
that prevent the normal operating system code from starting
or running.

'- Information about power and environmental anomalies
should be collected.

â€¢ Information about operating system state changes should
be collected.

â€¢ Error information should be available to error analysis soft
ware running under the operating system if the operating
system is able to recover after an anomaly occurs.

â€¢ A means should exist to allow support personnel to deter
mine the system hardware configuration and alter it without
being present at the site to allow problems to be worked
around and to aid in problem determination.

â€¢ The support hardware should be as independent of the re
mainder of the computer system as possible, so that failures
in the main hardware will not cause support access to
become unavailable.

â€¢ Error reporting paths should be designed to maximize the
probability that failure symptoms will be observable even in
the presence of hardware failures.

â€¢ Failure in the support hardware should not cause failure of
the main computer system.

â€¢ Failure of the support hardware should not go unnoticed
until a failure of the main system occurs.

â€¢ The hardware support functions should be easily upgradable
without requiring a visit by support personnel and without
replacing hardware.

Hardware Implementation
The above goals are achieved by providing a single-board
service processor for the Model T500 system. The service
processor is a microprocessor-controlled board that is
located in the main cardcage. This board has control and
observation connections into all of the hardware in the main
cardcage. This board also contains the power system control
and monitor which controls the power system. The service
processor has a command-oriented user interface which is
accessible through the same console mechanism as the op
erating system console connections on previous systems
(through the system's access port). The logical location of
the service processor is shown in Fig. 20.

22 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Main
Power

Supplies

Ma in Power

Bias
Power

Power System
Control and

Monitor

Processor

Factory
Test

Controller

Service
Processor

Bus

High-Voltage
DC

System
C l o s e S t a t u s

Console
Port

HP-PB Cardcage
Internal to System
Cabinet

Bias Power,
Battery,

Power On/Off

Scan Bus
and Clocks

Bus
Converter

Processor
M e m
Bus

Fig. 20. Service processor block diagram.

The service processor and power system control and monitor
are powered by special bias power which is available when
ever ac power is applied to the system cabinet. The service
processor is thus independent of the main system power
supplies, and can be accessed under almost all system fault
conditions.

The service processor has a communications channel to the
power system control and monitor which allows it to pro
vide the operating code for the power system control and
monitor microprocessor, and then to issue commands to the
power system control and monitor and monitor its progress.
The power system control and monitor controls the power
system under service processor supervision and notifies the
service processor of power and environmental problems.
The service processor provides a user interface to the
power system which is used by support personnel when
troubleshooting power and environmental problems.

The service processor is connected to each card on the pro
cessor memory bus by both the system clocks and the scan
bus. Through the system clocks, the service processor pro
vides clocking for the entire Model T500 system. The scan
bus allows the service processor to set and read the state of

the cards without using the main system bus. This mecha
nism is used to determine and alter system configuration
and for factory testing.

The service processor is connected to the processors in the
system by the service processor bus. The service processor
bus allows the processors to access instructions and data
stored on the service processor. The instructions include
processor self-test code and processor dependent code,
which performs architected system functions. The data
stored on the service processor includes configuration infor
mation and logs of system activity and problems. The service
processor bus also allows the processors to access common
system hardware that is part of the service processor, such
as system stable storage which is required by the PA-RISC
architecture, and provides access to the console terminals
through the close console port. Because service processor
bus access is independent of the condition of the processor
memory bus, the processors can access error handling code,
make error logs, and communicate with the console terminals
even if the processor memory bus has totally failed.

The service processor drives the system status displays on
the control panel. These include the large status lights, the

June 19!)4 Hewlett-Packard Journal 23
© Copr. 1949-1998 Hewlett-Packard Co.

number of processors display, and the activity display. The
service processor also mirrors this information onto the
console terminals on the status line.

The connections between the service processor and the
console/LAN card provide several functions. The service
processor's user interface is made available on the local and
remote console terminals by the access port firmware which
is part of the console/LAN card. The user interface data is
carried through the service processor port connection. Be
cause the internal HP-PB cardcage which houses the console/
LAN card is powered by the same source of ac power as the
service processor, the access port and its path to the console
terminals are functional whenever the service processor is
powered. The system processors access the console termi
nals through the close console port connection to the access
port firmware during the early stages of the boot process
and during machine check processing when the I/O subsys
tem is not necessarily functional. The service processor also
sends control information and communicates its status to
the console/LAN card through the service processor port.
Console terminal access to the system and service processor
functions is controlled by the access port firmware on the
console/LAN card.

A connection exists between the service processor and a
test controller used for system testing in the factory. This
connection allows the system internal state to be controlled
and observed during testing.

Because the service processor and power system control
and monitor do not operate from the same power supplies
as the processor memory bus, the service processor's con
trol features and error logs are available even when the re
mainder of the system is inoperable. Because logging, error
handling, and console communications paths exist that are
independent of the system buses, these functions can operate
even when system buses are unusable. The service processor
is architected so that its failure does not cause the operating
system or power system to fail, so that failure of the service
processor does not cause the system to stop. The access
port is independent of the service processor and detects
service processor failure. It notifies the user of service pro
cessor failure on the console terminals, providing time for
the service processor to be repaired before it is needed for
system-critical functions.

Features
The hardware implementation described above is extremely
flexible because of its large connectivity into all of the main
system areas. As a result, the service processor's features
can be tailored and changed to ensure that the customer's
service needs are adequately met. The service processor in
its current implementation includes the service features
described in the following paragraphs.

Configuration Control. The service processor keeps a record
of the processor memory bus configuration including slot
number, board type, revision, and serial number. The service
processor reconciles and updates this information each time
the system is booted by scanning the processor memory bus
and identifying the modules it finds. Various error condi
tions cause defective processor memory bus modules to be
automatically removed from the configuration. The user is
alerted to such changes and boot can be optionally paused

on configuration changes. The service processor's user in
terface contains commands to display and alter the configu
ration, including removing modules from the configuration
or adding them back into the configuration. Modules that
are removed no longer electrically affect the system, making
configuration an effective means of remotely troubleshoot
ing problems on the processor memory bus.

Logs. The service processor has a large log area that con
tains logs of all service-processor-visible events of support
significance. Each log contains the times of event occur
rences. Logs that warn of critical problems cause control
panel and console terminal indications until they have been
read by the system operator. The service processor user
interface contains commands to read and manage the ser
vice processor logs. Information in the service processor
logs can be accessed by diagnostic software running under
the operating system. The service processor logs include:

â€¢ Power system anomalies
â€¢ Environmental anomalies

Ac power failure information
e Automatic processor memory bus module deconfigurations

that occur because of failures
Â« Operating system major state changes (such as boot, testing,

initialization, running, warning, shutdown)
High-priority machine check information
Problems that occur during system startup before the
processors begin execution

â€¢ Processor self-test failure information.

Operating System Watchdog. The service processor can be
configured to observe operating system activity and to make
log entries and control panel and console indications in the
event of apparent operating system failure.

Electronic Firmware Updates. The service processor and
processor dependent code work together to update system
firmware without the need for hardware replacement. The
service processor contains the system processor dependent
code (boot and error firmware), the firmware for the power
system control and monitor to control the power system,
and its own firmware. Two copies of each exist in electri
cally erasable storage so that one copy can be updated while
the other copy is unchanged. The service processor can
switch between the two copies in case a problem occurs in
one copy.

Remote Access. The user gains access to the service processor
user interface through the access port. The access port is
the single point of connection for the system console termi
nals, both local and remote. As a result, all troubleshooting
information that is available on local console terminals is
available remotely.

Factory Test Support. The service processor serves as a scan
controller, providing full access to the internal state of the
custom VLSI chips contained on processor memory bus
cards. This access is provided through the programmable
clock system and the scan bus. Using the scan controller
features of the service processor, a factory test controller
can test the logic in the processor memory bus portion of
the system under automatic control.

System Status Control. Because the service processor controls
the system status indicators, it is able to display an accurate
summary of the complete hardware and software state of

24 June 1994 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

To Service
Processor Low-

Voltage
Converters

To
P r o c e s s o r S P O N
Memory

Bus
SYS CONFIG

Power Path

Control Signal

Optional

Fig. 21. Power system block diagram.

the system. The service processor can do this even when the
system processors or main power system are unable to
operate.

Power System

The power system provides regulated low-voltage dc to all
logic assemblies in the processor memory bus cardcage, and
to the array of fans located just below the cardcage assembly.
The power system is designed to grow and reliably support
the need for ever increasing processor, memory, and I/O per
formance. It has ' he capacity to deliver almost 4,000 watts
of dc load powei . 'ontinuously. The block diagram of the
power system is ; liown in Fig. 21. The modular design con
sists of an ac front-end assembly, several low-voltage dc-
to-dc converters, and a power system control and monitor
built within the service processor.

The ac front end. shown in Fig. 22, contains one to three
power-factor-correcting upconverter modules, each providing
regulated SOOVdc. and has an output capacity of 2.2 kilowatts.
The upconverter modules run on single-phase or dual-phase,
208Vac input. They have output ORing diodes, implement
output current sharing, and are capable of providing true
N - 1 redundancy for higher system capacity and availability.
(N+ 1 redundancy means that a system is configured with
one more module than is necessary for normal operation. If
there is a subsequent single module failure the extra module
will take over the failed module's operation.)

The active power-factor-correcting design allows the product
to draw near unity power factor, eliminating the harmonic
currents typically generated by the switching power supplies
in a computer system. The design also has a very wide ac
input operating range, is relatively insensitive to line voltage
transients and variations, and allows a common design to be
used worldwide. It also provides a well-regulated SOOVdc
output to the low-voltage dc-to-dc converters.

The low-voltage dc-to-dc converters are fed from a single
300V rail and deliver regulated dc voltage throughout the
main processor cardcage. The single-output converters, of
which there are two types, have capacities of 325 and 650
watts and a power density of about 3 watts per cubic inch.
They have current sharing capability for increased output
capacity, and are designed to recover quickly in the event of
a module failure in a redundant configuration. The convert
ers have output on/off control and a low-power mode to
minimize power drain on the 300V rail when shut down.
Their output voltage can be adjusted by the power system
control and monitor.

The power system control and monitor provides control for
power sequencing, fan speed control, and temperature mea
surement. It ensures that the modular converters and the
system load are consistent with each other. The controller
also monitors status and system voltages. This information
is communicated to the service processor and saved in a log
to aid in the support and maintenance of the system.

Together, the power system control and monitor, power-
factor-correcting upconverters, and low-voltage dc-to-dc
converters form a scalable, high-capacity, highly available,
modular power system. The system is easily updated and
can be upgraded to support higher-performance processor,

Power-Cord
Termination

Line Configuration
Terminal Block

Chassis
Ground

Power-Factor-Correcting
Upconverter Modules

High-Vol tage Power
Supply Unit 1

Unit 2

Un i t3

To Internal I/O
Cardcage

HVDC

L .
Interface to

Power
System

Control and
Monitor

Fig. 22. Ac front end block
diagram.

June 1994 Hewlett-Packard Journal 25

© Copr. 1949-1998 Hewlett-Packard Co.

memory, and I/O technologies as they are developed for the
Model T500 platform.

Product Design

The Model T500 package is a single-bay cabinet. Overall, it is
750 mm wide by 905 mm deep by 1620 mm tall. A fully loaded
cabinet can weigh as much as 360 kg (800 Ib). A skeletal
frame provides the cabinet's structure, supporting the card
cages, fan tray, and ac front end rack. External enclosures
with vents and a control panel attach to the frame.

The processor memory bus boards and the low-voltage dc-
to-dc converters reside in cardcages in the upper half of the
Model T500 cabinet. They plug into both sides of a vertically
oriented, centered backplane to meet bus length restric
tions. A bus bar assembly attaches to the upper half of the
backplane to distribute power from the larger 650-watt con
verters to the extended-power slots that the processor
boards use.

There are 16 processor memory bus slots in the Model T500:
six in the front cardcage and ten in the rear cardcage. Eight
of the 16 slots are extended-power slots, which have a board-
to-board pitch of 2.4 inches, twice the 1.2-inch pitch of the
other eight standard slots. These wider slots allow increased
cooling capability for the processor board heat sinks. The
standard slots are used for bus converters. Memory boards
can go in either standard slots or extended-power slots.

Looking at the front view of the cabinet in Fig. 23, six
extended-power processor memory bus slots are to the left
of the low-voltage dc-to-dc converter cardcages in which

Bus Bar

Backplane

Processor /Memory
(6 Slots)

650W Converters
(4 Slots)

M isce l laneous
Power Modu le

325W Converters
(2 Slots)

Fan Tray

650W Converters
(4 Slots)

325W Converters
(3 Slots)

Service Processor

Memory/Bus Converter
(8 Slots)

Processor /Memory
(2 Slots)

Power-Factor-Correcting
Upconverters

(3 Places)

HP-PB Cardcage
(8 Slots)

AC Front End

Fig. 24. Rear view of Model T500 cabinet.

four 650-watt converters reside above two 325-watt convert
ers and the miscellaneous power module. When viewing the
rear of the cabinet in Fig. 24, ten processor memory bus
slots, two of which are extended-power, reside to the right
of the converter cardcages in which four 650-watt convert
ers are above three 325-watt converters. The service proces
sor is located in a dedicated slot between the rear processor
memory bus and the converter cardcages.

The fan tray is located beneath the cardcages. Air enters
through the top vents of the cabinet and is pulled through
air filters and then through the processor memory bus and
dc-to-dc converter cardcages to the fan tray. Half of the air
is exhausted through the lower cabinet vents while the other
half is directed to cool the HP-PB cardcage boards located
in the ac front end rack. The fan tray is mounted on chassis
slides to allow quick access to the fans.

The ac front end rack is mounted on the base of the Model
T500 cabinet. This rack holds up to three power-factor-
correcting power supply modules, an internal HP-PB card-
cage, and the ac input unit. The HP-PB power supply has its
own integral cooling fan. The ac front end power-factor-
correcting modules have their own fans and air filters and
take in cool air from the rear lower portion of the cabinet
and exhaust air out at the front lower portion of the cabinet.

The rear of the internal HP-PB cardcage has an HP-PB bus
converter and seven double-high or 14 single-high HP-PB
slots as well as the battery for battery backup. The front of
the HP-PB cardcage has a power supply and the power sys
tem control and monitor module. HP-PB backplane insertion
is from the top of the cardcage by way of a sheet-metal
carrier.

Fig. 23. Front view of Model T500 cabinet.

26 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Additional rackmount HP-PB expansion modules and system
peripherals are housed in peripheral racks. Both HP-PB card
cages (internal and rackmount) leverage the same power
supply and backplane assemblies, but have different overall
package designs. The rackmount version has a cooling fan
that directs air in a front-to-back direction. The HP-PB
boards mount in a horizontal orientation and the cables exit
towards the rear of the peripheral rack. The rackmount unit
is 305 mm high (7 EIA standard increments) by 425 mm
wide by 470 mm deep. The peripheral racks are 600 mm
wide by 905 mm deep by 1620 mm tall and have mountings
to hold products conforming to the EIA 19-inch standard.

The Model T500 industrial design team drove the system
packaging design to come up with a unified appearance for
HP's high-end and midrange multiuser systems. The result is
an industrial design standard for a peripheral rack system
that fits well with the Model T500 design. This cooperative
effort ensured consistency in appearance and functionality.

Electromagnetic Compatibility
EMC shielding takes place at the printed circuit board level,
the power supply level, and the cardcage level and does not
rely on external enclosures for containment. This keeps
noise contained close to the source. A hexagonally perfo
rated metal screen is used above and below the processor
memory bus cardcage to minimize resistance to airflow
while providing the required EMI protection. Nickel plating
is used on the steel cardcage pieces to ensure low electrical
resistance between mating metal parts. The backplane has
plated pads in the areas that contact the cardcage pieces.
Conductive gaskets are used to ensure good contact be
tween the backplane, the cardcages, and the cover plates.
ESD (electrostatic discharge) grounding wrist straps are
provided in both the front and rear of the cabinet.

Surface mount filtering is used on the backplane to control
noise on signal lines exiting the high-frequency processor
memory bus cardcages and to prevent noise from coupling
into the low-voltage dc-to-dc converters.

All processor memory bus boards have a routed detail in
four corner locations along the board perimeter to allow for
grounding contact. A small custom spring fits into via holes
and resides in the routed-out space. This spring protrudes
past the edge of the board and contacts the card guides in
the cardcage. Surface mount resistance elements lie be
tween the vias and the board ground planes. This method of
grounding the processor memory bus boards helps reduce
EMI emissions.

System Printed Circuit Boards
The processor memory bus cardcage is designed to accept
16.9-inch-high-by-14-inch-deep boards. This large size was
required for the 256M-byte memory board. Since the proces
sor and processor memory bus converter did not require
large boards, it was important to have a cardcage and cover
plate design that allows boards of various depths to be
plugged into the same cardcage, thereby optimizing board
panel use.

The processor plugs into this deep cardcage by means of a
sheet-metal extender. The bus converter was more difficult
to accommodate since this shallow board requires cables to

Transition Plate

Fig. plate. Bus converter sheet-metal design, showing transition plate.

attach to its frontplane. Therefore, a transition plate was
developed to transition from the shallower board bulkheads
to the full-depth cardcage cover plates as shown in Fig. 25.
This transition plate locks into the adjacent bulkhead to
maintain the EMI enclosure. However, either the transition
plate or the adjacent bulkhead to which it latches can be
removed without disturbing the other.

The Model T500 backplane is 25.3 inches wide by 21.7
inches high by 0.140 inch thick and has 14 layers. This back
plane has many passive components on both sides, includ
ing press-fit and solder-tail connectors, surface mount resis
tors and capacitors, processor bus bars, and filters. The
backplane connectors are designed to allow at least 200
insertions and withdrawals.

June 1994 Hewlett-Packard Journal 27

© Copr. 1949-1998 Hewlett-Packard Co.

A controlled-impedance connector is used on the processor
memory bus boards to mate to the backplane. The codevel-
opment that took place with the connector supplier was a
major undertaking to ensure that the connector would work
in our surface mount processes repeatably and meet our
reliability and serviceability requirements.

Cooling
The Model T500 cooling system is designed to deliver high
system availability. This is achieved by incorporating redun
dant fans, fan-speed tachometers, air temperature sensors
on the hottest parts of the boards, and multiple-speed fans.
The Model T500 meets the HP environmental Class C2 speci
fication for altitudes up to 10,000 feet with an extension in
temperature range up to 40Â°C.

Computational fluid dynamics software and thermal analysis
spreadsheets were used to evaluate various components,
heat sinks, and board placements. These tools helped the
team make quick design decisions during the prototype
stages. All high-powered components that were calculated
to operate close to their maximum allowable junction tem
perature in the worst-case environment were packaged with
thermal test dies to record chip junction temperatures accu
rately. Small wind tunnels were used to determine package
and heat sink thermal performance for various airflows.
Larger wind tunnels were used to evaluate board airflow to
give the board designers feedback on component placement
by monitoring preheat conditions and flow obstructions. On
printed circuit boards, external plane thermal dissipation
pads were used where possible in lieu of adding heat sinks
to some surface mount parts.

A full-scale system mockup was built. Various board models,
air filters, EMI screens, and vents were tried to gather system
airflow resistance data to determine the size and number of
fans required. Various cooling schemes were evaluated by
altering airflow direction and fan location. Pulling air down
through the cabinet was found to provide uniform airflow
across the cardcages while keeping the air filters clean by
their high location. Having the fans low in the product and
away from the vents kept noise sources farther away from
operators and made servicing the fans easier.

The eleven dc fans in the fan tray have the ability to run at
three different speeds: high, normal, or low. Seven fans run
at low speed during startup and battery backup to keep the
power use at a minimum while supplying sufficient cooling.
All eleven fans run at normal speed while the system is up
and running with the inlet air at or below 30Â°C. In this case
the system meets the acoustic noise limit of 7.5 bels (A-
weighted) sound power. The fans run at high speed while
the system is up and running with the inlet air above 30Â°C or
when the temperature rise through the processor memory
bus cardcage exceeds 15Â°C.

At high speed, the fan tray has a volum trie airflow of ap
proximately 1200 ft3/min, which is desÂ¡0ned to handle over
six kilowatts of heat dissipation. This amount of power was
considered early in the project when alternate chip technol
ogies were being investigated. Therefore, the Model T500
has a cooling capacity of approximately one watt per square
centimeter of floor space, a threefold increase over the high-
end platform that the Model T500 is replacing, yet it is still

air-cooled. The minimum air velocity is two meters per sec
ond in all of the processor memory bus slots and the typical
air velocity is 3 m/s.

Because the processor memory bus cardcage contains high
pressure drops and airflows, the board loading sequence is
important, especially for the processor boards. Since the
heat sinks are on the right side of the vertical processor
boards, they are loaded sequentially from right to left. This
ensures that air is channeled through the processor heat
sinks of of bypassing them in large unfilled portions of
the cardcage.

Manufacturing

The fundamental strategy for manufacturing the HP 9000
Model T500 corporate business server was concurrent engi
neering, that is, development of both the computer and the
technologies and processes to manufacture it at the same
time. This resulted in a set of extensions to existing high-
volume, cost-optimized production lines that allow sophisti
cated, performance enhancing features to be added to the
corporate business server.

Cyanate Ester Board Material
Printed circuit boards based on cyanate ester chemistry
(referred to as HT-2) have much better thermal, mechanical,
and electrical performance than typical FR-4 substrates.
These properties make HT-2 ideally suited for large printed
circuit assemblies with intensive use of components with
finely spaced leads, high-reliability applications, high-
frequency applications, and applications with tight electrical
tolerances.

More advanced printed circuit board designs tend to increase
the aspect ratio of the board, or the ratio of the thickness of
the board to the width of the vias for layer-to-layer connec
tions. This is hazardous for FR-4 substrates because higher-
aspect-ratio vias tend to be damaged in the thermal cycles of
printed circuit assembly processes because of the expansion
of the thickness of the boards in these cycles. The reliability
of vias and through-hole connections (where the processor
memory bus connector or VLSI pin-grid arrays are soldered
to the board) is essential to the overall reliability, manufac-
turability, and repairability of the Model T500 memory board.

Because of their high glass transition temperature, HT-2 sub
strates are ideally suited to survive the stressful assembly
and repair processes and to increase the yields within these
processes. The glass transition temperature is the tempera
ture at which the laminated fiberglass printed circuit board
transitions from a solid to a pliable material. This is exceeded
for FR-4 in the printed circuit assembly process, resulting in
distortions of the boards. If no fine-pitch or extra-fine-pitch
parts are used, the distortion for FR-4 is acceptable in the
surface mount process. For large boards that use fine-pitch
components, the surface mount processes tolerate less dis
tortion. HT-2 has the advantage that it remains stable be
cause it doesn't reach its glass transition temperature in the
manufacturing process.

28 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Printed Circuit Assembly and Test
Model T500 system requirements, through their impact on
the memory board design, required development of signifi
cant new printed circuit assembly process capability. This
process development effort began two years before volume
shipments and identified the important areas for engineering
effort. New technology introduced in printed circuit assem
bly included advanced reflow techniques. This is important
because the total thermal mass of the components reflowed
on the memory board is large, and because of the nature of
the connector used for the processor memory bus. Special
solder paste application methods were developed for the
processor memory bus connector. This provides the assem
bly process with wide latitude for the connectors, pin-grid
arrays, standard surface mount parts, and fine-pitch parts.

A key benefit of the cyanate ester choice for double-sided
assemblies is reduced runout of the board, resulting in im
proved registration of the solder-paste stencil and compo
nents for higher yields of solder joints, hi the double-sided
surface mount process, the B side components are placed
and reflowed before placement of the A side components.
Since reflow for the B side is conducted at a temperature far
above the glass transition temperature for standard FR-4
material, the boards would have been distorted in this step if
FR-4 had been used. Thus FR-4 boards would have a higher
failure rate on solder connections for the A side components.

Printed circuit board test was another area identified by the
early concurrent engineering effort. Model T500 printed cir
cuit assemblies are tested using a strategy extended from
the HP 3070 board test system. Much of the test is conducted
using leading-edge scan techniques. For example, because
of trace length and capacitance, it was impossible to add
test points between the processor memory bus drivers of
the bus transceivers and the arbitration and address buffer
and the resistor pack that connects to the bus without im
pacting performance. A scheme was devised using the scan
port to activate each chip's drivers. The HP 3070 is set to
apply a known current to each resistor and measure the
voltage drop, from which the resistor's value and connectiv
ity can be determined. There is no loss of test coverage for
these fine-pitch parts and the scheme has the added benefit
of verifying much of the chip's functionality. Because of the
chip design lead time, HP's own scan port architecture (de
signed several years in advance of the IEEE 1 149 standard
for this type of test approach) is used and custom software
tools were developed. Current chip designs contain the IEEE
1 149 scan port which is directly supported by the HP 3070.

A major manufacturing challenge was the total number of
nets and the board layout density found in the memory board.
With 4273 nets, if normal HP 3070 design rules, which require
one test point per net, were followed as much as 20% of the
surface of the board would have been dedicated to test
points. To solve this problem a scan-based approach is used
on the nets where VLSI parts have scan ports. By using the
! ''in ports and exercising some of the MSI part functionality,
t ho number of nets that need test points is reduced to 2026.

'i Ins approach freed board space and allowed the needed
density to be achieved. If this density had not been achieved,
the alternative would have been to lower the capacity of

Package Design Using 3D Solid Modeling

The industrial design and product design groups designed the HP 9000 Model T500
corporate business server package using the HP ME 30 solid modeling system. In
the past, designs were drawn as 2D orthographic layouts. These layouts were
then dimensioned and paper copies were given to the vendor for fabrication. Now.
3D bodies are sent directly to vendors via modem without having to dimension
them. A usu drawing is also sent to the vendor to provide a view of the part, usu
ally isometric, and to call out notes and necessary secondary operations (plating,
tolerances, cosmetic requirements, press-in fastener installations, etc.).

Using 3D solid modeling allowed the product design group to reduce design time,
reduce 2D documentation time, and reduce design errors caused by using 2D
layouts (with orthographic views, all three 2D views must be updated for a design
change on of a single 3D body). Additional benefits are faster turnaround on
prototypes and an improved process for creating assembly documentation (isometric
views of assembly positions are easily created by manipulating 3D bodies).

Eight engineers created approximately 1 50 sheet-metal parts, ten plastic parts, 25
cables, 15 miscellaneous parts, and many board components. Managing such a
large having assembly was initially thought to be too difficult. But having an
organized file structure and 3D body placement strategy allowed the design team
to work stored efficiently. All engineers worked on their own assemblies, stored
in separate write-protected directories, and were able to view adjoining assemblies
for interface design.

each memory board, thereby lowering the overall system
memory capacity.

The service processor presented two major challenges to
make it fit both electrically and mechanically onto the HP
3070 test fixture. The total of 2312 nets on this board made it
important to make all possible electrical pins of the test fix
ture available, which was difficult considering the large
number of components. This problem was alleviated by
careful layout of the service processor with the test fixture
in mind. A custom fixture was designed to accommodate the
board with its 2. 5-inch bulkhead.

All of the boards and fixtures are designed to accommodate
the transition to a no-clean process, which allows manufac
turing of printed circuit assemblies without a chlorofluoro-
carbon (CFC) wash. This advanced work was driven by
Hewlett-Packard's commitment to the total elimination of
CFCs, which have been shown to destroy the ozone layer.
The elimination of CFC use at HP was accomplished by May
15, 1993, more than two years ahead of the Montreal Protocol
goal for an international ban on the use of these chemicals.

Mechanical and Final Assembly and Test
A key focus of concurrent design for manufacturability was
the frame and cardcage design. Early effort by the design
team and manufacturing went into detecting areas to improve
the design for ease of assembly, to minimize the number and
variety of fasteners, and to reduce the number of stocked
items. This resulted in a set of features that include:
Extensive use of captive fasteners, that is, fasteners that are
preplaced in mechanical subassemblies. This reduces the
number of individual mechanical parts to handle during
assembly.
A minimal set of unique fasteners with extensive use of
Torx fasteners.

June 1SI94 Hewlett-Packard Journal 29

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ One-direction fastening. Assemblers are not required to
reach around or use awkward movements during assembly.

â€¢ A simplified assembly procedure. Only one piece to pick up
and handle during any operation.

â€¢ Modularity. It is very easy to install or replace many
components in the chassis without interference.

â€¢ Extensive use of high-density connectors for wiring har
nesses. This reduces wiring time and errors. Point-to-point
wiring is minimal.

â€¢ A robust cabinet and a very strong frame. The frame can
survive shipping on its casters alone, and does not require a
special pallet for most shipments.

â€¢ A refrigerator-sized cabinet that when fully loaded (approxi
mately 360 kg) can still be moved easily by any operator or
technician.

The Model T500 is designed with many inherent testability
features, most of which are accessible using the system con
sole. The system console is one of the most fundamental
functions of the Model T500. It can be used in the earliest
steps in bringing up and testing a newly assembled system.
This permits extensive control and monitoring capability
from a single communication point for manufacturing's auto
mated test control host, and eliminates the need for many
additional custom devices traditionally used for testing large
computer systems. Many of the testability features benefit
both manufacturing and customer support. The capabilities
used for manufacturing test include the following:

â€¢ Monitor and change system parameters (such as secondary
voltages or power system status) from the system console.

' Review from the console the system activity logs which
track events that may indicate incorrect operation.

â€¢ Change self-test configuration. Select only the tests desired,
or repeat tests to aid defect analysis.
Access diagnostics through a LAN connection standard on
all configurations of the system.
Diagnose potential failure sources down to a specific
integrated circuit.
Use scan tools designed closely to manufacturing test
specifications.

Acknowledgments
The authors would like to thank the following for their con
tributions to this article: Manfred Buchwald, Ken Chan, Ira
Feldman, Dick Fowles, Chuen Hu, Ed Jacobs, Dong Nguyen,

Phil Nielson, Nazeem Noordeen, Tom Wylegala, Syrus Ziai,
and Steve Thomas for his photographic support. The authors
also wish to thank the many individuals involved in making
the HP corporate business server possible. This includes
individuals from HP's mainline systems lab in Cupertino,
California, the engineering systems lab in Fort Collins,
Colorado, the 1C design lab in Fort Collins, Colorado, the
BÃ²blingen Printed Circuit Manufacturing Operation in
BÃ²blingen, Germany, the Networked Computer Manufac
turing Operation in Roseville, California, and the Cupertino
open systems lab in Cupertino, California.

References
1. R.B. Lee, "Precision Architecture," IEEE Computer, Vol. 22,
January 1989.
2. D. Tanksalvala, et al, "A 90-MHz CMOS RISC CPU Designed for
Sustained Performance," ISSCC Digest of Technical Papers, February
1990, pp. 52-53.
3. J. Lotz, B. Miller, E. DeLano, J. Lamb, M. Forsyth, and T. Hotchkiss,
"A CMOS RISC CPU Designed for Sustained High Performance on
Large October IEEE Journal of Solid-State Circuits, October
1990, pp. 1190-1198.
4. P. Stenstrom, "A Survey of Cache Coherence Schemes for Multi
processors," IEEE Computer, Vol. 23, no. 6, June 1990, pp. 12-25.
5. TPC Benchmark C Full Disclosure Report: HP 9000 Corporate

Business Server T500, Using HP-UX 10.0 and INFORMIX Online

5.02, Hewlett-Packard Company, November 1993.
6. TPC Benchmark A Full Disclosure Report: HP 9000 Corporate

Business Server 890, Using HP-UX and ORACLE? Client/Server

Configuration, Hewlett-Packard Company, publication no.
5091-6844E, February 1993.

7. Standard Performance Evaluation Corporation, Results Summaries,
SPEC Newsletter, Volume 5, Issue 4, December 1993.
8. E. Delano, W. Walker, J. Yetter, and M. Forsyth, "A High-Speed
Superscalar PA-RISC Processor," COMPCON Spring '92 Digest of
Technical Papers, February 1992.
9. R.C, Brockmann, W.S. Jaffe, and W.R. Bryg, Flexible N-Way
Memory Interleaving, U.S. Patent Application, February 1991.
10. K. Chan, et al, "Multiprocessor Features of the HP Corporate
Business Servers," COMPCON Spring '93 Digest of Technical
Papers, February 1993.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3. POSIX 1003.1 and SVID2 interface specifications.

UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
X/Open countries. a trademark of X/Open Company Limited in the UK and other countries.

30 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

PA-RISC Symmetric Multiprocessing
in Midrange Servers
By making a series of simplifying assumptions and concentrating on basic
functionality, the performance advantages of PA-RISC symmetric multi
processing using the HP PA 7100 processor chip were made available to
the midrange HP 9000 and HP 3000 multiuser system customers.

by Kirk M. Bresniker

The HP 9000 G-, H-, and I-class and HP 3000 Series 98x
servers were first introduced in the last quarter of 1990.
Over the lifetime of these systems almost continual ad
vances in performance were offered through increases in
cache sizes and processor speed. However, because of de
sign constraints present in these low-cost systems, the limits
of uniprocessor performance were being reached.

At the same time, the HP PA 7100 processor chip was being
developed. Its more advanced pipeline and superscalar fea
tures promised higher uniprocessor performance. Advances
in process technology and physical design also promised
higher processor frequencies.

Part of the definition of the PA 7100 is a functional block
that allows two PA 7100 processors to share a memory and
I/O infrastructure originally designed for a single processor.
This functional block provides all the necessary circuitry for
coherent processor communication. No other system hard
ware resources are necessary. This feature of the PA 7100
processor made it technically feasible to create a very low-
cost two-way symmetric multiprocessing processor board
for the HP 9000 and HP 3000 midrange servers. However,
significant design trade-offs had to be made to create a
product in the time frame necessary.

This article describes the design of this new processor
board, which is used in the HP 9000 Models G70, H70, and
170 servers. The HP 3000 Series 987/200 business computer
is based on the same processor board.

Design Goals
The design goal of the system was to provide the advantages
of symmetric multiprocessing in the midrange servers both
to new customers in the form of a fully integrated server and
to existing customers in the form of a processor board up
grade. The only constraint was that existing memory, I/O
cards, and sheet metal had to be used. Everything else was
open to possible change. However, a strong restoring force
was provided by the need to minimize time to market and
the very real staffing constraints. There simply weren't time
or resources to enable us to provide all the features associ
ated with symmetric multiprocessing. The decision was
made to make the performance advantages of symmetric
multiprocessing the primary design goal for the midrange
servers.

Development History
The I-class server was chosen as the initial development
platform for the PA 7100 processor. An I-class processor
board was developed that accepts a PA 7100 module consist
ing of the processor package and high-speed static RAMs. In
addition, an extender board was developed that allows two
PA 7100 modules to be connected to the I-class processor
board. This four-board assembly, which was the first proto
type of the eventual design, booted and was fully functional
within five months of the initial PA 7100 uniprocessor
turn-on. This short time period allowed all the basic operat
ing system changes and performance measurements to be
made at the same time as the uniprocessor work was being
done, by the same design team, with only a small incremental
effort.

At this point, the efforts of the design team were centered
on introducing the PA 7100 uniprocessor servers. However,
since the initial performance measurements of the symmetric
multiprocessing prototype were so encouraging, the team
continued to refine and develop the initial prototype into a
manufacturable product.

The first decision of the design team was to implement the
design using IM-byte instruction and data caches, a fourfold
increase over the initial PA 7100 designs. This decision was
driven by the initial performance measurements made on
prototypes, which showed that the larger caches optimized
the utilization of the shared processor memory bus. The
same measurements also showed that the most desirable
performance levels would require the design to match the
previous processor frequency of 96 MHz. This would be the
first of the large-cache, high-speed designs for the PA 7100
processor, and would therefore carry considerable design
risk.

The next decision was to implement the design not with
modules, but as a single board. This was done to lower the
cost and technology risk of the design. The shared proces
sor memory bus would be twice as long as in previous de
signs, but it would not have to bear the additional signal
integrity burden of two module connector loads. This was
the first of the simplifying assumptions, but it led to several
key others.

June 1994 Hewlett-Packard Journal 31
© Copr. 1949-1998 Hewlett-Packard Co.

System Airf low
System Airf low

Baff le Air f low

Baff le Air f low

Baff le Air f low

A great deal of the complexity in symmetric multiprocessing
systems arises not just from the problems of maintaining the
processors during normal operation, but from handling spe
cial operating conditions like failures or booting. Since in this
case both processors are always installed, one processor is
designated as the "monarch" and is allocated special respon
sibilities. The second processor is designated as the "serf,"
and is not allocated any special responsibilities. This obvi
ates the need for a complex method of determining which
processor should maintain control during exceptional circum
stances. Also, since both processors are on the same board
and cannot be replaced independently, it was decided that if
one processor should fail, the other would not continue to
operate. This removes an entire class of complex interac
tions that would have had to be discovered, handled, and
tested, considerably shortening the firmware development
life cycle.

One negative implication of the single-board solution was that
one processor was in the direct airflow path of the other (see
Fig. 1). This meant that a new solution for cooling had to be
devised, but in such a way that the upgrade to the new design
would not impact the existing sheet metal. A passive solu
tion to diverting the airflow using air baffles did not prove to
be effective enough, so the mechanical design team devised
an active solution. A forced-air baffle was devised that is
essentially a box occupying the airflow volume next to the
processor board. It has three openings centered above the
processors and the worst-case cache components. The box
is pressurized by a miniature fan. This causes air to impinge
directly on the critical components without disturbing the
airflow to the rest of the processor board. Since the primary
airflow is now normal to the processor board, a new heat
sink consisting of a grid of pins was devised to allow the
impinging air to cool the processors most efficiently.

One drawback of this active airflow solution is that it relies
so heavily on the miniature fan to maintain the processor
temperature in a safe range. Of all component classes used
in these systems, fans have some of the higher failure rates.
Since so much of the air volume next to the processor board
is committed to the forced-air baffle, failure of the forced-air
baffle fan can cause permanent damage to the processors if

Fig. 1. On the left is the unmodi
fied airflow pattern showing the
second processor in the thermal
shadow of the first. On the right
is the revised airflow pattern
showing the impingement cooling
provided by the baffle fan.

not detected in time. In fact, the overheating of the proces
sors was measured to be so rapid in the event of the baffle
fan failure that the existing overtemperature protection could
not be activated quickly enough. For this reason, the fan is
continuously monitored. If the fan stops spinning or rotates
slower than a preset limit, the system power supplies are
shut down immediately. In addition to providing maximum
protection to the processors, this solution also removes the
need to burden the software and firmware development
with status checking routines.

All of these decisions were made in the background, while
the uniprocessor design was being readied for release. In
fact, some of the impetus for making the simplifications was
the lack of time. However, it was clear that the desire for the
system was strong enough for the team to continue. Within
one week of the release of the final revision of the unipro
cessor system, the initial revision of the multiprocessor pro
cessor board was also released. This functional prototype
proved to be extremely stable, with no hardware failures
reported during the design phase.

Verification
It was at this point that the electrical verification of the
design began, and with it the challenging phase of the proj
ect as well. The design risks of the large, high-speed caches
imagined early on turned out to be all too real. The most
problematic aspect of the cache design is that the read ac
cess budget for the cache access is one and one half clock
cycles (15.6 ns, assuming 96-MHz operation). During that
time, the address must be driven to the SRAMs, the SRAMs
must access the data, and the data must be driven back to
the processor. Current SRAM technology consumes almost
60% of the read budget in internal access time. This budget
needs to be maintained over all possible operating condi
tions, and a single fault can cause either a reload (in the
case of instructions) or a system panic and shutdown (in the
case of data). The unique problem with this design was that
caches this large had never before been run with the PA
7100 processor.

The test methodology used was to run tests tailored to stress
the caches while varying the system voltage, temperature,

32 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

4 Slots
8 Slots
12 Slots

Fig. 2. Block diagram of the HP 9000 Model 170 computer system.

and frequency. Although functional testing at normal condi
tions had yielded no failures, the initial cache design quickly
succumbed to the pressures of this type of electrical verifica
tion. Analysis of the failures indicated that the read budget
was being violated at the combined extremes of low voltage,
high temperature, and high frequency. The IM-byte SRAMs
had higher capacitive loads and were physically larger than
t h e i r t h e c o u n t e r p a r t s . T h i s g r e a t l y i n c r e a s e d t h e
address drive time. The team did not have recourse to faster
high-density SRAMs from any vendor, and caches built out
of faster lower-density SRAMs would not have provided the
symmetrical multiprocessing performance we desired.

What followed was an exhaustive analysis by all three con
tributors to the design: the PA 7100 design team, the board
design team, and the SRAM vendor design teams. Each team
worked at pulling fractions of nanoseconds out of the read
access. The board design team experimented with termina
tion designs and new layouts to improve address drive time.
The PA 7100 team pushed their chip faster to increase the
read time budget. They also identified which critical signals
had to be faster than all the rest and simulated the board
team's changes. The SRAM vendor design teams pushed
their processes to achieve faster components. All three
teams pushed their designs to the limits, and it took con
tributions from all three teams to succeed. In the end, it
took over six months of constant design refinement and
testing to achieve the final result, a design that meets the
team's initial electrical verification requirements. This turned
out to be the only significant electrical design problem that
the processor board team had to solve.

While the board design team worked out the electrical
design issues, a separate team was formed to verify the
multiprocessing functionality of the PA 7100 processor. This
formal verification was the last step in the development
cycle for the systems.

System Overview
A block diagram of the Model 170 system appears in Fig. 2.
Both PA 7100 CPUs are configured with 1M bytes of instruc
tion cache and 1M bytes of data cache. The processors run
at a speed of 96 MHz. The shared processor memory bus is

operated at a fixed ratio of 3:2 with respect to the proces
sors, or 64 MHz. and connects the processors to the single
memory and I/O controller. The memory and I/O controller
interfaces to a maximum of 768M bytes of error corrected
memory. The I/O adapter connects a demultiplexed version
of the shared processor memory bus to a four-slot (Model
G70). eight-slot (Model H70), or twelve-slot (Model 170)
HP-PB (Hewlett-Packard Precision Bus) I/O bus.

In addition to the processor board, the base system consists
of the HP-PB backplane, a memory extender, a fan baffle,
and a multifunction I/O card.

System Specifications
The following specifications are for the 12-slot Model 170
server.

Processors

Cache

Processor Clock
System Clock
Maximum Memory
I/O Bus
Maximum Integrated Storage
Maximum External Storage
Maximum LANs
Maximum Users

2 PA 7100 superscalar pro
cessors with integrated
floating-point unit
IM-byte instruction cache
per processor. IM-byte data
cache per processor
96MHz
64MHz
768M bytes
1 12-slot HP-PB
6G bytes
228G bytes
7
3500

Summary
The success of bringing PA-RISC symmetric multiprocessing
to the HP 9000 and HP 3000 midrange servers was the result
of implementing simplified symmetric multiprocessing func
tionality. The PA 7100 team integrated all the functionality for
two-way symmetric multiprocessing into their design. The
system design team followed their lead by creating a system
around the two processors that includes only the core hard
ware and firmware functionality absolutely necessary for
operation.

Acknowledgments
The author wishes to acknowledge the members of the hard
ware and firmware development team under Trish Brown and
Ria Lobato: Jim Socha, Janey McGuire, Cindy Vreeland, and
Robert Dobbs. Special thanks go to Lin Nease, who imple
mented the original firmware and operating system changes.
The operating system work was done by Anastasia Alexander
and Steve Schaniel. Also, thanks go to Jeff Yetter's PA 7100
team, especially Greg Averill, implementor of the processor
memory bus sharing functionality, and Tom Asprey, Bill
Weiner, and Tony Lelm for their help in the electrical verifi
cation of the cache design. Also instrumental in the verifica
tion of the cache design were Bill Hudson and the engineers
of the Motorola fast SRAM group. The success of the multi
processor functional verification is the result of the efforts
of the multiprocessor verification team of Akshya Prakash.
The excellent work of both the electrical and multiprocessor
verification teams was evidenced when the Model H70 was
chosen as the minicomputer product of the year in the 1993
VAR Business reader survey. When asked to explain the
nomination, one reader quipped, "It doesn't crash."

June 1994 Hewlett-Packard Journal 33
© Copr. 1949-1998 Hewlett-Packard Co.

SoftBench Message Connector:
Customizing Software Development
Tool Interactions
Software developers using the SoftBench Framework can customize their
tool interaction environments to meet their individual needs, in seconds,
by pointing and clicking. Tool interaction branching and chaining are
supported. No user training is required.

by Joseph J. Courant

SoftBench Message Connector is the user tool interaction
facility of the SoftBench Framework, HP's open integration
software framework. Message Connector allows users to
connect any tool that supports SoftBench Framework mes
saging to any other tools that support SoftBench Framework
messaging without having to understand the underlying mes
saging scheme. Users of the framework can easily customize
their tool interaction environments to meet their individual
needs, in literally seconds, by simply pointing and clicking.

People familiar with the term SoftBench may know it under
one or both of its two identities. The term SoftBench usually
refers to a software construction toolset.1 The term Soft-
Bench Framework refers to an open integration software
framework often used to develop custom environments.2
People familiar with SoftBench the toolset should know that
underlying the toolset is the SoftBench Framework.

Message Connector can be used to establish connections
between any SoftBench tools without understanding the
underlying framework. The editor can be connected to the
builder which can be connected to the mail facility and the
debugger, and so on. Message Connector does not care what
tools will be connected, as long as those tools have a Soft-
Bench Framework message interface. The message inter
face is added by using the SoftBench Encapsulate^3 which
allows users to attach messages to the functions of most
tools. Message Connector uses the message interface
directly and without modification. To date, over seventy
known software tools from a wide variety of companies
have a SoftBench message interface. It is also estimated that
a much larger number of unknown tools have a SoftBench
message interface. Users of the SoftBench Framework can
now treat tools as components of a personal work environ
ment that is tailored specifically by them and only takes
minutes to construct.

Tools as Components
What does it mean to treat tools as components? To treat a
tool as a component means that the tool provides some
functionality that is part of a larger task. It is unproductive
to force tool users to interact with several individual tools to
accomplish a single task, but no tool vendor is able to pre
dict all of the possible ways in which a tool's functionality

will be used. Using Message Connector, several tools can
be connected together such that they interact with each
other automatically. This automatic interaction allows the
user to focus on the task at hand, not on the tools used to
accomplish the task.

A simple but powerful example is detecting spelling errors
in a document, text file, mail, or any other text created by a
user. The task is to create text free of spelling errors. The
tools involved are a text editor and a spell checker. In tradi
tional tool use, the editor is used to create the text and then
the spell checker is used to check the text. In simple notes
or files the text is often not checked for errors because it
requires interacting with another tool, which for simple text
is not worth the effort. When treating tools as components
the user simply edits and saves text and the spell checker
checks the text automatically, only making its presence
known when errors exist. Note that in traditional tool use
there is one task but two required tool interactions. In the
component use model, there is one task and one required
tool interaction (see Fig. 1).

Using Message Connector, a user can establish that when
the editor saves a file, the spell checker will then check that
specific file. This is accomplished as follows:
1. Request that Message Connector create a new routine
(routine is the name given to any WHEN/THEN tool interaction).
2. Select the WHEN: tool to trigger an action (editor).
3. Select the specific function of the WHEN: tool that will
trigger the action (file saved).
4. Select the THEN: tool to respond to the action (spell
checker).
5. Select the specific function that will respond (check file).
6. Change the WHEN: and THEN: file fields to specify that the
file saved will be the file checked.
7. Save the routine (routines are persistent files allowing
tool interactions to be retained and turned on and off as
desired).
8. Enable the routine.

Now any time the editor saves a file, that file will automati
cally be spell checked. The focus of creating text free of
spelling errors is now the editor alone. The spell checking is
driven by editor events, not by the user.

34 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

* Required User Interaction

â€” >â€¢ Automatic Tool Interaction Using Message Connector

Fig. com Traditional tool use (left) compared with tools as task com
ponents (right). Using the SoftBench Message Connector, the user
can set up a routine so that whenever a file is saved by the editor it
is automatically spell checked. The spell checker does not have to be
explicitly invoked by the user.

Tool Interaction Branching
While the above example is very simple, it applies equally
well to any number of tool interactions. It is also possible to
create branching of interaction based upon the success or
failure of a specific tool to perform a specific function (see
Fig. 2). For example, when the build tool creates a new exe
cutable program then display, load, and execute the new
program within the debugger; when the build tool fails to
create a new executable then go to the line in the editor
where the failure occurred.

Interaction Chaining
It is file to define interactions based upon a specific file
type, and it is also possible to chain the interactions (see
Fig. 3). As an example, when the editor saves a text file then
spell check that file; when the editor saves a source code
file then perform a complexity analysis upon that file; when
a complexity analysis is performed on a file and there are no
functions that exceed a given complexity threshold then
build the file; when the complexity is too high, go to the
function in the editor that exceeds the given complexity
threshold; when the build tool creates a new executable

Build
Succeeded

Build
Failed

â€” >â€¢ Automatic Tool Interaction Using Message Connector

Fig. A Message Connector supports tool interaction branching. A
different tool is invoked automatically depending on the result of a
previous operation.

â€” ^ Automatic Tool Interaction Using Message Connector

F i g . 3 . T o o l i n t e r a c t i o n c h a i n i n g .

program then display, load, and execute the new program
within the debugger, reload the new executable into the static
analysis tool, and save a version of the source file; when the
build tool fails to create a new executable, then go to the
line in the editor where the failure occurred. This example
of interaction chaining allows the user to focus on the task
of creating defect-free text and source files. The user's focus
is on the editor and all other tools required to verify error-
free files are driven automatically by editor events, not by
the user. The tools have become components of a user task.

Message Connector Architecture
The architecture of Message Connector follows the compo
nent model of use encouraged by Message Connector. As
shown in Fig. 4, Message Connector is a set of three sepa
rate components. Each component is responsible for a sepa
rate function and works with the other components through
the SoftBench Framework messaging system. The routine
manager provides the ability to enable, disable, organize,
and generally manage the routines. The routine editor's
function is routine creation and editing. The routine engine's
function is to activate and execute routines.

The importance of this architecture is that it allows Message
Connector, the tool that allows other tools to be treated as
components, to be treated as a set of components. This al
lows the user, for example, to request that the routine engine
enable or disable another routine within a routine. It allows
the user to run a set of routines using the routine engine
without a user interface. It allows the user to request that
the routine engine automatically enable any routine saved
by the routine editor. Many other examples of the advantages
of the architecture can be given.

The routine manager simply gives the user a graphical
method of managing routines. When analyzing the tasks a

June 1994 Hewlett-Packard Journal 35
© Copr. 1949-1998 Hewlett-Packard Co.

Message
Connector

Routine
M a n a g e r

ASCI I Message
Connector Tool

Catalog Files

Message
Connector

Routine
Editor

Message
Connector

Routine
Engine

Message Connector user would perform, it was concluded
that the routine manager would be in the user's environment
most of the time. It was also concluded that the routine
manager would be an icon most of the time. As a result, the
design goal for the routine manager was to occupy as little
screen space, memory, and process space as possible. As
designed and implemented, a large portion of the routine
manager's user interface simply sends a message to the Soft-
Bench Framework requesting that a service be performed.
As an example, the Enable and Disable command buttons simply
send a message requesting that the routine engine enable or
disable the selected routine. The routine manager was de
signed, implemented, and tested before the implementation
of the routine editor and the routine engine.

The routine editor proved to be very challenging. The Mes
sage Connector project goal stated that, "Message Connector
will provide SoftBench Framework value to all levels of end
users in minutes." While a simple statement, the implica
tions were very powerful. "All levels of end users" implied
that whatever the editor did, displaying the underlying raw
framework would never meet the goal. All information
would have to be highly abstracted, and yet raw information
must be generated and could not be lost. "All levels of end
users" also implied that any user could add messaging tools
to the control of Message Connector, so Message Connector
could not have a static view of the framework and its cur
rent tools. "In minutes" implied that there would be no need
to read a manual on a specific tool's message interface and
format to access the tool's functionality. It also implied that
the routine editor, tool list, and tool function lists must be
localizable by the user without disturbing the required raw
framework information. "In minutes" also implied that there
would be no writing of code to connect tools.

The routine editor underwent sixty paper prototype revisions,
eighteen code revisions, and countless formal and informal
cognitive tests with users ranging from administrative assis
tants to tenured code development engineers. It is ironic
that one result of focusing a major portion of the project
team's effort on the routine editor has been that various
people involved with promoting the product have complained
that it is too easy to use. Apparently people expect integra
tion to be difficult, and without a demonstration, potential
customers question the integrity of the person describing
Message Connector. When someone is told that there is a
tool that can connect other disparate tools that have no

Fig. 4. SoftBench Message
Connector architecture. The
three major Message Connector
modules â€” the routine manager,
the routine editor, and the rou
tine engine â€” are treated as
components like the tools.

knowledge of each other, in millions of possible ways, in
seconds, without writing code, it is rather hard to believe.

The routine engine turned out to be an object-oriented won
der. The routine engine must be very fast. It stores, deciphers,
matches, and substitutes portions of framework messages, it
receives and responds to a rapid succession of a large num
ber of trigger messages, and it accommodates future en
hancements. The routine engine is the brain, heart, and soul
of Message Connector and is completely invisible.

Example Revisited
Walking through the eight steps in the simple editor/spell
checker example above will show the interaction within and
between each of the Message Connector components.

1. Request that Message Connector create a new routine.

This step is accomplished using the routine manager (see
Fig. 5). The routine manager's task is to prompt the user for
a routine name, ensure that the name has the proper file
extension (.mcr), and then simply send a request to the mes
sage server to edit the named routine. The routine manager's
role of largely coordination. It has no intimate knowledge of
the routine editor. After sending the request to the message
server to edit the named routine, the routine manager will
await a notification from the message server of whether the
edit was a success or a failure. The routine manager then
posts the status of the request.

A separate routine editor is started for each routine edit
request received by the message server. When the routine
manager sends a request to the message server to edit a
routine, the message server starts a routine editor and the
routine editor initializes itself and sends a notification of
success or failure back to the message server. Fig. 6 shows a
typical routine editor screen.

2. Select the WHEN: tool to trigger an action.

In the case of creating a new routine, there is no routine to
load into the editor and therefore the WHEN: and THEN: fields
are displayed empty. The routine editor searches for and
displays all possible tools available for Message Connector
to manipulate. It is important that Message Connector is
actually searching for Message Connector tool catalog files,
not the tools themselves. For each file found, the file name
is displayed as a tool in the routine editor.

36 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

R Ã e R o u t i n e s L o g g i n g

P r o j e c t : h p f c e a c : / u s e r s / c o u r a n t

R O U T I N E M A N A G E R

N e w . . . D e l e t e . . . H i d e R o u t i n e

E d i t . . . \ D u p l i c a t e .

R o u t i n e L i s t

i Unh ide Rout ine .

S t a t u s

LOCATION: HOME

MC_Demo.mcr

build-debug, me r

editâ€” build, me r

ledit-spe 1 1 . me r -EDITINC
LOCATION: SYSTEM

E n a b l e R o u t i n e D i s a b l e R o u t i n e

Fig. 5. Typical routine manager screen.

The Message Connector tool catalog files contain three im
portant pieces of information. The catalog files are ASCII
files that contain the raw messages required to access the
functions of the tool being cataloged. The catalog files also
contain the abstractions of the raw messages (these are dis
played to the user, not the raw messages) and any message
help that may be required by a user. For most tools, the cata
log file is provided for the user by the person who added the
message interface. If the catalog file does not exist for a
particular tool, it can be created using that tool's message
interface documentation. The catalog does not have to be
created by the tool provider. The catalog files can also be
edited by the user to change the abstraction displayed or to
hide some of the seldom used functions.

When the user selects a tool from the Message Connector
routine editor tool list, the routine editor goes out and parses
the tool's catalog file for all applicable message abstractions
and displays those abstractions.

3. Select the specif ic function of the WHEN: tool that will

trigger the action.

When a user selects a WHEN: function and copies that function
to the WHEN: statement, the routine editor reads the func
tion's raw message and the abstraction of the raw message.
Only the abstraction is displayed to the user, but both the
raw message and the abstraction are temporarily preserved
until the user saves the routine.

Routine: /us e r s/c our ant/. MC/Routines/editâ€” spell .me r

S e l e c t t h e t o o l a n d t h e n a n a c t i o n f r o m t h e l i s t s b e l o w a n d p r e s s t h e d e s i r e d c o p y b u t t o n .

O A l l P r o j e c t s

W H E N : E d i t

I HOME -RE QUIRED

w i t h d a t a o p t i o n s

O I g n o r e F a i l u r e s

T H E N : R e q u e s t

HONE-REQUIRED

w i t h d a t a o p t i o n s

M U L T I P L E T H E N : R e q u e s t L i s t [Ã ¯ Ã n s e r t l i A p p e n d n D e l e t e] I C l e a r | S e l e c t e x e c u t i o n t y p e : E S e r i a l O P a r a l l e l

T o o l ' s A c t i o n L i s t Â ¡ S h o w S u c c e e d e d / F a i l e d I S h o w R e q u e s t s

l lRequest Spell Check Fils
Request Spell Set_Dictionary # Home_dictionary_n

Request Spell No_Dictionary

Request Spell Use_British_Spelling

Request Spell Use_English_Spelling

Request Spell Display

Help on Se lec ted Act ion . . C o p y t o " W H E N : C o p y t o T H E N :

S a v e R o u t i n e
Fig. 6. Typical routine editor
screen.

June 1994 Hewlett-Packard Journal 37
© Copr. 1949-1998 Hewlett-Packard Co.

4. Select the THEN: tool to respond to the action,

5. Select the specific function that will respond.

These steps are similar to the WHEN: steps.

6. Change the WHEN: and THEN: f He fields.

This simply allows the user to change the values displayed
on the screen. For these values, what is seen on the screen
is what will be used when the user selects Save Routine.

7. Save the routine.

This step takes all of the raw messages, the message ab
stractions, and the screen values and assembles them into
an internal routine file format which both the routine editor
and the routine engine are able to read. The routine editor
then writes out a binary data file into the routine file being
edited and then quits.

8. Enable the routine.

This step is driven by the routine manager, but is performed
by the routine engine. The user selects the routine of interest,
then selects the Enable Routine button on the routine manager.
Again, the routine manager's primary role is coordination.
When the user selects the Enable Routine button, the routine
manager simply finds the routine selected and sends a re
quest to the message server to enable the named routine.
The routine engine receives the enable request from the
message server and reads the named routine. After reading
the routine, the routine engine establishes the WHEN: mes
sage connection to the message server. This WHEN: connec
tion is as general as required. If the user uses any wildcards
in the WHEN: statement, the routine engine will establish a
general WHEN: message connection and then wait until the
message server forwards a message that matches the routine
engine's message connection. If the message server forwards
a matching message, the routine engine sends a request for
each of the THEN: statements to the message server.

Development Process
Message Connector's transformation from a concept to a
product was a wonderful challenge. The two most important
elements of this transformation were a cross-functional
team and complete project traceability. A decision was
made before the first project meeting to assemble a cross-
functional team immediately. To make the team effective, all
members were considered equal in all team activity. It was
made clear that the success or failure of the project was the
success or failure of the entire team. This turned out to be
the most important decision of the Message Connector proj
ect. The team consisted of people from human factors,
learning products, product marketing, research and develop
ment, promotional marketing, and technical customer sup
port. Most of the team members only spent a portion of their
time on the Message Connector project. However, a smaller
group of full-time people could never have substituted for
Message Connector's cross-functional team. The collective
knowledge of the team covered every aspect of product re
quirements, design, development, delivery, training, and
promotion. During the entire life of the project nothing was
forgotten and there were no surprises, with the exception of
a standing ovation following a demonstration at sales train
ing. The team worked so well that it guided and corrected
itself at every juncture of the project.

One critical reason the team worked so well was the second
most important element of the project â€” complete project
traceability. There was not a single element of the project
that could not be directly traced back to the project goal.
This traceability provided excellent communication and
direction for each team member. In the first two intense
weeks of the project, the team met twice per day, one hour
per meeting. These meetings derived the project goal, objec
tives (subgoals by team definition), and requirements. The
rule of these meetings was simple: while in this portion of
the project no new level of detail was attempted until the
current level was fully defined, understood, and challenged
by all members. As each new level of detail was defined, one
criterion was that it must be directly derived from the level
above â€” again, complete project traceability. The project
goal was then posted in every team member's office to pro
vide a constant reminder to make the correct trade-offs
when working on Message Connector. This amount of time
and traceability seemed excessive to some people outside of
the team, but it proved to be extremely productive. All of the
team members knew exactly what they were doing, what
others were doing, and why they were doing it throughout
the life of the project.

The project goal was made easy to remember, but was ex
tremely challenging: "Message Connector will provide Soft-
Bench Framework value to all levels of end users in minutes."
At first glance, this seems very simple. Breaking the goal
apart, there are three separate, very challenging pieces to
the goal: "SoftBench Framework value," "all levels of end
users," and "in minutes." As an example of the challenge, let's
look more closely at the "in minutes" portion of the project
goal. "In minutes" means that there is a requirement that the
user find value in literally minutes using a new product that
uses a rather complex framework and a large number of
unknown tools that perform an unknown set of functionality.
How would Message Connector provide all of this informa
tion without requiring the user to refer to any documenta
tion? "In minutes" made a very dramatic impact on the user
interface, user documentation, and user training (no training
is required). These three pieces of the goal also provided the
grounds for the project objectives. The project objectives
then provided the basis for the project and product require
ments. At each new level of detail it was reassuring to the
team that there was no effort expended that did not directly
trace back to the project goal. The team ownership, motiva
tion, high. and productivity proved to be extremely high.

Conclusion
Using Message Connector, users of the SoftBench Frame
work can easily customize their tool interaction environ
ment to treat their tools as components of a task, in literally
seconds, by simply pointing and clicking. This was all made
possible by immediately establishing a cross-functional team
to own the project and requiring complete project trace-
ability. An interesting fact is that early users of Message Con
nector developed two new components that are separate
from the Message Connector product but are now shipped
with it. One component (named Softshell) executes any spe
cified UNIX command using messaging and can return the
output of the command in a message. This allows a Message
Connector user to execute UNIX commands directly as a
result of an event of any tool. For example, when the user
requests the editor to edit a file, if the file is read-only then

38 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

execute the UNIX command to give the user write access.
The second component (named XtoBMS) converts X Win
dows events into messages that Message Connector can use
to request functionality from any component automatically.
This means that when any tool maps a window to the
screen, the user environment can respond with any action
the user defines. This has been used extensively in process
management tools so that the appearance of a tool on the
screen causes the process tool to change the task a user is
currently performing.

Acknowledgments
The transformation of Message Connector from concept to
product was the result of a very strong team effort. While
there were many people involved with the project at various
points, the core Message Connector team consisted of Alan
Klein representing learning products, Jan Ryles representing
human factors, Byron Jenings representing research and

development, Gary Thalman representing product market
ing. Carol Gessner and Wayne Cook representing technical
customer support. Dave Willis and Tim Tillson representing
project management, and the author representing research
and development. The cross-functional team approach
caused roles and responsibilities to become pleasantly
blurred. The entire team is the parent of Message Connector.

References
1. C. Gerety, "A N'ew Generation of Software Development Tools,"
Heii-lett-Packai-ci Journal. Vol. 41, no. 3, June 1990, pp. 48-58.
2. M.R. Cagan. "The HP SoftBench Environment: An Architecture for
a New Generation of Software Tools," ibid. pp. 36-47.
3. B.D. Fromme, "HP Encapsulator Bridging the Generation Gap,"
ibid. pp. 59-68.

UNIX in other registered trademark of UNIX System Laboratories Inc. in the U S.A. and other
countries.

June 1994 Hewlett-Packard Journal 39

© Copr. 1949-1998 Hewlett-Packard Co.

Six-Sigma Software Using Cleanroom
Software Engineering Techniques
Virtually defect-free software can be generated at high productivity levels
by applying to software development the same process discipline used in
integrated circuit manufacturing.

by Grant E. Head

In the late 1980s, Motorola Inc. instituted its well-known six-
sigma program. 1 This program replaced the "Zero Defects"
slogan of the early '80s and allowed Motorola to win the first
Malcolm Baldridge award for quality in 1988. Since then,
many other companies have initiated six-sigma programs.2

The six-sigma program is based on the principle that long-
term reliability requires a greater design margin (a more
robust design) so that the product can endure the stress of
use without failing. The measure for determining the robust
ness of a design is based on the standard deviation, or sigma,
found in a standard normal distribution. This measure is
called a capability index (Cp), which is defined as the ratio
of the maximum allowable design tolerance limits to the
traditional Â±3-sigma tolerance limits. Thus, for a six-sigma
design limit Cp = 2.

To illustrate six-sigma capability, consider a manufacturing
process in which a thin film of gold must be vapor-deposited
on a silicon substrate. Suppose that the target thickness of
this film is 250 angstroms and that as little as 220 angstroms
or as much as 280 angstroms is satisfactory. If as shown in
Fig. 1 the +30-angstrom design limits correspond to the six-
sigma points of the normal distribution, only one chip in a

2 2 0 Ã
I â€”

235Ã€ 250Ã€

billion will be produced with a film that is either too thin or
too thick.

In any practical process, the position of the mean will vary.
It is generally assumed that this variation is about Â±1.5 sigma.
With this shift in the mean a six-sigma design would produce
3.4 parts per million defective. This is considered to be satis
factory and is becoming accepted as a quality standard.
Table I lists the defective parts per million (ppm) possible
for different sigma values.

At first the six-sigma measure was applied only to hardware
reliability and manufacturing processes. It was subsequently
recognized that it could also be applied to software quality.
A number of software development methodologies have
been shown to produce six-sigma quality software. Possibly
the methodology that is the easiest to implement and is the
most repeatable is a technique called cleanroom software
engineering, which was developed at IBM Corporation's
Federal Systems Division during the early 1980s.3 We ap
plied this methodology in a limited way in a typical HP
environment and achieved remarkable results.

265Ã€

M e a n

Numerous Defects
(6210 Defective ppm)

Numerous Defects
(6210 Defective ppm)

Virtually No
Defects

(3.4 ppm)

- 6 0

ppm = Parts Per Mil l ion

Fig. 1. An illustration of a six-
sigma design specification. A
design specification of Â±30 ang
stroms corresponds to a Â±6-sigma
design. Also shown is the Â±1.5a
variation from the mean as a
result of variations in the process.

40 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

T a b l e I
D e f e c t i v e p p m f o r D i f f e r e n t S i g m a V a l u e s

S i g m a p p m

1 6 9 7 , 7 0 0

2 3 0 8 , 7 3 3

3 6 6 , 8 0 3

4 6 , 2 1 0

5 2 3 3

6 3 . 4

7 0 . 0 1 9

When applied to software, the standard unit of measure is
called use, and six-sigma in this context means fewer than
3.4 failures (deviations from specifications) per million uses.
A use is generally defined to be something small such as the
single transaction of entering an order or command line.
This is admittedly a rather murky definition, but murkiness
is not considered to be significant. Six-sigma is a very strin
gent reliability standard and is difficult to measure. If it is
achieved, the user sees virtually no defects at all, and the
actual definition of a use then becomes academic.

Cleanroom software engineering has demonstrated the ability
to produce software in which the user finds no defects. We
have confirmed these results at HP. This paper reports our
results and provides a description of the cleanroom process,
especially those portions of the process that we used.

Cleanroom Software Engineering
Cleanroom software engineering ("cleanroom") is a metaphor
that comes from integrated circuit manufacturing. Large-
scale integrated circuits must be manufactured in an envi
ronment that is free from dust, flecks of skin, and amoebas,
among other things. The processes and environment are
carefully controlled and the results are constantly monitored.
When defects occur, they are considered to be defects in the
processes and not in the product. These defects are charac
terized to determine the process failure that produced them.
The processes are then corrected and rerun. The product is
regenerated. The original defective product is not fixed, but
discarded.

The cleanroom software engineering philosophy is analogous
to the integrated circuit manufacturing cleanroom process.
Processes and environments are carefully controlled and are
monitored for defects. Any defects found are considered to
be defects in one or more of the processes. For example,
defects could be in the specification process, the design
methodology, or the inspection techniques used. Defects are
not considered to be in the source file or the code module
that was generated. Each defect is characterized to determine
which process failed and how the failure can be prevented.
The failing process is corrected and rerun. The original prod
uct is discarded. This is why one of the main proponents of
cleanroom, Dr. HarÃan Mills, suggests that the most important
tool for cleanroom is the wastebasket.4

Life Cycle
The life cycle of a cleanroom project differs from the tradi
tional life cycle. The traditional 40-20-40 postinvestigation

life cycle consists of 40% design, 20% code, and 40% unit
testing. The product then goes to integration testing.

Cleanroom uses an 80-20 Ufe cycle (80% for design and 20%
for coding). The unexecuted and untested product is then
presented to integration testing and is expected to work. If it
doesn't work, the defects are examined to determine how
the process should be improved. The defective product is
then discarded and regenerated using the improved process.

No Unit Testing
Unit testing does not exist in cleanroom. Unit testing is pri
vate testing performed by the programmer with the results
remaining private to the programmer.

The lack of unit testing in cleanroom is usually met with
skepticism or with the notion that something wasn't stated
correctly or it was misunderstood. It seems inconceivable
that unit testing should not occur. However it is a reality.
Cleanroom not only claims that there is no need for unit
testing, it also states that unit testing is dangerous. Unit test
ing tends to uncover superficial defects that are easily found
during testing, and it injects "deep" defects that are difficult
to expose with any other kind of testing.

A better process is to discover all defects in a public arena
such pro in integration testing. (Preferably, the original pro
grammer should not be involved in performing the testing.)
The same rigorous, disciplined processes would then be
applied to the correction of the defects as were applied to
the original design and coding of the product.

In practice, defects are almost always encountered in integra
tion testing. That seems to surprise no one. With cleanroom,
however, these defects are usually minor and can be fixed
with nothing more than an examination of the symptoms
and a quick informal check of the code. It is very seldom
that sophisticated debuggers are required.

When to Discard the Product
When IBM was asked about the criteria for judging a module
worthy of being discarded, they stated that the basic criterion
is that if testing reveals more than five defects per thousand
lines of code, the module is discarded. This is a low defect
density by industry standards,5 particularly when it is con
sidered that the code in question has never been executed
even by an individual programmer. Our experience is that
any half-serious attempt to implement cleanroom will easily
achieve this. We achieved a defect density of one defect per
thousand lines of code the first time we did a cleanroom
project. It would appear that this "discard the offending
module" policy is primarily intended to be a strong attention
getter to achieve commitment to the process. It is seldom
necessary to invoke it.

Productivity Is Not Degraded
Productivity is high with cleanroom. A trained cleanroom
team can achieve a productivity rate approaching 800 non-
comment source statements (NCSS) per engineer month.
Industry average is 120 NCSS per engineer month. Most HP
entities quote figures higher than this, but seldom do these
quotes exceed 800 NCSS.

There is also evidence that the resulting product is signifi
cantly more concise and compact than the industry average.''

June 1994 Hewlett-Packard Journal 41

© Copr. 1949-1998 Hewlett-Packard Co.

This further enhances productivity. Not only is the product
produced at a high statement-per-month rate, but the total
number of statements is also smaller.

Needed Best Practices
Cleanroom is compatible with most industry-accepted best
practices for software generation. It is not necessary to un
learn anything. Some of these best practices are required
(such as a structured design methodology). Others such as
software reuse are optional but compatible.

As mentioned above, cleanroom requires some sort of struc
tured design methodology. It has been successfully employed
using a number of different design approaches. Most recently
however, the cleanroom originators are recommending a
form of object-oriented design.7

All cleanroom deliverables must be subject to inspections,
code walkthroughs, or some other form of rigorous peer
review. It is not critical what form is applied. What is critical
is that 100% of all deliverables be subjected to this peer-
review process and that it be done in small quantities. For
instance, it is recommended that no more than three to five
pages of a code module be inspected at a single inspection.

Required New Features
In addition to the standard software engineering practices
mentioned above, there are a number of cleanroom-specific
processes that are required or are recommended. These
practices include structured specifications, functional verifi
cation, structured data, and statistical testing. Structured
specifications are applied to the project before design begins.
This strongly affects the delivery schedule and the project
management process. Functional verification is applied dur
ing design, coding, and inspection processes. Structured
data is applied during the design process. Finally, statistical
testing is the integration testing methodology of choice.
Fig. 2 summarizes the cleanroom processes.

Structured Specifications
Structured specifications8 is a term applied to the process
used to divide a product specification into small pieces for
implementation. It is not critical exactly how this division
is accomplished as long as the results have the following
characteristics:
Each specification segment must be small enough so that it
can be fully implemented by the development team within
days or weeks rather than months or years.

â€¢ The result of implementing each segment must be a module
that can be completely executed and tested on its own. This
means that no segment can contain partially implemented
features that must be avoided during testing to prevent
program failure.

â€¢ The segments may not have mutual dependencies. For ex
ample, it is satisfactory for segment 4 to require the imple
mentation of segment 3 to execute correctly. It is assumed
that segment 3 will be implemented first and will exist to
support the testing of segment 4. However, it is not satisfac
tory for segment 3 to require segment 4 to execute properly
at the same time.

The structured specifications process is used by cleanroom
to facilitate control of the process by allowing the develop
ment team to focus on small, easily conceptualized pieces. A
secondary but very important effect is that productivity is
increased. Increased productivity is a natural effect of the
team's being focused. Each deliverable is small and the time
to produce it is psychologically short. The delivery date is
therefore always imminent and always seems to be within
reach. Morale is generally high because real progress is
visible and is achievable.

Structured specifications also offer a very definite project
management advantage. They serve to achieve the frequently
quoted maxim that when a project is 50% complete, 50% of
its features should be 100% complete instead of 100% of its
features being 50% complete. Proper management visibility
and the ability to control delivery schedules depend upon
this maxim's being true.

Structured specifications are very similar to incremental
processes described in other methodologies but often the
purposes and benefits sound quite different. For instance, in
one case the structured specifications process is called evo

lutionary delivery? The primary benefit claimed for evolu
tionary delivery is that it allows "real" customers to examine
early releases and provide feedback so that the product will
evolve into something that really satisfies customer needs.
HP supports this approach and has classes to teach the
evolutionary delivery process to software developers.

From the description just given it would appear that each
evolutionary release is placed into the hands of real custom
ers. This implies to many people that the entire release pro
cess is repeated on a frequent (monthly) basis. Since multiple
releases and the support of multiple versions are considered
headaches for product support, this scenario is frowned

Cleanroom Processes

Structured
Specif icat ions

(Divide Product
Specif icat ion
i n t o M a n a g e
able Pieces)

Structured Data
(Treat Random
Data Access)

Functional
Verif ication

(Formal Checks
for Correctness)

Statistical
Testing

(Measure
Quality in

Sigma Units)

Before Design Design

Intel lectual
Cont ro l

Legal
Primitive

Evaluation

Analyt ical
Proof

Design, Coding, and Inspection Integration Testing

Fig. 2. The processes recom
mended for software cleanroom
engineering.

42 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

upon. Cleanroom does not make it a priority to place each
stage of the product into the hands of real customers.

Looking at the definition of a real customer in the evolution
ary delivery process, you realize that a real customer could
be the engineer at the next desk, hi practice, the product
cannot be delivered to more than a handful of alpha or beta
testers until the product is released to the full market. This
type of release should not occur any more often than nor
mal. In fact, since cleanroom produces high-quality prod
ucts, the number of releases required for product repair is
significantly reduced.

Another type of structured specifications technique, which
is applied to information technology development, uses
information engineering time boxes. 10 Time boxes are used
as a means of preventing endless feature creep while ensur
ing that the product (in this case an information product)
still has flexibility and adaptability to changing business
requirements.

HP has adopted a technique called short interval schedul
ing11 as a project management approach. Short interval
scheduling breaks the entire project into 4-to-6-week chunks,
each with its own set of deliverables. Short interval schedul
ing can be applied to other projects besides those involved in
software development. This is an insight that is not obvious
in other techniques.

All of these methods are very similar to the structured speci
fications technique. As different as they sound, they all serve
to break the task into bite-sized pieces, which is the goal of
the structured specifications portion of cleanroom.

Functional Verification
Functional verification is the heart of cleanroom and is pri
marily responsible for achieving the dramatic improvement
in quality possible with cleanroom. It is based on the tenet
that, can the proper circumstances, the human intellect can
determine whether or not a piece of logic is correct, and if it
is not correct, devise a modification to fix it. Functional veri
fication has three levels: intellectual control, legal primitive
evaluation, and analytical proof.

Intellectual control requires that the progression from speci
fications to code be done in steps that are small enough and
documented well enough so that the correctness of each step

' This tenet is also the definition of intellectual control

is obvious. The working term here is "obvious." The reviewer
should be tempted to say. "Of course this refinement level
follows correctly from its predecessor! Why belabor the
point?" If the reviewer is not tempted to say this, it may be
advisable to redesign the refinement level or to document it
more completely.

Legal primitive evaluation enhances intellectual control by
providing a mathematically derived set of questions for
proving and testing the assumptions made in the design
specifications. Analytical proof12 enhances legal primitive
evaluation by answering the question sets mathematically.
Analytical proof is a very rigorous and tedious correctness
proof and is very rarely used.

We have demonstrated here at HP that intellectual control
alone is capable of producing code with significantly im
proved defect densities compared to software developed with
other the development processes. Application of the
complete cleanroom process will provide another two to
three orders of magnitude improvement in defect densities
and will produce six-sigma code.

Intellectual Control. The human intellect, fallible though it
may be, is able to assess correctness when presented with
reasonable data in a reasonable format. Testing is far infe
rior to the power of the human intellect. This is the key
point. All six-sigma software processes revolve around this
point. It is a myth that software must contain defects. This
myth is a self-fulfilling prophecy and prevents defect-free
software from being routinely presented to the marketplace.
The prevalence of the defect myth is the result of another
myth, which is that the computer is superior to the human
and that computer testing is the best way to ensure reliable
software.

We are told that the human intellect can only understand
complexities when they are linked together in close, simple
relationships. This limitation can be made to work for us. If
it is ignored, it works against us and handicaps our creative
ability. Making this limitation work for us is the basis of
functional verification.

The basis for intellectual control and functional verification
is a structured development hierarchy. Most of us are famil
iar with a representation of a hierarchy like the one modeled
in Fig. 3. This could be an illustration of how to progress
from design specifications to actual code using any one of

Specif icat ions

Fig. 3. A typical representation
of a hierarchical diagram. In itiis
case the rcprcscniniion is fora
software design.

June 1!)94 Hewlelt-Parkard .Journal 43

© Copr. 1949-1998 Hewlett-Packard Co.

the currently popular, industry-accepted best practices for
design. Each of these practices has some form of stepwise
refinement. Each breaks down the specifications into ever
greater detail. The result is a program containing a set of
commands in some programming language.

The difference between the different software design meth
ods is reflected in the interpretation of what the squares and
the connecting lines in Fig. 3 represent. If the developer is
using structured design techniques, they would mean data
and control connections, and if the developer is using object-
oriented design, they would represent objects in an object-
oriented hierarchy.

Functional verification does not care what these symbols
represent. In any of these methods, the squares 1, 2, 3, and 4
are supposed to describe fully the functionality of the speci
fications at that level. Similarly, 4.1 through 4.3 fully de
scribe the functionality of square 4, and the code of square 3
fully implements the functionality of square 3. Intellectual
control can be achieved with any of them by adhering to the
following five principles.

Principle 1. Documentation must be complete. The first key
principle is that the documentation of the refinement levels
must be complete. It must fully reflect the requirements of
the abstraction level immediately above it. For instance, it
must be possible to locate within the documentation of
squares 1 through 4 in our example every feature described
in the specifications.

If documentation is complete, intellectual control is nearly
automatic. In the case described above, the designer intu
itively works to make the documentation and the specifica
tions consistent with each other. The inspectors intuitively
study to confirm the correctness.

Note that it is not always necessary to reproduce the specifi
cations word for word. It will often be possible to simply
state, "This module fully implements the provisions of specifi
cation section 7-4b." The inspectors need only confirm that it
makes sense for section 7-4b to be treated in a single module.

Other times it may be necessary to define considerably more
than what is in the specifications. A feature that is spread
over several modules requires a specific description of
which portion is treated in each module and exactly how the
modules interact with each other. It must be possible for the
inspectors to look at all the modules as a whole and deter
mine that the feature is properly implemented in the full
module orchestration.

This principle is commonly violated. All industry-accepted
best design processes encourage full documentation, but it
is still not done because these design processes often lack
the perspective and the respect for intellectual control that
is provided by the principles of functional verification, or
they The insufficiently compelling to convey this respect. The
concept of intellectual control is often lost by many design
processes because the main emphasis is on the mechanics
of the specific methodology.

The result is that frequently the documentation for the first
level of the system specifications is nothing more than the
names of the modules (e.g., 1. Data Base Access Module,
2. In-Line Update Module, 3. Initialization Module, 4. User
Interface Module). It is left to the inspectors to guess, based

on the names, what portions of the specifications were
intended to be in which module.

Even when there is an attempt to conform fully to the meth
odology and provide full documentation, neither the designer
nor the inspectors seem to worry about the continuity that is
required by functional verification. For example, a feature
required in the design specification might show up first in
level 4.1.2 or in the code associated with level 4.1.2 without
ever having been referenced in levels 4 or 4.1. Sometimes
the chosen design methodology does not sufficiently indi
cate a this is dangerous. Once again, this is the result of a
failure to appreciate and respect the concept of intellectual
control.

If proper documentation practices are followed, the result of
each inspection is confidence that each level fully satisfies
the requirements. For example, squares 1 through 4 in Fig. 3
fully left the top-level specifications. Nothing is left
out, deferred, undefined, or added, and no requirements are
violated. Similarly, 4.1 through 4.3 fully satisfy the provisions
of 4, and 4.1.1 and 4.1.2 fully satisfy 4.1.

With these conditions met, inspections of 4. 1 through 4.3
should only require reference to the definition for square 4
to confirm that 4. 1 through 4.3 satisfy 4. If 4.2 attempts to
implement a feature of the specifications that is not explic
itly be implicitly referenced in 4, it is a defect and should be
logged as such in the inspection meeting.

Principle 2. A given definition and all of its next-level
refinements must be covered in a single inspection session.

This means that a single inspection session must cover
square 4 and all of its next-level refinements, 4.1 through 4.3.
Altogether, 4. 1 through 4.3 should not be more than about
five pages of material. More than five pages would indicate
that too much refinement was attempted at one time and
intellectual control probably cannot be maintained. The of
fending level should be redone with some of the intended
refinement deferred to a lower level.

Principle 3. The full life cycle of any data item must be totally
defined at a single refinement level and must be covered in a
single inspection.

This is the key principle that allows us to be able to inspect
2.1.1 and 2.1.2 and only be concerned about their reaction
with each other and the way they implement 2.1. There is no
need to determine, for example, if they interact correctly
with 1.1 or 4.3.

This principle is a breakthrough concept and obliterates one
of the most troublesome aspects of large-system modifica
tion. One seems never to be totally secure making a code
modification. There's always the concern that something
may be getting broken somewhere else. This fear is an intu
itive acknowledgment that intellectual control is not being
maintained.

Such "remote breaking" can only occur because of inconsis
tent data management. Even troublesome problems associ
ated with inappropriate interruptability or bogus recursion
are caused by inconsistent data management. Intellectual
control requires extreme respect for data management
visibility.

44 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

This visibility can be maintained by ensuring that each data
item is fully defined on a single abstraction level and totally
studied in a single inspection session. It should be clear

â€¢ Where and why the data item comes into existence
What each data item is initialized to and why

â€¢ How and where each data item is used and what effects
occur as a result of its use
How and where each data item is updated and to what value

Â« Where, why, and how each data item is deleted.

Note that careful adherence to this principle contributes
significantly to creating an object-oriented result even if that
is not of intent of the designer. This principle is also one of
the reasons why cleanroom lends itself so well to object-
oriented design methodologies.

Once the inspection team is fully satisfied that the data
management is consistent and correct, there is no need to
be concerned about interactions. For instance, the life cycle
for data that is global to the entire module would be fully
described and inspected when squares 1, 2, 3, and 4 were
inspected. Square 2 then totally defines its own portion of
this management and 2.1, 2.2, 2.1.1, and 2.1.2 need only be
concerned that they are properly implementing square 2's
part of this definition. Squares 1, 3, and 4 can take care of
their own portion with no worry about the effects on 2.

Adherence to principle 3 means that it is not necessary to
inspect any logic other than that which is presented in the
inspection packet. There is no intellectually uncontrolled
requirement to execute the entire program mentally to
determine whether or not it works.

Principle 4. Updates must conform to the same mechanisms.

Since even the best possible design processes are fallible, it
is likely that unanticipated requirements will later be discov
ered. Functional verification does not preclude this. For
instance, it may be discovered that it is necessary to test a
global flag in the code for 2.1.1 which in turn must be set in
the code for 4.2. This is a common occurrence and the typi
cal response is simply to create the global flag for 2. 1. 1 and
then update 4.2 to set it properly. Bug found. Bug fixed.
Everything works fine.

However, we have just destroyed the ability to make subse
quent modifications to this mechanism in an intellectually
controlled way. Future intellectual control requires that this
new interface be retrofitted into the higher abstraction
levels. The life cycle of this flag must be fully described at
the square 1 through 4 level. In that one document, the
square 2 test and the square 4 update must be described,
and then the appropriate portions of this definition must be
repeated and refined in 2.1, 2.1.1, and 4.2, and of course, all
of this should be subject to a full inspection.

Principle 5. Intellectual control must be accompanied by
bottom-up thinking.

These principles can lull people into believing that they have
intellectual control when, in fact, intellectual control is not
possible. Intellectual control is, by its nature, a top-down
process and is endangered by a pitfall that threatens all top-
down design processes: the tendency to postpone real deci
sions indefinitely. To avoid this pitfall, the designers must be
alert to potential "and-then-a-miracle-happens" situations.
Anything that looks suspiciously tricky should be prototyped

as soon as possible. All the top-down design discipline in the
world will not save a project that depends upon a feature
that is beyond the current state of the art. Such a feature
may not be recognized until very late in the development
cycle if top-down design is allowed to blind the developers
to its existence.

The Key Word Is "Obvious." It must be remembered that these
five principles are followed for the single purpose of making
it obvious to the moderately thorough observer that the
design is correct. Practicality must be sufficiently demon
strated, documentation must be sufficiently complete, the
design must be tackled in sufficiently small chunks, and data
management must be sufficiently clarified. All of these must
be so obviously sufficient that the reviewer is tempted to
say, is course! It's only obvious! Why belabor it?" If this is
not the case, a redesign is indicated.

Our experience suggests that the achievement of such a
state of obviousness is not a particularly challenging task. It
requires care, but, if these principles are well understood,
this care is almost automatic.

Legal Primitive Evaluation
Legal primitive evaluation enhances intellectual control by
providing a mathematically derived set of questions for each
legal For primitive (e.g., If-Then-Else, While-Do, etc.). For
each primitive, the designers and the reviewers ask the set
of questions that apply to that primitive and confirm that
each question can be answered affirmatively. If this is the
case, the correctness of the primitive is ensured.

A rigorous derivation of these questions can be found else
where. 13 There is insufficient space here to go through these
derivations in detail, but we can illustrate the process and
its mathematical basis by using a short, nonrigorous analysis
of one of these sets, the While-Do primitive. Questions associ
ated with the other primitives are given on page 47.

The While-Do construct is defined as follows:

S = [While A Do B

which means:

S is fully achieved by [While A Do B

The symbol S denotes the specification that the primitive is
attempting to satisfy, or the function it is attempting to per
form. The symbol A is the while test, and B is the while body.

As an example, S could be the specification: "The entry is
added to the table." The predicate represented by A would
then be an appropriate process to enable the program to
perform an iteration and to determine if the operation is
complete. B would be the processing required to accomplish
the addition to the table. We have chosen to use a While-Do
because, presumably, we think it makes sense. We may be
intending to accomplish the entry addition by scanning the
table sequentially until an appropriate insertion point is
found and then splicing the entry into the table at that point.
Whether or not this makes sense depends upon the known
characteristics of the entry and the table. It also may depend
upon of explicit (or implicit) existence of a further part of
the specification such as ". . .within 5 ms."

To investigate whether it has been coded correctly, the
following three questions are asked:

Juno 1994 Hewlett-Packard Journal 45

© Copr. 1949-1998 Hewlett-Packard Co.

1. Is loop termination guaranteed for any argument of S?
2. When A is true, does S equal B followed by S?
3. When A is false, does S equal S?

When the answer to these three questions is yes, the cor
rectness of the While-Do is guaranteed. The people asking
these questions should be the designer and the inspectors.

These questions require some explanation.

1 . Is loop termination guaranteed for any argument of S?

This means that for any data presented to the function de
fined by S, will the While-Do always terminate? For instance,
in our example, are there any possible instances of the entry
or the table for which the While-Do will go into an endless
loop because A can never acquire a value of FALSE?

This would appear to be an obvious question. So obvious,
that the reader may be tempted to ask why it is even men
tioned. However, there is a lack of respect for While-Do
termination conditions and many defects occur because of
failure to terminate for certain inputs. A proper respect for
this question will cause a programmer to take care when
using it and will significantly help to avoid nontermination
failures.

Respect for this question is justified because it is difficult to
prove While-Do termination. In fact, it can be mathematically
proven that, for the general case, it is impossible to prove
termination.14 To guarantee the correctness of a While-Do, it
is therefore necessary to design simple termination condi
tions that can be easily verified by inspection. Complicated
While-Do tests must be avoided.

2. When A is true, does S equal B followed by S?

This means that, when A is true, can S be achieved by
executing B and then presenting the results to S again? This
question is not quite so obvious.

Iterative statements are very difficult to prove. To prove the
correctness of the while statement, it is desirable to change it
to a noniterative form. We change it by invoking S recursively.
Thus, the expression:

S = [WhileADoB;]

becomes:

S = [lfAThen(B;S);J

(1)

(2)

Expression 2 is no longer an iterative construct and can be
more readily proven. Fig. 4 shows the diagrams for these
two expressions.

The equivalence of these two statements can be rigorously
demonstrated.15 A nonrigorous feeling for it can be obtained
by observing that when A is true in [While A Do B], the B ex
pression is executed once and then you start at the begin
ning by making the [While A] test again. If [While A Do B] is truly
equal to S, then one could imagine that, rather than starting
again at the beginning with the [While A] test, you simply start
at the beginning of S. That changes the While-Do to a simple
If-Then, and the predicate A is tested only once. If it is true,
you execute B one time and then execute S to finish the
processing.

The typical first reaction to this concept is that we haven't
helped at all. The S expression is still iterative and now

Whi le A Do B

K A T k n U f c S)

â € ¢ ^ f l ^ ^ â € ” â € ” > l

False

C o n t i n u e S

Fig. S). Diagrams of the primit ives While A Do B and If A Then |B; S).

we've made it recursive making it seem that we have more
to prove. The response to this complaint is that we don't
have to prove anything about S at all. The specification (the
entry is added to the table) is neither iterative nor recursive.
We have simply chosen to implement it using a While-Do con
struct. We could, presumably, have implemented it some
other way.

S is nothing more than the specification. In the general case,
it may be a completely arbitrary statement from any source.
Whether the specification is correct or not is not our respon
sibility. Our responsibility is to implement it as defined.

Question 2 can therefore be restated as follows: If A is true,
when we execute B one time and then turn the result over to
whatever we've defined S to be, does the result still achieve
S? An affirmative answer satisfies question 2.

In terms of our example, B will have examined part of the
table. It will either already have inserted the new entry into
the table or it will have decided that the portion of the table
it examined is not a candidate for inserting of the entry. The
unexamined portion of the table is now the new table upon
which the construct must execute. This new instance of the
table must be comparable to a standalone instance of the
table so that the concept of adding an entry to the table still
makes sense. If the resulting table fragment no longer looks
like any form of the table for which the specification S was
generated, question 2 may not be answerable affirmatively
and the proposed code would then be incorrect.

46 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

3. When A is false, does S equal S?

This question seems fairly obvious but it is frequently over
looked. If A is found to be false the first time the While-Do is
executed and therefore no processing of B occurs, is this
satisfactory? Does the specification S allow for nothing to
happen and therefore for no change to occur as a result of
its execution?

In our example, the test posed by this question would likely-
fail. S requires something to happen (i.e., an entry to be
added to the table). This would suggest that the While-Do may
not be the appropriate construct for this S. We may never
have noticed this fact if we hadn't been forced to examine
question 3 carefully.

Structured Data
The principle of structured data16 recognizes that undisci
plined accesses to randomly accessed arrays or accesses that
use generalized pointers cause the same kind of "reasoning
explosion" produced by the undisciplined use of GOTOs. For
instance, take the instruction:

This statement looks innocent enough. It would appear to be
appropriate in any well-structured program. Note, however,
that it involves five variables, all of which must be accounted
for in any correctness analysis. If the program in which this
statement occurs is such that this statement is executed
several times, some of these variables may be set in instruc
tions that occur later in the program. Thus, this instruction
all by itself creates a reasoning explosion.

Just as Dykstra suggested that GOTOs should not be used at
all,17 the originators of cleanroom suggest that randomly
accessed arrays and pointers should not be used. Dykstra
recommended a set of primitives to use in place of GOTOs.

In the same way, cleanroom recommends that randomly
accessed arrays be replaced with structures such as queues,
stacks, and sets. These structures are safer because their
access methods are more constrained and disciplined. Many
current object-oriented class libraries support these struc
tures directly and take much of the mystery and the complex
ity out of mentally converting from random-array thinking.

Statistical Testing
Statistical testing8 is not really required for cleanroom, but it
is highly recommended because it allows an assessment of
quality in sigma units. It does not measure quality in defects
per lines of code. Measuring quality in sigma units gives users
visibility of how often a defect is expected to be encountered.
For instance, it makes no difference if there are 100 defects
per thousand lines of code if the user never actually encoun
ters any of them. The product would be perceived as very
reliable. On the other hand, the product may have only one
defect in 100,000 lines of code, but if the user encounters
this defect every other day, the product is perceived to be
very unreliable.

Statistical testing also clearly shows when testing is complete
and when the product can safely be released. If the model is
predicting that the user will encounter a defect no more
often than once every 5000 years with an uncertainty of
Â±1000 years, it could be decided that it is safe to release the

Legal Primitive Evaluation

As described in the accompanying article, the process of doing legal primitive
evaluation involves asking a set of mathematically derived questions about the of
basic program. primitives (e.g., If-Then-Else, For-Do, etc.) used in a program.
The following is a list of the questions that must be investigated for each primitive.

In the following list S refers to the specification that must be satisfied by the
questions asked about the referenced primitive.

' S e q u e n c e S = [A ; B ;]
Does S equal A followed by B?

Â « F o r - D o S = [F o r A D o B ;]
: Does S equal first B followed by second B ... followed by last B?

â € ¢ I f - T h e n S = [I f A T h e n B
If A is true, does S = B?
If A is false, does S = S?

â € ¢ I f - T h e n - E l s e S = [l f A T h e n B E l s e C
If A is true, does S equal B?

- If A is false, does S equal C?

â € ¢ C a s e S = [C a s e P p a r t (C 1) B 1 . . . p a r t (C n) B n E l s e E
When p Â¡s C1, does S equal 81?

When p is Cn, does S equal Bn?
When p Â¡s nota member of set (C1 Cn), does S equal E?

â € ¢ W h i l e - D o S = [W h i l e A D o B
Is loop termination guaranteed for any argument of S?
When A is true, does S equal B followed by S?
When A is false, does S equal S?

D o - U n t i l S = [D o A U n t i l B
o Is loop termination guaranteed for any argument of S?

When B is false, does S equal A followed by S?
When B is true, does S equal A?

. D o - W h i l e - D o S = [D o , A W h i l e B D o 2 C ; l
Is loop termination guaranteed for any argument of S?
When B is true, does S equal A followed by C followed by S?
When B is false, does S equal A?

product. This is usually better than some industry-standard
methods (e.g., when the attrition rate from boredom among
the Lest team exceeds a certain threshold, it must be time to
release, or "When is this product supposed to be released?
May 17th. What's today's date? May 17th. Oh. Then we must
be finished testing.").

Statistical testing specifies the way test scenarios are devel
oped and executed. Testing is done using scenarios that con
form to the expected user profile. A user profile is generated
by identifying all states the system can be in (e.g., all screens
that could be displayed by the system) and, on each one,
identifying all the different actions the user could take and
the relative percentage of instances in which each would be
taken. As the scenario generator progresses through these
states, actions are selected randomly with a weighting that
corresponds to the predicted user profile.

For instance, if a given screen has a menu item that is antici
pated to be invoked 75% of the time when the user is in that
screen, the invocation of this menu item is stipulated in 75%
of the generated scenarios involving the screen. If another

June 1994 Hewlett-Packard Journal 47
© Copr. 1949-1998 Hewlett-Packard Co.

menu item will only be invoked 1% of the time, it would be
called in only 1% of the scenarios.

These scenarios are then executed and the error history is
evaluated according to a mathematical model designed to
predict how many more defects the user would encounter in
a given period of time or in a given number of uses. There
are several different models described in the literature.18

In general, statistical testing takes less time than traditional
testing. As soon as the model predicts a quality level corre
sponding to a predefined goal (e.g., six sigma) with a suffi
ciently small range of uncertainty (also predefined), the
product can be safely released. This is the case even when
100% testing coverage is not done, or when 100% of the
pathways are not executed.

Statistical testing requires that the software to which it is
applied be minimally reliable. If an attempt is made to apply
it to software that has an industry-typical defect density, any
of the and models will demonstrate instabilities and
usually blow up. When they don't blow up, their predictions
are so unfavorable that a decision is usually made to ignore
them. This is an analytical reflection of the fact that you
can't test quality into a program.

Quality Cannot Be Tested into a Product
Although it is the quality strategy chosen for many products,
it is not possible to test quality into a product. DeMarco19
has an excellent analysis that demonstrates the validity of
this premise. This analysis is based on the apparent fact that
only about half of all defects can be eliminated by testing,
but that this factor of two is swamped by the variability of
the software packages on the market. The difference in de
fect density between the best and worst products is a factor
of almost 4000. Of course, these are the extremes. The
factor difference between the 25th percentile and the 75th
percentile is about 30 according to DeMarco. No one suggests
that testing should not be done â€” it eliminates extremely
noxious defects which are easy to test for â€” but compared to
the variability of software packages, the factor of two is
almost irrelevant. What then are the factors that produce
quality software?

Capers Jones20 suggests that inspections alone can produce
a 60% elimination of defects, and when testing is added, 85%
of defects are eliminated. There is no reported study, but
the literature would suggest that inspections coupled with
functional verification would eliminate more than 90% of
defects.21 Remarkably enough, testing seems to eliminate
most (virtually all) of the remaining defects. The literature
typically reports that no further defects are found after the
original test cycle is complete and that none are found in the
field.21 This was also our experience.

There is apparently a synergism between functional verifica
tion and testing. Functional verification eliminates defects
that are difficult to detect with testing. The defects that are
left after application of inspections and functional verification
are generally those that are easy to test for. The result is that
> 99% of all defects are eliminated via the combination of

' This factor is based on a defect density of 60 defects per KNCSS for the worst products and
0.01 6 defects per KNCSS for the best products. The factor difference between these two
extremes is 60/0.016 = 3750 or -4000.

inspections, functional verification, and testing. Table II sum
marizes the percentage of defect removal with the application
of individual or combinations of different defect detection
strategies.

Table II
Defect Removal Percentages

Based on Defect Detection Strategies

D e t e c t i o n S t r a t e g y % D e f e c t R e m o v a l

T e s t i n g 5 0 %

I n s p e c t i o n s 6 0 %

Inspections + Testing

Inspections + Functional Verification

Inspections + Functional Verification > 99%
+ Testing

Our Experience
We applied cleanroom to three projects, although only one
of them actually made it to the marketplace. The project
that made it to market had cleanroom applied all the way
through its life cycle. The other projects were canceled for
nontechnical reasons, but cleanroom was applied as long as
they existed. The completed project, which consisted of a
relatively small amount of code (3.5 KNCSS), was released
as part of a large MicrosoftÂ® Windows system. The project
team for this effort consisted of five software engineers.

All the techniques described in this paper except structured
data All statistical testing were applied to the projects. All
the products were Microsoft Windows applications written
in C or C++. Structured data was not addressed because we
never came across a serious need for random arrays or
pointers. Although statistical testing was not applied, it was
our intent eventually to do so, but the total lack of defects
demotivated us from pursuing a complicated, analytical test
ing mode particularly when our testing resources were in
high demand from the organization to help other portions of
the system prepare for product release.

Design Methodology. We applied the rigorous object-oriented
methodology known as box notation.7 This is the methodol
ogy recommended by the cleanroom originators. We found it
to be satisfyingly rigorous and disciplined.

Box notation is a methodology that progresses from func
tional specification to detailed design through a series of
steps represented as boxes with varying transparency. The
first of is a black box signifying that all external aspects of
the system or module are known but none of the internal
implementation is known. This is the ultimate object. It is
defined by noting all the stimuli applied to the box by the
user and the observable responses produced by these stimuli.

Inevitably, these responses are a function not only of the
stimulus, but also of the stimulus history. For example, a
mouse click at location 100,200 on the screen will produce a
response that depends upon the behavior of the window
that currently includes the location 100,200. The window at
that location is, in turn, a function of all the previous mouse
clicks and other inputs to the system.

48 June 1994 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

The black box is then converted to a state box in which the
stimulus history producing the responses of the black box is
captured in the form of states that the box passes through.
The response produced by a given stimulus can be deter
mined not necessarily from the analysis of a potentially infi
nite stimulus history, but more simply by noting the state the
system is in and the response produced by that stimulus
within that state. States are captured as values within a set
of state data. The state box fully reveals this data. It con
tains an internal black box that takes as its input the stimu
lus and the current set of state data and produces the de
sired response and a new set of state data. The state data is
fully revealed but the internal black box still hides its own
internal processing.

The state box is then converted to a clear box in which all
processing is visible. However, this processing is repre
sented as a series of interacting black boxes in which the
interactions and the relations are clearly visible but, once
again, the black boxes hide their own internal processing.
This clear box is the final implementation of the object. In
this object, the encapsulated data and the methods to
process it are clearly visible.

Each in these internal black boxes is then treated similarly in
a stepwise refinement process that ends only when all the
internal black boxes can be expressed as single commands
of the destination language.

This process allows many of the pitfalls of object-oriented
design and programming to be avoided by carefully illumi
nating them at the proper time. For instance, the optimum
data encapsulation level is more easily determined because
the designer is forced to consider it at a level where per
spective is the clearest. Data encapsulation at too high a
level degrades modularity and defeats "object orientedness,"
but data encapsulation at too low a level produces redun
dancies and multiple copies of the same data with the asso
ciated possibility of update error and loss of integrity. These
pitfalls are more easily avoided because the designer is
forced to think about the question at exactly that point in
the design when the view of the system is optimum for such
a consideration.

Inspections. We employed a slightly adapted version of the
HP-recommended inspection method taught by Tom Gilb.9
We found this method very satisfactory. Our minimal adapta
tion was to allow slightly more discussion during the logging
meeting than Gilb recommends. We felt that this was needed
to accommodate functional verification.

Functional Verification. No attempt was made to implement
anything but the first level of functional verification â€” intel
lectual control. This was found to be easily implemented, and
when the principles were adequately adhered to, was almost
automatic. Inspectors who knew nothing about functional
verification or intellectual control automatically accom
plished it when given material that conformed to its prin
ciples and, amusingly, they also automatically complained
when slight deviations from these principles occurred.

Structured Specifications. The project team called cleanroom's
structured specifications process evolutionary delivery be
cause of its similarity to the evolutionary delivery methodol
ogy mentioned earlier and because evolutionary delivery is
more like our HP environment. Structured specifications

were developed in a defense-industry environment where
dynamic specifications are frowned upon and where adapt
ability is not a \irtue. However, evolutionary delivery as
sumes a dynamic environment and encourages adaptability.
Regardless of the differences, both philosophies are similar.

At first, both marketing and management were skeptical.
They were not reassured by the idea that a large amount of
time would elapse before the product would take shape be
cause of the large up-front design investment and because
some features would not be addressed at all until very late in
the development cycle. They were told not to expect an early
prototype within the first few days that would demonstrate
the major features.

Very quickly, these doubts were dispelled. Marketing was
brought into the effort during the early rigorous design
stages to provide guidance and direction. They participated
in the specification structuring and set priorities and desired
schedules for the releases. They caught on to the idea of
getting the "juiciest parts" first and found that they were
getting real code very quickly and could have this real code
reviewed by real users while there was still time to allow the
users' feedback to influence design decisions. They also
became enthusiastic about participating in the inspections
during the top-level definitions.

Management realized that the evolutionary staged releases
were coming regularly enough and quickly enough that they
could predict very early in the development cycle which
stage had a high possibility of being finished in time to hit
the optimum release window. They could then adjust scope
and priority to ensure that the release date could be reliably
achieved.

Morale. The cleanroom literature claims that cleanroom
teams have a very high morale and satisfaction level. This is
attributed to the fact that they have finally been given the
tools necessary to achieve the kind of quality job that every
one wants to do. Our own experience was that this occurred
surprisingly quickly. People with remarkably disparate,
scarcely compatible personalities not only worked well
together, they became enthusiastic about the process.

It appears that the following factors were influential in
producing high morale:

â€¢ Almost daily inspections created an environment in which
each person on the team took turns being in the "hot seat."
People quickly developed an understanding that reasonable
criticism was both acceptable and beneficial. The resulting
frankness and openness were perceived by all to be remark
ably refreshing and exhilarating.

1 Team members were surprised that they were being allowed
to do what they were doing. They were allowed to take the
time necessary to do the kind of job they felt was proper.

Productivity. Productivity was difficult to measure. Only one
project actually made it to the market place, and it is diffi
cult to divide the instruction count accurately among the
engineers that contributed to it. However, the subjective
impression was that it certainly didn't take any longer. When
no defects are found one suddenly discovers that the job is
finished. At first this is disconcerting and anticlimactic, but
it also emphasizes the savings that can be realized at the end
of the project. This compensates for the extra effort at the
beginning of the project.

June 1994 Hewlett-Packard Journal 49
© Copr. 1949-1998 Hewlett-Packard Co.

Conclusion
The cleanroom team mentioned in this paper no longer exists
as a single organization. However, portions of cleanroom are
still being practiced in certain organizations within Hewlett-
Packard. These portions especially include structured
specifications and intellectual control.

We believe our efforts can be duplicated in any software
organization. There was nothing unique about our situation.
We achieved remarkable results with less than total dogmatic
dedication to the methodology.

The product that made it to market was designed using func
tional decomposition. Even though functional decomposition
is minimally rigorous and disciplined, we found the results
completely satisfactory. The project consisted of enhancing
a 2-KNCSS module to 3.5 KNCSS.

The original module was reverse engineered to generate the
functional decomposition document that became the basis
for the design. The completed module was subjected to the
intellectual control processes and the reviewers were never
told which code was the original and which was modified or
new code. A total of 36 defects were found during the in
spection process for a total of 10 defects per KNCSS. An
additional five defects were found the first week of testing
(1.4 defects per KNCSS). No defects were encountered in
the subsequent 10 months of full system integration testing
and none have been found since the system was released.

It was interesting to note that the defects found during in
spections included items such as a design problem which
would have, under rare conditions, mixed incompatible file
versions in the same object, a piece of data that if it had
been accessed would have produced a rare, nonrepeatable
crash, and a number of cases in which resources were not
being released which would, after a long period of time, have
caused the Windows system to halt. Most of these defects
would have been very difficult to find by testing.

Defects found during testing were primarily simple screen
appearance problems which were readily visible and easily
characterized and eliminated. These results conform well to
expected cleanroom results. About 90% of the defects were
eliminated by inspections with functional verification. About
10% more were eliminated via testing. No other defects were
ever encountered in subsequent full-system integration test
ing or by customers in the field. It can be expected on the
basis of other cleanroom results reported in the literature

that at least 99% of all defects in this module were eliminated
in this way and that the final product probably contains no
more than 0.1 defect per KNCSS.

References
1. M.J. Harry, The Nature of Six Sigma Quality, Motorola
Government Electronics Group, 1987.
2. P.A. Tobias, "A Six Sigma Program Implementation," Proceedings
of the IEEE 1991 Custom Integrated Circuits Conference, p. 29.1.1.
3. H.D. Mills, M. Dyer, and R.C. Linger, "Cleanroom Software Engi
neering," IEEE Software, Vol. 4, no. 5, September 1987, pp. 19-25.
4. H.D. Mills and J.H. Poore, "Bringing Software Under Statistical
Quality Control," Quality Progress, Vol. 21, no. 11, November 1988,
pp. 52-55.
5. T. 1982, Controlling Software Projects, Yourdon Press, 1982,
pp. 195-267.
6. R.C. Linger and H.D. Mills, "A Case Study in Software Engineer
ing," Proceedings COMPSAC 88, p. 14.
7. H.D. Mills, R.C. Linger, and A.R. Hevner, Principles of Informa
tion Systems Analysis and Design, Academic Press, 1986.
8. PA. Currit, M. Dyer, and H.D. Mills, "Certifying the Reliability of
Software," IEEE Transactions on Software Engineering, Vol.
SE-12, no. 1, January 1986, pp 3-11.
9. T. Gilb, The Principles of Software Engineering Management,

Addison- Wesley, 1988, pp. 83-114.
10. J. Martin, Information Engineering Book III, Prentice Hall,
1990, pp. 169-196.
11. Navigator Systems Series Overview Monograph, Ernst & Young
International, Ltd., 1991, pp. 55-56.
12. R.C. Linger, H.D. Mills, and B.I. Witt, Structured Programming:
Theory and Practice, Addison- Wesley, 1979, pp. 227-229.
13. Ibid, pp. 213-300.
14. H.D. Mills, et al, Principles of Computer Programming, Allyn
and Bacon, Inc., 1987, pp. 236-238.
15. R.C. Linger, H.D. Mills, and B.I. Witt, op cit, pp. 219-221.
16. H.D. Mills and R.C. Linger, "Data Structured Programming: Pro
gram on without Arrays and Pointers," IEEE Transactions on
Software Engineering, Vol. SE-12, no. 2, Feb. 1986, pp. 192-197.
17. E.W. Djjkstra, "Structured Programming," Software Engineering
Techniques, NATO Science Committee, 1969, pp. 88-93.
18. PA. Currit, M. Dyer, and H.D. Mills, op cit, pp. 3-11.
19. T. DeMarco, op cit, p. 216.
20. Unpublished presentation given at the 1988 HP Software
Engineering Productivity Conference.
21. R.C. Linger and H.D. Mills, op cit, pp. 8-16.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Windows is a U.S. trademark of Microsoft Corporation.

50 June 1994 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Fuzzy Family Setup Assignment and
Machine Balancing
Fuzzy logic is applied to the world of printed circuit assembly manufacturing
to aid in balancing machine loads to improve production rates.

by Jan Krucky

In disciplines such as engineering, chemistry, or physics,
precise, logical mathematical models based on empirical
data are used to make predictions about behavior. However,
some aspects of the real world are too imprecise or "fuzzy"

to lend themselves to modeling with exact mathematical
models.

The tool we have for representing the inexact aspects of the
real world is called fuzzy logic. With fuzzy logic, we can
model the imprecise modes of reasoning that play a role hi
the human ability to make decisions when the environment
is uncertain and imprecise. This ability depends on our apti
tude at inferring an approximate answer to a question from
a store of knowledge that is inexact, incomplete, and some
times not completely reliable. For example, how do you
know when you are "sufficiently close" to but not too far
away from a curb when parallel parking a car?

In recent years fuzzy logic has been used in many applica
tions ranging from simple household appliances to sophis
ticated applications such as subway systems. This article
describes an experiment in which fuzzy logic concepts are
applied in a printed circuit assembly manufacturing environ
ment. Some background material on fuzzy logic is also
provided to help understand the concepts applied here.

The Manufacturing Environment
In printed circuit assembly environments, manufacturers
using surface mount technology are concerned with machine
setup and placement times. In low-product-mix production
environments manufacturers are primarily concerned with
placement time and to a lesser degree setup time. In medium-
to-high-product-mix production environments manufacturers
are mainly concerned with setup time.

One solution to the setup problem is to arrange the printed
circuit assemblies into groups or families so that the assem
bly machines can use the same setup for different products.
In other words, reduce or eliminate setups between differ
ent assembly runs. The solution to minimizing placement
time is to balance the component placement across the
placement machines.

HP's Colorado Computer Manufacturing Operation (CCMO)
is a medium-to-high-product-mix printed circuit assembly
manufacturing entity. The heuristic, fuzzy-logic-based algo
rithms described in this paper help determine how to mini
mize setup time by clustering printed circuit assemblies into
families of products that share the same setup and by

balancing a product's placement time between multiple
high-speed placement process steps.

The Placement Machines
The heart of our surface mount technology manufacturing
Unes in terms of automated placement consists of two Fuji
CP-in high-speed pick-and-place machines arranged in series
and one Fuji IP-II general-purpose pick-and-place machine.

A Fuji CP-ni placement machine supports two feeder banks
each having 70 slots available for component feeders to be
mounted on (see Fig. 1). The components are picked from
their feeders and placed on the printed circuit board, creat
ing a printed circuit assembly. A component feeder might
take one or two slots. The tape-and-reel type feeder, which
is the one we use at CCMO, is characterized by its width for
slot allocation purposes. The standard feeder tape widths
are 8 mm, 12 mm, 16 mm, 24 mm, and 32 mm. The 8-mm
feeder tapes consume one slot each while the 12-mm to
32-mm feeder tapes consume two slots. Additional feeder-to-
feeder spacing constraints might increase the number of
slots the feeders actually require. A component's presenta
tion, package type, and style determine the tape-and-reel
width and therefore the feeder size.

Split-Bank
A feature of the Fuji CP-III called split-bank addresses the
problem of high setup costs by allowing one bank to be used
for component placement while the other bank is being set

Assembly
Line

Banks

Component
Feeders

Components
on Tape

Slots

Fig. 1. Simplified representation of a tape-and-reel type placement,
machine.

June 1994 Hewlett-Packard Journal 5 1
© Copr. 1949-1998 Hewlett-Packard Co.

First Bank Second Bank First Bank Second Bank

First CP-III Second CP-II I

Used for Offl ine Setup

Used for Component Placement

Fig. 2. The split bank feature of the Fuji CP-III assembly machine.
The first feeder banks of each machine are used for offline setup.

up offline. Fig. 2 illustrates this split-bank feature. In this
configuration the first feeder bank on each machine is used
to perform the offline setup, and the second bank is used for
component placement.

Setup Time versus Placement Time
Our printed circuit assembly products vary quite a bit in
their setup-slot requirements. They range from eight slots on
the low end to 260 slots on the high end. For an average
product requiring 45 slots it takes 45 online minutes to set
up the feeders for placement. The average placement time is
2.5 minutes per board, hi a low-to-medium-volume printed
circuit assembly shop such as CCMO, the average lot size is
20 products. Therefore, for an average run of 20 products,
47% of the time is spent on setup (leaving the placement
machine idle) and 53% of the time is spent placing the com
ponents. This constitutes an unacceptable machine use and
hence a low output from the manufacturing shop. It's not
just the online setup time, but also the frequency of having
to do these setups that affects productivity and quality. A
fixed setup for an entire run would seem to be a solution to
this problem. However, in a medium-to-high-product-mix,
low-volume environment such as ours, fixed setups cannot
be used. HP CCMO currently manufactures 120 products
with 1300 unique components placeable by the Fuji CP-III
equipment.

Another quick solution to this online setup time problem
would be to place a certain percentage of CP-III placeable
components at a different process step. For example, we
could use the Fuji IP-II for this purpose. This is not a feasi
ble solution because the Fuji IP-II has a placement speed
that is four times slower than the CP-III. We use the Fuji
IP-II primarily for placing large components.

Alternate Setup Methodology
The setup time requirements mentioned above suggest that
we needed an alternative setup methodology to minimize
online setup time. The approaches we had available in
cluded expansion on the split-bank option described above,
clustering the printed circuit assembly products into fami
lies with identical setup while still allowing the split-bank
setup feature to be fully used, and balancing the two series
CP-III placement loads as much as possible. Balancing im
plies that the components would be distributed between the
two placement machines so that both machines are kept
reasonably busy most of the time.

Since most of our printed circuit assembly products are
double-sided, meaning that components are placed on the
top and bottom sides of the printed circuit board, indepen
dent balancing for each side of the printed circuit assembly

was considered. However, family clustering as viewed by
the layout process dictated that a double-sided printed cir
cuit assembly should be treated as a sum of the require
ments for both sides of the board. Thus, no machine setup
change would be required when switching from side A to
side B of the same product.

Why Families
While clustering products into families is a viable and an
attractive solution, other possible solutions such as partially
fixed setups augmented by families or scheduling optimiza
tion to minimize the setup changes in the build sequence,
are also worth consideration.

One can imagine that none of the solutions mentioned above
will provide the optimal answer to every online setup-time
issue, but their reasonable combination might. The follow
ing reasons guided us into choosing family clustering as an
initial step towards minimizing online setup costs.

* Intuitive (as opposed to algorithmic) family clustering on a
small scale has been in place at our manufacturing facility
for some time.

* It appears that families give reasonable flexibility in terms of
the build schedule affecting the entire downstream process.

* Families can take advantage of the CP-IIFs split-bank feature.
By altering the time window of a particular family's assembly
duration (i.e., by shift, day, week, month, and so on), one can
directly control a family's performance and effectiveness.

We chose a heuristic approach to minimizing setup time
because an exhaustive search is O(n!), where n is the num
ber of products. Our facility currently manufactures 120
products and expects to add 40 new ones in the near future,
which would make an exhaustive search unrealistic.

Primary Family
As explained above, we wanted to use the family clustering
approach to take advantage of the CP-III split-bank setup
feature. One can quickly suggest a toggle scenario in which
each feeder bank would alternate between the states of be
ing set up offline and being used for placement. However, it
would be difficult to synchronize the labor-intensive activi
ties of perpetual offline setups in a practical implementa
tion. Also, this option would require a sufficient volume in
the toggled families to allow the completion of offline setups
at the idle placement banks. Given these reasons, a strict
toggle approach would probably not have worked to im
prove the overall setup time in our environment. Instead of
toggling, we selected an approach in which certain feeder
banks are permanently dedicated to a family, and the re
maining banks toggle between offline setup and placement.
This approach led to the primary family concept.

A primary family is one that will not be toggled and is there
fore always present on the machine. Since the primary family
is permanently set up it logically follows that each nonpri-
mary family includes primary family components. The more
primary family slots used by a bank containing a nonprimary
family the better. The summation of two series CP-IU's banks
provides four setup banks available on a line. We elected to
dedicate the first bank of each CP-III to the primary family,
leaving us with two banks for nonprimary families (see
Fig. 3).

52 June 1994 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Fi rs t Bank Second Bank RrctBank Second Bank machine balancing is the key that truly enables the family
approach.

F i r s t C P - I I I S e c o n d C P - I I I

- â€¢â€¢ â€¢ â€¢ - -

| j N o n p r i m a r y F a m i l y (T o g g l e r)

Fig. 3. The setup for primary and nonprimary families.

Fig. 4 shows how the primary family concept can be used to
schedule a group of products to be built. Let's assume that
we have primary family A and two nonprimary families AB
and AC. (Products in families AB and AC contain compo
nents that are also part of products in family A.) First, any of
family AB's products can be built. Although primary family
A's products could be built using the same setup, it is highly
undesirable since it would waste the presence of family AB's
setup. So, after all the demand from family AB's products
have been satisfied, we can switch to products in primary
family A while we set up offline for family AC. On the practi
cal side, it is unnecessary to set up the entire nonprimary
family unless all the family's products are actually going to
be built.

This example shows that the primary family concept is use
ful only if it is incorporated into the build schedule and the
primary family must have sufficient product volume to allow
the behavior depicted in Fig. 4.

Balancing
Family clustering results in a shared setup by a group of
printed circuit assembly products which among other things
might share the same components. This creates the problem
of ensuring that the assembly of all products is adequately
balanced on the two series CP-III placement machines. If
the load is not balanced, an undesirable starvation in the
process pipeline might occur. Balancing is accomplished by
properly assigning the family's components between the two
series CP-III machines. An intuitive guess suggests that the
success of family clustering might make the balancing ef
forts proportionally harder. Although the online setup time
reduction is the primary goal, it cannot justify a grossly un
balanced workload between two serial CP-IIIs. Therefore,

First CP-III

F i r s t B a n k S e c o n d B a n k

Second CP-I I I

F i r s t B a n k S e c o n d B a n k F a m i l y

AB

AC

Used for Component Placement

| | U s e d f o r O f f l i n e S e t u p

Fig. be An illustration of how the primary family concept can be
used to schedule a group of products for assembly.

Other Methods
In addition to applying fuzzy set theory to solve our family
assignment and balancing problem we also used two other
approaches: the greedy board heuristic and an extension to
the greedy board heuristic.

Greedy Board Approach. A research group at HP's strategic
planning and modeling group in conjunction with Stanford
University suggested the greedy board heuristic approach to
minimize high setup cost for semiautomated manufacturing
operations. HP's Networked Computer Manufacturing Op
eration (NCMO) implemented the greedy board approach at
their site.1

In the greedy-board heuristic a family is defined by the repeti
tive addition of products, one at a time, until slot availability
is exhausted. The selection criterion is a function of the prod
uct's expected volume and its additional slot requirements.
The greedy ratio is:

GÂ¡ = Sj/Vj

where sÂ¡ is the number of additional slots a product pÂ¡ adds to
the family, and vÂ¡ is the product's volume. Since the objective
is to minimize the number of slots added while maximizing
the family's volume, the product with the smallest greedy
ratio wins and is added to the family. New slots are obtained
and the selection process, via the greedy ratio, is repeated
until either there are no more slots available or no more
products are to be added. See the greedy board example on
page 54.

The greedy board implementation at NCMO performs bal
ancing by assigning components to the machines by a sim
ple alternation until constraints are met. The components
are initially sorted by their volume use. This approach bal
ances the family overall, but it carries no guarantees for the
products that draw from the family.

Extension to Greedy Board Heuristic. The greedy board heuristic
tends to prefer smaller, high-volume printed circuit assem
blies in its selection procedure. At CCMO we extended the
original greedy ratio to:

Q .

G i = ' i x C j

where cÂ¡ is an average number of slots product pÂ¡ shares
with products not yet selected. The CCMO extension slightly
curbs the volume greediness at the expense of including a
simple measure of commonality. However, the results
showed the CCMO extension to the greedy board heuristic
performed slightly better than the original algorithm. The
results from the two greedy-board approaches and the fuzzy
approach are given later in this paper.

Despite the relatively good results achieved by our extension
to the greedy board heuristic approach, we were still look
ing for an alternative approach. This led us to explore using
fuzzy set theory to find a solution to our placement machine
setup problem.

June 1994 Hewlett-Packard Journal 53
© Copr. 1949-1998 Hewlett-Packard Co.

The Greedy Board Family Assignment Heuristic

As mentioned in the main article, a family in our manufacturing environment is a
group of products (boards) that can be built with a single setup on the component
placement machines. The greedy board heuristic is one way of assigning products
to families for printed circuit assembly. The only data required for the greedy
board algorithm is the list of components and the expected volume for each board.
Each family is created by the repetitive addition of products, one at a time, until
slot availability is exhausted.

In the following example assume there are eight component slots available per
family and that the following boards must be assigned to families.

B o a r d

Alpha
Tango
Delta
Echo
Beta
Lambda
Gamma

E x p e c t e d V o l u m e (v Â ¡)

1400

132

2668

1100

1332

900

C o m p o n e n t s

A, F, K, M
C, K
H, D, R, F, K
R, J, S, K
G, F, T, L
H, D, F, K
A, J, E, K

The board with the lowest greedy ratio is the first one added to the current family
being created.

B o a r d

Alpha
Tango
Delta
Echo
Beta
Lambda
Gamma

N e w P a r t s

(sÂ¡)

4
2
5
4
4
4
4

E x p e c t e d V o l u m e

(vÂ¡)

1400

132

2668

1100

668

1332

900

G r e e d y R a t i o
(GÂ¡ = sÂ¡/vÂ¡)

0.0029
0.0152
0.0019
0.0036
0.0060
0.0030
0.0040

Delta is the board with the lowest greedy ratio so it becomes the first member of
the family. It has the highest product volume added per component slot used.
Delta family. five components, leaving three slots to fill this family.

With next components H, D, R, F, and K already in the family, for the next board the
ratios are computed as follows:

B o a r d

Alpha
Tango
Echo
Beta
Lambda
Gamma

N e w P a r t s
(sÂ¡)

2
1
2
3
0
3

E x p e c t e d V o l u m e

(vÂ¡)

1400

132

1100

668

1332

900

G r e e d y R a t i o
(GÂ¡ = sÂ¡/vÂ¡)

0.0014
0.0076
0.0018
0.0045
0.0000
0.0033

The Lambda board is the one with the lowest greedy ratio because its components
are a Since subset of the components already in the family. Since adding
Lambda to the family does not require the addition of any components to the
family, the greedy ratios given above still apply for the selection of the next board.
The Alpha board has the next lowest ratio and it adds two new components (A
and M| to the family. This brings the total number of components in the family to
seven â€” one slot left.

After adding the Alpha board to the family, the new part-to-volume ratios for the
remaining unassigned boards become:

B o a r d

Tango
Echo
Beta
Gamma

N e w C o m p o n e n t s
(sÂ¡)

1
2
3
3

E x p e c t e d V o l u m e
<vÂ¡)

132

1100

668

900

G r e e d y R a t i o
(GÂ¡ = sÂ¡/vÂ¡)

0.0076
0.0018
0.0045
0.0033

Now Echo has the lowest ratio. However, the Echo board has two components,
and since we already have seven components, adding the Echo components to the
family would exceed our limit of eight components per family. Therefore, Tango is
the only board that will fit even though it has the lowest theoretical contribution.
Adding in Tango board fills up the family allotment. Finally, the components in
the family include H, C, D, A, R, F, K, and M.

The next family is defined by following the above procedure for the remaining
boards: Echo, Beta, and Gamma.

Fuzzy Set Theory

The following sections provide a brief overview of some of
the basic concepts of fuzzy set theory applicable to the top
ics discussed in this paper. For more about fuzzy set theory
see reference 2.

Fuzzy Sets
Unlike the classical yes and no, or crisp (nonfuzzy) sets,
fuzzy sets allow more varying or partial degrees of member
ship for their individual elements (see Fig. 5). Conceptually
only a few natural phenomena could be assigned a crisp
membership value of either yes or no without any doubt. On
the other hand, most of the real-world's objects, events, lin
guistic expressions, or any abstract qualities we experience in
our everyday life tend to be more suited for a fuzzier set
membership. Fuzzy sets allow their elements to belong to
multiple sets regardless of the relationship among the sets.

In spite of then" tendency to seem imprecise, fuzzy sets are
unambiguously defined along with then- associated opera
tions and properties. The fuzzy sets used in the fuzzy family
assignment and machine balancing heuristic exist in uni
verses of discourse that are finite and countable.

Definition. To begin our discussion of fuzzy sets we define
the universe of discourse X = {xj,X2. . .xÂ¡) and let (IA(XÃ) de
note the degree of membership for fuzzy set A on universe X
for element xÂ¡. The degree of membership function for fuzzy
set A is HA(X) e [0,1], where 0 represents the weakest mem
bership in a set and 1 represents the strongest membership
in a set.

Mxl
Fuzzy set A = â€” ^ - ... +

Xi

where the horizontal bar is not a quotient but a delimiter.

Examples. The following examples show different types of
fuzzy sets.
Number as a fuzzy set:
- Universe U = (0, 1, 2, 3, 4, 5)

Fuzzy set A = 0.2/0 + 0.7/1 + 0.8/2 + 0.2/3 + 0.1/4 + 0.0/5
Fuzzy set A might be described linguistically as "just about
2" because 0.8/2 has the highest degree of membership in
fuzzy set A.

Defining people in terms of their preference for certain
alcoholic beverages:

Universe Y = (beer, wine, spirits) = (yj, ... ya)

54 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

65
(104.59)

m i /h
(km/h)

0600 1200

T ime (Hours)

1800 2400

Speed

(a)

1 -

I

â€¢s
I

50
(80.45)

60
(96.54)

mi /h
(km/h)

Speed

(b)

Fig. 5. Crispy and fuzzy representation of the notion of average
driving speed, (a) In the fuzzy representation the membership class
average driving speed varies from zero for < 45 mi/h or > 65 mi/h to
100% at 55 mi/h. (b) In a crisp representation membership in the
average driving speed set is 100% in the range from 50 to 60 mi/h
only.

Fuzzy set B = y\ = O.I/beer + 0.3/wine + 0.0/spirits

might describe somebody who doesn't drink much but
prefers wine and dislikes spirits
Fuzzy set C = 0.8/beer + 0.2/wine + O.I/spirits might
describe a beer lover
Fuzzy set D = O.OYbeer + 0.0/wine + 0.0/spirits might de
scribe a person who doesn't indulge in alcoholic beverages
Fuzzy set E = 0.8/beer + 0.7/wine + 0.8/spirits might
describe a heavy drinker.

Defining a person in terms of their cultural heritage:
Universe Z = (Zirconia, Opalinia, Topazia) and [iF(zD repre
sents a degree of cultural heritage from the three provinces
in some imaginary gem-producing country.
Fuzzy set F = 0.3/Zirconian + 0.5/Opalinian + 0.1/Topazian
might describe someone who was born in Western Opalina,
attended a university in Zirconia, and married a Topazian
living in Diamond City, Zirconia.

Lunch hour:
Universe W = Day (continuous time of 24 hours)
The fuzzy set L (1 100 to 1300) might represent the term
"lunch hour" as shown in Fig. 6.

Fig. 6. A fuzzy set representation of the term lunch hour.

Operations. Operations such as union, intersection, and com
plement are defined in terms of their membership functions.
For fuzzy sets A and B on Universe X we have the following
calculations:
Union: HAUB(X) = ^A(X) v |iB(x)

or Vxi : HAUB(XÃ) = Max((iA(xÂ¡), (ÃB(XÃ))

(see Fig. 7a).

(a)

1 A;
A D B

(b)

(0

Fig. 7. Fuzzy set operations, (a) Union, (b) Intersection,
(c) Complement.

June 1994 Hewlett-Packard Journal 55

© Copr. 1949-1998 Hewlett-Packard Co.

Intersection: |IA/IB(X) = MA(X) A (iB(x)

or VxÂ¡ : HAnB(xi) = Min(nA(xÂ¡), HB(XÃ))
(see Fig. 7b).
Complement: HA(X) = 1 - HA(X)

or VxÂ¡ : HA(XÂ¡) = 1 - HA(XÂ¡)
(see Fig. 7c).

All of the operations defined above hold for fuzzy or classical
set theory. However, the two formulas known as excluded
middle laws do not hold for fuzzy sets, that is:

AUA = X
AnA = o

for classical set theory, but

AUÃ€
AnÃ€

X
o

for fuzzy set theory.

These laws, which take advantage of the either-or only
membership for a classical set's elements, cannot hold for
fuzzy sets because of their varying degree of set member
ship. Fig. 8 provides a graphical comparison between these
two formulas for classical and fuzzy set operations.

Fuzzification and Defuzzification
Fuzzification and denazification are operations that trans
late back and forth between fuzzy and crisp representations
of information, measures, or events. Since most of our envi
ronment is more naturally represented in a fuzzy form rather
than a crisp form, the need for a fuzzification step could be
perceived as being a rare event. On the other hand, a dena
zification procedure is needed more often, as in the case in
which a fuzzy set has to be expressed as a single crisp num
ber. There are several defuzzification methods. One of the
most commonly used and computationally trivial is the Max
method. The Max method simply chooses an element with
the largest membership value to be the single crisp repre
sentation of the fuzzy set. For example, for the fuzzy set C
given above the Max defuzzification method would yield
0.8/beer (i.e., fuzzy set C describes a beer lover).

Fuzzy Relations
The concept of relations between fuzzy sets is fairly analo
gous to the idea of mapping in classical set theory in which
the elements or subsets of one universe of discourse are
mapped to elements or sets in another universe of discourse.
For example, if A is a fuzzy set on universe X and B is a fuzzy
set on universe Y then the fuzzy relation R = A <8> B maps
universe X to universe Y (i.e., R is a relation on universe X x
Y). The symbol Â® denotes a composition operation which
computes the strength of the relation between the two sets.
Please note that in general A <S> B ^ B <S> A and furthermore
A * R Â® B.

Special Properties. The following are some of the special
properties of fuzzy relations.
A fuzzy set is also a fuzzy relation. For example, if A is a
fuzzy set on universe X and there exists I = 1/y as an identity
fuzzy set on Universe Y = {y}, then fuzzy relation R = A Â® I
= A.
The same operations and properties valid for fuzzy sets also
hold for fuzzy relations.

A u A = x J

/ \ / \
- t V V -

1 1

ADÃ = n
~ \ A / " \ / w

(a)

â€¢See Fig. 7c for Ã€

(b)

Fig. 8. A comparison of the excluded middle laws for (a) classical
sets and (b) fuzzy sets.

Fuzzy logic implication of the form P - Q can be also repre
sented by a fuzzy relation since T(P -Â» Q) = T(P V Q) where
T is the truth evaluation function. For example, if A is a
fuzzy set on universe X and B is a fuzzy set on universe Y
then a proposition P -Â» Q describing IF A THEN B, is equiva
lent to the fuzzy relation R = (A <g> B) U (Ã€ (g) Y). Fig. 9
shows a graphical representation of this relationship.

Fuzzy Composition
Fuzzy composition operations compute the strength of the
relation between two fuzzy relations. To show the most pop
ular composition operators, consider that we have fuzzy sets
X, Y, and Z and that R is a fuzzy relation on universe X x Y
and that S is a fuzzy relation on universe Y x Z. To find the
fuzzy relation T = R (g) S on universe X x Z we use one of the
following composition operations:

Max-Min: H.Tt =

(sj;k))vk : < plvi, j : i < a, j < y (1) , nssj;k

MaxprodRrk i i , (i s s j , kvk : < pv i , j : i < a , j < y (2)

Max-Product:

Sum-Product:

(3)

m/ - A Â ® B U A i g > Y

Fig. = A graphical depiction of the fuzzy logic implication R =
(A Â® B) U (Ã€ Â® Y).

56 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

where:

a, p, y are the number of elements (cardinality) in the
fuzzy sets X, Y, and Z

i. j. k are subscripts for matrix representations for
the fuzzy relations.

The Max-Min composition operator selects the maximum
membership value from all the minimal values of every cor
responding membership pair. For example, the Max-Min
value 0.4. the membership pairs [(0.4,0.6), (0.2,0.5)] is 0.4.
The Max-Prod composition operator replaces the Min func
tion in the Max-Min operator with the Prod function, which
performs algebraic multiplication for every membership pair.
The Max-Prod value for our example above is 0.24. Finally,
the Sum-Prod operator is derived from the Max-Prod opera
tor by replacing the Max function with the Sum function,
which adds together the results of the Prod operations on
each membership pair. Applying the Sum-Prod operator to
the example above gives the value 0.34. The are many other
composition operators available, some of which are designed
for specific applications.

Deriving Fuzzy Relations. The most difficult part about devel
oping an application using fuzzy relations is obtaining the
relations themselves. Some of the methods used to derive
fuzzy relations include:

â€¢ Intuitive knowledge, human experience, and opinions of
experts

â€¢ Calculation methods for membership functions
â€¢ Fuzzy compositions
â€¢ Converted frequencies and probabilities.

Example. The following example illustrates how to derive a
fuzzy relationship. Consider the fuzzy sets and universes
described earlier:

Universe Y = (beer, wine, spirits)

Universe Z = (Zirconian, Opalinian, Topazian)

We will assume for this example that the relation R on uni
verse Y x Z is based on the opinions of experts who know a
lot about the drinking habits of the inhabitants of the
provinces contained in universe Z.

Applying Max-Min yields:

R =
0.6 0.3 0.1
0.4 0.8 0.3
0.2 0.1 0.7

Although the relation R is derived from intuitive knowledge
and experience, we could have used one of the other meth
ods to derive it based on some partial information. Remem
ber that a fuzzy relation captures the pairwise strength of the
relation between elements of both universes, which in this
case consists of beer, wine, and spirits in rows and Zirconian,
Opalinian, and Topazian in columns. For example, there is a
strong (0.8) possibility of an Opalinian being a wine lover
according to relation R.

Now let's take a beer lover described by the fuzzy set

C = Q.8/beer + 0.2/wine + O.I/spirits

and perform Max-Min composition on the relation

H = CÂ® R

Max[(Min(0.8,0.6),Min(0.2,0.4),Min(0. 1,0.2)] = 0.6

uH(Opalinian) =
Max[(Min(0.8,0.3),Min(0.2,0.8),Min(0. 1,0.1)] = 0.3

HlÂ·lCTopazian) =
Max[(Mm(0.8,0.1),Min(0.2,0.3),Min(0.1,0.7)] = 0.2

Therefore, the resulting fuzzy set H = 0.6/Zirconian +
0.3/Opalinian + 0.2/Topazian might suggest that a beer lover
is of predominantly Zirconian heritage with slight linkages
to Opalinian influences and very slight Topazian influences
based on the experts' opinion represented in relation R.

Fuzzy Family Assignment Heuristic

The goal of our fuzzy family assignment heuristic is to find
products with similar components and group them into fami
lies. In our family assignment heuristic there are two nested
iteration loops: an outer loop for each family being created
and an inner loop for selecting the "best-suited" product to
assign to the family. The inner loop is terminated when there
are no more products to be considered. The outer loop is
terminated either when there are no more families or when
no more products are being assigned to a particular family.
The following is a pseudo-code representation of our
algorithm.

1. Family = Primary / Initialization family variable */
2 . R E P E A T I * S t a r t o u t e r l o o p * /
3. Qualify = PC A / Products to be assigned to a family.*/
4. WHILE Qualify <> Empty / Start inner loop. Loop */

/ until there are no more product1- */
5. Find Product from Qualify with the highest seleci ivity

measure (sÂ¡)
6. IF (a qualified Product is selected AND the slots

required by the selected Product < slot availability
of Family

7 . T H E N
8. Assign Product to Family and update s lo t

availability of Family
9 . R e m o v e P r o d u c t f r o m P C A
1 0 . E N D I F
1 1. Remove Product from Qualify
12. END WHILE
13. Family = get_a_new_family(Family)
14. UNTIL (PCA does not change OR no more Families)

P r o d u c t p r o d u c t b e i n g c o n s i d e r e d f o r i n c l u s i o n
in a family

get_a_new_family returns next available family's name and
slot availability

slot availability counter for the number of placement
machine slots available to a family (This
number is decreased by the number of
slots required by each product assigned
to the family.)

P C A l i s t o f p r o d u c t s t o b e c o n s i d e r e d f o r
family assignment (This list is updated
each time a product is assigned to a
family.)

June 1994 Hewlett-Packard Journal 57

© Copr. 1949-1998 Hewlett-Packard Co.

Qualify same as PCA except that this variable is
used to determine when to terminate the
inner loop and is updated at each
iteration.

Slots:

= ncs(pi,p2)/tns(pi) (5)

where ncs is the number of slots common to pi and P2, and
tns is the total number of slots required by pj. It could be
deduced that in general:

comm(pi,p2) *â€¢ comm(p2,pi) unless tns(p!) = tns(p2).

Commonality during primary family selection:

comm (pj,

ml ; =
N - 1 for product pÂ¡. (6)

N is the number of products not yet assigned to a family.

Commonality during nonprimary family selection:

^ c o m m (p i , p j)

m l j = - â € ” _ â € ” - f o r p r o d u c t p Â ¡ . (7)

N is the same as above.

Volume:

demandipi
j = N
Max(demand(pj))

for product pÂ¡ (8)

where demand(pi) is the expected volume demand for
product PÃ and N is the same as above.

m3j = 1 -
slots(pi)

slots_availablet
for product pÂ¡ (9)

At the end of this algorithm there still might be products
that cannot be assigned to any family because of slot avail
ability, or there might be families with no products assigned.

We used the concepts of fuzzy sets, fuzzy relations, and
fuzzy composition to determine which products to select and
assign to each family. The variables used in our algorithm
include a fuzzy set pÂ¡ which represents the printed circuit
assembly products, a selectivity measure sÂ¡, which is a value
that indicates how each product pÂ¡ might fit into a particular
family, and finally, the fuzzy relation r, which is used to
capture the relation between selectivity sÂ¡ and product pÂ¡.

Since the volume, commonality (common parts), and addi
tional slots are the three independent qualifiers that describe
a product, they were used to define the product universe P =
{commonality, slots, volume). Thus, a product

Pi = ml Â¡/commonality + m2Â¡/volume + m3Â¡/slots (4)

is a fuzzy set on universe P where mlj, m2Â¡, and m3Â¡ are the
membership values on the interval <0,1> for product pÂ¡.

We implemented the following computational methods to
obtain the membership values for universe P.

General commonality. General commonality between product
Pi and P2 is defined as:

where slots(pÂ¡) is the number of additional slots required for
product pi if it is selected, and slots_availablet is the number
of slots available for a particular family during iteration t of
the assignment algorithm.

Selectivity and Fuzzy Relation
Since the selectivity measure s is defined on the universe S
= Â¡selectivity), the selectivity for product pÂ¡ is defined as a
fuzzy set on universe S:

sÂ¡ = m/selectivity. (10)

Fuzzy relation r on universe R = P x S is used to capture the
relation between product selectivity and the product itself.
When we translate the general notion of a fuzzy relation into
the reality of our problem, we end up with a 3 x 1 matrix
representation of the relation. The column symbolizes the
cardinality of universe S and the three rows relate to the
product universe P (i.e., commonality, volume, and slots).
Since different selection criteria might be desired at differ
ent stages of the selection process, we found a need for at
least two distinct relations. Thus, based on our experience
we selected the following two categories that might require
separate fuzzy relations r.

1 First product assigned to a primary or nonprimary family
Nonfirst product assigned to a primary or nonprimary family.

The hardest part about using fuzzy relations is obtaining their
membership values. We wanted the membership values de
rived to the relation r to express the importance assigned to
each of the three elements in universe P (i.e., commonality,
volume, and slots) during the process of selecting products
to add to a particular family. For example the relation:

rÂ¡ =
0.7
0.4
0.2

(commonality)
(volume)
(slots)

says that for product pÂ¡ during an iteration of the assignment
algorithm, commonality is to be given greater emphasis in
family assignment than volume or slots membership values.

One can use one of many fuzzy composition operators to
construct the relation, or one can intuitively guess the fuzzy
relation r based on some empirical experience or expertise.
In our prototypical implementation, we selected the second
approach.

Initially, we experimented with the empirically derived
graph shown in Fig. 10 to come up with the membership
values for the two categories of fuzzy relations mentioned
above. Note in Fig. 10 that the fuzzy relationship values for
commonality, volume, and slots are dependent on the slots
membership value. For example, a slots membership value
of 0.5 would provide the relation matrix:

T i =

58 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

0 . 2 0 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

Slots Membership Value

Fig. 10. Fuzzy relation membership values for our experimental
functional approach to family assignment.

This approach turned out to be too complex and cumber
some because of our lack of experience with creating mem
bership relations. Consequently, at the end we settled for a
constant determination of a relation's individual values to
get us started. This approach resulted in the following two
fuzzy relations in our prototypical implementation:

First product assigned to a primary or nonprimary family

rÂ¡ =
0.550
0.150
0.300

for product pÂ¡ (1 < i < N)

Nonfirst product assigned to a primary or nonprimary family

r i =
0.550]
0.200 for product pÂ¡ (1 < i < N)
0.250 I

where N is the number of products not yet assigned.

It is important to notice that in general no restrictions are
imposed on fuzzy membership values, but since we used the
Sum-Product fuzzy composition operator then the summation
of the elements in each relationship matrix must be < 1.

Example
The fuzzy composition for our family assignment problem is
Sj = rÂ¡ Â® pÂ¡. Although we investigated a number of fuzzy
composition operators, we had the most success with the
Sum-Product composition operator.

The following example illustrates the actions performed by
the assignment algorithm to select a product to assign to a
particular family.

1 Assume there are three products pi, P2, and p,3 and that we
are selecting the first product to be assigned to a primary or
nonprimary family.

1 ncs (number of common slots) for pairs of pÂ¡, PJ for i < 3, j
< 3 is:

20 10 12

10 30 21

12 21 40

â€¢ slots_available = 45

â€¢ demand (pi) = 85, additional slots(pi) = 20

From equation 4:

Pi = mli/commonality + m2 Â¡/volume + m3i/slot

where:

by equation 5: comm(pi, pÂ¿) = 10/20 = 0.5 and
!, p;3) = 12/20 = 0.6.

From equations 7, 8, and 9:

ml! =Â°-6 + Â°-5 = 1.1/2 = 0.55

m2i = 85/Max(85, 100, 60) = 0.85
m3j = 1 - 20/45 = 0.56.

Finally,
Pl = 0.55/commonality + 0.85/volume + 0.56/slot

1 demand(p2) = 100, additional slots(p2) = 30, and

P2 = 0.5 I/commonality + 1.00/volume + 0.33/slot

1 demand(p3) = 60, additional slotsQpa) = 40, and

P3 = 0.4 I/commonality + 0.60/volume + 0.1 I/slot.

> Since
0.550
0.150
0.300

using equation 3, the Sum-Product

operator, the fuzzy composition sÂ¡ = rÂ¡ (g) pÂ¡ for this example
is:

si = ri & P! = 0.55 x 0.55 + 0.150 x 0.85 + 0.300 x 0.56
= 0.598

s2 = r2 <8> p2 = 0.529

SB = r3 Â® Pa = 0.348.

â€¢ Finally, since Max(si, 82, 83) = sj, product pi has the highest
selectivity measure and is therefore assigned to the family
being formed during this iteration.

Fuzzy Machine Balancing

After the fuzzy family assignment algorithm assigns the
products to their corresponding families, the fuzzy machine
balancer tries to assign each family's components to the
placement machines. The primary objective is to have each
side of the assembled printed circuit assembly use the two
series CP-IIIs as equally as possible.

Constraints
Aside from the inherent constraints introduced by families,
manufacturing reality brings a few special cases of already
predetermined machine assignments and constraints.

Physical Process Constraints. Since the objective is to have as
much setup slot room as possible, certain physical process
related limitations arise. For example, constraints on the very
last slot available on the bank do not allow a two-slot-wide
feeder to be mounted on the last slot. If we have one slot
still available on each machine and we have to place a two-
slot-wide feeder, we need to move a one-slot-wide feeder
from one machine to make room for the two-slot-wide
feeder. Finally, a component whose package is higher than
3.5 mm must be placed by the second machine since the
component height might interfere with the placing nozzle on
a densely populated printed circuit assembly.

June 1994 Hewlett-Packard Journal 59

© Copr. 1949-1998 Hewlett-Packard Co.

Primary Family Products. If the printed circuit assembly mem
bers in the primary family could be balanced without consid
eration for the remaining printed circuit assemblies that use
a portion of the primary family, balancing could probably be
achieved at the expense of the remaining products' imbal
ance. Thus, it is crucial that balancing for primary family
products take into consideration the remaining products.

Nonprimary Family Products. In the case of nonprimary family
products, the problem is just the opposite of the problem
encountered for primary family products. For nonprimary
family products balancing has to incorporate the component
assignments already committed by the primary family
balancing procedure.

Placement Time Estimation. The true placement time for a
printed circuit assembly is a function of the placement se
quence, which includes the placement table movement, the
placing head rotation speed, and the feeder bank movement.
The only information we have available is the placing head
rotation speed and even that is an approximation. The maxi
mum allowable speed for the placing head rotation is deter
mined from a component's polarity, presentation, package
type, size, and pickup nozzle size. Furthermore, the placing
head has 12 two-nozzle stations that are all influenced by
the head's speed selection. We approximated the placement
speed by obtaining the speed of the head rotation.

Products with Inherent Imbalance. In certain cases only the
duplication of a component's availability among the CP-III
placement machines would lead to good balance. For exam
ple, it is possible that a printed circuit assembly's side re
quires a placement-intensive component that greatly ex
ceeds the total placement of the remaining components.
Only an availability of that component in both of the CP-III
setups would provide a shot at a reasonable balance. In our
initial implementation we didn't use this approach.

Algorithm Outline
Just as in our family assignment approach we used the con
cepts of fuzzy sets, relationships, and fuzzy composition to
balance the series CP-III loads for each printed circuit as
sembly side being assembled. The following is a high-level
procedural outline of our balancing algorithm.

1. Define component fuzzy set cÂ¡ for 1 < i < N
2. Sort all cÂ¡ in decreasing order
3. Initialize fuzzy relation r
4. FOR 1 < i < N
5. IF cÂ¡ has no predetermined matching assignment ma
6 . T H E N
7. niÃ = r Ã‡g> cÂ¡
8. mÂ¡ Denazification => ma for cÂ¡
9 . E N D I F
10. Assign component cÂ¡ to machine ma
11. Update the relation r; r = rel_update(cÂ¡, nÃa)
12. END FOR
13. Ensure that all machine constraints are satisfied.

Cj is the ith component represented by the fuzzy set c
N is the number of components to be assigned
mÂ¡ is the machine fuzzy set obtained for component

cÂ¡
ma is an actual machine a to which the component cÂ¡

has been assigned

r describes the relation between cÂ¡ and mÂ¡
<S> is the fuzzy operator.

N

Nonfuzzy sorting of fuzzy sets is based on ^ wij where Wy
i = l

is a value described for all fuzzy components cÂ¡ (described
below), i is the ith component, and j is the jth product.

Fuzzy Component c
A fuzzy set cÂ¡ representing a physical component Q is defined
on universe P = (pi,p2,...pq) where PI, P2,...pq represent
products. Thus, fuzzy set

= (w u / P l , W i i 2 / p 2 , . . . W y (11)

where:

W j j = W j / n o r n ^ C j) (1 2)
wij = w_place(CÂ¡) x qty_per(CÂ¡,pj) x no_images(pj)

x I o g 1 0 (d e m a n d (p j)) (1 3)
w_place is a placement time weight factor

for physical component CÂ¡
qty_per is the number of times a component

CÂ¡ is placed on product pÂ¡
no_images is the number of times product pÂ¡

appears on a single manufacturing
fixture (panel)

demand is the expected volume demand for
product PÃ

n o r m (C i) = M a x (W j j) (1 4)

Q is the cardinality of universe P.

Machine Fuzzy Set m
The machine fuzzy set m is defined on the universe M =
(CP3.1,CP3.2). Consequently, the fuzzy set mÂ¡ is defined as a
fuzzy set on universe M as:

mi = wu/CP3.1 + wiÃ2/CP3.2

and it is obtained by rt Â® cÂ¡, where Â® is the fuzzy
composition operator of choice.

(15)

Fuzzy Relation r
Fuzzy relation r on universe R = P x M is used to capture the
relation between the physical component C represented by
fuzzy set c and machine fuzzy set m. We developed the fol
lowing general equation to obtain membership values for the
relation r.

rk â€ž = 1 - assigned_currentkin/assigned_expectedkin(16)

where:

0 < k < Q s ince Q i s the ca rd ina l i ty o f
universe P

1 < n < 2 s i n c e u n i v e r s e M h a s t w o
elements CP3.1 and CP3.2

assigned_currentk>n is the current assignment for the
kth product and the nth physical
machine

assigned_expectedk n is the expected assignment for
the kth product and the nth
physical machine.

60 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

If assigned_currentk.n > assigned_expectedk n then r^n = 0
(rkitl should be in the <0.1> interval).

We considered two possible ways to obtain values for
assigned_currentk n and assigned_expectedk n- hi the first
approach, we only considered the component placement
time without any additional consideration for slot space
limitations, hi the second approach, we tried to incorporate
some of the known slot constraints. The following equations
show the two approaches for obtaining the values for
assigned_currentkjn and assigned_expectedk n:

Placement time only.

assigned_expectedk n =

NACÂ¡Â£A

I w j,k + ack>n X PPk,n

z = NACjÂ£Machn

a s s i g n e d _ c u r r e n t k i n = !

(17)

ack>n (18)

where:

ack,n is the placement time sum for components
committed to the nth machine for the kth
product

ppkjn is the percentile portion of the kth product
preferred to be consumed at the nth
physical machine

Machn is a crisp set of all physical components C
assigned to the nth physical machine

n = 2

A = U M a c h n (1 9)
n=l

Wj k see the definition of the fuzzy component c
given above

N i s the number o f componen t s to be a s s igned .

Placement time with slot constraints considered.

assigned_expectedkin =

(WJ, J,k

assigned_currentkin =

X ava i ln X PPk.n

(Wj,k X Sj)

where:

ack,n is the placement t ime sum for components
committed to the nth machine for the kth
product

PPk.n is the percentile portion of the kth product
preferred to be consumed at the nth
physical machine

Machn Â¡s a crisp set of all physical components C
assigned to the nth physical machine

Wj k see the definition of the fuzzy component c
given above

S j i s t h e n u m b e r o f s l o t s c o m p o n e n t C j
consumes

availn is the number of slots available for the nth
machine

takenn is the number of slots already taken at
the nth machine

n = 2
A = U Machn is a crisp set containing components

n = i a l r eady ass igned to some mach ine .

Note that the ack n identifier used in both approaches in
cludes the predetermined components already assigned to
a machine. Thus, the fuzzy machine balancer does not ac
tively consider predetermined components for balancing, it
simply incorporates their passive balancing impact into the
balancing process.

The second approach is very complex and elaborate and tries
to control a lot of independent measures simultaneously.
Thus we selected the first approach for our prototype be
cause we achieved much better overall balance with this ap
proach even though we have to ensure that slot constraints
are satisfied in an independent postbalancing step.

The fuzzy relation r has to be updated every time a compo
nent C is assigned to the nth physical machine. This proce
dure ensures that the current component assignment is going
to be reflected by the fuzzy relation r. This update is done
fairly quickly by recalculating the assigned_currentk n value
for the corresponding machine n and product pk (0 < k <
Q). It is obvious that the update of assigned_currentk n
changes the appropriate rk n and hence the fuzzy relation r.

Fuzzy Composition
Although the Max-Min and Sum-Prod composition operators
were investigated, the Max-Prod fuzzy composition operator
performed best for our balancing algorithm, and we used the
Max defuzzification approach to select a component to assign
to a particular machine.

The following example illustrates our machine balancing
algorithm. In this example we are trying to assign component
c 10, and we have three products PI, P2, and pa to assemble.
Components c\ to eg have already been assigned to one of
two placement machines CP3.1 and CP3.2

To simplify our calculations assume that acki0 is 0 for all k
and all n meaning there are no predetermined components
on any of the products in question.

From equation 11:

ClO = W10,l/Pl + Wio,2/p2 +

and from equation 12

= W10j/norm(Cio)

If we assume that Wi0,(i,2,3) = (112.72, 150.0, 0.0) then using
equations 12 and 14:

WK,,I = 112.72/150.0 = 0.75
wioÂ¿ = 150.0/150.0 = 1.0
w io,:j = 0.0.

Thus,

= 0.75/pi + 1.0/P2 + 0.0/P3.

Assume that after computing equations 17 and 18 we get the
following values for each placement machine:

June 1994 Hewlett-Packard Journal 61
© Copr. 1949-1998 Hewlett-Packard Co.

assign_expected =

CP3.1 CP3.2
1713.0 1713.0'
2000.0 2000.0
459.0 459.0

Pi
P2
Ps

and

assigned to machine CP3.2 since it has the maximal
membership value (0.54).

â€¢ Step 9. Update the relation r.

r = rel_update(q, ma) and updating

.1273.0
 ^ _ _ _ 1 7 8 2 . 0

[1273.0 498.0]
1782.0 1560.0

150.0 450.0 J

assign_current =
1273.0 601.72
1782.0 1710.0

150.0 450.0
at i = 10

The assign_expected matrix has the same values in both
columns because we want to balance the load equally be
tween the two placement machines for products Pi, Pa, and
P3. Assign_current shows the component balance between
the two machines for components cÂ¡ through eg at the
current iteration of the balancing algorithm.

Using equation 16

makes

r =
0.26 0.72
0.11 0.21
0.67 0.02

Referring to steps 6, 7, 8, and 9 in our machine balancing
algorithm, the following items are computed.

â€¢ Step 6. From equation 14, mÂ¡ = rt <8> q using the Max_Prod
fuzzy composition operator in equation 2:

rÃo Â® c 10 = Max* 0.75 1.0 0.0
0.26 0.72
0.11 0.21
0.67 0.02

= Max[(0.19 0.11 0.0)(0.54 0.21 0.0)]

Thus,

m10 = 0.19/CP3.1 + 0.54/CP3.2

Steps 7 and 8. Denazification => ma for q is obtained by
applying the Max defuzzification method to mÃo. Thus,

> m2 = CP3.2 meaning that component CIQ is

0.26 0.64
0.11 0.15
0.67 0.02

for the next iteration.

Results

For this experiment we used two manufacturing production
lines at our site. The first one is denoted as line 1 and the
second one as line 2. The total line volume is equivalent be
tween the two Unes. The statistics on the two lines include:

â€¢ Line 1: 27 products, 13 double-sided, 413 unique components,
and on average a component appears on 3.05 products.

â€¢ Line 2: 34 products, 11 double-sided, 540 unique components,
and on average a component appears on 4.69 products.

Fig. 11 shows the setup families created for the printed
circuit assembly products assigned to lines 1 and 2.

Family Assignment
Fig. 12 shows the percentage of component placement vol
ume versus the cumulative contribution for each of the family
assignment techniques described in this paper.

Line 1. The results for this line were indeed phenomenal.
The primary and A families together constitute 95% of com
ponent placement volume for the line. This results in no

P r i m a r y A

(b)

Fuzzy Family Assignment CCMO Greedy Board

D E F

Setup Families

NCMO Greedy Board

Fig. circuit 1. The setup families created and the number of printed circuit assembly products contained in each family based on the type of
family assignment algorithm used, (a) Line 1. (b) Line 2.

62 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

100

9 0 -

8 0 -

i . 7 0 - -

S 60 +
I

I 50 +

a 4 0
e
a,

I 3 0

20

10

O

(b)

CCMO Greedy Board

P r i m a r y A B
Cumulative Contribution Per Family

NCMO Greedy Board

Fig. for A placement representation of the family assignments for line 1 and line 2 versus component placement volume, (a) Line 1.
(b) Line 2.

need for setup changeover for 95% of the volume for one
month. The 28% reduction of the number of families is a side
effect of the fuzzy family assignment optimization.

Line 2. The major achievement of the fuzzy family assign
ment technique for line 2 was not just the moderate volume

improvements over the greedy board and CCMO greedy
board, but its ability to produce the same solution we ob
tained when we manually forced certain products into a
primary family using the greedy board method. When we
first investigated greedy board capabilities, we allowed

Â£
I

Produc ts

NCMO Greedy Board

Fig. 13. Machine imbalance for line 1.

Fuzzy Machine Balancing

June 1994 I lewlctt-Parkani Journal 63

© Copr. 1949-1998 Hewlett-Packard Co.

80

re
70

65

6 0 -

5 5 - -

50

4 5

4 0 - -

3 5

30

2 5

2 0

15

10

5 1 _ II fi, J j
Products

NCMO Greedy Board

Fig. 14. Machine imbalance for line 2.

hand-picked products to be forced into a family, regardless
of their greedy ratio. The forced products were carefully
identified based on our intuition and expertise.

Machine Balancing
Figs. 13 and 14 show the percentage imbalance for individ
ual printed circuit assemblies manufactured on lines 1 and 2
respectively. The line 1 average imbalance was 12.75% for
the fuzzy machine balancing approach and 35.9% for the
balance obtained by the greedy board approach. The line 2
results are 10.73% for the fuzzy machine balancing approach
and 29.58% for the greedy board approach. The families are
the same ones provided by the fuzzy family assignment
method.

i Fuzzy Machine Balancing

Acknowledgment
Although many of my colleagues at HP CCMO have fre
quently discussed the problems described in this paper with
me, I am specially grateful to my colleague Jim Nussbaumer
for a lot of informal but exceptionally fruitful discussions,
which have brought simplicity and elegance into our fuzzy
family assignment and machine balancing approach.

References
1. T. Davis and E. Selep, "Group Technology for High-Mix Printed
Circuit Assembly," IEEE International Electronic Manufacturing
Technology Symposium, October, 1990.
2. M Jamshidi, N. Vadiee, and T. Ross, Fuzzy Logic and Control:
Software and Hardware Applications, Prentice Hall, 1993.

64 June 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Authors
June 1994

8 C o r p o r a t e B u s i n e s s S e r v e r s

Thomas B.Alexander

Born in Anderson, Indiana,
f ^ k T o m A l e x a n d e r r e c e i v e d a

I j l B S E E d e g r e e i n 1 9 8 1 f r o m
i J P P u r d u e U n i v e r s i t y . H e j o i n e d

HP's Data Systems Division
In 1982 as a technical mar
keting engineer, later
switching to logic design. He
completed work for an

MSEE degree from Stanford University in 1990. As a
designer, he has worked on various HP 9000 Series
800 computer systems. For the HP 9000 Model T500
business server, he contributed to the design of two
VLSI chips and to the processor memory bus defini
tion. He's now a member of the technical staff at the
Systems Technology Division. Tom is married and
likes basketball, woodworking, and metalworkmg.

Kenneth G. Robertson

With HP since 1 982, prod-
uct design engineer Ken
Robertson has worked on
product and thermal design
for several HP computers,
Including the HP 3000 Series
37, HP 1000 systems, the HP
9000 Model 840, and the HP
3000 Series 930. He had

similar responsibilities for the HP 9000 Model T500
business server. A member of the Systems Technology
Division, he is currently working on thermal design
for a new processor module as well as serving as
system administrator for CAD and simulation tools
for mechanical engineering. Ken was born in Tracy,
California and attended California State Polytechnic
University at San Luis Obispo, from which he re
ceived a BSME degree in 1982. His MSME degree
was awarded by Stanford University in 1 991 . He's
married, has two children, and likes travel, flying,
sailing, skiing, and basketball.

Dean T. Lindsay

A hardware design engineer
at the Systems Technology
Division, Dean Lindsay was
born in Erie, Pennsylvania
and studied electrical engi
neering at Brigham Young
University, from which he
received a BS degree In
1975 and an ME degree in

electrical engineering (computer option) In 1976. He
joined HP the same year. He was one of the principal
architects of the service processor for the HP 9000
Model 890 and T500 systems and was also responsi
ble for processor dependent hardware on the service
processor card. On past projects, he contributed to
the development of the HP 300 computer system,
developed part of the ANSI/IEEE 802.3 standard, was
the architect of the diagnostic system used on HP
PA-RISC systems for offline diagnostics, and contrib
uted to the development of the access port used for
console and support access for PA-RISC systems.
Dean Is married and has four children. He collects
and restores antique telephones, and his home has
two telephone systems: a dial system from the 1920s
and a magneto party line. Many telephones in his
collection are connected to these two systems.

Donald L. Rogers

^ ^ ^ ^ ^ D o n R o g e r s i s a p r o j e c t
^ f l j ^ ^ k m a n a g e r a t t h e S y s t e m s

Technology Division and has
been with HP since 1980. He
was responsible for the
power system for the HP
9000 Model T500 server.
Earlier, he managed the de
velopment of the power sys

tem, backplane, and processor dependent hardware
for the HP 9000 Model 850 system and managed de
velopment of similar portions of the HP 9000 Models
890 and 990. Don was born in Fort Wayne, Indiana
and received a BSEE degree from California State
University at San Jose in 1979. He has also taken
graduate-level courses In electrical engineering at
California State University at San Jose and at Santa
Clara University. He worked on advanced navigation

systems at the NASA Ames Research Center before
coming to HP. He's married, has three children, and
likes woodworking, bicycling, and camping.

John R. Obermeyer

Engineer/scientist John
Obermeyer works at the Sys
tems Technology Division
and has been with HP since
1981. He contributed to the
development of the HP 85

W ^Ã computer serv ice system,
Â¡ the HP 3000 Series 37
* computer, and the HP 1000

Model A400 computer. He was the architect and de
signer of the bus converter and I/O system for the HP
9000 Model T500 server and also was responsible for
Implementing the architecture, for link definition, and
for the HP-PB bus converter. He's named as an inventor
In two patents related to computer circuitry testing and
a testable embedded RAM array. He is also coauthor
of a 1984 HP Journal article. John was born in Cin
cinnati, Ohio and has a BSEE degree from Northwest
ern University (1981 land an MS degree in computer
science from Stanford University (1984). He and his
wife have two children. He is active in his church,
and his outside interests Include collecting fossils,
woodworking, home improvement, and drawing.

John R. Keller

With HP since 1980, John
Keller Â¡sa member of the
technical staff at the Sys
tems Technology Division,
specializing in circuit design.
He designed the memory
board for the HP 9000 Mod
els 890 and T500 systems
and Is currently part of the

design team for a new HP microprocessor. He is the
author of ten papers on 1C design and process devel
opment. A Wisconsin native, John received a BSEE
degree from the University of Wisconsin in 1 981 . In
1985, he completed work for his MSEE degree from
the University of California at Berkeley. Outside of
work he enjoys skiing, travel, and history.

June 1994 Hewlett-Packard Journal 65
© Copr. 1949-1998 Hewlett-Packard Co.

Keith Y. Oka
Keith Oka was born in San
Francisco and graduated
from California State Univer
sity at San Jose with a BSEE
degree in 1981. He started
at HP the same year and is
now a development engi
neer at the Systems Tech
nology Division. In his first

two years at HP he was a new product manufacturing
engineer, working on the release of the HP 1000
Model A900 system. As a hardware development
engineer, he has worked on system and board de
signs for the HP 1000 system and HP PA-RISC com
puters. His responsibilities for the HP 9000 Model
T500 server included processor board design and
printed circuit board layout. He is now working on
next-generation processor boards for HP PA-RISC
high-end systems. Keith is married and is an avid
bicyclist. He occasionally competes in races. His
other hobbies include sports, music, woodworking,
and home improvement projects.

Marlin M. Jones, II
a Marlin Jones isa 1984

graduate of the University of
California at Berkeley (BSEE).
He came to HP's Engineering
Productivity Division the
same year, and worked in
technical marketing support
for six months before mov
ing into R&D. He has con

tributed to the development of processor boards,
clock boards, and memory array boards for the HP
9000 Models 850, 870, and 890 systems and was the
technical lead for the processor board for the HP
9000 Models 870 and 890 servers. He is now a proj
ect manager at the Systems Technology Division,
where he is working on memory and interconnect
architecture. He is coauthor of an earlier HP Journal
article on the HP 9000 Model 850 system and a paper
on DRAMs. Marlin is married and enjoys ultimate
frisbee and motorcycling.

3 1 M i d r a n g e P A - R I S C
Multiprocessing

Kirk M. Bresniker
Hardware design engineer
Kirk Bresniker was born in
Hayward, California and
attended Santa Clara Uni
versity, from which he re
ceived a BSEE degree in
1989. He joined HP's System
Technology Division the
same year and contributed

to the design of the PA 7100-based processor boards
for HP 9000 G-, H-, and l-class servers. He worked on
the new processor board described in this issue, and
is currently working on system engineering and hard
ware design for the next generation of low-end sys
tems. Kirk's professional interests include high-speed
digital design, cache design, and design tool environ
ments. He is married and enjoys cooking, brewing
beer, alternative music, and art deco design.

3 4 S o f t B e n c h M e s s a g e C o n n e c t o r

Joseph J. Courant
Joe Courant attended the University of Michigan,
graduating with a BSEE degree in 1983, and the Uni
versity of Colorado, from which he received an MBA
degree in 1988. He joined HP's Logic Systems Division
in 1983, and has held several positions in manufac
turing engineering, sales support, product marketing,
and R&D. He has worked on emulation and analysis
products, computer-aided electrical engineering
tools, and CASE tools. He was the lead engineer for
the SoftBench Message Connector project and is
now a technical sales consultant. Joe is named as an
inventor in a patent application on the Message Con
nector and has authored several internal HP articles
on manufacturing processes, emulation, and CAE. His
professional specialty is using computer technology
to solve real-world problems.

4 0 C l e a n r o o m T e c h n i q u e s i n
Software Design

Grant E. Head
Grant Head was born in
Cardston, Alberta, Canada
and attended the University
of Utah, from which he re
ceived a BA degree in phys
ics in 1 965. He continued his
studies at Stanford Univer
sity, completing work for an
MA degree in materials sci

ence in 1969. Before joining HP in 1976, he developed
software at Applied Technology and managed soft
ware development at Spectra Medical Systems. He
has worked on multiprocessing operating systems, on
HP AdvanceLink for DOS-based systems, and on HP
NewWave projects. He is now a software develop
ment process specialist for the product generation
information system in HP's Product Processes Organi
zation, and was the technical lead for the cleanroom
project described in this issue. Grant is married and
has five children. He is active in his church and is an
amateur radio operator.

51 Fuzzy Fami ly Setup Assignment

Jan Krucky
Jan "Honza" Krucky
was born in Prague, Czech
Republic, and graduated
from Colorado State Univer
sity with a BS degree in

H computer science in 1989.
-* ' He is cont inuing his studies

through the National Tech
nological University, and

expects to receive his MS degree in computer science
in 1994. A software development engineer, he came
to HP's Colorado Computer Manufacturing Operation
in 1989. He was the developer of the fuzzy-logic-based
algorithms for printed circuit assembly described in
this issue. Currently, he's developing CAD/CAM tools
used at his division and other HP sites. Jan is married
and has a daughter. He is a beer connoisseur, and
his hobbies include mountain biking, volleyball,
basketball, literature, and film.

66 June 1994 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

-r: Worldwide Roster/1 90LDC 00l0|f]jf

ro; HEADQUARTERS

D D I V I D R # 2 0 2 1 9

J u n e 1 9 9 4 V o l u m e 4 5 â € ¢ N u m b e r 3

Techn ica l In format ion f rom the Labora tor ies o f
H e w l e t t - P a c k a r d C o m p a n y

H e w l e t t - P a c k a r d C o m p a n y , P . O . B o x 5 1 8 2 7
P a l o A l t o , C a l i f o r n i a , 9 4 3 0 3 - 0 7 2 4 U . S .

ISI HEWLETTi mLKM PACKARD

5962-9541 E

© Copr. 1949-1998 Hewlett-Packard Co.

	Corporate Business Servers: An Alternative to Mainframes for Business Computing
	Product Design
	Package Design Using 3D Solid Modeling
	PA-RISC Symmetric Multiprocessing in Midrange Servers
	SoftBench Message Connector: Customizing Software Development Tool Interactions
	Six-Sigma Software Using Cleanroom Software Engineering Techniques
	Legal Primitive Evaluation
	Fuzzy Family Setup Assignment and Machine Balancing
	The Greedy Board Family Assignment Heuristic

