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In this Issue 
I n  bus iness  comput ing ,  the  t rend  i s  away f rom cen t ra l i zed  ma in f rames  and  
towards c l ient /server  networks that  handle  the comput ing needs o f  an ent i re  
enterpr ise.  The ar t ic le  on page 8 is  about  the des ign o f  a  new h igh-end HP 
corporate bus iness server  that  had the ob ject ive of  set t ing new standards for  
commerc ia l  systems per formance and af fordabi l i ty .  The des ign is  based on the 
HP PA 7100 CPU chip,  a superscalar implementat ion of  HP's PA-RISC processor 
archi tecture operat ing at a c lock frequency of 90 megahertz.  (Superscalar means 
tha t  a  to  can  i ssue  more  than  one  ins t ruc t ion  â€”  t yp ica l l y  2  to  4  â€”  per  c lock  
cycle. one PA 7100 can issue two instruct ions â€” one integer instruct ion and one 
f loat ing-point  instruct ion â€” per c lock cycle.)  The new corporate business server 

can  have in  to  twe lve  PA 7100 processors  symmet r ica l l y  shar ing  the  work load,  and per fo rmance in  
creases approx imate ly  l inear ly  wi th  the number  of  processors.  The in terna l  bus s t ructure is  new.  The 
design processors protocol of the processor memory bus, which interconnects the processors and the memory 
system, resul t in  excel lent  onl ine t ransact ion processing per formance and ef f ic ient  mul t iprocessor work-  
shar ing .  a  i npu t /ou tpu t  th roughpu t  i s  ach ieved  by  means  o f  h igh -s lo t - coun t  I /O  buses  a r ranged  in  a  
two-level tree. Main memory capacity can be as high as 2G bytes (2,147,483,648 bytes) of error-correct ing 
memory bytes). disk storage capacity can be as high as 1.9 Tbytes (1,900,000,000,000 bytes). A dedicated 
serv ice  opera t ing  reduces the  t ime i t  takes  to  cor rec t  hardware fa i lu res .  Depend ing on wh ich  opera t ing  
system i t  runs,  the new corporate business server is  designated the HP 9000 Model  T500 or the HP 3000 
Series 991/995. 

Whi le  the  was h igh-end corpora te  bus iness  servers  were  be ing  des igned,  another  des ign  team was 
work ing HP making symmetr ic  PA-RISC mul t iprocessing avai lable to users of  midrange HP 9000 and HP 
3000 servers.  The ar t ic le on page 31 d iscusses the design of  a new processor board using two PA 7100 
ch ips .  one proces one processor  the  "monarch"  and the  o ther  the  "ser f "  and dec id ing  tha t  i f  one proces 
sor  fa i led the other  would not  cont inue to operate,  the designers e l iminated most  of  the complex i ty  in  
symmetr ic  mul t ip rocess ing and were  ab le  to  prov ide the  bas ic  per formance advantages qu ick ly  and a t  
low cost .  The midrange servers that  use th is  board are the HP 9000 Models  G70,  H70,  and I70 and the 
H P 3000 Series 982. 

The HP Sof tBench Framework  is  w ide ly  used in  the sof tware deve lopment  indust ry  to  c reate  custom 
so f tware  deve lopment  env i ronments  by  in tegra t ing  common so f tware  deve lopment  too ls  such  as  p ro  
gram edi tors ,  bu i lders ,  and debuggers,  s ta t ic  analyzers,  e lect ron ic  mai l ,  and others.  Sof tBench Message 
Connector  (page 34)  is  the new user  too l  in teract ion fac i l i ty  of  the Sof tBench Framework.  I t  a l lows users 
o f  the  f ramework  to  cus tomize the i r  env i ronments  qu ick ly  w i th  s imple  po in t -and-c l ick  ac t ions .  For  exam 
ple, when text editor and a spell  checker can be connected so that when the user saves a f i le with the editor, 
the spel l ing is  automat ica l ly  checked and the user  is  not i f ied only  i f  er rors are detected.  Tool  in teract ion 
branch ing and cha in ing are  suppor ted so the user  can create  rout ines that  use mul t ip le  too ls  and exe 
c u t e  t o o l .  w i t h o u t  t h e  u s e r ' s  e x p l i c i t l y  i n v o k i n g  e a c h  t o o l .  M e s s a g e  C o n n e c t o r  i s  d e s i g n e d  t o  
require no t ra in ing.  

Contrary develop my initial reaction on hearing the term, cleanroom software engineering doesn't mean develop 
men t  o f  I t ' s  f o r  t he  c lean rooms used  in  i n teg ra ted  c i r cu i t  manu fac tu r ing .  I t ' s  a  me taphor  fo r  so f tware  
eng ineer ing that  mimics  the way processes and the env i ronment  are  care fu l ly  cont ro l led  and moni tored 
in  a c leanroom to ensure that  the ch ips produced there are f ree of  defects .  The goal  is  near ly  defect -  
f ree  exp la ins  whatever  i ts  func t ion .  The ar t ic le  on page 40 exp la ins  the  c leanroom methodo logy and 
sof tware l i fe  cyc le ,  and te l ls  about  the remarkab le  resu l ts  ach ieved when the methodology was app l ied 
in  a l imi ted way in  a typ ica l  HP envi ronment .  
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In  pr in ted c i rcu i t  board manufactur ing,  automated h igh-speed assembly  machines are used to  p lace 
components on the boards.  In  a  manufactur ing fac i l i ty  that  produces mul t ip le  products  at  low to  medium 
volumes,  are machines must  be set  up in  d i f ferent  ways to produce d i f ferent  products.  Whi le  they are 
being minimize facility they aren't productive, so a major concern is how to minimize the setup time. If the facility 
has more than one machine,  another  major  concern is  machine ba lanc ing,  or  how to  ass ign products  to  
the var ious machines most  e f f ic ient ly .  An exact  mathemat ica l  model  o f  these problems is  too complex 
too solve,  so engineers at  HP's Colorado Computer Manufactur ing Operat ion resorted to fuzzy logic,  a 
mathemat ica l  too l  that 's  becoming more widely  used for  deal ing wi th  the inexact  aspects of  the real  
wor ld.  c i rcui t  fuzzy concepts,  they developed an algor i thm for  assigning pr inted c i rcui t  boards to fami l ies 
that famil ies page setups, and an algorithm for assigning the famil ies to machines. The art icle on page 51 
expla ins the problem, provides some basic fuzzy logic theory,  descr ibes the a lgor i thms,  and presents 
resul ts.  best  fuzzy fami ly assignment a lgor i thm outperforms the greedy board algor i thm, former ly the best  
avai lable method. 

R.P. Dolan 
Editor 

Cover 
The processor  board  des igned for  the  new h igh-end HP corpora te  bus iness server  has up to  two pro  
cessor  hea t  based  on  PA 7100  supersca la r  PA-RISC ch ips  (under  the  c i r cu la r  hea t  s inks ) .  The  se rve r  
can have up to  twelve processors  (s ix  boards)  for  twelve-way symmetr ic  mul t iprocess ing.  

What's Ahead 
Leading of f  the August  issue wi l l  be a design ar t ic le on the HP 48GX scient i f ic  graphing calculator .  Other 
ar t ic les wi l l  descr ibe h igh-speed d ig i ta l  t ransmi t ter  character izat ion us ing eye-d iagram analys is  and a 
new foam-chassis packaging technology cal led HP-PAC. From the 1993 HP Technical  Women's Conference 
we'll transducers, papers on the design of linear vascular ultrasound transducers, on temperature control in 
supercr i t ica l  f lu id  chromatography,  on data-dr iven test  systems,  and on the use of  s t ructured analys is  
and structured design in the redesign of  a terminal  and pr inter  dr iver .  
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Corporate Business Servers: An 
Alternative to Mainframes for 
Business Computing 
With multi hardware, PA-RISC architecture, symmetric multi 
processing, a new bus structure, and robust error handling, these systems 
provide a wide range of performance and configurability within a single 
cabinet. Standard features include one to twelve symmetric PA-RISC 7100 
multiprocessors optimized for commercial workloads, main memory 
configurations from 128M bytes to 2G bytes, and disk storage up to a 
maximum of 1 .9 terabytes. 

by Thomas B. Alexander, Kenneth G. Robertson, Dean T. Lindsay, Donald L. Rogers, John R. 
Obermeyer, John R. Keller, Keith Y. Oka, and Marlin M. Jones, II 

The overall design objective for the HP 9000 Model T500 
corporate business server (Fig. 1) was to set new standards 
for commercial systems performance and affordability. 
Combining expandable hardware, PA-RISC architecture, 
symmetric multiprocessing with up to 12 processors, a new 
bus design, robust error handling, and the HP-UX operating 
system, the Model T500 delivers a cost-effective alternative 
to mainframe solutions for business computing. 

Users of HP's proprietary operating system, MPE/iX, also 
enjoy the benefits of the Model T500 hardware. These sys 
tems are designated the HP 3000 Series 991/995 corporate 
business systems. They provide high performance by 

supporting from one to eight processors with superior value 
for their class. The MPE/iX system is designed to support 
business-critical data and offers features such as powerful 
system management utilities and tools for performance 
measurement. 

In this paper, the hardware platform for both the HP-UX and 
the MPE/iX systems will be referred to as the Model T500. 
The Model T500 is an update of the earlier HP 9000 Model 
890/100 to 890/400 systems, which supported from one to 
four PA-RISC processors operating at 60 MHz. For MPE/iX, 
the Series 991/995 is an update of the earlier Series 990/992 
systems. 

Fig. 1. The HP 9000 Model T500 
corporate business server (right) 
is designed as an alternative to 
mainframe solutions for online 
transaction processing and other 
business computing applications. 
It runs the HP-UX operating sys 
tem. The same hardware running 
the MPE/iX operating system is 
designated the HP 3000 Series 
991/995 corporate business sys 
tems. The Model T500 SPU (right) 
is shown here with various periph 
erals and expansion modules. 
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HP Precision Buses 
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Fig. 2. HP 9000 Model T500 system processing unit block diagram. 

Standard features of the Model T500 include one to twelve 
symmetric PA-RISC multiprocessors optimized for commer 
cial workloads and operating at 90 MHz, main memory con 
figurations from 128M bytes to 2G bytes,t and disk storage up 
to a maximum of 1.9 Tbytes (1900 Gbytes). This expandabil 
ity allows the Model T500 to provide a wide range of perfor 
mance and configurability within a single cabinet. The Model 
TSOO's package minimizes the required floor space, while air 
cooling removes the need for expensive mainframe-type 
cooling systems. 

The Model T500 is designed to provide leading price/ 
performance. The HP 9000 Model T500 with six PA-RISC 
7100 processors operating at 90 MHz has achieved 2110.5 
transactions per minute on the TPC-C benchmark (U.S.$21 15 
per tpmC).tt The SPECrate (SPECrate_int92 and SPEC- 
rate_fp92) benchmark results show linear scaling with the 
number of processors, which is expected for CPU-intensive 
workloads with no mutual data dependencies. The Model 

t Hewlett-Packard Journal memory size conventions: 
1  k b y t e  =  1  . 0 0 0  b y t e s  1  K  b y t e s  =  1  , 0 2 4  b y t e s  
1  M b y t e  =  1  , 0 0 0 . 0 0 0  b y t e s  1  M  b y t e s  =  1  , 0 2 4 2  b y t e s  =  1  . 0 4 8 , 5 7 6  b y t e s  
1 Gbyte bytes 1,000,000,000 bytes 1G bytes = 1.0243 bytes = 1,073,741,824 bytes 
1 Tbyte = 1 ,000,000,000.000 bytes 

t t  The  tpm Process ing  Counc i l  requ i res  tha t  the  cos t  per  tpm be  s ta ted  as  par t  o f  the  
TPC performance results Cost per tpm will vary from country to country. The cost stated here 
is for the U.S.A. 

T500/400 reaches 38,780 SPECrate_fp92 and 23,717 SPEC- 
rate_int92 with twelve processors. 

The Model T500 provides this high level of performance by 
using a balanced bus architecture. The processor memory 
bus currently provides the main processor-to-memory or 
processor-to-I/O interconnect with a bandwidth of 500 
Mbytes/s and a potential capability up to 1 Gbyte/s. The I/O 
buses provide a total aggregate I/O bandwidth of 256 
Mbytes/s. These bandwidths satisfy the high data sharing 
requirements of commercial workloads. 

System Overview 
The key to the Model TSOO's expandability and performance 
is its bus structure. The processor memory bus provides a 
high-bandwidth coherent framework that ties the tightly 
coupled symmetrical multiprocessing PA-RISC processors 
together with I/O and memory. Fig. 2 shows a block diagram 
of the Model T500. 

The processor memory bus is a 60-MHz bus implemented on 
a 16-slot backplane with eight slots suitable for processors 
or memory boards and eight slots suitable for I/O adapters 
or memory boards. Each slot can contain as many as four 
modules, and can obtain its fair fraction of the bandwidth 
provided by the system bus. Custom circuit, designs allow 
the bus to operate at a high frequency without sacrificing 
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physical connectivity. To prevent system bus bandwidth 
from becoming a bottleneck as the number of processors 
increases, the bus protocol minimizes bus contention and 
unproductive traffic without adding undue complexity to the 
bus modules. 

To support such a large number of slots the processor mem 
ory bus is physically large and has an electrical length of 13 
inches. State-of-the art VLSI design and mechanical layout 
allow the processor memory bus to run at 60 MHz â€” a very 
high frequency of operation for a bus of this size. 

The input/output subsystem links the processors and mem 
ory on the processor memory bus to I/O devices, including a 
variety of networks. The Model T500 supports attachment of 
up to eight Hewlett-Packard precision buses (HP-PB), each 
of which connects up to 14 I/O cards. The first HP-PB is in 
ternal to the Model T500 and the other HP-PBs would be 
located in adjacent racks. Each HP-PB connects to the pro 
cessor memory bus through a linked bus converter consist 
ing of a dual bus converter, a bus converter link, and an 
HP-PB bus converter. Under normal operating conditions 
the bus converters are transparent to software. 

The service processor consists of a single card whose pur 
pose is to provide hardware control and monitoring functions 
for the Model T500 and a user interface to these functions. 
To achieve this purpose, the service processor has connec 
tivity to many parts of the Model T500. The scan bus is con 
trolled by the service processor and provides the service 
processor with scan access to all of the processor memory 
bus modules. The scan bus is used for configuration of pro 
cessor memory bus modules and for manufacturing test. 
The service processor also provides the clocks used by pro 
cessor memory bus modules and controls the operation of 
these clocks. The service processor provides data and in 
structions for the processors over the service processor bus 
during system initialization and error recovery. The service 
processor connects to the control panel and provides the 
system indications displayed there. The service processor 
provides its user interface on the console terminals through 
its connection to the console/LAN card. 

The service processor also contains the power system con 
trol and monitor, which is responsible for controlling and 
monitoring the Model T500's power and environmental sys 
tem. The main power system receives 200-240V single-phase 
mains ac and converts it to SOOVdc. This 300V supply is then 
converted by various dc-to-dc converter modules to the 
needed system voltages (e.g., one module is SOOVdc to 5Vdc 
at 650W.). The power system control and monitor addition 
ally controls the system fans and power-on signals. The 
power system control and monitor performs its functions 
under the processor control and reports its results to the 
service processor. 

Processor Memory Bus 

The present implementation of the Model T500 uses 90-MHz 
PA-RISC central processing units (CPUs)1'2'3 interconnected 
with a high-speed processor memory bus to support sym 
metric twelve-way multiprocessing. This section focuses on 
the features and design decisions of the processor memory 
bus, which allows the system to achieve excellent online 
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Fig. 3. Processor memory bus pipeline. 

transaction processing (OLTP) performance and efficient 
multiprocessor scaling. 

Bus Protocol 
The processor memory bus is a synchronous pipelined bus. 
The pipelined nature of the bus protocol places it between a 
split transaction protocol and an atomic transaction proto 
col. This allows the processor memory bus to have the 
performance of a split transaction bus with the lower 
implementation complexity of an atomic transaction bus. 

The processor memory bus has separate address and data 
buses. The address bus is used to transfer address and con 
trol information and to initiate transactions. Non-DMA I/O 
data is also transferred on the address bus. The data bus 
transfers memory data in blocks of 16, 32, or 64 bytes. The 
processor data bus in the present implementation is 64 bits 
wide, although the protocol, backplane, and memory system 
also support 128-bit-wide accesses. For 32-byte transfers on 
the data bus, the available bandwidth is 480 Mbytes per sec 
ond. If processors use all 128 bits of the data bus to perform 
64 byte transfers, the bandwidth doubles to 960 Mbytes per 
second. 

Fig. 3 shows the processor memory bus pipeline. Four con 
secutive processor memory bus states are referred to as a 
quad. A transaction consists of a quad on the address bus, 
followed at some fixed time by a quad on the data bus. 

An address quad consists of an arbitration cycle, an I/O 
cycle, a real address cycle, and a virtual address cycle. The 
arbitration cycle is used by bus masters to arbitrate for use 
of the bus. The I/O cycle is used to transfer data in the I/O 
address space. The real address cycle is used to transfer the 
memory or I/O address and to indicate the transaction type. 
The virtual address cycle is used to transfer the virtual index 
for cache coherency checks. 

A data quad consists of four data transfer cycles. The fixed 
time between address and data quads is programmed at sys 
tem initialization. This arrangement allows multiple pipelined 
transactions to be in progress at the same time. Since data is 
returned at a fixed time after the address quad, the module 
returning data automatically gets access to the data bus at 
that time. The set of supported transactions includes reads 
and writes to memory address space, reads and writes to I/O 
address space, and cache and TLB (translation lookaside 
buffer) control transactions. 
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If a transaction is initiated on the processor memory bus, but 
a module (either the slave or a third party) is not prepared 
to participate in the transaction, that module has the option 
of busying the transaction. When the master sees that its 
transaction is busied, it must retry the transaction at a later 
time. Busy is appropriate, for example, when the bus adapter 
is asked to forward a read transaction to the lower-speed 
precision bus (see "Arbitration" below for more information). 

For cases in which a module requires a brief respite from 
participating in transactions, it can wait the bus, that is, it 
can freeze all address and data bus activity. It does this by 
asserting the wait signal on the bus. The wait facility is 
analogous to a stall in the processor pipeline. 

Multiprocessor Bus Protocol 
The processor memory bus provides cache and TLB coher 
ence with a snoopy4 protocol. Whenever a coherent transac 
tion is issued on the bus, each processor (acting as a third 
party) performs a cache coherency check using the virtual 
index and real address. 

Each third-party processor is responsible for signaling cache 
coherency status at a fixed time after the address quad. The 
third party signals that the cache line is in one of four states: 
shared, private clean, private dirty, or not present. The re 
questing processor interprets the coherency status to deter 
mine how to mark the cache line state (private clean, private 
dirty, or shared). The third party also updates its cache line 
state (no change, shared, or not present). 

If a third party signals that it has the requested line in the 
private dirty state, then it initiates a cache-to-cache transac 
tion at a fixed time after the address quad. The requesting 
processor discards the data received from main memory for 

the initial request and instead accepts the data directly from 
the third party in a cache-to-cache transfer. At this same time 
the data from the third party is written to main memory. The 
timing of these events is shown in Fig. 4. 

Since the processor memory bus allows multiple outstand 
ing pipelined transactions, it is important that processor 
modules be able to perform pipelined cache coherency 
checks to take maximum advantage of the bus bandwidth. 
Fig. 5 shows an example of pipelined cache coherency 
checking. 

Programmable Parameters 
The processor memory bus protocol permits many key bus 
timing parameters to be programmed by initialization soft 
ware. Programming allows different implementations to 
optimize the parameter values to increase system perfor 
mance and reduce implementation complexity. Initialization 
software calculates the minimum timing allowed for the 
given set of installed bus modules. As new modules are de 
signed that can operate with smaller values (higher perfor 
mance), initialization software simply reassigns the values. 

The programmable parameters include: 
Address-to-Data Latency. The time from the real address 
of the address quad to the first data cycle of the data quad. 
The present implementation achieves a latency of 217 
nanoseconds. 
Coherency Signaling Time. The time required for a processor 
to perform a cache coherency check and signal the results on 
the bus. 
Cache-to-Cache Time. The time from the address quad of 
the coherent read transaction to the address quad of the 
cache-to-cache transaction. This value is the time required 
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Fig. 6. Processor memory bus 
electrical layout. 

for a processor to do a cache coherency check and copy out 
dirty data. 

> Memory Block Recovery Time. The time it takes a memory 
block to recover from an access and become ready for the 
next access. 
Memory Interleaving. The memory block identifier assign 
ments. The assignments depend on the size and number of 
memory blocks installed in the system. 

Arbitration 
The processor memory bus uses three different arbitration 
rules to determine when a module can get access to the bus. 
The first rule, used for references to memory, states that a 
master can arbitrate for a memory block only after the block 
has recovered from the previous access. Bus masters imple 
ment this by observing all transactions on the processor 
memory bus. Since memory references include the block 
identifier and the recovery times are known, masters refrain 
from arbitration for a busy block. The benefit of this arbitra 
tion rule is that memory modules do not have to queue or 
busy transactions, and therefore bus bandwidth is conserved 
because every memory transaction is a useful one. 

The second arbitration rule, used for references to I/O 
address space, requires that a master of a busied I/O trans 
action not retry the transaction until the slave has indicated 
that it is ready to accept the transaction. The slave indicates 
readiness by asserting the original master's arbitration bit on 
the bus. The master detects that the slave has restarted ar 
bitration and continues to attempt to win arbitration. This 
rule prevents masters from wasting bus bandwidth by con 
tinually retrying the transaction while the slave is not ready 
to accept it, and avoids most of the complexity of requiring 
slaves to master a return transaction. 

The third mechanism, referred to as distributed priority 

list arbitration, is invoked when multiple masters simulta 
neously arbitrate for the processor memory bus. Distributed 
priority list arbitration is a new scheme for general arbitra 
tion. It uses a least-recently-used algorithm to determine 
priority on the bus. A master implements distributed priority 
list arbitration by maintaining a list of masters that have 
higher priority than itself and a list of masters that have 
lower priority. Thus, an arbitrating master can determine it 
has won by observing that no higher-priority master has 
arbitrated. The identity of the winning master is driven onto 
the processor memory bus in the address quad. Masters 
then update their lists to indicate they now have higher 

priority than the winner. The winner becomes the lowest 
priority on all lists. This arbitration scheme guarantees fair 
access to the bus by all masters. 

Electrical Design 
The processor memory bus has the somewhat conflicting 
goals of high connectivity (which implies a long bus length) 
and high bandwidth (which implies a high frequency of op 
eration and a correspondingly short bus length). A typical 
solution to these goals might use custom transceivers and 
operate at a frequency of 40 MHz. However, by using custom 
VLSI, the wave switching, and state-of-the-art design, the 
Model T500 processor memory bus allows reliable operation 
at 60 MHz over a 13-inch bus with 16 cards installed. 

Each board on the processor memory bus uses two types of 
custom bus interface transceiver ICs. The first 1C type incor 
porates 10 bits of the processor memory bus (per package), 
error detection and correction logic, and two input ports 
(with an internal 2: 1 multiplexer) in one 100-pin quad flat 
package. This 1C is referred to as a processor memory bus 
transceiver in this article. The second 1C type performs all of 
the above duties but adds arbitration control logic and con 
trol of 20 bits on the processor memory bus in a 160-pin 
quad flatpack. This 1C is referred to as an arbitration and 
address buffer in this article. The arbitration and address 
buffer and the processor memory bus transceivers are 
implemented in HP's 0.8-micrometer CMOS process. 

Fig. 6 shows the basic processor memory bus design. Each 
processor memory bus signal line has a 34-ohm termination 
resistor tied to 3V at each end of the bus. Each card installed 
on the processor memory bus has a series terminating resis 
tor of 22 ohms between the connector and a corresponding 
bidirectional buffer transceiver for the processor memory 
bus. 

For asserted signals (active low) the output driver transistor 
in Fig. 7 turns on. This pulls the 22-ohm resistor to approxi 
mately ground which (through the resistor divider of 22 ohms 
and two 34-ohm resistors in parallel) pulls the processor 
memory bus signal to approximately 1.6 volts. On deas- 
serted signals the output driver is off and the 34-ohm resis 
tors at each end of the bus pull the bus to a high level of 
approximately 3V. 

The receiver (a greatly simplified version is shown in Fig. 7) 
is a modified differential pair. One input of the differential 
pair is connected to an external reference voltage of 2.55V. 
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Fig. 7. Processor memory bus electrical detail. 

The other input of the differential pair is connected to the 
processor memory bus. Use of a differential pair receiver 
allows incident signal switching (i.e., the first transition of 
the signal is detected by the receiver) and precise level 
control of the input switch point. 

The 22-ohm series resistor performs several important func 
tions. First, when a transceiver asserts a signal, the resistor 
limits pull-down current. Second, for boards where the trans 
ceiver is not driving, the 22-ohm resistor helps isolate the 
processor memory bus from the capacitive and inductive load 
presented by the inactive buffers and board traces. Lastly, 
the 22-ohm resistor helps dampen transient waveforms 
caused by ringing. 

Processor Board 

The processor board used in the Model T500 is a hardware 
performance upgrade product that replaces the original pro 
cessor board of the HP 9000 Model 890 corporate business 
server. With up to two processor modules per processor 
board, the dual processor board allows the Model T500 sys 
tem to achieve up to twelve processor systems. Additionally, 
the use of the PA-RISC 7100 processor improves uniprocessor 
performance. The key features of the Model T500 s processor 
include: 

â€¢ Direct replacement of the original processor board (cannot 
be mixed with original processor boards in the same system). 

â€¢ Increased multiprocessing performance with support for 
one to twelve CPUs. 

â€¢ Processor modules based on 90-MHz PA-RISC 7100 CPU 
chip8 with on-chip floating-point coprocessor for higher 
uniprocessor integer and floating-point performance. 

â€¢ Processor modules that allow single-processor and dual- 
processor configurations per processor slot. Easy field 
upgrade to add a second processor module to a single 
processor module board. 

â€¢ Processor clock frequency 90 MHz, processor memory bus 
clock frequency 60 MHz. 

IM-byte instruction cache (I cache) and IM-byte data cache 
(D cache) per module. 

Performance Improvement 
Relative to its predecessor, the Model TSOO's processor 
board SPEC integer rate is improved by a factor of 1.9 times 
and the SPEC floating-point rate is improved by a factor of 
3.4 times. The Model TSOO's processor performance relative 
to its predecessor is shown in the table below. 

Model T500 Model 890 

Hardware Overview 
The Model TSOO's processor board consists of one or two 
processor modules, a set of 12 processor memory bus trans 
ceivers (4 address and 8 data bus transceivers), an arbitra 
tion and address buffer, two processor interface chips, two 
sets of duplicate tag SRAMs, ECL clock generation circuitry, 
four on-card voltage regulators, scan logic circuitry, connec 
tors, a printed circuit board, and mechanical hardware. Fig. 
8 shows the processor board hardware block diagram. Fig. 9 
is a photograph of a processor board with two processor 
modules. 

Processor Modules 
The processor board is centered around two identical, re 
movable processor modules based on the HP PA 7100 CPU 
chip. Each module consists of a CPU chip, 26 SRAMs which 
make up the IM-byte instruction cache (I cache) and IM-byte 
data cache (D cache), a 4.1-inch-by-4.4-inch 12-layer printed 
circuit board, and a 100-pin P-bus connector. 

Each processor module communicates with its processor 
interface chip through a 60-MHz, 32-bit multiplexed address/ 
data bus called the P-bus. Each module has a dedicated 
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P-bus. The P-bus has 35 data and address lines and 18 
control lines. 

The I cache and D cache each have the following features: 
â€¢ 64-bit access (I cache 64-bit double-wide word, D cache two 

32-bit words) 
â€¢ Direct mapped with a hashed address and virtual index 
â€¢ Bandwidth up to 520 Mbytes/s 
â€¢ I and D cache bypassing 

Parity error detection in both I and D caches (parity errors 
in the I cache cause a refetch of the offending instruction) 

â€¢ 32-byte cache line size. 

The CPU chip has the following features: 
â€¢ Level 1 PA-RISC implementation with 48-bit virtual 

addressing 
o Addresses up to 3.75G bytes of physical memory 
â€¢ Multiprocessor cache coherency support 
â€¢ TLB (translation lookaside buffer) 

o 120-entry unified instruction and data TLB 
Fully associative with NUR (not used recently) 
replacement 

Ã§ 4K page size 
Floating-point coprocessor 
o Located on-chip 

Superscalar operation 

Fig. 8. Processor board 
organization. 

Fig. 9. Model T500 processor board \vil h two processor modules. 

Multiply, divide, square root 
Floating-point arithmetic logic unit (FALU) 

â€¢ P-bus system interface (to bus interface chip) 
â€¢ Serial scan path for test and debug 
â€¢ Operation from dc to 90 MHz 
â€¢- Performance improvements 

Load and clear optimizations 
Hardware TLB miss handler support 
Hardware static branch prediction 

â€¢ 504-pin interstitial pin-grid array package. 

Processor Interface Chip 
Each processor interface chip transmits transactions between 
its CPU and the rest of the system (memory, I/O, and other 
processors) via the processor memory bus. The processor 
interface chip for each processor module interfaces its CPU 
(through the P-bus) to the the processor memory bus trans 
ceivers and the arbitration and address buffer. The CPU's 
line size is 32 bytes, so the processor interface chip provides 
a 64-bit data interface to the processor memory bus trans 
ceivers. The two processor interface chips communicate 
through separate ports on the processor memory bus trans 
ceivers, which provide the required multiplexing internally. 

Each processor interface chip also contains an interface 
that allows it to communicate with self-test, processor de 
pendent code (boot and error code), and processor depen 
dent hardware (time-of-day clock, etc.) on the service pro 
cessor board. The processor interface chip is implemented 
in HP's 0.8-micrometer CMOS process and is housed in a 
408-pin pin-grid array package. 

The processor interface chip has two features to enhance 
the multiprocessor performance of the system: duplicate 
data cache tags and coherent write buffers. The coherent 
buffers support the processor memory bus's multiprocessor 
implementation of cache coherence protocol. 

Duplicate Data Cache Tags. The interface chip maintains its 
own duplicate copy of the CPU's data cache tags in off-chip 
SRAMs. The tags contain the real address of each cache line 
and the valid and private bits (but not the dirty bit). The du 
plicate cache tags are kept consistent with the CPU's data 
cache tags based only on the transactions through the inter 
face chip. The duplicate tags allow the interface chip to sig 
nal the status of a cache line during a coherent transaction 
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Fig. 10. Data sharing in a multiprocessor Model 890 system as 
measured by results of cache coherency checks. 

without querying the processor (which would require a pair 
of transactions on the P-bus). Measurements (using the pro 
cessor interface chip's built-in performance counters) for a 
wide variety of benchmarks show that for 80 to 90 percent 
of coherent transactions, the cache line is not present in a 
third-party CPU's data cache, as shown in Fig. 10. The dupli 
cate tags increase system performance to varying degrees 
for different workloads. Measurements on a four-processor 
system show duplicate tags increase system throughput by 
8% for a CPU-intensive workload and 21% for a multitasking 
workload. 

Coherent Write Buffers. To isolate the CPU from traffic on the 
bus, the interface chip contains a set of five cache line write 
buffers. The buffers are arranged as a circular FIFO memory 
with random access. If the CPU writes a line to memory, the 
interface chip stores the line in one of its buffers until it can 
win arbitration to write the line to memory. While the line is 
in a buffer, it is considered part of the CPU's cached data 
from the system bus point of view and participates in coher 
ence checking on the bus. These buffers are also used for 
temporary storage of data sent from the cache as a result of 
a coherency check that hits a dirty cache line. By having 
many buffers, the interface chip is able to handle multiple 
outstanding coherency checks. 

Pipeline 
The PA 7100 pipeline is a five-stage pipeline. One and a half 
stages are associated with instruction fetching and three and 
a half stages are associated with instruction execution. The 
PA 7100 also has the ability to issue and execute floating 
point instructions in parallel with integer instructions. Fig. 1 1 
shows the CPU pipeline. 

Instruction fetch starts in CK1 of stage F and ends in CK1 of 
stage I. For branch prediction, the branch address is calcu 
lated in CK1 of I and completes by the end of CK2 of I. This 
address is issued to the I cache. 

From CK2 of I to CK1 of B, the instruction is decoded, oper 
ands are fetched, and the ALU and SMU (shift merge unit) 
produce their results. The data cache address is generated 

by the ALU by the end of CK1 of B. For branch prediction, the 
branch address is calculated in CK1 of B and completes by 
the end of CK2 of B. 

Data cache reads start in CK2 of B and end in CK2 of A. Load 
instructions and subword store instructions read the data 
portion of the D cache during this stage. For all load and 
store instructions the tag portion of the D cache is read dur 
ing this stage. The tag portion of the D cache is addressed 
independently from the data portion of the D cache so that 
tag reads can occur concurrently with a data write for the 
last store instruction. Branch condition evaluation is com 
pleted by the end of CK2 of B. 

The PA 7100 CPU maintains a store buffer which is set on 
the cycle after CK2 of A of each store (often CK2 of R). General 
registers are set in CK2 of R. The store buffer can be written 
to the D cache starting on CK2 of R and continuing for a total 
of two cycles. The store buffer is only written on CK2 of R 
when one of the next instructions is a store instruction. 
Whenever the next store instruction is encountered, the 
store buffer will be written out to the cache. 

Clock Generation 
The clock generation circuitry provides 60-MHz and 90-MHz 
differential clock signals to the processor memory bus inter 
face ports and the processor modules, respectively. The 
Model TSOO's processor board uses a hybrid phase-locked 
loop component developed especially for the Model T500. 
The phase-locked loop generates a synchronized 90-MHz 
processor clock signal from the 60-MHz processor memory 
bus clock. Clock distribution is by differential ECL buffers 
with supplies of +2.0V and -2.5V. The use of offset supplies 
for the ECL allows optimal termination with the 50-ohm 
termination resistors tied directly to ground, and allows 
clock signal levels to be compatible with the CMOS clock 
receivers. 

There is no system support for halting clocks, or for single- 
stepping or n-stepping clocks. The scan tools do, however, 
allow halting clocks within each of the scannable VLSI chips. 

Scan Circuitry 
The processor board's scan circuitry interfaces to the service 
processor's four-line serial scan port and enables the user, 
via the service processor, to scan test each of the VLSI chips 
and transceiver groups selectively. The arbitration and ad 
dress buffer chip can be scanned independently, whereas the 
address (4) and data (8) bus transceivers are chained. This 
scan feature is used as a fault analysis tool in manufacturing. 

Printed Circuit Board and Mechanical 
The processor board uses a 12-layer construction and has an 
approximate overall thickness of 0.075 inch. Among the 12 
layers are six signal layers, three ground layers, and three 

Fig. 11. CPU pipHinr 
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voltage plane layers. Cyanate ester dielectric material is 
used for its faster signal propagation speed over FR-4 mate 
rial and its ability to achieve reduced board thickness for a 
given trace impedance. The nominal signal trace impedance 
is 51 ohms for all high-speed signal nets. 

Every attempt was made to keep high-speed signal traces 
closely coupled to a neighboring ground layer to minimize 
signal perturbations and EMI. Bypass capacitors are distrib 
uted liberally across the board to suppress high-frequency 
noise. EMI decoupling techniques consistent with the other 
Model T500 boards are used to direct common-mode noise 
to chassis ground. 

The dimensions of the processor board are 16.90 inches by 
7.35 inches. The two processor modules extend beyond the 
7.35-inch dimension by approximately 3.25 inches and are 
supported by a sheet-metal extender which effectively 
makes the board assembly 14 inches deep. The modules are 
mounted parallel to the processor board and the sheet-metal 
extender and are secured by screws and standoffs. The 
sheet-metal extender also has a baffle which directs forced 
air across the modules for increased cooling. 

Input/Output Subsystem 

The HP 9000 Model T500 represents a major advance in the 
areas of high I/O throughput and highly scalable connectiv 
ity. The Model T500 system provides large aggregate I/O 
throughput through the replication of input/output buses 
with large slot counts. These I/O buses are arranged in a 
two-level tree. A bus converter subsystem connects the pro 
cessor memory bus of the Model T500 system with the 
Hewlett-Packard precision bus (HP-PB) I/O buses, as shown 
in Fig. 12. The bus converter subsystem consists of a proces 
sor memory bus converter, a bus converter link (see Fig. 13), 
and an HP-PB bus converter. It translates the logical protocol 
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Fig. 12. Model T500 I/O 
subsystem. 

and electrical signaling of data transfers between the proces 
sor memory bus and the I/O cards on the HP-PB bus. 

The I/O subsystem guarantees data integrity and provides 
high reliability through parity protection of all data and 
transactions and through the hardware capability of online 
replaceable cards. 

The bus converter subsystem is transparent to software 
under normal operating conditions. Each I/O module on an 
HP-PB bus in the system is assigned a range of physical 
memory addresses. I/O modules appear to software as sets 
of registers. 

All modules can be DMA capable and generally implement 
scatter/gather DMA controllers. These scatter/gather DMA 
controllers allow virtually contiguous data located in physi 
cally noncontiguous pages to be transferred with minimal 
CPU assistance. A chain of DMA commands is written into 
memory by the processor. The I/O card is notified of the 
location of the chain and that it is ready for use. The I/O 
card then uses the scatter/gather DMA controller to follow 
the chain and execute the commands. In this manner the I/O 
card can write data (scatter) to different physical pages dur 
ing the same DMA operation. The I/O card can also read 
data (gather) from different physical pages during the same 
DMA operation. When the I/O card finishes all of the com 
mands in the chain, it notifies the processor, usually through 
an interrupt. 

The processor memory bus converter is a dual bus con 
verter that connects to two HP-PB buses through a pair of 
cables and the HP-PB bus converter. The HP-PB bus con 
verter is plugged into a slot in an HP-PB expansion module 
and provides the central HP-PB bus resources of arbitration, 
clock generation, and online replacement signals in addition 
to the connection to the processor memory bus. 
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Each HP-PB expansion module is a 19-inch rack-mountable 
assembly that connects any combination of up to 14 single- 
height or 7 double-height cards to the HP-PB bus. A Model 
T500 supports connection of 1 12 single-height HP-PB cards. 

Each HP-PB bus is a 32-bit multiplexed address and data bus 
with byte-wise parity protection and additional parity protec 
tion across the control signals. The frequency of operation is 
fixed at 8 MHz, leading to a peak bandwidth of 32 Mbytes/s. 
The aggregate I/O rate for the Model T500 system is thus 

Mbytes/s. 

The HP-PB I/O function cards include SCSI, fast/wide SCSI, 
FDDI (doubly connected), Ethernet LAN, token ring LAN, 
HP-FL fiber-link disk connect, IEEE 488 (IEC 625), X.25 and 
other WAN connects, terminal multiplexer cards, and other 
I/O functions. Using HP-FL cards and HP C2250A disk arrays, 
the corporate business server hardware can support over 
1.9 terabytes of disk storage on over 1000 disk spindles. 

Processor Memory Bus Converter 
The Model T500 accepts up to four processor memory bus 
converters plugged into the processor memory bus back 
plane. Each processor memory bus converter consists of 
two logically separate upper bus converter modules sharing 
a single bus interface (see Fig. 13). This reduces the electri 
cal loading on the processor memory bus while providing 
the necessary fanout for a high-connectivity I/O subsystem. 

The processor memory bus converter provides resource- 
driven arbitration and transaction steering on the processor 
memory bus for transactions involving the I/O subsystem. 
The processor memory bus converter provides a maximum 
bandwidth of 96 Mbytes/s. Transactions through the proces 
sor memory bus converter are parity protected, and error 
correcting code is generated and checked at the processor 
memory bus interface to guarantee data and transaction 
integrity. 

The upper bus converter modules are implemented in cus 
tom CMOS26 VLSI chips in 408-pin pin-grid array packages. 
They arbitrate with each other for the processor memory 
bus interface chips on the processor memory bus side and 
implement the bus converter link protocol on the link side. 

The processor memory bus interface consists of 12 bus 
transceiver chips (eight data and four address) and an ar 
bitration and address buffer chip. These chips are used in a 
two-module mode. The data bus transceivers drive indepen 
dent bidirectional data buses to the two upper bus converter 
module chips. The address bus transceivers drive a single 
unidirectional address to both bus converter chips, but re 
ceive independent address buses from the two upper bus 
converter chips. 

The processor memory bus converter also provides discrete 
industry-standard logic to translate the bus converter link 
signals between the CMOS levels of the upper bus converter 
chip and the +5V ECL levels of the link cable. 

Bus Converter Link 
Each of the two upper bus converter modules connects 
through two cables to a lower bus converter module, the 

See Fig 12 
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Fig. 13. Detail of Model T500 I/O subsystem. 

HP-PB bus converter (see Fig. 13). Each cable is a high- 
performance 80-conductor flat ribbon insulation displace 
ment connector cable which allows the lower bus converter 
module and the HP-PB expansion module to be located up 
to 10 meters away. These cables and the protocol that is 
used on them make up the bus converter link. 

The bus converter link protocol is a proprietary protocol 
allowing pipelining of two transactions with positive ac 
knowledgment. The signals are point-to-point +5V ECL dif 
ferential signals, two bytes wide and parity protected. The 
status information from the opposite bus converter module 
is embedded in the link protocol. The signaling rate across 
the bus converter link is one-half the processor memory bus 
frequency or 30 MHz in the Model T500 system. The peak 
bus converter link bandwidth is therefore 60 Mbytes/s with 
an average protocol overhead of 10%. The address overhead 
is on the order of 20% leaving an average data transfer rate 
of 42 Mbytes/s. 

HP-PB Bus Converter 
The HP-PB bus converter connects the bus converter link to 
the HP-PB bus in the HP-PB expansion module. In addition 
to the bus converter functions, the HP-PB bus converter 
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provides the central resources for the HP-PB bus to which it 
connects, including bus clock generation, arbitration logic 
and online replacement power-on signals. The bus clock gen 
eration and arbitration are performed by discrete industry- 
standard components on the board. The HP-PB bus converter 
functions are implemented in a custom CMOS26 chip in a 
272-pin pin-grid array package. Electrical signal level transla 
tion between the CMOS of. the lower bus converter chip and 
the +5V ECL of the link cable is performed using the same 
discrete industry-standard components as are used on the 
processor memory bus converter. The HP-PB bus converter 
acts as a concentrator for the I/O traffic from the HP-PB 
cards bound for the system memory or the processors. 

The HP-PB bus converter implements a speculative prefetch 
for DMA reads of memory by HP-PB cards (data transferred 
from memory to an I/O device under the I/O card's control). 
This provides greater performance by offsetting the transac 
tion and memory latency. The prefetch algorithm always has 
two read requests in the transaction pipeline to memory (see 
Fig. 14). When a read transaction to memory is accepted for 
forwarding by the HP-PB bus converter, it forwards the first 
read and then issues a second read request with the address 
incremented by the length of the original read transaction. 
As the data is returned to the requester, a new read transac 
tion with the address incremented by twice the length of the 
transaction is issued on the bus converter link. The pre- 
fetching stops when the I/O card does not request the next 
read in the next transaction interval on the HP-PB bus or 
when the address generated would cross a 4K page bound 
ary. Speculative prefetch increases the possible read data 
bandwidth from 3 Mbytes/s to over 18 Mbytes/s. 

The HP-PB bus converter supports DMA writes at the full 
HP-PB data bandwidth of 18 Mbytes/s for 16-byte writes and 
23 Mbytes/s for 32-byte writes. The difference between the 
peak bandwidth and the data bandwidth represents the 
effects of the address overhead and bus turnaround cycles. 

The HP-PB bus converter carries parity through the entire 
data path and checks the parity before forwarding any trans 
action onto the link or the HP-PB bus to guarantee data and 
transaction integrity. 

The HP-PB bus converter and HP-PB backplane in the 
HP-PB expansion module together provide the hardware 
and mechanisms to allow online replacement of HP-PB I/O 
cards. The HP-PB bus converter provides a read/write regis 
ter through which the power-on signal to each HP-PB card 
can be controlled independently. When this signal is deas- 
serted to an HP-PB card, the card's bus drivers are tristated 
(set to a high-impedance state) and the card is prepared for 
withdrawal from the HP-PB expansion module. The HP-PB 
backplane provides the proper inductance and capacitance 
for each slot so that a card can be withdrawn while the sys 
tem is powered up without disturbing the power to the adja- 
.cent cards. The hardware online replacement capability 
makes possible future enhancements to the Model T500 for 
even higher availability. 

Logic in the HP-PB expansion module monitors the ac 
power into the module and indicates to the HP-PB bus con 
verter via a backplane signal when power is about to fail or 
when the dc voltages are going out of specification. The 
powerfail warning signal is passed up through the bus 
converter modules to allow the Model T500 system to 
prevent corruption of the machine state. 
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HP Precision Bus 
The HP-PB is a multiplexed 32-bit address and data bus 
with a fixed clock rate of 8 MHz. The HP-PBs in the Model 
T500 system are completely independent of the processor 
memory bus clocks. The HP-PB bus converter synchronizes 
the data between the HP-PB and the bus converter link. 

The HP-PB provides for global 32-bit addressing of the I/O 
cards and for flexibility in address assignment. Each HP-PB 
is allocated a minimum of 2-56K bytes during configuration. 
This address space is evenly divided between 16 possible 
slots. Each slot on the HP-PB supports up to four I/O mod 
ules, each of which is allocated a 4K-byte address space. This 
4K-byte space is called the hard physical address space. Any 
module that requires additional address space is assigned 
address space at the next available bus address. This addi 
tional address space is called the soft physical address space. 
Soft physical address space assigned to all I/O modules on a 
single HP-PB is contiguous. The processor memory bus con 
verter determines if a transaction is bound for a given HP-PB 
by checking for inclusion in the range determined by the 
hard physical address and soft physical address space of the 
HP-PB. 

The hard physical address of an I/O card contains the con 
trol and status registers defined by the PA-RISC architecture 
through which software can access the I/O card. Each HP-PB 
card has a boot ROM called the I/O dependent code ROM, 
which is accessed by indirection through a hard physical 
address. This ROM contains the card identification, configu 
ration parameters, test code, and possibly boot code. The 
I/O dependent code ROM allows I/O cards to be configured 
into a system before the operating system is running and 
allows the operating system to link to the correct driver for 
each card. 

The HP-PB transaction set is sufficiently rich to support 
efficient I/O. There are three classes of transactions: write, 
read, and clear or semaphore. Each transaction is atomic 
but the HP-PB bus protocol provides buffered writes for 
high performance and provides a busy-retry capability to 
allow reads of memory to be split, providing parallelism and 
higher bandwidth. Each HP-PB transaction specifies the data 
payload. The transaction set supports transactions of 1, 2, 4, 
16, and 32 bytes. DMA is performed using 16-byte or 32-byte 
transactions initiated under the control of the I/O card. Each 
HP-PB transaction contains information about the master of 
the transaction so that errors can be reported and data easily 
returned for reads. 

The HP-PB and I/O subsystem provides an efficient, flexible, 
and reliable means to achieve high I/O throughput and 
highly scalable connectivity. 

Memory System 

The memory subsystem for the HP 9000 Model T500 corpo 
rate business server uses 4M-bit DRAMs for a 256M-byte 
capacity on each board. It is expandable up to 2G bytes of 
error-correcting memory. To minimize access latency in a 
multiprocessor environment, the memory subsystem is 
highly interleaved to support concurrent access from multi 
ple processors and I/O modules. A single memory board can 

contain 1. 2. or 4 interleaved banks of 64M bytes. The combi 
nation of interleaving and low latency for the board provide 
a bandwidth of 960 Mbytes/s. Furthermore, different-sized 
memory boards using different generations of DRAMs can 
coexist in the system, allowing future memory expansion 
while preserving customer memory investments. 

From the standpoint of complexity, the memory board is the 
most sophisticated board in the Model T500 system. To meet 
its performance requirements, the design uses leading-edge 
printed circuit technologies and new board materials. These 
are described under "Manufacturing" later in this article. 
The memory board includes 4273 nets (or signals), 2183 
components, and over 28,850 solder joints. Double-sided 
surface mount assembly provides high component density. 
The 2183 components are mounted in an area of only 235 
square inches. 

The processor memory bus electrical design limits the length 
of the bus for 60-MHz operation to 13 inches. Consequently, 
the memory board design is considerably constrained. The 
limited number of slots requires the capacity of each mem 
ory board to be high. The short bus length makes each of the 
slots narrow, forcing a low profile for each memory board. 
Bus transceivers are located close to the connector on each 
daughter card to keep stub lengths to a minimum. 

Memory Interleaving 
Memory boards are manufactured in 64M-byte, 128M-byte, 
and 256M-byte capacities. The 64M-byte and 128M-byte 
memory capacities are achieved by partially loading the 
256M-byte board. Memory interleaving tends to distribute 
memory references evenly among all blocks in the system. 
In the event that two processors desire to access memory in 
consecutive quads, interleaving provides that the second 
access will likely be to an idle bank. The memory design for 
the Model T500 allows the benefits of interleaving to be 
based on the total number of memory banks installed in the 
system, regardless of the number of boards that the banks 
are spread across.9 The processor memory bus protocol 
maximizes performance by interleaving all the banks evenly 
across the entire physical address space, regardless of the 
number of banks. This is superior to interleaving schemes 
that limit the effect of interleaving to numbers of banks that 
are powers of two. 

Memory Board Partitioning 
Partitioning of the memory board into VLSI chips follows 
the requirements of the DRAMs and the bank organization. 
This partitioning is illustrated in the memory board block 
diagram, Fig. 15. 256M-byte capacity with single-bit error 
correction requires 576 4M-bit DRAMs, each of which is 
organized as 1M by 4 bits. 64-byte data transfers and mini 
mized latency require a 576-bit bidirectional data bus for 
each bank's DRAMs. The effort to minimize latency and the 
restriction of the processor memory bus to narrow slots pre 
vented the use of SIMM modules similar to those used in PCs 
and workstations. The fixed timing relationships on the pro 
cessor memory bus required that there be four of these 576- 
bit data buses for the four banks on the 256M-byte memory 
board to prevent contention between writes to one bank and 
reads from another bank. A multiplexing function is provided 
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Fig. 15. Memory board block diagram. 

between the four slow 576-bit DRAM data buses and the 
60-MHz 128-bit data bus of the processor memory bus. 

To implement these requirements, a set of five VLSI chips is 
used. As identified on the block diagram, these are: 
Bus transceivers. This design is also used on the processor 
and bus converter boards. 
Arbitration and address buffer. This chip provides for arbitra 
tion and acts as an additional pair of address transceivers. 
This design is also used on the processor and bus converter 
boards. 
Memory array data multiplexer (MADM). This chip multi 
plexes the slow DRAM data signals to a pair of unidirectional 
60-MHz, 128-bit buses to and from the data transceivers. 
Memory array address driver (MAAD). This chip drives ad 
dress and RAS and CAS to the DRAMs. It is a modified version 
of a standard commercial part. 
Memory access controller (MAC). This chip provides the 
overall control function for the memory board. In particular, 
the MAC implements the required architectural features of 
the memory system and controls DRAM refresh. 

Except for the MAAD, which is in a 44-pin PLCC (plastic 
leaded chip carrier), each of these ICs is a fine-pitch, quad 
flatpack (QFP) component, with leads spaced 0.025 inch 
apart. The bus transceiver and MADM are packaged in 

One, Two, or Four Memory 
Banks Can Be Loaded for 
Memory Capacit ies of  64M, 
128M, or 256M bytes. 

100-pin QFPs and the arbitration and address buffer and 
MAC are in 160-pin QFPs. The full 256M-byte board includes 
20 bus transceivers, one arbitration and address buffer, 72 
MADMs, 16 MAADs, and one MAC as well as the 576 4M-bit 
DRAM chips. 

Fig. 16 is a photograph of the 256M-byte memory board. 

Printed Circuit Board Design 
In addition to restrictions on the memory board caused by 
the processor memory bus design, there were a significant 
number of other electrical design and manufacturing require 
ments on the board. The onboard version of the processor 
memory bus address bus is a 31.70-inch, 60-MHz unidirec 
tional bus with 16 loads on each line. There are two 128-bit, 
60-MHz, 9.15-inch buses with five loads on each line. With 
the large number of components already required for the 
board, it would not have been feasible to terminate these 
buses. The clock tree for the VLSI on the board feeds a total 
of 94 bidirectional shifted ECL-level inputs and 16 single- 
ended inputs, with a goal of less than 250 ps of skew across 
all 1 10 inputs. The size chosen for the memory board is 
14.00 by 16.90 inches, the maximum size allowed by surface 
mount equipment for efficient volume production. Restriction 
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Fig. 16. 256M-byte memory board. 

to this size was an important factor in almost every design 
decision made for the board. 

Preliminary designs of critical areas of the board showed 
that the densest feasible routing would be required. Leading- 
edge HP printed circuit production technology allows a 
minimum of 0.005-inch lines and 0.005-inch spaces. Vias can 
be either 0.008-inch finished hole size with 0.021-inch pads, 
or 0.012-inch finished hole size with 0.025-inch pads. Both of 
these alternatives are currently limited to a maximum as 
pect ratio of 10:1 (board thickness divided by finished hole 
size). The aspect ratio also influences the production cost of 
the board significantly because of plating yields, as well as 
the achievable drill stack height. 

With the given layout conditions, several trade-off studies 
were done to find the best alternative in terms of electrical 
performance, manufacturing cost for the loaded assembly, 
reliability, and risk for procurement and process availability 
at both fabrication and assembly. The best alternative finally 
uses the leading-edge layout geometries, eight full signal 
layers, and two partial signal layers. Since the initial projec 
tions of the number of layers required to route the board led 
to an anticipated board thickness greater than 0.080 inch, 
the aspect ratio requirements caused the 0.008-inch finished 
hole size via option to be rejected. Even with 0.025-inch 
pads and 0.012-inch finished hole size vias, the aspect ratio 
approaches 10. Therefore, a sophisticated board material is 
required to prevent thermal cycling from stressing vias and 
generating distortions on the board by expansion of the thick 
ness of the board. Cyanate ester material (HT-2) was chosen 
over other substrate alternatives because of its superior 
electrical and mechanical performance.10 

5  3  +  

1 

710 Transactions 
per Second 

1 2 3 4  

Number of Processors 

Fig. 17. Scaling of online transaction processing (OLTP) performance 
with number of processors. 

Multiprocessor Performance 

Performance 
An HP 9000 Model T500 corporate business server, a six- 
processor, 90-MHz PA-RISC 7100 CPU with a 60-MHz bus, 
achieved 2110.5 transactions per minute (U.S.$2,115 per 
tpmC) on the TPC-C benchmark.5 hi the following discus 
sions, the available multiprocessor performance data is a 
mixture of data from both the Model T500 and the older 
Model 890 systems. 

Data for the HP 9000 Model 890 (the precursor of the Model 
T500, which uses one to four 60-MHz PA-RISC processors 
and the same memory, bus, and I/O subsystems as the Model 
T500) is available for the TPC-A benchmark and one to four 
processors. Fig. 17 shows how multiprocessing performance 
scales on a benchmark indicative of OLTP performance.6 

The SPECrate performance for the Model T500 is shown in 
Fig. 18.7 The SPEC results show linear scaling with the num 
ber of processors, which is expected for CPU-intensive work 
loads with no mutual data dependencies. The OLTP bench 
marks are more typical for real commercial applications. 
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Fig. 18. Model T500 SPECrate performance. 
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Fig. 19. Model 890 program development performance. 

The losses in efficiency are caused by factors such as serial 
ization in the I/O subsystem and contention for operating 
system resources. 

Fig. 19 shows the performance of the Model 890 on an 
HP-internal benchmark representative of 24 interactive 
users executing tasks typical of a program development 
environment. 

The benchmark results confirm the value of key design 
decisions. For example, nearly all transactions were use 
ful â€” only 6% of all transactions were busied and only 1.5% of 
all bus quads were waited. Disabling the interleaving or dis 
abling the duplicate cache tags did not affect bus utilization. 

The efficiency of the bus was reflected in system through 
put. Normal operation showed near-linear multiprocessor 
scaling through four processors. Changing the interleaving 
algorithm from the normal case of four blocks interleaved 
four ways to four blocks not interleaved caused a significant 
performance impact. As expected, the penalty was greater 
at higher degrees of multiprocessing, peaking at a penalty of 
15% in a four-processor system. Disabling the duplicate cache 
tags incurred an even greater cost: the decrease in system 
performance was as much as 22%, with the four-processor 
system again being the worst case. 

These tests showed that the high-speed pipelined processor 
memory bus, fast CPUs with large caches, duplicate cache 
tags in the processor interfaces, and highly interleaved large 
physical memory allow the Model T500 system to scale 
efficiently up to twelve-way multiprocessing. 

Service Processor 

As part of the challenge of producing the HP 9000 Model 
T500 corporate business server, targeted at demanding busi 
ness applications, it was decided to try to make a significant 
improvement in system hardware availability. Hardware 
availability has two components: mean time between fail 
ures (MTBF), which measures how often the computer 
hardware fails, and mean time to repair (MTTR), which mea 
sures how long it takes to repair a hardware failure once 
one has occurred. The service processor makes a significant 

improvement in the MTTR portion of the availability equa 
tion by reducing the time required to repair the system when 
hardware failures do occur. 

HP's computer systems are typically supported from our 
response centers, where HP has concentrated some of the 
most knowledgeable and experienced support staff. These 
support engineers generally provide the first response to a 
customer problem. They make the initial problem diagnosis 
and determine which of HP's resources will be applied to 
fixing the customer's system. The greatest opportunity to 
improve the system's MTTR existed in improving the ability 
of the support engineers at the response centers to access 
failure information and control the system hardware. The 
following specific goals were set: 
All of the troubleshooting information that is available 
locally (at the failed system) should be available remotely 
(at the response center). 

â€¢ Information should be collected about hardware failures 
that prevent the normal operating system code from starting 
or running. 

'- Information about power and environmental anomalies 
should be collected. 

â€¢ Information about operating system state changes should 
be collected. 

â€¢ Error information should be available to error analysis soft 
ware running under the operating system if the operating 
system is able to recover after an anomaly occurs. 

â€¢ A means should exist to allow support personnel to deter 
mine the system hardware configuration and alter it without 
being present at the site to allow problems to be worked 
around and to aid in problem determination. 

â€¢ The support hardware should be as independent of the re 
mainder of the computer system as possible, so that failures 
in the main hardware will not cause support access to 
become unavailable. 

â€¢ Error reporting paths should be designed to maximize the 
probability that failure symptoms will be observable even in 
the presence of hardware failures. 

â€¢ Failure in the support hardware should not cause failure of 
the main computer system. 

â€¢ Failure of the support hardware should not go unnoticed 
until a failure of the main system occurs. 

â€¢ The hardware support functions should be easily upgradable 
without requiring a visit by support personnel and without 
replacing hardware. 

Hardware Implementation 
The above goals are achieved by providing a single-board 
service processor for the Model T500 system. The service 
processor is a microprocessor-controlled board that is 
located in the main cardcage. This board has control and 
observation connections into all of the hardware in the main 
cardcage. This board also contains the power system control 
and monitor which controls the power system. The service 
processor has a command-oriented user interface which is 
accessible through the same console mechanism as the op 
erating system console connections on previous systems 
(through the system's access port). The logical location of 
the service processor is shown in Fig. 20. 
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Fig. 20. Service processor block diagram. 

The service processor and power system control and monitor 
are powered by special bias power which is available when 
ever ac power is applied to the system cabinet. The service 
processor is thus independent of the main system power 
supplies, and can be accessed under almost all system fault 
conditions. 

The service processor has a communications channel to the 
power system control and monitor which allows it to pro 
vide the operating code for the power system control and 
monitor microprocessor, and then to issue commands to the 
power system control and monitor and monitor its progress. 
The power system control and monitor controls the power 
system under service processor supervision and notifies the 
service processor of power and environmental problems. 
The service processor provides a user interface to the 
power system which is used by support personnel when 
troubleshooting power and environmental problems. 

The service processor is connected to each card on the pro 
cessor memory bus by both the system clocks and the scan 
bus. Through the system clocks, the service processor pro 
vides clocking for the entire Model T500 system. The scan 
bus allows the service processor to set and read the state of 

the cards without using the main system bus. This mecha 
nism is used to determine and alter system configuration 
and for factory testing. 

The service processor is connected to the processors in the 
system by the service processor bus. The service processor 
bus allows the processors to access instructions and data 
stored on the service processor. The instructions include 
processor self-test code and processor dependent code, 
which performs architected system functions. The data 
stored on the service processor includes configuration infor 
mation and logs of system activity and problems. The service 
processor bus also allows the processors to access common 
system hardware that is part of the service processor, such 
as system stable storage which is required by the PA-RISC 
architecture, and provides access to the console terminals 
through the close console port. Because service processor 
bus access is independent of the condition of the processor 
memory bus, the processors can access error handling code, 
make error logs, and communicate with the console terminals 
even if the processor memory bus has totally failed. 

The service processor drives the system status displays on 
the control panel. These include the large status lights, the 
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number of processors display, and the activity display. The 
service processor also mirrors this information onto the 
console terminals on the status line. 

The connections between the service processor and the 
console/LAN card provide several functions. The service 
processor's user interface is made available on the local and 
remote console terminals by the access port firmware which 
is part of the console/LAN card. The user interface data is 
carried through the service processor port connection. Be 
cause the internal HP-PB cardcage which houses the console/ 
LAN card is powered by the same source of ac power as the 
service processor, the access port and its path to the console 
terminals are functional whenever the service processor is 
powered. The system processors access the console termi 
nals through the close console port connection to the access 
port firmware during the early stages of the boot process 
and during machine check processing when the I/O subsys 
tem is not necessarily functional. The service processor also 
sends control information and communicates its status to 
the console/LAN card through the service processor port. 
Console terminal access to the system and service processor 
functions is controlled by the access port firmware on the 
console/LAN card. 

A connection exists between the service processor and a 
test controller used for system testing in the factory. This 
connection allows the system internal state to be controlled 
and observed during testing. 

Because the service processor and power system control 
and monitor do not operate from the same power supplies 
as the processor memory bus, the service processor's con 
trol features and error logs are available even when the re 
mainder of the system is inoperable. Because logging, error 
handling, and console communications paths exist that are 
independent of the system buses, these functions can operate 
even when system buses are unusable. The service processor 
is architected so that its failure does not cause the operating 
system or power system to fail, so that failure of the service 
processor does not cause the system to stop. The access 
port is independent of the service processor and detects 
service processor failure. It notifies the user of service pro 
cessor failure on the console terminals, providing time for 
the service processor to be repaired before it is needed for 
system-critical functions. 

Features 
The hardware implementation described above is extremely 
flexible because of its large connectivity into all of the main 
system areas. As a result, the service processor's features 
can be tailored and changed to ensure that the customer's 
service needs are adequately met. The service processor in 
its current implementation includes the service features 
described in the following paragraphs. 

Configuration Control. The service processor keeps a record 
of the processor memory bus configuration including slot 
number, board type, revision, and serial number. The service 
processor reconciles and updates this information each time 
the system is booted by scanning the processor memory bus 
and identifying the modules it finds. Various error condi 
tions cause defective processor memory bus modules to be 
automatically removed from the configuration. The user is 
alerted to such changes and boot can be optionally paused 

on configuration changes. The service processor's user in 
terface contains commands to display and alter the configu 
ration, including removing modules from the configuration 
or adding them back into the configuration. Modules that 
are removed no longer electrically affect the system, making 
configuration an effective means of remotely troubleshoot 
ing problems on the processor memory bus. 

Logs. The service processor has a large log area that con 
tains logs of all service-processor-visible events of support 
significance. Each log contains the times of event occur 
rences. Logs that warn of critical problems cause control 
panel and console terminal indications until they have been 
read by the system operator. The service processor user 
interface contains commands to read and manage the ser 
vice processor logs. Information in the service processor 
logs can be accessed by diagnostic software running under 
the operating system. The service processor logs include: 

â€¢ Power system anomalies 
â€¢ Environmental anomalies 

Ac power failure information 
e Automatic processor memory bus module deconfigurations 

that occur because of failures 
Â« Operating system major state changes (such as boot, testing, 

initialization, running, warning, shutdown) 
High-priority machine check information 
Problems that occur during system startup before the 
processors begin execution 

â€¢ Processor self-test failure information. 

Operating System Watchdog. The service processor can be 
configured to observe operating system activity and to make 
log entries and control panel and console indications in the 
event of apparent operating system failure. 

Electronic Firmware Updates. The service processor and 
processor dependent code work together to update system 
firmware without the need for hardware replacement. The 
service processor contains the system processor dependent 
code (boot and error firmware), the firmware for the power 
system control and monitor to control the power system, 
and its own firmware. Two copies of each exist in electri 
cally erasable storage so that one copy can be updated while 
the other copy is unchanged. The service processor can 
switch between the two copies in case a problem occurs in 
one copy. 

Remote Access. The user gains access to the service processor 
user interface through the access port. The access port is 
the single point of connection for the system console termi 
nals, both local and remote. As a result, all troubleshooting 
information that is available on local console terminals is 
available remotely. 

Factory Test Support. The service processor serves as a scan 
controller, providing full access to the internal state of the 
custom VLSI chips contained on processor memory bus 
cards. This access is provided through the programmable 
clock system and the scan bus. Using the scan controller 
features of the service processor, a factory test controller 
can test the logic in the processor memory bus portion of 
the system under automatic control. 

System Status Control. Because the service processor controls 
the system status indicators, it is able to display an accurate 
summary of the complete hardware and software state of 
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Fig. 21. Power system block diagram. 

the system. The service processor can do this even when the 
system processors or main power system are unable to 
operate. 

Power System 

The power system provides regulated low-voltage dc to all 
logic assemblies in the processor memory bus cardcage, and 
to the array of fans located just below the cardcage assembly. 
The power system is designed to grow and reliably support 
the need for ever increasing processor, memory, and I/O per 
formance. It has ' he capacity to deliver almost 4,000 watts 
of dc load powei . 'ontinuously. The block diagram of the 
power system is ; liown in Fig. 21. The modular design con 
sists of an ac front-end assembly, several low-voltage dc- 
to-dc converters, and a power system control and monitor 
built within the service processor. 

The ac front end. shown in Fig. 22, contains one to three 
power-factor-correcting upconverter modules, each providing 
regulated SOOVdc. and has an output capacity of 2.2 kilowatts. 
The upconverter modules run on single-phase or dual-phase, 
208Vac input. They have output ORing diodes, implement 
output current sharing, and are capable of providing true 
N - 1 redundancy for higher system capacity and availability. 
(N+ 1 redundancy means that a system is configured with 
one more module than is necessary for normal operation. If 
there is a subsequent single module failure the extra module 
will take over the failed module's operation.) 

The active power-factor-correcting design allows the product 
to draw near unity power factor, eliminating the harmonic 
currents typically generated by the switching power supplies 
in a computer system. The design also has a very wide ac 
input operating range, is relatively insensitive to line voltage 
transients and variations, and allows a common design to be 
used worldwide. It also provides a well-regulated SOOVdc 
output to the low-voltage dc-to-dc converters. 

The low-voltage dc-to-dc converters are fed from a single 
300V rail and deliver regulated dc voltage throughout the 
main processor cardcage. The single-output converters, of 
which there are two types, have capacities of 325 and 650 
watts and a power density of about 3 watts per cubic inch. 
They have current sharing capability for increased output 
capacity, and are designed to recover quickly in the event of 
a module failure in a redundant configuration. The convert 
ers have output on/off control and a low-power mode to 
minimize power drain on the 300V rail when shut down. 
Their output voltage can be adjusted by the power system 
control and monitor. 

The power system control and monitor provides control for 
power sequencing, fan speed control, and temperature mea 
surement. It ensures that the modular converters and the 
system load are consistent with each other. The controller 
also monitors status and system voltages. This information 
is communicated to the service processor and saved in a log 
to aid in the support and maintenance of the system. 

Together, the power system control and monitor, power- 
factor-correcting upconverters, and low-voltage dc-to-dc 
converters form a scalable, high-capacity, highly available, 
modular power system. The system is easily updated and 
can be upgraded to support higher-performance processor, 
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memory, and I/O technologies as they are developed for the 
Model T500 platform. 

Product Design 

The Model T500 package is a single-bay cabinet. Overall, it is 
750 mm wide by 905 mm deep by 1620 mm tall. A fully loaded 
cabinet can weigh as much as 360 kg (800 Ib). A skeletal 
frame provides the cabinet's structure, supporting the card 
cages, fan tray, and ac front end rack. External enclosures 
with vents and a control panel attach to the frame. 

The processor memory bus boards and the low-voltage dc- 
to-dc converters reside in cardcages in the upper half of the 
Model T500 cabinet. They plug into both sides of a vertically 
oriented, centered backplane to meet bus length restric 
tions. A bus bar assembly attaches to the upper half of the 
backplane to distribute power from the larger 650-watt con 
verters to the extended-power slots that the processor 
boards use. 

There are 16 processor memory bus slots in the Model T500: 
six in the front cardcage and ten in the rear cardcage. Eight 
of the 16 slots are extended-power slots, which have a board- 
to-board pitch of 2.4 inches, twice the 1.2-inch pitch of the 
other eight standard slots. These wider slots allow increased 
cooling capability for the processor board heat sinks. The 
standard slots are used for bus converters. Memory boards 
can go in either standard slots or extended-power slots. 

Looking at the front view of the cabinet in Fig. 23, six 
extended-power processor memory bus slots are to the left 
of the low-voltage dc-to-dc converter cardcages in which 
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Fig. 24. Rear view of Model T500 cabinet. 

four 650-watt converters reside above two 325-watt convert 
ers and the miscellaneous power module. When viewing the 
rear of the cabinet in Fig. 24, ten processor memory bus 
slots, two of which are extended-power, reside to the right 
of the converter cardcages in which four 650-watt convert 
ers are above three 325-watt converters. The service proces 
sor is located in a dedicated slot between the rear processor 
memory bus and the converter cardcages. 

The fan tray is located beneath the cardcages. Air enters 
through the top vents of the cabinet and is pulled through 
air filters and then through the processor memory bus and 
dc-to-dc converter cardcages to the fan tray. Half of the air 
is exhausted through the lower cabinet vents while the other 
half is directed to cool the HP-PB cardcage boards located 
in the ac front end rack. The fan tray is mounted on chassis 
slides to allow quick access to the fans. 

The ac front end rack is mounted on the base of the Model 
T500 cabinet. This rack holds up to three power-factor- 
correcting power supply modules, an internal HP-PB card- 
cage, and the ac input unit. The HP-PB power supply has its 
own integral cooling fan. The ac front end power-factor- 
correcting modules have their own fans and air filters and 
take in cool air from the rear lower portion of the cabinet 
and exhaust air out at the front lower portion of the cabinet. 

The rear of the internal HP-PB cardcage has an HP-PB bus 
converter and seven double-high or 14 single-high HP-PB 
slots as well as the battery for battery backup. The front of 
the HP-PB cardcage has a power supply and the power sys 
tem control and monitor module. HP-PB backplane insertion 
is from the top of the cardcage by way of a sheet-metal 
carrier. 

Fig. 23. Front view of Model T500 cabinet. 
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Additional rackmount HP-PB expansion modules and system 
peripherals are housed in peripheral racks. Both HP-PB card 
cages (internal and rackmount) leverage the same power 
supply and backplane assemblies, but have different overall 
package designs. The rackmount version has a cooling fan 
that directs air in a front-to-back direction. The HP-PB 
boards mount in a horizontal orientation and the cables exit 
towards the rear of the peripheral rack. The rackmount unit 
is 305 mm high (7 EIA standard increments) by 425 mm 
wide by 470 mm deep. The peripheral racks are 600 mm 
wide by 905 mm deep by 1620 mm tall and have mountings 
to hold products conforming to the EIA 19-inch standard. 

The Model T500 industrial design team drove the system 
packaging design to come up with a unified appearance for 
HP's high-end and midrange multiuser systems. The result is 
an industrial design standard for a peripheral rack system 
that fits well with the Model T500 design. This cooperative 
effort ensured consistency in appearance and functionality. 

Electromagnetic Compatibility 
EMC shielding takes place at the printed circuit board level, 
the power supply level, and the cardcage level and does not 
rely on external enclosures for containment. This keeps 
noise contained close to the source. A hexagonally perfo 
rated metal screen is used above and below the processor 
memory bus cardcage to minimize resistance to airflow 
while providing the required EMI protection. Nickel plating 
is used on the steel cardcage pieces to ensure low electrical 
resistance between mating metal parts. The backplane has 
plated pads in the areas that contact the cardcage pieces. 
Conductive gaskets are used to ensure good contact be 
tween the backplane, the cardcages, and the cover plates. 
ESD (electrostatic discharge) grounding wrist straps are 
provided in both the front and rear of the cabinet. 

Surface mount filtering is used on the backplane to control 
noise on signal lines exiting the high-frequency processor 
memory bus cardcages and to prevent noise from coupling 
into the low-voltage dc-to-dc converters. 

All processor memory bus boards have a routed detail in 
four corner locations along the board perimeter to allow for 
grounding contact. A small custom spring fits into via holes 
and resides in the routed-out space. This spring protrudes 
past the edge of the board and contacts the card guides in 
the cardcage. Surface mount resistance elements lie be 
tween the vias and the board ground planes. This method of 
grounding the processor memory bus boards helps reduce 
EMI emissions. 

System Printed Circuit Boards 
The processor memory bus cardcage is designed to accept 
16.9-inch-high-by-14-inch-deep boards. This large size was 
required for the 256M-byte memory board. Since the proces 
sor and processor memory bus converter did not require 
large boards, it was important to have a cardcage and cover 
plate design that allows boards of various depths to be 
plugged into the same cardcage, thereby optimizing board 
panel use. 

The processor plugs into this deep cardcage by means of a 
sheet-metal extender. The bus converter was more difficult 
to accommodate since this shallow board requires cables to 

Transition Plate 

Fig. plate. Bus converter sheet-metal design, showing transition plate. 

attach to its frontplane. Therefore, a transition plate was 
developed to transition from the shallower board bulkheads 
to the full-depth cardcage cover plates as shown in Fig. 25. 
This transition plate locks into the adjacent bulkhead to 
maintain the EMI enclosure. However, either the transition 
plate or the adjacent bulkhead to which it latches can be 
removed without disturbing the other. 

The Model T500 backplane is 25.3 inches wide by 21.7 
inches high by 0.140 inch thick and has 14 layers. This back 
plane has many passive components on both sides, includ 
ing press-fit and solder-tail connectors, surface mount resis 
tors and capacitors, processor bus bars, and filters. The 
backplane connectors are designed to allow at least 200 
insertions and withdrawals. 
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A controlled-impedance connector is used on the processor 
memory bus boards to mate to the backplane. The codevel- 
opment that took place with the connector supplier was a 
major undertaking to ensure that the connector would work 
in our surface mount processes repeatably and meet our 
reliability and serviceability requirements. 

Cooling 
The Model T500 cooling system is designed to deliver high 
system availability. This is achieved by incorporating redun 
dant fans, fan-speed tachometers, air temperature sensors 
on the hottest parts of the boards, and multiple-speed fans. 
The Model T500 meets the HP environmental Class C2 speci 
fication for altitudes up to 10,000 feet with an extension in 
temperature range up to 40Â°C. 

Computational fluid dynamics software and thermal analysis 
spreadsheets were used to evaluate various components, 
heat sinks, and board placements. These tools helped the 
team make quick design decisions during the prototype 
stages. All high-powered components that were calculated 
to operate close to their maximum allowable junction tem 
perature in the worst-case environment were packaged with 
thermal test dies to record chip junction temperatures accu 
rately. Small wind tunnels were used to determine package 
and heat sink thermal performance for various airflows. 
Larger wind tunnels were used to evaluate board airflow to 
give the board designers feedback on component placement 
by monitoring preheat conditions and flow obstructions. On 
printed circuit boards, external plane thermal dissipation 
pads were used where possible in lieu of adding heat sinks 
to some surface mount parts. 

A full-scale system mockup was built. Various board models, 
air filters, EMI screens, and vents were tried to gather system 
airflow resistance data to determine the size and number of 
fans required. Various cooling schemes were evaluated by 
altering airflow direction and fan location. Pulling air down 
through the cabinet was found to provide uniform airflow 
across the cardcages while keeping the air filters clean by 
their high location. Having the fans low in the product and 
away from the vents kept noise sources farther away from 
operators and made servicing the fans easier. 

The eleven dc fans in the fan tray have the ability to run at 
three different speeds: high, normal, or low. Seven fans run 
at low speed during startup and battery backup to keep the 
power use at a minimum while supplying sufficient cooling. 
All eleven fans run at normal speed while the system is up 
and running with the inlet air at or below 30Â°C. In this case 
the system meets the acoustic noise limit of 7.5 bels (A- 
weighted) sound power. The fans run at high speed while 
the system is up and running with the inlet air above 30Â°C or 
when the temperature rise through the processor memory 
bus cardcage exceeds 15Â°C. 

At high speed, the fan tray has a volum trie airflow of ap 
proximately 1200 ft3/min, which is desÂ¡0ned to handle over 
six kilowatts of heat dissipation. This amount of power was 
considered early in the project when alternate chip technol 
ogies were being investigated. Therefore, the Model T500 
has a cooling capacity of approximately one watt per square 
centimeter of floor space, a threefold increase over the high- 
end platform that the Model T500 is replacing, yet it is still 

air-cooled. The minimum air velocity is two meters per sec 
ond in all of the processor memory bus slots and the typical 
air velocity is 3 m/s. 

Because the processor memory bus cardcage contains high 
pressure drops and airflows, the board loading sequence is 
important, especially for the processor boards. Since the 
heat sinks are on the right side of the vertical processor 
boards, they are loaded sequentially from right to left. This 
ensures that air is channeled through the processor heat 
sinks of of bypassing them in large unfilled portions of 
the cardcage. 

Manufacturing 

The fundamental strategy for manufacturing the HP 9000 
Model T500 corporate business server was concurrent engi 
neering, that is, development of both the computer and the 
technologies and processes to manufacture it at the same 
time. This resulted in a set of extensions to existing high- 
volume, cost-optimized production lines that allow sophisti 
cated, performance enhancing features to be added to the 
corporate business server. 

Cyanate Ester Board Material 
Printed circuit boards based on cyanate ester chemistry 
(referred to as HT-2) have much better thermal, mechanical, 
and electrical performance than typical FR-4 substrates. 
These properties make HT-2 ideally suited for large printed 
circuit assemblies with intensive use of components with 
finely spaced leads, high-reliability applications, high- 
frequency applications, and applications with tight electrical 
tolerances. 

More advanced printed circuit board designs tend to increase 
the aspect ratio of the board, or the ratio of the thickness of 
the board to the width of the vias for layer-to-layer connec 
tions. This is hazardous for FR-4 substrates because higher- 
aspect-ratio vias tend to be damaged in the thermal cycles of 
printed circuit assembly processes because of the expansion 
of the thickness of the boards in these cycles. The reliability 
of vias and through-hole connections (where the processor 
memory bus connector or VLSI pin-grid arrays are soldered 
to the board) is essential to the overall reliability, manufac- 
turability, and repairability of the Model T500 memory board. 

Because of their high glass transition temperature, HT-2 sub 
strates are ideally suited to survive the stressful assembly 
and repair processes and to increase the yields within these 
processes. The glass transition temperature is the tempera 
ture at which the laminated fiberglass printed circuit board 
transitions from a solid to a pliable material. This is exceeded 
for FR-4 in the printed circuit assembly process, resulting in 
distortions of the boards. If no fine-pitch or extra-fine-pitch 
parts are used, the distortion for FR-4 is acceptable in the 
surface mount process. For large boards that use fine-pitch 
components, the surface mount processes tolerate less dis 
tortion. HT-2 has the advantage that it remains stable be 
cause it doesn't reach its glass transition temperature in the 
manufacturing process. 
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Printed Circuit Assembly and Test 
Model T500 system requirements, through their impact on 
the memory board design, required development of signifi 
cant new printed circuit assembly process capability. This 
process development effort began two years before volume 
shipments and identified the important areas for engineering 
effort. New technology introduced in printed circuit assem 
bly included advanced reflow techniques. This is important 
because the total thermal mass of the components reflowed 
on the memory board is large, and because of the nature of 
the connector used for the processor memory bus. Special 
solder paste application methods were developed for the 
processor memory bus connector. This provides the assem 
bly process with wide latitude for the connectors, pin-grid 
arrays, standard surface mount parts, and fine-pitch parts. 

A key benefit of the cyanate ester choice for double-sided 
assemblies is reduced runout of the board, resulting in im 
proved registration of the solder-paste stencil and compo 
nents for higher yields of solder joints, hi the double-sided 
surface mount process, the B side components are placed 
and reflowed before placement of the A side components. 
Since reflow for the B side is conducted at a temperature far 
above the glass transition temperature for standard FR-4 
material, the boards would have been distorted in this step if 
FR-4 had been used. Thus FR-4 boards would have a higher 
failure rate on solder connections for the A side components. 

Printed circuit board test was another area identified by the 
early concurrent engineering effort. Model T500 printed cir 
cuit assemblies are tested using a strategy extended from 
the HP 3070 board test system. Much of the test is conducted 
using leading-edge scan techniques. For example, because 
of trace length and capacitance, it was impossible to add 
test points between the processor memory bus drivers of 
the bus transceivers and the arbitration and address buffer 
and the resistor pack that connects to the bus without im 
pacting performance. A scheme was devised using the scan 
port to activate each chip's drivers. The HP 3070 is set to 
apply a known current to each resistor and measure the 
voltage drop, from which the resistor's value and connectiv 
ity can be determined. There is no loss of test coverage for 
these fine-pitch parts and the scheme has the added benefit 
of verifying much of the chip's functionality. Because of the 
chip design lead time, HP's own scan port architecture (de 
signed several years in advance of the IEEE 1 149 standard 
for this type of test approach) is used and custom software 
tools were developed. Current chip designs contain the IEEE 
1 149 scan port which is directly supported by the HP 3070. 

A major manufacturing challenge was the total number of 
nets and the board layout density found in the memory board. 
With 4273 nets, if normal HP 3070 design rules, which require 
one test point per net, were followed as much as 20% of the 
surface of the board would have been dedicated to test 
points. To solve this problem a scan-based approach is used 
on the nets where VLSI parts have scan ports. By using the 
! ''in ports and exercising some of the MSI part functionality, 
t ho number of nets that need test points is reduced to 2026. 

'i Ins approach freed board space and allowed the needed 
density to be achieved. If this density had not been achieved, 
the alternative would have been to lower the capacity of 

Package Design Using 3D Solid Modeling 

The industrial design and product design groups designed the HP 9000 Model T500 
corporate business server package using the HP ME 30 solid modeling system. In 
the past, designs were drawn as 2D orthographic layouts. These layouts were 
then dimensioned and paper copies were given to the vendor for fabrication. Now. 
3D bodies are sent directly to vendors via modem without having to dimension 
them. A usu drawing is also sent to the vendor to provide a view of the part, usu 
ally isometric, and to call out notes and necessary secondary operations (plating, 
tolerances, cosmetic requirements, press-in fastener installations, etc.). 

Using 3D solid modeling allowed the product design group to reduce design time, 
reduce 2D documentation time, and reduce design errors caused by using 2D 
layouts (with orthographic views, all three 2D views must be updated for a design 
change on of a single 3D body). Additional benefits are faster turnaround on 
prototypes and an improved process for creating assembly documentation (isometric 
views of assembly positions are easily created by manipulating 3D bodies). 

Eight engineers created approximately 1 50 sheet-metal parts, ten plastic parts, 25 
cables, 15 miscellaneous parts, and many board components. Managing such a 
large having assembly was initially thought to be too difficult. But having an 
organized file structure and 3D body placement strategy allowed the design team 
to work stored efficiently. All engineers worked on their own assemblies, stored 
in separate write-protected directories, and were able to view adjoining assemblies 
for interface design. 

each memory board, thereby lowering the overall system 
memory capacity. 

The service processor presented two major challenges to 
make it fit both electrically and mechanically onto the HP 
3070 test fixture. The total of 2312 nets on this board made it 
important to make all possible electrical pins of the test fix 
ture available, which was difficult considering the large 
number of components. This problem was alleviated by 
careful layout of the service processor with the test fixture 
in mind. A custom fixture was designed to accommodate the 
board with its 2. 5-inch bulkhead. 

All of the boards and fixtures are designed to accommodate 
the transition to a no-clean process, which allows manufac 
turing of printed circuit assemblies without a chlorofluoro- 
carbon (CFC) wash. This advanced work was driven by 
Hewlett-Packard's commitment to the total elimination of 
CFCs, which have been shown to destroy the ozone layer. 
The elimination of CFC use at HP was accomplished by May 
15, 1993, more than two years ahead of the Montreal Protocol 
goal for an international ban on the use of these chemicals. 

Mechanical and Final Assembly and Test 
A key focus of concurrent design for manufacturability was 
the frame and cardcage design. Early effort by the design 
team and manufacturing went into detecting areas to improve 
the design for ease of assembly, to minimize the number and 
variety of fasteners, and to reduce the number of stocked 
items. This resulted in a set of features that include: 
Extensive use of captive fasteners, that is, fasteners that are 
preplaced in mechanical subassemblies. This reduces the 
number of individual mechanical parts to handle during 
assembly. 
A minimal set of unique fasteners with extensive use of 
Torx fasteners. 
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â€¢ One-direction fastening. Assemblers are not required to 
reach around or use awkward movements during assembly. 

â€¢ A simplified assembly procedure. Only one piece to pick up 
and handle during any operation. 

â€¢ Modularity. It is very easy to install or replace many 
components in the chassis without interference. 

â€¢ Extensive use of high-density connectors for wiring har 
nesses. This reduces wiring time and errors. Point-to-point 
wiring is minimal. 

â€¢ A robust cabinet and a very strong frame. The frame can 
survive shipping on its casters alone, and does not require a 
special pallet for most shipments. 

â€¢ A refrigerator-sized cabinet that when fully loaded (approxi 
mately 360 kg) can still be moved easily by any operator or 
technician. 

The Model T500 is designed with many inherent testability 
features, most of which are accessible using the system con 
sole. The system console is one of the most fundamental 
functions of the Model T500. It can be used in the earliest 
steps in bringing up and testing a newly assembled system. 
This permits extensive control and monitoring capability 
from a single communication point for manufacturing's auto 
mated test control host, and eliminates the need for many 
additional custom devices traditionally used for testing large 
computer systems. Many of the testability features benefit 
both manufacturing and customer support. The capabilities 
used for manufacturing test include the following: 

â€¢ Monitor and change system parameters (such as secondary 
voltages or power system status) from the system console. 

' Review from the console the system activity logs which 
track events that may indicate incorrect operation. 

â€¢ Change self-test configuration. Select only the tests desired, 
or repeat tests to aid defect analysis. 
Access diagnostics through a LAN connection standard on 
all configurations of the system. 
Diagnose potential failure sources down to a specific 
integrated circuit. 
Use scan tools designed closely to manufacturing test 
specifications. 
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PA-RISC Symmetric Multiprocessing 
in Midrange Servers 
By making a series of simplifying assumptions and concentrating on basic 
functionality, the performance advantages of PA-RISC symmetric multi 
processing using the HP PA 7100 processor chip were made available to 
the midrange HP 9000 and HP 3000 multiuser system customers. 

by Kirk M. Bresniker 

The HP 9000 G-, H-, and I-class and HP 3000 Series 98x 
servers were first introduced in the last quarter of 1990. 
Over the lifetime of these systems almost continual ad 
vances in performance were offered through increases in 
cache sizes and processor speed. However, because of de 
sign constraints present in these low-cost systems, the limits 
of uniprocessor performance were being reached. 

At the same time, the HP PA 7100 processor chip was being 
developed. Its more advanced pipeline and superscalar fea 
tures promised higher uniprocessor performance. Advances 
in process technology and physical design also promised 
higher processor frequencies. 

Part of the definition of the PA 7100 is a functional block 
that allows two PA 7100 processors to share a memory and 
I/O infrastructure originally designed for a single processor. 
This functional block provides all the necessary circuitry for 
coherent processor communication. No other system hard 
ware resources are necessary. This feature of the PA 7100 
processor made it technically feasible to create a very low- 
cost two-way symmetric multiprocessing processor board 
for the HP 9000 and HP 3000 midrange servers. However, 
significant design trade-offs had to be made to create a 
product in the time frame necessary. 

This article describes the design of this new processor 
board, which is used in the HP 9000 Models G70, H70, and 
170 servers. The HP 3000 Series 987/200 business computer 
is based on the same processor board. 

Design Goals 
The design goal of the system was to provide the advantages 
of symmetric multiprocessing in the midrange servers both 
to new customers in the form of a fully integrated server and 
to existing customers in the form of a processor board up 
grade. The only constraint was that existing memory, I/O 
cards, and sheet metal had to be used. Everything else was 
open to possible change. However, a strong restoring force 
was provided by the need to minimize time to market and 
the very real staffing constraints. There simply weren't time 
or resources to enable us to provide all the features associ 
ated with symmetric multiprocessing. The decision was 
made to make the performance advantages of symmetric 
multiprocessing the primary design goal for the midrange 
servers. 

Development History 
The I-class server was chosen as the initial development 
platform for the PA 7100 processor. An I-class processor 
board was developed that accepts a PA 7100 module consist 
ing of the processor package and high-speed static RAMs. In 
addition, an extender board was developed that allows two 
PA 7100 modules to be connected to the I-class processor 
board. This four-board assembly, which was the first proto 
type of the eventual design, booted and was fully functional 
within five months of the initial PA 7100 uniprocessor 
turn-on. This short time period allowed all the basic operat 
ing system changes and performance measurements to be 
made at the same time as the uniprocessor work was being 
done, by the same design team, with only a small incremental 
effort. 

At this point, the efforts of the design team were centered 
on introducing the PA 7100 uniprocessor servers. However, 
since the initial performance measurements of the symmetric 
multiprocessing prototype were so encouraging, the team 
continued to refine and develop the initial prototype into a 
manufacturable product. 

The first decision of the design team was to implement the 
design using IM-byte instruction and data caches, a fourfold 
increase over the initial PA 7100 designs. This decision was 
driven by the initial performance measurements made on 
prototypes, which showed that the larger caches optimized 
the utilization of the shared processor memory bus. The 
same measurements also showed that the most desirable 
performance levels would require the design to match the 
previous processor frequency of 96 MHz. This would be the 
first of the large-cache, high-speed designs for the PA 7100 
processor, and would therefore carry considerable design 
risk. 

The next decision was to implement the design not with 
modules, but as a single board. This was done to lower the 
cost and technology risk of the design. The shared proces 
sor memory bus would be twice as long as in previous de 
signs, but it would not have to bear the additional signal 
integrity burden of two module connector loads. This was 
the first of the simplifying assumptions, but it led to several 
key others. 
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A great deal of the complexity in symmetric multiprocessing 
systems arises not just from the problems of maintaining the 
processors during normal operation, but from handling spe 
cial operating conditions like failures or booting. Since in this 
case both processors are always installed, one processor is 
designated as the "monarch" and is allocated special respon 
sibilities. The second processor is designated as the "serf," 
and is not allocated any special responsibilities. This obvi 
ates the need for a complex method of determining which 
processor should maintain control during exceptional circum 
stances. Also, since both processors are on the same board 
and cannot be replaced independently, it was decided that if 
one processor should fail, the other would not continue to 
operate. This removes an entire class of complex interac 
tions that would have had to be discovered, handled, and 
tested, considerably shortening the firmware development 
life cycle. 

One negative implication of the single-board solution was that 
one processor was in the direct airflow path of the other (see 
Fig. 1). This meant that a new solution for cooling had to be 
devised, but in such a way that the upgrade to the new design 
would not impact the existing sheet metal. A passive solu 
tion to diverting the airflow using air baffles did not prove to 
be effective enough, so the mechanical design team devised 
an active solution. A forced-air baffle was devised that is 
essentially a box occupying the airflow volume next to the 
processor board. It has three openings centered above the 
processors and the worst-case cache components. The box 
is pressurized by a miniature fan. This causes air to impinge 
directly on the critical components without disturbing the 
airflow to the rest of the processor board. Since the primary 
airflow is now normal to the processor board, a new heat 
sink consisting of a grid of pins was devised to allow the 
impinging air to cool the processors most efficiently. 

One drawback of this active airflow solution is that it relies 
so heavily on the miniature fan to maintain the processor 
temperature in a safe range. Of all component classes used 
in these systems, fans have some of the higher failure rates. 
Since so much of the air volume next to the processor board 
is committed to the forced-air baffle, failure of the forced-air 
baffle fan can cause permanent damage to the processors if 

Fig. 1. On the left is the unmodi 
fied airflow pattern showing the 
second processor in the thermal 
shadow of the first. On the right 
is the revised airflow pattern 
showing the impingement cooling 
provided by the baffle fan. 

not detected in time. In fact, the overheating of the proces 
sors was measured to be so rapid in the event of the baffle 
fan failure that the existing overtemperature protection could 
not be activated quickly enough. For this reason, the fan is 
continuously monitored. If the fan stops spinning or rotates 
slower than a preset limit, the system power supplies are 
shut down immediately. In addition to providing maximum 
protection to the processors, this solution also removes the 
need to burden the software and firmware development 
with status checking routines. 

All of these decisions were made in the background, while 
the uniprocessor design was being readied for release. In 
fact, some of the impetus for making the simplifications was 
the lack of time. However, it was clear that the desire for the 
system was strong enough for the team to continue. Within 
one week of the release of the final revision of the unipro 
cessor system, the initial revision of the multiprocessor pro 
cessor board was also released. This functional prototype 
proved to be extremely stable, with no hardware failures 
reported during the design phase. 

Verification 
It was at this point that the electrical verification of the 
design began, and with it the challenging phase of the proj 
ect as well. The design risks of the large, high-speed caches 
imagined early on turned out to be all too real. The most 
problematic aspect of the cache design is that the read ac 
cess budget for the cache access is one and one half clock 
cycles (15.6 ns, assuming 96-MHz operation). During that 
time, the address must be driven to the SRAMs, the SRAMs 
must access the data, and the data must be driven back to 
the processor. Current SRAM technology consumes almost 
60% of the read budget in internal access time. This budget 
needs to be maintained over all possible operating condi 
tions, and a single fault can cause either a reload (in the 
case of instructions) or a system panic and shutdown (in the 
case of data). The unique problem with this design was that 
caches this large had never before been run with the PA 
7100 processor. 

The test methodology used was to run tests tailored to stress 
the caches while varying the system voltage, temperature, 
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Fig. 2. Block diagram of the HP 9000 Model 170 computer system. 

and frequency. Although functional testing at normal condi 
tions had yielded no failures, the initial cache design quickly 
succumbed to the pressures of this type of electrical verifica 
tion. Analysis of the failures indicated that the read budget 
was being violated at the combined extremes of low voltage, 
high temperature, and high frequency. The IM-byte SRAMs 
had higher capacitive loads and were physically larger than 
t h e i r  t h e  c o u n t e r p a r t s .  T h i s  g r e a t l y  i n c r e a s e d  t h e  
address drive time. The team did not have recourse to faster 
high-density SRAMs from any vendor, and caches built out 
of faster lower-density SRAMs would not have provided the 
symmetrical multiprocessing performance we desired. 

What followed was an exhaustive analysis by all three con 
tributors to the design: the PA 7100 design team, the board 
design team, and the SRAM vendor design teams. Each team 
worked at pulling fractions of nanoseconds out of the read 
access. The board design team experimented with termina 
tion designs and new layouts to improve address drive time. 
The PA 7100 team pushed their chip faster to increase the 
read time budget. They also identified which critical signals 
had to be faster than all the rest and simulated the board 
team's changes. The SRAM vendor design teams pushed 
their processes to achieve faster components. All three 
teams pushed their designs to the limits, and it took con 
tributions from all three teams to succeed. In the end, it 
took over six months of constant design refinement and 
testing to achieve the final result, a design that meets the 
team's initial electrical verification requirements. This turned 
out to be the only significant electrical design problem that 
the processor board team had to solve. 

While the board design team worked out the electrical 
design issues, a separate team was formed to verify the 
multiprocessing functionality of the PA 7100 processor. This 
formal verification was the last step in the development 
cycle for the systems. 

System Overview 
A block diagram of the Model 170 system appears in Fig. 2. 
Both PA 7100 CPUs are configured with 1M bytes of instruc 
tion cache and 1M bytes of data cache. The processors run 
at a speed of 96 MHz. The shared processor memory bus is 

operated at a fixed ratio of 3:2 with respect to the proces 
sors, or 64 MHz. and connects the processors to the single 
memory and I/O controller. The memory and I/O controller 
interfaces to a maximum of 768M bytes of error corrected 
memory. The I/O adapter connects a demultiplexed version 
of the shared processor memory bus to a four-slot (Model 
G70). eight-slot (Model H70), or twelve-slot (Model 170) 
HP-PB (Hewlett-Packard Precision Bus) I/O bus. 

In addition to the processor board, the base system consists 
of the HP-PB backplane, a memory extender, a fan baffle, 
and a multifunction I/O card. 

System Specifications 
The following specifications are for the 12-slot Model 170 
server. 

Processors 

Cache 

Processor Clock 
System Clock 
Maximum Memory 
I/O Bus 
Maximum Integrated Storage 
Maximum External Storage 
Maximum LANs 
Maximum Users 

2 PA 7100 superscalar pro 
cessors with integrated 
floating-point unit 
IM-byte instruction cache 
per processor. IM-byte data 
cache per processor 
96MHz 
64MHz 
768M bytes 
1 12-slot HP-PB 
6G bytes 
228G bytes 
7 
3500 

Summary 
The success of bringing PA-RISC symmetric multiprocessing 
to the HP 9000 and HP 3000 midrange servers was the result 
of implementing simplified symmetric multiprocessing func 
tionality. The PA 7100 team integrated all the functionality for 
two-way symmetric multiprocessing into their design. The 
system design team followed their lead by creating a system 
around the two processors that includes only the core hard 
ware and firmware functionality absolutely necessary for 
operation. 
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SoftBench Message Connector: 
Customizing Software Development 
Tool Interactions 
Software developers using the SoftBench Framework can customize their 
tool interaction environments to meet their individual needs, in seconds, 
by pointing and clicking. Tool interaction branching and chaining are 
supported. No user training is required. 

by Joseph J. Courant 

SoftBench Message Connector is the user tool interaction 
facility of the SoftBench Framework, HP's open integration 
software framework. Message Connector allows users to 
connect any tool that supports SoftBench Framework mes 
saging to any other tools that support SoftBench Framework 
messaging without having to understand the underlying mes 
saging scheme. Users of the framework can easily customize 
their tool interaction environments to meet their individual 
needs, in literally seconds, by simply pointing and clicking. 

People familiar with the term SoftBench may know it under 
one or both of its two identities. The term SoftBench usually 
refers to a software construction toolset.1 The term Soft- 
Bench Framework refers to an open integration software 
framework often used to develop custom environments.2 
People familiar with SoftBench the toolset should know that 
underlying the toolset is the SoftBench Framework. 

Message Connector can be used to establish connections 
between any SoftBench tools without understanding the 
underlying framework. The editor can be connected to the 
builder which can be connected to the mail facility and the 
debugger, and so on. Message Connector does not care what 
tools will be connected, as long as those tools have a Soft- 
Bench Framework message interface. The message inter 
face is added by using the SoftBench Encapsulate^3 which 
allows users to attach messages to the functions of most 
tools. Message Connector uses the message interface 
directly and without modification. To date, over seventy 
known software tools from a wide variety of companies 
have a SoftBench message interface. It is also estimated that 
a much larger number of unknown tools have a SoftBench 
message interface. Users of the SoftBench Framework can 
now treat tools as components of a personal work environ 
ment that is tailored specifically by them and only takes 
minutes to construct. 

Tools as Components 
What does it mean to treat tools as components? To treat a 
tool as a component means that the tool provides some 
functionality that is part of a larger task. It is unproductive 
to force tool users to interact with several individual tools to 
accomplish a single task, but no tool vendor is able to pre 
dict all of the possible ways in which a tool's functionality 

will be used. Using Message Connector, several tools can 
be connected together such that they interact with each 
other automatically. This automatic interaction allows the 
user to focus on the task at hand, not on the tools used to 
accomplish the task. 

A simple but powerful example is detecting spelling errors 
in a document, text file, mail, or any other text created by a 
user. The task is to create text free of spelling errors. The 
tools involved are a text editor and a spell checker. In tradi 
tional tool use, the editor is used to create the text and then 
the spell checker is used to check the text. In simple notes 
or files the text is often not checked for errors because it 
requires interacting with another tool, which for simple text 
is not worth the effort. When treating tools as components 
the user simply edits and saves text and the spell checker 
checks the text automatically, only making its presence 
known when errors exist. Note that in traditional tool use 
there is one task but two required tool interactions. In the 
component use model, there is one task and one required 
tool interaction (see Fig. 1). 

Using Message Connector, a user can establish that when 
the editor saves a file, the spell checker will then check that 
specific file. This is accomplished as follows: 
1. Request that Message Connector create a new routine 
(routine is the name given to any WHEN/THEN tool interaction). 
2. Select the WHEN: tool to trigger an action (editor). 
3. Select the specific function of the WHEN: tool that will 
trigger the action (file saved). 
4. Select the THEN: tool to respond to the action (spell 
checker). 
5. Select the specific function that will respond (check file). 
6. Change the WHEN: and THEN: file fields to specify that the 
file saved will be the file checked. 
7. Save the routine (routines are persistent files allowing 
tool interactions to be retained and turned on and off as 
desired). 
8. Enable the routine. 

Now any time the editor saves a file, that file will automati 
cally be spell checked. The focus of creating text free of 
spelling errors is now the editor alone. The spell checking is 
driven by editor events, not by the user. 
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Fig. com Traditional tool use (left) compared with tools as task com 
ponents (right). Using the SoftBench Message Connector, the user 
can set up a routine so that whenever a file is saved by the editor it 
is automatically spell checked. The spell checker does not have to be 
explicitly invoked by the user. 

Tool Interaction Branching 
While the above example is very simple, it applies equally 
well to any number of tool interactions. It is also possible to 
create branching of interaction based upon the success or 
failure of a specific tool to perform a specific function (see 
Fig. 2). For example, when the build tool creates a new exe 
cutable program then display, load, and execute the new 
program within the debugger; when the build tool fails to 
create a new executable then go to the line in the editor 
where the failure occurred. 

Interaction Chaining 
It is file to define interactions based upon a specific file 
type, and it is also possible to chain the interactions (see 
Fig. 3). As an example, when the editor saves a text file then 
spell check that file; when the editor saves a source code 
file then perform a complexity analysis upon that file; when 
a complexity analysis is performed on a file and there are no 
functions that exceed a given complexity threshold then 
build the file; when the complexity is too high, go to the 
function in the editor that exceeds the given complexity 
threshold; when the build tool creates a new executable 

Build 
Succeeded 

Build 
Failed 

â€” >â€¢ Automatic Tool Interaction Using Message Connector 

Fig. A Message Connector supports tool interaction branching. A 
different tool is invoked automatically depending on the result of a 
previous operation. 

â€” ^ Automatic Tool Interaction Using Message Connector 

F i g .  3 .  T o o l  i n t e r a c t i o n  c h a i n i n g .  

program then display, load, and execute the new program 
within the debugger, reload the new executable into the static 
analysis tool, and save a version of the source file; when the 
build tool fails to create a new executable, then go to the 
line in the editor where the failure occurred. This example 
of interaction chaining allows the user to focus on the task 
of creating defect-free text and source files. The user's focus 
is on the editor and all other tools required to verify error- 
free files are driven automatically by editor events, not by 
the user. The tools have become components of a user task. 

Message Connector Architecture 
The architecture of Message Connector follows the compo 
nent model of use encouraged by Message Connector. As 
shown in Fig. 4, Message Connector is a set of three sepa 
rate components. Each component is responsible for a sepa 
rate function and works with the other components through 
the SoftBench Framework messaging system. The routine 
manager provides the ability to enable, disable, organize, 
and generally manage the routines. The routine editor's 
function is routine creation and editing. The routine engine's 
function is to activate and execute routines. 

The importance of this architecture is that it allows Message 
Connector, the tool that allows other tools to be treated as 
components, to be treated as a set of components. This al 
lows the user, for example, to request that the routine engine 
enable or disable another routine within a routine. It allows 
the user to run a set of routines using the routine engine 
without a user interface. It allows the user to request that 
the routine engine automatically enable any routine saved 
by the routine editor. Many other examples of the advantages 
of the architecture can be given. 

The routine manager simply gives the user a graphical 
method of managing routines. When analyzing the tasks a 
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Message Connector user would perform, it was concluded 
that the routine manager would be in the user's environment 
most of the time. It was also concluded that the routine 
manager would be an icon most of the time. As a result, the 
design goal for the routine manager was to occupy as little 
screen space, memory, and process space as possible. As 
designed and implemented, a large portion of the routine 
manager's user interface simply sends a message to the Soft- 
Bench Framework requesting that a service be performed. 
As an example, the Enable and Disable command buttons simply 
send a message requesting that the routine engine enable or 
disable the selected routine. The routine manager was de 
signed, implemented, and tested before the implementation 
of the routine editor and the routine engine. 

The routine editor proved to be very challenging. The Mes 
sage Connector project goal stated that, "Message Connector 
will provide SoftBench Framework value to all levels of end 
users in minutes." While a simple statement, the implica 
tions were very powerful. "All levels of end users" implied 
that whatever the editor did, displaying the underlying raw 
framework would never meet the goal. All information 
would have to be highly abstracted, and yet raw information 
must be generated and could not be lost. "All levels of end 
users" also implied that any user could add messaging tools 
to the control of Message Connector, so Message Connector 
could not have a static view of the framework and its cur 
rent tools. "In minutes" implied that there would be no need 
to read a manual on a specific tool's message interface and 
format to access the tool's functionality. It also implied that 
the routine editor, tool list, and tool function lists must be 
localizable by the user without disturbing the required raw 
framework information. "In minutes" also implied that there 
would be no writing of code to connect tools. 

The routine editor underwent sixty paper prototype revisions, 
eighteen code revisions, and countless formal and informal 
cognitive tests with users ranging from administrative assis 
tants to tenured code development engineers. It is ironic 
that one result of focusing a major portion of the project 
team's effort on the routine editor has been that various 
people involved with promoting the product have complained 
that it is too easy to use. Apparently people expect integra 
tion to be difficult, and without a demonstration, potential 
customers question the integrity of the person describing 
Message Connector. When someone is told that there is a 
tool that can connect other disparate tools that have no 

Fig. 4. SoftBench Message 
Connector architecture. The 
three major Message Connector 
modules â€” the routine manager, 
the routine editor, and the rou 
tine engine â€” are treated as 
components like the tools. 

knowledge of each other, in millions of possible ways, in 
seconds, without writing code, it is rather hard to believe. 

The routine engine turned out to be an object-oriented won 
der. The routine engine must be very fast. It stores, deciphers, 
matches, and substitutes portions of framework messages, it 
receives and responds to a rapid succession of a large num 
ber of trigger messages, and it accommodates future en 
hancements. The routine engine is the brain, heart, and soul 
of Message Connector and is completely invisible. 

Example Revisited 
Walking through the eight steps in the simple editor/spell 
checker example above will show the interaction within and 
between each of the Message Connector components. 

1. Request that Message Connector create a new routine. 

This step is accomplished using the routine manager (see 
Fig. 5). The routine manager's task is to prompt the user for 
a routine name, ensure that the name has the proper file 
extension (.mcr), and then simply send a request to the mes 
sage server to edit the named routine. The routine manager's 
role of largely coordination. It has no intimate knowledge of 
the routine editor. After sending the request to the message 
server to edit the named routine, the routine manager will 
await a notification from the message server of whether the 
edit was a success or a failure. The routine manager then 
posts the status of the request. 

A separate routine editor is started for each routine edit 
request received by the message server. When the routine 
manager sends a request to the message server to edit a 
routine, the message server starts a routine editor and the 
routine editor initializes itself and sends a notification of 
success or failure back to the message server. Fig. 6 shows a 
typical routine editor screen. 

2. Select the WHEN: tool to trigger an action. 

In the case of creating a new routine, there is no routine to 
load into the editor and therefore the WHEN: and THEN: fields 
are displayed empty. The routine editor searches for and 
displays all possible tools available for Message Connector 
to manipulate. It is important that Message Connector is 
actually searching for Message Connector tool catalog files, 
not the tools themselves. For each file found, the file name 
is displayed as a tool in the routine editor. 
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R Ã  e  R o u t i n e s  L o g g i n g  

P r o j e c t :  h p f  c e a c : / u s e r s / c o u r a n t  

R O U T I N E  M A N A G E R  

N e w . . .  D e l e t e . . .  H i d e  R o u t i n e  

E d i t . . .  \  D u p l i c a t e .  

R o u t i n e  L i s t  

i  Unh ide  Rout ine .  

S t a t u s  

LOCATION: HOME 

MC_Demo.mcr 

build-debug, me r 

editâ€” build, me r 

ledit-spe 1 1 . me r   -EDITINC 
LOCATION: SYSTEM 

E n a b l e  R o u t i n e  D i s a b l e  R o u t i n e  

Fig. 5. Typical routine manager screen. 

The Message Connector tool catalog files contain three im 
portant pieces of information. The catalog files are ASCII 
files that contain the raw messages required to access the 
functions of the tool being cataloged. The catalog files also 
contain the abstractions of the raw messages (these are dis 
played to the user, not the raw messages) and any message 
help that may be required by a user. For most tools, the cata 
log file is provided for the user by the person who added the 
message interface. If the catalog file does not exist for a 
particular tool, it can be created using that tool's message 
interface documentation. The catalog does not have to be 
created by the tool provider. The catalog files can also be 
edited by the user to change the abstraction displayed or to 
hide some of the seldom used functions. 

When the user selects a tool from the Message Connector 
routine editor tool list, the routine editor goes out and parses 
the tool's catalog file for all applicable message abstractions 
and displays those abstractions. 

3. Select the specif ic function of the WHEN: tool that will 

trigger the action. 

When a user selects a WHEN: function and copies that function 
to the WHEN: statement, the routine editor reads the func 
tion's raw message and the abstraction of the raw message. 
Only the abstraction is displayed to the user, but both the 
raw message and the abstraction are temporarily preserved 
until the user saves the routine. 

Routine: /us e r s/c our ant/. MC/Routines/editâ€” spell .me r 

S e l e c t  t h e  t o o l  a n d  t h e n  a n  a c t i o n  f r o m  t h e  l i s t s  b e l o w  a n d  p r e s s  t h e  d e s i r e d  c o p y  b u t t o n .  

O  A l l  P r o j e c t s  

W H E N :  E d i t  

I HOME -RE QUIRED 

w i t h  d a t a  o p t i o n s  

O  I g n o r e  F a i l u r e s  

T H E N :  R e q u e s t  

HONE-REQUIRED 

w i t h  d a t a  o p t i o n s  

M U L T I P L E  T H E N :  R e q u e s t  L i s t  [ Ã ¯ Ã  n s e r t l i A p p e n d n  D e l e t e ]  I  C l e a r |  S e l e c t  e x e c u t i o n  t y p e :  E  S e r i a l  O  P a r a l l e l  

T o o l ' s  A c t i o n  L i s t  Â ¡  S h o w  S u c c e e d e d / F a i l e d  I  S h o w  R e q u e s t s  

l lRequest Spell  Check Fils 
Request Spell Set_Dictionary # Home_dictionary_n 

Request Spell No_Dictionary 

Request Spell Use_British_Spelling 

Request Spell Use_English_Spelling 

Request Spell Display 

Help  on  Se lec ted  Act ion . .  C o p y  t o  " W H E N :  C o p y  t o  T H E N :  

S a v e  R o u t i n e  
Fig. 6. Typical routine editor 
screen. 
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4. Select the THEN: tool to respond to the action, 

5. Select the specific function that will respond. 

These steps are similar to the WHEN: steps. 

6. Change the WHEN: and THEN: f He fields. 

This simply allows the user to change the values displayed 
on the screen. For these values, what is seen on the screen 
is what will be used when the user selects Save Routine. 

7. Save the routine. 

This step takes all of the raw messages, the message ab 
stractions, and the screen values and assembles them into 
an internal routine file format which both the routine editor 
and the routine engine are able to read. The routine editor 
then writes out a binary data file into the routine file being 
edited and then quits. 

8. Enable the routine. 

This step is driven by the routine manager, but is performed 
by the routine engine. The user selects the routine of interest, 
then selects the Enable Routine button on the routine manager. 
Again, the routine manager's primary role is coordination. 
When the user selects the Enable Routine button, the routine 
manager simply finds the routine selected and sends a re 
quest to the message server to enable the named routine. 
The routine engine receives the enable request from the 
message server and reads the named routine. After reading 
the routine, the routine engine establishes the WHEN: mes 
sage connection to the message server. This WHEN: connec 
tion is as general as required. If the user uses any wildcards 
in the WHEN: statement, the routine engine will establish a 
general WHEN: message connection and then wait until the 
message server forwards a message that matches the routine 
engine's message connection. If the message server forwards 
a matching message, the routine engine sends a request for 
each of the THEN: statements to the message server. 

Development Process 
Message Connector's transformation from a concept to a 
product was a wonderful challenge. The two most important 
elements of this transformation were a cross-functional 
team and complete project traceability. A decision was 
made before the first project meeting to assemble a cross- 
functional team immediately. To make the team effective, all 
members were considered equal in all team activity. It was 
made clear that the success or failure of the project was the 
success or failure of the entire team. This turned out to be 
the most important decision of the Message Connector proj 
ect. The team consisted of people from human factors, 
learning products, product marketing, research and develop 
ment, promotional marketing, and technical customer sup 
port. Most of the team members only spent a portion of their 
time on the Message Connector project. However, a smaller 
group of full-time people could never have substituted for 
Message Connector's cross-functional team. The collective 
knowledge of the team covered every aspect of product re 
quirements, design, development, delivery, training, and 
promotion. During the entire life of the project nothing was 
forgotten and there were no surprises, with the exception of 
a standing ovation following a demonstration at sales train 
ing. The team worked so well that it guided and corrected 
itself at every juncture of the project. 

One critical reason the team worked so well was the second 
most important element of the project â€” complete project 
traceability. There was not a single element of the project 
that could not be directly traced back to the project goal. 
This traceability provided excellent communication and 
direction for each team member. In the first two intense 
weeks of the project, the team met twice per day, one hour 
per meeting. These meetings derived the project goal, objec 
tives (subgoals by team definition), and requirements. The 
rule of these meetings was simple: while in this portion of 
the project no new level of detail was attempted until the 
current level was fully defined, understood, and challenged 
by all members. As each new level of detail was defined, one 
criterion was that it must be directly derived from the level 
above â€” again, complete project traceability. The project 
goal was then posted in every team member's office to pro 
vide a constant reminder to make the correct trade-offs 
when working on Message Connector. This amount of time 
and traceability seemed excessive to some people outside of 
the team, but it proved to be extremely productive. All of the 
team members knew exactly what they were doing, what 
others were doing, and why they were doing it throughout 
the life of the project. 

The project goal was made easy to remember, but was ex 
tremely challenging: "Message Connector will provide Soft- 
Bench Framework value to all levels of end users in minutes." 
At first glance, this seems very simple. Breaking the goal 
apart, there are three separate, very challenging pieces to 
the goal: "SoftBench Framework value," "all levels of end 
users," and "in minutes." As an example of the challenge, let's 
look more closely at the "in minutes" portion of the project 
goal. "In minutes" means that there is a requirement that the 
user find value in literally minutes using a new product that 
uses a rather complex framework and a large number of 
unknown tools that perform an unknown set of functionality. 
How would Message Connector provide all of this informa 
tion without requiring the user to refer to any documenta 
tion? "In minutes" made a very dramatic impact on the user 
interface, user documentation, and user training (no training 
is required). These three pieces of the goal also provided the 
grounds for the project objectives. The project objectives 
then provided the basis for the project and product require 
ments. At each new level of detail it was reassuring to the 
team that there was no effort expended that did not directly 
trace back to the project goal. The team ownership, motiva 
tion, high. and productivity proved to be extremely high. 

Conclusion 
Using Message Connector, users of the SoftBench Frame 
work can easily customize their tool interaction environ 
ment to treat their tools as components of a task, in literally 
seconds, by simply pointing and clicking. This was all made 
possible by immediately establishing a cross-functional team 
to own the project and requiring complete project trace- 
ability. An interesting fact is that early users of Message Con 
nector developed two new components that are separate 
from the Message Connector product but are now shipped 
with it. One component (named Softshell) executes any spe 
cified UNIX command using messaging and can return the 
output of the command in a message. This allows a Message 
Connector user to execute UNIX commands directly as a 
result of an event of any tool. For example, when the user 
requests the editor to edit a file, if the file is read-only then 
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execute the UNIX command to give the user write access. 
The second component (named XtoBMS) converts X Win 
dows events into messages that Message Connector can use 
to request functionality from any component automatically. 
This means that when any tool maps a window to the 
screen, the user environment can respond with any action 
the user defines. This has been used extensively in process 
management tools so that the appearance of a tool on the 
screen causes the process tool to change the task a user is 
currently performing. 
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Six-Sigma Software Using Cleanroom 
Software Engineering Techniques 
Virtually defect-free software can be generated at high productivity levels 
by applying to software development the same process discipline used in 
integrated circuit manufacturing. 

by Grant E. Head 

In the late 1980s, Motorola Inc. instituted its well-known six- 
sigma program. 1 This program replaced the "Zero Defects" 
slogan of the early '80s and allowed Motorola to win the first 
Malcolm Baldridge award for quality in 1988. Since then, 
many other companies have initiated six-sigma programs.2 

The six-sigma program is based on the principle that long- 
term reliability requires a greater design margin (a more 
robust design) so that the product can endure the stress of 
use without failing. The measure for determining the robust 
ness of a design is based on the standard deviation, or sigma, 
found in a standard normal distribution. This measure is 
called a capability index (Cp), which is defined as the ratio 
of the maximum allowable design tolerance limits to the 
traditional Â±3-sigma tolerance limits. Thus, for a six-sigma 
design limit Cp = 2. 

To illustrate six-sigma capability, consider a manufacturing 
process in which a thin film of gold must be vapor-deposited 
on a silicon substrate. Suppose that the target thickness of 
this film is 250 angstroms and that as little as 220 angstroms 
or as much as 280 angstroms is satisfactory. If as shown in 
Fig. 1 the +30-angstrom design limits correspond to the six- 
sigma points of the normal distribution, only one chip in a 

2 2 0 Ã  
I â€” 

235Ã€ 250Ã€ 

billion will be produced with a film that is either too thin or 
too thick. 

In any practical process, the position of the mean will vary. 
It is generally assumed that this variation is about Â±1.5 sigma. 
With this shift in the mean a six-sigma design would produce 
3.4 parts per million defective. This is considered to be satis 
factory and is becoming accepted as a quality standard. 
Table I lists the defective parts per million (ppm) possible 
for different sigma values. 

At first the six-sigma measure was applied only to hardware 
reliability and manufacturing processes. It was subsequently 
recognized that it could also be applied to software quality. 
A number of software development methodologies have 
been shown to produce six-sigma quality software. Possibly 
the methodology that is the easiest to implement and is the 
most repeatable is a technique called cleanroom software 
engineering, which was developed at IBM Corporation's 
Federal Systems Division during the early 1980s.3 We ap 
plied this methodology in a limited way in a typical HP 
environment and achieved remarkable results. 

265Ã€ 

M e a n  

Numerous Defects 
(6210 Defective ppm) 

Numerous Defects 
(6210 Defective ppm) 

Virtually No 
Defects 

(3.4 ppm) 

- 6 0  

ppm = Parts Per Mil l ion 

Fig. 1. An illustration of a six- 
sigma design specification. A 
design specification of Â±30 ang 
stroms corresponds to a Â±6-sigma 
design. Also shown is the Â±1.5a 
variation from the mean as a 
result of variations in the process. 
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T a b l e  I  
D e f e c t i v e  p p m  f o r  D i f f e r e n t  S i g m a  V a l u e s  

S i g m a  p p m  

1  6 9 7 , 7 0 0  

2  3 0 8 , 7 3 3  

3  6 6 , 8 0 3  

4  6 , 2 1 0  

5  2 3 3  

6  3 . 4  

7  0 . 0 1 9  

When applied to software, the standard unit of measure is 
called use, and six-sigma in this context means fewer than 
3.4 failures (deviations from specifications) per million uses. 
A use is generally defined to be something small such as the 
single transaction of entering an order or command line. 
This is admittedly a rather murky definition, but murkiness 
is not considered to be significant. Six-sigma is a very strin 
gent reliability standard and is difficult to measure. If it is 
achieved, the user sees virtually no defects at all, and the 
actual definition of a use then becomes academic. 

Cleanroom software engineering has demonstrated the ability 
to produce software in which the user finds no defects. We 
have confirmed these results at HP. This paper reports our 
results and provides a description of the cleanroom process, 
especially those portions of the process that we used. 

Cleanroom Software Engineering 
Cleanroom software engineering ("cleanroom") is a metaphor 
that comes from integrated circuit manufacturing. Large- 
scale integrated circuits must be manufactured in an envi 
ronment that is free from dust, flecks of skin, and amoebas, 
among other things. The processes and environment are 
carefully controlled and the results are constantly monitored. 
When defects occur, they are considered to be defects in the 
processes and not in the product. These defects are charac 
terized to determine the process failure that produced them. 
The processes are then corrected and rerun. The product is 
regenerated. The original defective product is not fixed, but 
discarded. 

The cleanroom software engineering philosophy is analogous 
to the integrated circuit manufacturing cleanroom process. 
Processes and environments are carefully controlled and are 
monitored for defects. Any defects found are considered to 
be defects in one or more of the processes. For example, 
defects could be in the specification process, the design 
methodology, or the inspection techniques used. Defects are 
not considered to be in the source file or the code module 
that was generated. Each defect is characterized to determine 
which process failed and how the failure can be prevented. 
The failing process is corrected and rerun. The original prod 
uct is discarded. This is why one of the main proponents of 
cleanroom, Dr. HarÃan Mills, suggests that the most important 
tool for cleanroom is the wastebasket.4 

Life Cycle 
The life cycle of a cleanroom project differs from the tradi 
tional life cycle. The traditional 40-20-40 postinvestigation 

life cycle consists of 40% design, 20% code, and 40% unit 
testing. The product then goes to integration testing. 

Cleanroom uses an 80-20 Ufe cycle (80% for design and 20% 
for coding). The unexecuted and untested product is then 
presented to integration testing and is expected to work. If it 
doesn't work, the defects are examined to determine how 
the process should be improved. The defective product is 
then discarded and regenerated using the improved process. 

No Unit Testing 
Unit testing does not exist in cleanroom. Unit testing is pri 
vate testing performed by the programmer with the results 
remaining private to the programmer. 

The lack of unit testing in cleanroom is usually met with 
skepticism or with the notion that something wasn't stated 
correctly or it was misunderstood. It seems inconceivable 
that unit testing should not occur. However it is a reality. 
Cleanroom not only claims that there is no need for unit 
testing, it also states that unit testing is dangerous. Unit test 
ing tends to uncover superficial defects that are easily found 
during testing, and it injects "deep" defects that are difficult 
to expose with any other kind of testing. 

A better process is to discover all defects in a public arena 
such pro in integration testing. (Preferably, the original pro 
grammer should not be involved in performing the testing.) 
The same rigorous, disciplined processes would then be 
applied to the correction of the defects as were applied to 
the original design and coding of the product. 

In practice, defects are almost always encountered in integra 
tion testing. That seems to surprise no one. With cleanroom, 
however, these defects are usually minor and can be fixed 
with nothing more than an examination of the symptoms 
and a quick informal check of the code. It is very seldom 
that sophisticated debuggers are required. 

When to Discard the Product 
When IBM was asked about the criteria for judging a module 
worthy of being discarded, they stated that the basic criterion 
is that if testing reveals more than five defects per thousand 
lines of code, the module is discarded. This is a low defect 
density by industry standards,5 particularly when it is con 
sidered that the code in question has never been executed 
even by an individual programmer. Our experience is that 
any half-serious attempt to implement cleanroom will easily 
achieve this. We achieved a defect density of one defect per 
thousand lines of code the first time we did a cleanroom 
project. It would appear that this "discard the offending 
module" policy is primarily intended to be a strong attention 
getter to achieve commitment to the process. It is seldom 
necessary to invoke it. 

Productivity Is Not Degraded 
Productivity is high with cleanroom. A trained cleanroom 
team can achieve a productivity rate approaching 800 non- 
comment source statements (NCSS) per engineer month. 
Industry average is 120 NCSS per engineer month. Most HP 
entities quote figures higher than this, but seldom do these 
quotes exceed 800 NCSS. 

There is also evidence that the resulting product is signifi 
cantly more concise and compact than the industry average.'' 
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This further enhances productivity. Not only is the product 
produced at a high statement-per-month rate, but the total 
number of statements is also smaller. 

Needed Best Practices 
Cleanroom is compatible with most industry-accepted best 
practices for software generation. It is not necessary to un 
learn anything. Some of these best practices are required 
(such as a structured design methodology). Others such as 
software reuse are optional but compatible. 

As mentioned above, cleanroom requires some sort of struc 
tured design methodology. It has been successfully employed 
using a number of different design approaches. Most recently 
however, the cleanroom originators are recommending a 
form of object-oriented design.7 

All cleanroom deliverables must be subject to inspections, 
code walkthroughs, or some other form of rigorous peer 
review. It is not critical what form is applied. What is critical 
is that 100% of all deliverables be subjected to this peer- 
review process and that it be done in small quantities. For 
instance, it is recommended that no more than three to five 
pages of a code module be inspected at a single inspection. 

Required New Features 
In addition to the standard software engineering practices 
mentioned above, there are a number of cleanroom-specific 
processes that are required or are recommended. These 
practices include structured specifications, functional verifi 
cation, structured data, and statistical testing. Structured 
specifications are applied to the project before design begins. 
This strongly affects the delivery schedule and the project 
management process. Functional verification is applied dur 
ing design, coding, and inspection processes. Structured 
data is applied during the design process. Finally, statistical 
testing is the integration testing methodology of choice. 
Fig. 2 summarizes the cleanroom processes. 

Structured Specifications 
Structured specifications8 is a term applied to the process 
used to divide a product specification into small pieces for 
implementation. It is not critical exactly how this division 
is accomplished as long as the results have the following 
characteristics: 
Each specification segment must be small enough so that it 
can be fully implemented by the development team within 
days or weeks rather than months or years. 

â€¢ The result of implementing each segment must be a module 
that can be completely executed and tested on its own. This 
means that no segment can contain partially implemented 
features that must be avoided during testing to prevent 
program failure. 

â€¢ The segments may not have mutual dependencies. For ex 
ample, it is satisfactory for segment 4 to require the imple 
mentation of segment 3 to execute correctly. It is assumed 
that segment 3 will be implemented first and will exist to 
support the testing of segment 4. However, it is not satisfac 
tory for segment 3 to require segment 4 to execute properly 
at the same time. 

The structured specifications process is used by cleanroom 
to facilitate control of the process by allowing the develop 
ment team to focus on small, easily conceptualized pieces. A 
secondary but very important effect is that productivity is 
increased. Increased productivity is a natural effect of the 
team's being focused. Each deliverable is small and the time 
to produce it is psychologically short. The delivery date is 
therefore always imminent and always seems to be within 
reach. Morale is generally high because real progress is 
visible and is achievable. 

Structured specifications also offer a very definite project 
management advantage. They serve to achieve the frequently 
quoted maxim that when a project is 50% complete, 50% of 
its features should be 100% complete instead of 100% of its 
features being 50% complete. Proper management visibility 
and the ability to control delivery schedules depend upon 
this maxim's being true. 

Structured specifications are very similar to incremental 
processes described in other methodologies but often the 
purposes and benefits sound quite different. For instance, in 
one case the structured specifications process is called evo 

lutionary delivery? The primary benefit claimed for evolu 
tionary delivery is that it allows "real" customers to examine 
early releases and provide feedback so that the product will 
evolve into something that really satisfies customer needs. 
HP supports this approach and has classes to teach the 
evolutionary delivery process to software developers. 

From the description just given it would appear that each 
evolutionary release is placed into the hands of real custom 
ers. This implies to many people that the entire release pro 
cess is repeated on a frequent (monthly) basis. Since multiple 
releases and the support of multiple versions are considered 
headaches for product support, this scenario is frowned 

Cleanroom Processes 

Structured 
Specif icat ions 

(Divide Product 
Specif icat ion 
i n t o  M a n a g e  
able Pieces)  

Structured Data 
(Treat Random 
Data Access)  

Functional 
Verif ication 

(Formal Checks 
for Correctness) 

Statistical 
Testing 

(Measure  
Quality in 

Sigma Units) 

Before Design Design 

Intel lectual 
Cont ro l  

Legal 
Primitive 

Evaluation 

Analyt ical  
Proof 

Design, Coding, and Inspection Integration Testing 

Fig. 2. The processes recom 
mended for software cleanroom 
engineering. 
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upon. Cleanroom does not make it a priority to place each 
stage of the product into the hands of real customers. 

Looking at the definition of a real customer in the evolution 
ary delivery process, you realize that a real customer could 
be the engineer at the next desk, hi practice, the product 
cannot be delivered to more than a handful of alpha or beta 
testers until the product is released to the full market. This 
type of release should not occur any more often than nor 
mal. In fact, since cleanroom produces high-quality prod 
ucts, the number of releases required for product repair is 
significantly reduced. 

Another type of structured specifications technique, which 
is applied to information technology development, uses 
information engineering time boxes. 10 Time boxes are used 
as a means of preventing endless feature creep while ensur 
ing that the product (in this case an information product) 
still has flexibility and adaptability to changing business 
requirements. 

HP has adopted a technique called short interval schedul 
ing11 as a project management approach. Short interval 
scheduling breaks the entire project into 4-to-6-week chunks, 
each with its own set of deliverables. Short interval schedul 
ing can be applied to other projects besides those involved in 
software development. This is an insight that is not obvious 
in other techniques. 

All of these methods are very similar to the structured speci 
fications technique. As different as they sound, they all serve 
to break the task into bite-sized pieces, which is the goal of 
the structured specifications portion of cleanroom. 

Functional Verification 
Functional verification is the heart of cleanroom and is pri 
marily responsible for achieving the dramatic improvement 
in quality possible with cleanroom. It is based on the tenet 
that, can the proper circumstances, the human intellect can 
determine whether or not a piece of logic is correct, and if it 
is not correct, devise a modification to fix it. Functional veri 
fication has three levels: intellectual control, legal primitive 
evaluation, and analytical proof. 

Intellectual control requires that the progression from speci 
fications to code be done in steps that are small enough and 
documented well enough so that the correctness of each step 

'  This tenet is also the definition of intellectual control 

is obvious. The working term here is "obvious." The reviewer 
should be tempted to say. "Of course this refinement level 
follows correctly from its predecessor! Why belabor the 
point?" If the reviewer is not tempted to say this, it may be 
advisable to redesign the refinement level or to document it 
more completely. 

Legal primitive evaluation enhances intellectual control by 
providing a mathematically derived set of questions for 
proving and testing the assumptions made in the design 
specifications. Analytical proof12 enhances legal primitive 
evaluation by answering the question sets mathematically. 
Analytical proof is a very rigorous and tedious correctness 
proof and is very rarely used. 

We have demonstrated here at HP that intellectual control 
alone is capable of producing code with significantly im 
proved defect densities compared to software developed with 
other the development processes. Application of the 
complete cleanroom process will provide another two to 
three orders of magnitude improvement in defect densities 
and will produce six-sigma code. 

Intellectual Control. The human intellect, fallible though it 
may be, is able to assess correctness when presented with 
reasonable data in a reasonable format. Testing is far infe 
rior to the power of the human intellect. This is the key 
point. All six-sigma software processes revolve around this 
point. It is a myth that software must contain defects. This 
myth is a self-fulfilling prophecy and prevents defect-free 
software from being routinely presented to the marketplace. 
The prevalence of the defect myth is the result of another 
myth, which is that the computer is superior to the human 
and that computer testing is the best way to ensure reliable 
software. 

We are told that the human intellect can only understand 
complexities when they are linked together in close, simple 
relationships. This limitation can be made to work for us. If 
it is ignored, it works against us and handicaps our creative 
ability. Making this limitation work for us is the basis of 
functional verification. 

The basis for intellectual control and functional verification 
is a structured development hierarchy. Most of us are famil 
iar with a representation of a hierarchy like the one modeled 
in Fig. 3. This could be an illustration of how to progress 
from design specifications to actual code using any one of 

Specif icat ions 

Fig. 3. A typical representation 
of a hierarchical diagram. In itiis 
case the rcprcscniniion is fora 
software design. 
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the currently popular, industry-accepted best practices for 
design. Each of these practices has some form of stepwise 
refinement. Each breaks down the specifications into ever 
greater detail. The result is a program containing a set of 
commands in some programming language. 

The difference between the different software design meth 
ods is reflected in the interpretation of what the squares and 
the connecting lines in Fig. 3 represent. If the developer is 
using structured design techniques, they would mean data 
and control connections, and if the developer is using object- 
oriented design, they would represent objects in an object- 
oriented hierarchy. 

Functional verification does not care what these symbols 
represent. In any of these methods, the squares 1, 2, 3, and 4 
are supposed to describe fully the functionality of the speci 
fications at that level. Similarly, 4.1 through 4.3 fully de 
scribe the functionality of square 4, and the code of square 3 
fully implements the functionality of square 3. Intellectual 
control can be achieved with any of them by adhering to the 
following five principles. 

Principle 1. Documentation must be complete. The first key 
principle is that the documentation of the refinement levels 
must be complete. It must fully reflect the requirements of 
the abstraction level immediately above it. For instance, it 
must be possible to locate within the documentation of 
squares 1 through 4 in our example every feature described 
in the specifications. 

If documentation is complete, intellectual control is nearly 
automatic. In the case described above, the designer intu 
itively works to make the documentation and the specifica 
tions consistent with each other. The inspectors intuitively 
study to confirm the correctness. 

Note that it is not always necessary to reproduce the specifi 
cations word for word. It will often be possible to simply 
state, "This module fully implements the provisions of specifi 
cation section 7-4b." The inspectors need only confirm that it 
makes sense for section 7-4b to be treated in a single module. 

Other times it may be necessary to define considerably more 
than what is in the specifications. A feature that is spread 
over several modules requires a specific description of 
which portion is treated in each module and exactly how the 
modules interact with each other. It must be possible for the 
inspectors to look at all the modules as a whole and deter 
mine that the feature is properly implemented in the full 
module orchestration. 

This principle is commonly violated. All industry-accepted 
best design processes encourage full documentation, but it 
is still not done because these design processes often lack 
the perspective and the respect for intellectual control that 
is provided by the principles of functional verification, or 
they The insufficiently compelling to convey this respect. The 
concept of intellectual control is often lost by many design 
processes because the main emphasis is on the mechanics 
of the specific methodology. 

The result is that frequently the documentation for the first 
level of the system specifications is nothing more than the 
names of the modules (e.g., 1. Data Base Access Module, 
2. In-Line Update Module, 3. Initialization Module, 4. User 
Interface Module). It is left to the inspectors to guess, based 

on the names, what portions of the specifications were 
intended to be in which module. 

Even when there is an attempt to conform fully to the meth 
odology and provide full documentation, neither the designer 
nor the inspectors seem to worry about the continuity that is 
required by functional verification. For example, a feature 
required in the design specification might show up first in 
level 4.1.2 or in the code associated with level 4.1.2 without 
ever having been referenced in levels 4 or 4.1. Sometimes 
the chosen design methodology does not sufficiently indi 
cate a this is dangerous. Once again, this is the result of a 
failure to appreciate and respect the concept of intellectual 
control. 

If proper documentation practices are followed, the result of 
each inspection is confidence that each level fully satisfies 
the requirements. For example, squares 1 through 4 in Fig. 3 
fully left  the top-level specifications. Nothing is left  
out, deferred, undefined, or added, and no requirements are 
violated. Similarly, 4.1 through 4.3 fully satisfy the provisions 
of 4, and 4.1.1 and 4.1.2 fully satisfy 4.1. 

With these conditions met, inspections of 4. 1 through 4.3 
should only require reference to the definition for square 4 
to confirm that 4. 1 through 4.3 satisfy 4. If 4.2 attempts to 
implement a feature of the specifications that is not explic 
itly be implicitly referenced in 4, it is a defect and should be 
logged as such in the inspection meeting. 

Principle 2. A given definition and all of its next-level 
refinements must be covered in a single inspection session. 

This means that a single inspection session must cover 
square 4 and all of its next-level refinements, 4.1 through 4.3. 
Altogether, 4. 1 through 4.3 should not be more than about 
five pages of material. More than five pages would indicate 
that too much refinement was attempted at one time and 
intellectual control probably cannot be maintained. The of 
fending level should be redone with some of the intended 
refinement deferred to a lower level. 

Principle 3. The full life cycle of any data item must be totally 
defined at a single refinement level and must be covered in a 
single inspection. 

This is the key principle that allows us to be able to inspect 
2.1.1 and 2.1.2 and only be concerned about their reaction 
with each other and the way they implement 2.1. There is no 
need to determine, for example, if they interact correctly 
with 1.1 or 4.3. 

This principle is a breakthrough concept and obliterates one 
of the most troublesome aspects of large-system modifica 
tion. One seems never to be totally secure making a code 
modification. There's always the concern that something 
may be getting broken somewhere else. This fear is an intu 
itive acknowledgment that intellectual control is not being 
maintained. 

Such "remote breaking" can only occur because of inconsis 
tent data management. Even troublesome problems associ 
ated with inappropriate interruptability or bogus recursion 
are caused by inconsistent data management. Intellectual 
control requires extreme respect for data management 
visibility. 
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This visibility can be maintained by ensuring that each data 
item is fully defined on a single abstraction level and totally 
studied in a single inspection session. It should be clear 

â€¢ Where and why the data item comes into existence 
What each data item is initialized to and why 

â€¢ How and where each data item is used and what effects 
occur as a result of its use 
How and where each data item is updated and to what value 

Â« Where, why, and how each data item is deleted. 

Note that careful adherence to this principle contributes 
significantly to creating an object-oriented result even if that 
is not of intent of the designer. This principle is also one of 
the reasons why cleanroom lends itself so well to object- 
oriented design methodologies. 

Once the inspection team is fully satisfied that the data 
management is consistent and correct, there is no need to 
be concerned about interactions. For instance, the life cycle 
for data that is global to the entire module would be fully 
described and inspected when squares 1, 2, 3, and 4 were 
inspected. Square 2 then totally defines its own portion of 
this management and 2.1, 2.2, 2.1.1, and 2.1.2 need only be 
concerned that they are properly implementing square 2's 
part of this definition. Squares 1, 3, and 4 can take care of 
their own portion with no worry about the effects on 2. 

Adherence to principle 3 means that it is not necessary to 
inspect any logic other than that which is presented in the 
inspection packet. There is no intellectually uncontrolled 
requirement to execute the entire program mentally to 
determine whether or not it works. 

Principle 4. Updates must conform to the same mechanisms. 

Since even the best possible design processes are fallible, it 
is likely that unanticipated requirements will later be discov 
ered. Functional verification does not preclude this. For 
instance, it may be discovered that it is necessary to test a 
global flag in the code for 2.1.1 which in turn must be set in 
the code for 4.2. This is a common occurrence and the typi 
cal response is simply to create the global flag for 2. 1. 1 and 
then update 4.2 to set it properly. Bug found. Bug fixed. 
Everything works fine. 

However, we have just destroyed the ability to make subse 
quent modifications to this mechanism in an intellectually 
controlled way. Future intellectual control requires that this 
new interface be retrofitted into the higher abstraction 
levels. The life cycle of this flag must be fully described at 
the square 1 through 4 level. In that one document, the 
square 2 test and the square 4 update must be described, 
and then the appropriate portions of this definition must be 
repeated and refined in 2.1, 2.1.1, and 4.2, and of course, all 
of this should be subject to a full inspection. 

Principle 5. Intellectual control must be accompanied by 
bottom-up thinking. 

These principles can lull people into believing that they have 
intellectual control when, in fact, intellectual control is not 
possible. Intellectual control is, by its nature, a top-down 
process and is endangered by a pitfall that threatens all top- 
down design processes: the tendency to postpone real deci 
sions indefinitely. To avoid this pitfall, the designers must be 
alert to potential "and-then-a-miracle-happens" situations. 
Anything that looks suspiciously tricky should be prototyped 

as soon as possible. All the top-down design discipline in the 
world will not save a project that depends upon a feature 
that is beyond the current state of the art. Such a feature 
may not be recognized until very late in the development 
cycle if top-down design is allowed to blind the developers 
to its existence. 

The Key Word Is "Obvious." It must be remembered that these 
five principles are followed for the single purpose of making 
it obvious to the moderately thorough observer that the 
design is correct. Practicality must be sufficiently demon 
strated, documentation must be sufficiently complete, the 
design must be tackled in sufficiently small chunks, and data 
management must be sufficiently clarified. All of these must 
be so obviously sufficient that the reviewer is tempted to 
say, is course! It's only obvious! Why belabor it?" If this is 
not the case, a redesign is indicated. 

Our experience suggests that the achievement of such a 
state of obviousness is not a particularly challenging task. It 
requires care, but, if these principles are well understood, 
this care is almost automatic. 

Legal Primitive Evaluation 
Legal primitive evaluation enhances intellectual control by 
providing a mathematically derived set of questions for each 
legal For primitive (e.g., If-Then-Else, While-Do, etc.). For 
each primitive, the designers and the reviewers ask the set 
of questions that apply to that primitive and confirm that 
each question can be answered affirmatively. If this is the 
case, the correctness of the primitive is ensured. 

A rigorous derivation of these questions can be found else 
where. 13 There is insufficient space here to go through these 
derivations in detail, but we can illustrate the process and 
its mathematical basis by using a short, nonrigorous analysis 
of one of these sets, the While-Do primitive. Questions associ 
ated with the other primitives are given on page 47. 

The While-Do construct is defined as follows: 

S = [While A Do B 

which means: 

S is fully achieved by [While A Do B 

The symbol S denotes the specification that the primitive is 
attempting to satisfy, or the function it is attempting to per 
form. The symbol A is the while test, and B is the while body. 

As an example, S could be the specification: "The entry is 
added to the table." The predicate represented by A would 
then be an appropriate process to enable the program to 
perform an iteration and to determine if the operation is 
complete. B would be the processing required to accomplish 
the addition to the table. We have chosen to use a While-Do 
because, presumably, we think it makes sense. We may be 
intending to accomplish the entry addition by scanning the 
table sequentially until an appropriate insertion point is 
found and then splicing the entry into the table at that point. 
Whether or not this makes sense depends upon the known 
characteristics of the entry and the table. It also may depend 
upon of explicit (or implicit) existence of a further part of 
the specification such as ". . .within 5 ms." 

To investigate whether it has been coded correctly, the 
following three questions are asked: 
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1. Is loop termination guaranteed for any argument of S? 
2. When A is true, does S equal B followed by S? 
3. When A is false, does S equal S? 

When the answer to these three questions is yes, the cor 
rectness of the While-Do is guaranteed. The people asking 
these questions should be the designer and the inspectors. 

These questions require some explanation. 

1 . Is loop termination guaranteed for any argument of S? 

This means that for any data presented to the function de 
fined by S, will the While-Do always terminate? For instance, 
in our example, are there any possible instances of the entry 
or the table for which the While-Do will go into an endless 
loop because A can never acquire a value of FALSE? 

This would appear to be an obvious question. So obvious, 
that the reader may be tempted to ask why it is even men 
tioned. However, there is a lack of respect for While-Do 
termination conditions and many defects occur because of 
failure to terminate for certain inputs. A proper respect for 
this question will cause a programmer to take care when 
using it and will significantly help to avoid nontermination 
failures. 

Respect for this question is justified because it is difficult to 
prove While-Do termination. In fact, it can be mathematically 
proven that, for the general case, it is impossible to prove 
termination.14 To guarantee the correctness of a While-Do, it 
is therefore necessary to design simple termination condi 
tions that can be easily verified by inspection. Complicated 
While-Do tests must be avoided. 

2. When A is true, does S equal B followed by S? 

This means that, when A is true, can S be achieved by 
executing B and then presenting the results to S again? This 
question is not quite so obvious. 

Iterative statements are very difficult to prove. To prove the 
correctness of the while statement, it is desirable to change it 
to a noniterative form. We change it by invoking S recursively. 
Thus, the expression: 

S = [WhileADoB;] 

becomes:  

S = [lfAThen(B;S);J 

(1) 

(2) 

Expression 2 is no longer an iterative construct and can be 
more readily proven. Fig. 4 shows the diagrams for these 
two expressions. 

The equivalence of these two statements can be rigorously 
demonstrated.15 A nonrigorous feeling for it can be obtained 
by observing that when A is true in [While A Do B], the B ex 
pression is executed once and then you start at the begin 
ning by making the [While A] test again. If [While A Do B] is truly 
equal to S, then one could imagine that, rather than starting 
again at the beginning with the [While A] test, you simply start 
at the beginning of S. That changes the While-Do to a simple 
If-Then, and the predicate A is tested only once. If it is true, 
you execute B one time and then execute S to finish the 
processing. 

The typical first reaction to this concept is that we haven't 
helped at all. The S expression is still iterative and now 

Whi le  A  Do  B  

K A T k n U f c S )  

â € ¢ ^ f l  ^ ^ â € ”  â € ”  > l  

False 

C o n t i n u e  S  

Fig. S). Diagrams of the primit ives While A Do B and If A Then |B; S). 

we've made it recursive making it seem that we have more 
to prove. The response to this complaint is that we don't 
have to prove anything about S at all. The specification (the 
entry is added to the table) is neither iterative nor recursive. 
We have simply chosen to implement it using a While-Do con 
struct. We could, presumably, have implemented it some 
other way. 

S is nothing more than the specification. In the general case, 
it may be a completely arbitrary statement from any source. 
Whether the specification is correct or not is not our respon 
sibility. Our responsibility is to implement it as defined. 

Question 2 can therefore be restated as follows: If A is true, 
when we execute B one time and then turn the result over to 
whatever we've defined S to be, does the result still achieve 
S? An affirmative answer satisfies question 2. 

In terms of our example, B will have examined part of the 
table. It will either already have inserted the new entry into 
the table or it will have decided that the portion of the table 
it examined is not a candidate for inserting of the entry. The 
unexamined portion of the table is now the new table upon 
which the construct must execute. This new instance of the 
table must be comparable to a standalone instance of the 
table so that the concept of adding an entry to the table still 
makes sense. If the resulting table fragment no longer looks 
like any form of the table for which the specification S was 
generated, question 2 may not be answerable affirmatively 
and the proposed code would then be incorrect. 

46 June 1994 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



3. When A is false, does S equal S? 

This question seems fairly obvious but it is frequently over 
looked. If A is found to be false the first time the While-Do is 
executed and therefore no processing of B occurs, is this 
satisfactory? Does the specification S allow for nothing to 
happen and therefore for no change to occur as a result of 
its execution? 

In our example, the test posed by this question would likely- 
fail. S requires something to happen (i.e., an entry to be 
added to the table). This would suggest that the While-Do may 
not be the appropriate construct for this S. We may never 
have noticed this fact if we hadn't been forced to examine 
question 3 carefully. 

Structured Data 
The principle of structured data16 recognizes that undisci 
plined accesses to randomly accessed arrays or accesses that 
use generalized pointers cause the same kind of "reasoning 
explosion" produced by the undisciplined use of GOTOs. For 
instance, take the instruction: 

This statement looks innocent enough. It would appear to be 
appropriate in any well-structured program. Note, however, 
that it involves five variables, all of which must be accounted 
for in any correctness analysis. If the program in which this 
statement occurs is such that this statement is executed 
several times, some of these variables may be set in instruc 
tions that occur later in the program. Thus, this instruction 
all by itself creates a reasoning explosion. 

Just as Dykstra suggested that GOTOs should not be used at 
all,17 the originators of cleanroom suggest that randomly 
accessed arrays and pointers should not be used. Dykstra 
recommended a set of primitives to use in place of GOTOs. 

In the same way, cleanroom recommends that randomly 
accessed arrays be replaced with structures such as queues, 
stacks, and sets. These structures are safer because their 
access methods are more constrained and disciplined. Many 
current object-oriented class libraries support these struc 
tures directly and take much of the mystery and the complex 
ity out of mentally converting from random-array thinking. 

Statistical Testing 
Statistical testing8 is not really required for cleanroom, but it 
is highly recommended because it allows an assessment of 
quality in sigma units. It does not measure quality in defects 
per lines of code. Measuring quality in sigma units gives users 
visibility of how often a defect is expected to be encountered. 
For instance, it makes no difference if there are 100 defects 
per thousand lines of code if the user never actually encoun 
ters any of them. The product would be perceived as very 
reliable. On the other hand, the product may have only one 
defect in 100,000 lines of code, but if the user encounters 
this defect every other day, the product is perceived to be 
very unreliable. 

Statistical testing also clearly shows when testing is complete 
and when the product can safely be released. If the model is 
predicting that the user will encounter a defect no more 
often than once every 5000 years with an uncertainty of 
Â±1000 years, it could be decided that it is safe to release the 

Legal Primitive Evaluation 

As described in the accompanying article, the process of doing legal primitive 
evaluation involves asking a set of mathematically derived questions about the of 
basic program. primitives (e.g., If-Then-Else, For-Do, etc.) used in a program. 
The following is a list of the questions that must be investigated for each primitive. 

In the following list S refers to the specification that must be satisfied by the 
questions asked about the referenced primitive. 

' S e q u e n c e  S  =  [ A ; B ; ]  
Does S equal A followed by B? 

Â « F o r - D o  S  =  [ F o r A D o B ; ]  
: Does S equal first B followed by second B ... followed by last B? 

â € ¢  I f - T h e n  S  =  [ I f  A  T h e n  B  
If A is true, does S = B? 
If A is false, does S = S? 

â € ¢  I f - T h e n - E l s e  S  =  [ l f  A T h e n  B  E l s e  C  
If A is true, does S equal B? 

- If A is false, does S equal C? 

â € ¢  C a s e  S  =  [ C a s e P p a r t ( C 1 ) B 1  . . .  p a r t  ( C n )  B n  E l s e  E  
When p Â¡s C1, does S equal 81? 

When p is Cn, does S equal Bn? 
When p Â¡s nota member of set (C1   Cn), does S equal E? 

â € ¢  W h i l e - D o  S  =  [ W h i l e  A  D o  B  
Is loop termination guaranteed for any argument of S? 
When A is true, does S equal B followed by S? 
When A is false, does S equal S? 

D o - U n t i l  S  =  [ D o  A  U n t i l  B  
o Is loop termination guaranteed for any argument of S? 

When B is false, does S equal A followed by S? 
When B is true, does S equal A? 

. D o - W h i l e - D o  S  =  [ D o ,  A  W h i l e  B  D o 2 C ; l  
Is loop termination guaranteed for any argument of S? 
When B is true, does S equal A followed by C followed by S? 
When B is false, does S equal A? 

product. This is usually better than some industry-standard 
methods (e.g., when the attrition rate from boredom among 
the Lest team exceeds a certain threshold, it must be time to 
release, or "When is this product supposed to be released? 
May 17th. What's today's date? May 17th. Oh. Then we must 
be finished testing."). 

Statistical testing specifies the way test scenarios are devel 
oped and executed. Testing is done using scenarios that con 
form to the expected user profile. A user profile is generated 
by identifying all states the system can be in (e.g., all screens 
that could be displayed by the system) and, on each one, 
identifying all the different actions the user could take and 
the relative percentage of instances in which each would be 
taken. As the scenario generator progresses through these 
states, actions are selected randomly with a weighting that 
corresponds to the predicted user profile. 

For instance, if a given screen has a menu item that is antici 
pated to be invoked 75% of the time when the user is in that 
screen, the invocation of this menu item is stipulated in 75% 
of the generated scenarios involving the screen. If another 
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menu item will only be invoked 1% of the time, it would be 
called in only 1% of the scenarios. 

These scenarios are then executed and the error history is 
evaluated according to a mathematical model designed to 
predict how many more defects the user would encounter in 
a given period of time or in a given number of uses. There 
are several different models described in the literature.18 

In general, statistical testing takes less time than traditional 
testing. As soon as the model predicts a quality level corre 
sponding to a predefined goal (e.g., six sigma) with a suffi 
ciently small range of uncertainty (also predefined), the 
product can be safely released. This is the case even when 
100% testing coverage is not done, or when 100% of the 
pathways are not executed. 

Statistical testing requires that the software to which it is 
applied be minimally reliable. If an attempt is made to apply 
it to software that has an industry-typical defect density, any 
of the and models will demonstrate instabilities and 
usually blow up. When they don't blow up, their predictions 
are so unfavorable that a decision is usually made to ignore 
them. This is an analytical reflection of the fact that you 
can't test quality into a program. 

Quality Cannot Be Tested into a Product 
Although it is the quality strategy chosen for many products, 
it is not possible to test quality into a product. DeMarco19 
has an excellent analysis that demonstrates the validity of 
this premise. This analysis is based on the apparent fact that 
only about half of all defects can be eliminated by testing, 
but that this factor of two is swamped by the variability of 
the software packages on the market. The difference in de 
fect density between the best and worst products is a factor 
of almost 4000. Of course, these are the extremes. The 
factor difference between the 25th percentile and the 75th 
percentile is about 30 according to DeMarco. No one suggests 
that testing should not be done â€” it eliminates extremely 
noxious defects which are easy to test for â€” but compared to 
the variability of software packages, the factor of two is 
almost irrelevant. What then are the factors that produce 
quality software? 

Capers Jones20 suggests that inspections alone can produce 
a 60% elimination of defects, and when testing is added, 85% 
of defects are eliminated. There is no reported study, but 
the literature would suggest that inspections coupled with 
functional verification would eliminate more than 90% of 
defects.21 Remarkably enough, testing seems to eliminate 
most (virtually all) of the remaining defects. The literature 
typically reports that no further defects are found after the 
original test cycle is complete and that none are found in the 
field.21 This was also our experience. 

There is apparently a synergism between functional verifica 
tion and testing. Functional verification eliminates defects 
that are difficult to detect with testing. The defects that are 
left after application of inspections and functional verification 
are generally those that are easy to test for. The result is that 
> 99% of all defects are eliminated via the combination of 

'  This factor is based on a defect density of 60 defects per KNCSS for the worst products and 
0.01 6 defects per KNCSS for the best products. The factor difference between these two 
extremes is 60/0.016 = 3750 or -4000. 

inspections, functional verification, and testing. Table II sum 
marizes the percentage of defect removal with the application 
of individual or combinations of different defect detection 
strategies. 

Table II 
Defect Removal Percentages 

Based on Defect Detection Strategies 

D e t e c t i o n  S t r a t e g y  %  D e f e c t  R e m o v a l  

T e s t i n g  5 0 %  

I n s p e c t i o n s  6 0 %  

Inspections + Testing 

Inspections + Functional Verification 

Inspections + Functional Verification > 99% 
+ Testing 

Our Experience 
We applied cleanroom to three projects, although only one 
of them actually made it to the marketplace. The project 
that made it to market had cleanroom applied all the way 
through its life cycle. The other projects were canceled for 
nontechnical reasons, but cleanroom was applied as long as 
they existed. The completed project, which consisted of a 
relatively small amount of code (3.5 KNCSS), was released 
as part of a large MicrosoftÂ® Windows system. The project 
team for this effort consisted of five software engineers. 

All the techniques described in this paper except structured 
data All statistical testing were applied to the projects. All 
the products were Microsoft Windows applications written 
in C or C++. Structured data was not addressed because we 
never came across a serious need for random arrays or 
pointers. Although statistical testing was not applied, it was 
our intent eventually to do so, but the total lack of defects 
demotivated us from pursuing a complicated, analytical test 
ing mode particularly when our testing resources were in 
high demand from the organization to help other portions of 
the system prepare for product release. 

Design Methodology. We applied the rigorous object-oriented 
methodology known as box notation.7 This is the methodol 
ogy recommended by the cleanroom originators. We found it 
to be satisfyingly rigorous and disciplined. 

Box notation is a methodology that progresses from func 
tional specification to detailed design through a series of 
steps represented as boxes with varying transparency. The 
first of is a black box signifying that all external aspects of 
the system or module are known but none of the internal 
implementation is known. This is the ultimate object. It is 
defined by noting all the stimuli applied to the box by the 
user and the observable responses produced by these stimuli. 

Inevitably, these responses are a function not only of the 
stimulus, but also of the stimulus history. For example, a 
mouse click at location 100,200 on the screen will produce a 
response that depends upon the behavior of the window 
that currently includes the location 100,200. The window at 
that location is, in turn, a function of all the previous mouse 
clicks and other inputs to the system. 
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The black box is then converted to a state box in which the 
stimulus history producing the responses of the black box is 
captured in the form of states that the box passes through. 
The response produced by a given stimulus can be deter 
mined not necessarily from the analysis of a potentially infi 
nite stimulus history, but more simply by noting the state the 
system is in and the response produced by that stimulus 
within that state. States are captured as values within a set 
of state data. The state box fully reveals this data. It con 
tains an internal black box that takes as its input the stimu 
lus and the current set of state data and produces the de 
sired response and a new set of state data. The state data is 
fully revealed but the internal black box still hides its own 
internal processing. 

The state box is then converted to a clear box in which all 
processing is visible. However, this processing is repre 
sented as a series of interacting black boxes in which the 
interactions and the relations are clearly visible but, once 
again, the black boxes hide their own internal processing. 
This clear box is the final implementation of the object. In 
this object, the encapsulated data and the methods to 
process it are clearly visible. 

Each in these internal black boxes is then treated similarly in 
a stepwise refinement process that ends only when all the 
internal black boxes can be expressed as single commands 
of the destination language. 

This process allows many of the pitfalls of object-oriented 
design and programming to be avoided by carefully illumi 
nating them at the proper time. For instance, the optimum 
data encapsulation level is more easily determined because 
the designer is forced to consider it at a level where per 
spective is the clearest. Data encapsulation at too high a 
level degrades modularity and defeats "object orientedness," 
but data encapsulation at too low a level produces redun 
dancies and multiple copies of the same data with the asso 
ciated possibility of update error and loss of integrity. These 
pitfalls are more easily avoided because the designer is 
forced to think about the question at exactly that point in 
the design when the view of the system is optimum for such 
a consideration. 

Inspections. We employed a slightly adapted version of the 
HP-recommended inspection method taught by Tom Gilb.9 
We found this method very satisfactory. Our minimal adapta 
tion was to allow slightly more discussion during the logging 
meeting than Gilb recommends. We felt that this was needed 
to accommodate functional verification. 

Functional Verification. No attempt was made to implement 
anything but the first level of functional verification â€” intel 
lectual control. This was found to be easily implemented, and 
when the principles were adequately adhered to, was almost 
automatic. Inspectors who knew nothing about functional 
verification or intellectual control automatically accom 
plished it when given material that conformed to its prin 
ciples and, amusingly, they also automatically complained 
when slight deviations from these principles occurred. 

Structured Specifications. The project team called cleanroom's 
structured specifications process evolutionary delivery be 
cause of its similarity to the evolutionary delivery methodol 
ogy mentioned earlier and because evolutionary delivery is 
more like our HP environment. Structured specifications 

were developed in a defense-industry environment where 
dynamic specifications are frowned upon and where adapt 
ability is not a \irtue. However, evolutionary delivery as 
sumes a dynamic environment and encourages adaptability. 
Regardless of the differences, both philosophies are similar. 

At first, both marketing and management were skeptical. 
They were not reassured by the idea that a large amount of 
time would elapse before the product would take shape be 
cause of the large up-front design investment and because 
some features would not be addressed at all until very late in 
the development cycle. They were told not to expect an early 
prototype within the first few days that would demonstrate 
the major features. 

Very quickly, these doubts were dispelled. Marketing was 
brought into the effort during the early rigorous design 
stages to provide guidance and direction. They participated 
in the specification structuring and set priorities and desired 
schedules for the releases. They caught on to the idea of 
getting the "juiciest parts" first and found that they were 
getting real code very quickly and could have this real code 
reviewed by real users while there was still time to allow the 
users' feedback to influence design decisions. They also 
became enthusiastic about participating in the inspections 
during the top-level definitions. 

Management realized that the evolutionary staged releases 
were coming regularly enough and quickly enough that they 
could predict very early in the development cycle which 
stage had a high possibility of being finished in time to hit 
the optimum release window. They could then adjust scope 
and priority to ensure that the release date could be reliably 
achieved. 

Morale. The cleanroom literature claims that cleanroom 
teams have a very high morale and satisfaction level. This is 
attributed to the fact that they have finally been given the 
tools necessary to achieve the kind of quality job that every 
one wants to do. Our own experience was that this occurred 
surprisingly quickly. People with remarkably disparate, 
scarcely compatible personalities not only worked well 
together, they became enthusiastic about the process. 

It appears that the following factors were influential in 
producing high morale: 

â€¢ Almost daily inspections created an environment in which 
each person on the team took turns being in the "hot seat." 
People quickly developed an understanding that reasonable 
criticism was both acceptable and beneficial. The resulting 
frankness and openness were perceived by all to be remark 
ably refreshing and exhilarating. 

1 Team members were surprised that they were being allowed 
to do what they were doing. They were allowed to take the 
time necessary to do the kind of job they felt was proper. 

Productivity. Productivity was difficult to measure. Only one 
project actually made it to the market place, and it is diffi 
cult to divide the instruction count accurately among the 
engineers that contributed to it. However, the subjective 
impression was that it certainly didn't take any longer. When 
no defects are found one suddenly discovers that the job is 
finished. At first this is disconcerting and anticlimactic, but 
it also emphasizes the savings that can be realized at the end 
of the project. This compensates for the extra effort at the 
beginning of the project. 
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Conclusion 
The cleanroom team mentioned in this paper no longer exists 
as a single organization. However, portions of cleanroom are 
still being practiced in certain organizations within Hewlett- 
Packard. These portions especially include structured 
specifications and intellectual control. 

We believe our efforts can be duplicated in any software 
organization. There was nothing unique about our situation. 
We achieved remarkable results with less than total dogmatic 
dedication to the methodology. 

The product that made it to market was designed using func 
tional decomposition. Even though functional decomposition 
is minimally rigorous and disciplined, we found the results 
completely satisfactory. The project consisted of enhancing 
a 2-KNCSS module to 3.5 KNCSS. 

The original module was reverse engineered to generate the 
functional decomposition document that became the basis 
for the design. The completed module was subjected to the 
intellectual control processes and the reviewers were never 
told which code was the original and which was modified or 
new code. A total of 36 defects were found during the in 
spection process for a total of 10 defects per KNCSS. An 
additional five defects were found the first week of testing 
(1.4 defects per KNCSS). No defects were encountered in 
the subsequent 10 months of full system integration testing 
and none have been found since the system was released. 

It was interesting to note that the defects found during in 
spections included items such as a design problem which 
would have, under rare conditions, mixed incompatible file 
versions in the same object, a piece of data that if it had 
been accessed would have produced a rare, nonrepeatable 
crash, and a number of cases in which resources were not 
being released which would, after a long period of time, have 
caused the Windows system to halt. Most of these defects 
would have been very difficult to find by testing. 

Defects found during testing were primarily simple screen 
appearance problems which were readily visible and easily 
characterized and eliminated. These results conform well to 
expected cleanroom results. About 90% of the defects were 
eliminated by inspections with functional verification. About 
10% more were eliminated via testing. No other defects were 
ever encountered in subsequent full-system integration test 
ing or by customers in the field. It can be expected on the 
basis of other cleanroom results reported in the literature 

that at least 99% of all defects in this module were eliminated 
in this way and that the final product probably contains no 
more than 0.1 defect per KNCSS. 
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Fuzzy Family Setup Assignment and 
Machine Balancing 
Fuzzy logic is applied to the world of printed circuit assembly manufacturing 
to aid in balancing machine loads to improve production rates. 

by Jan Krucky 

In disciplines such as engineering, chemistry, or physics, 
precise, logical mathematical models based on empirical 
data are used to make predictions about behavior. However, 
some aspects of the real world are too imprecise or "fuzzy" 

to lend themselves to modeling with exact mathematical 
models. 

The tool we have for representing the inexact aspects of the 
real world is called fuzzy logic. With fuzzy logic, we can 
model the imprecise modes of reasoning that play a role hi 
the human ability to make decisions when the environment 
is uncertain and imprecise. This ability depends on our apti 
tude at inferring an approximate answer to a question from 
a store of knowledge that is inexact, incomplete, and some 
times not completely reliable. For example, how do you 
know when you are "sufficiently close" to but not too far 
away from a curb when parallel parking a car? 

In recent years fuzzy logic has been used in many applica 
tions ranging from simple household appliances to sophis 
ticated applications such as subway systems. This article 
describes an experiment in which fuzzy logic concepts are 
applied in a printed circuit assembly manufacturing environ 
ment. Some background material on fuzzy logic is also 
provided to help understand the concepts applied here. 

The Manufacturing Environment 
In printed circuit assembly environments, manufacturers 
using surface mount technology are concerned with machine 
setup and placement times. In low-product-mix production 
environments manufacturers are primarily concerned with 
placement time and to a lesser degree setup time. In medium- 
to-high-product-mix production environments manufacturers 
are mainly concerned with setup time. 

One solution to the setup problem is to arrange the printed 
circuit assemblies into groups or families so that the assem 
bly machines can use the same setup for different products. 
In other words, reduce or eliminate setups between differ 
ent assembly runs. The solution to minimizing placement 
time is to balance the component placement across the 
placement machines. 

HP's Colorado Computer Manufacturing Operation (CCMO) 
is a medium-to-high-product-mix printed circuit assembly 
manufacturing entity. The heuristic, fuzzy-logic-based algo 
rithms described in this paper help determine how to mini 
mize setup time by clustering printed circuit assemblies into 
families of products that share the same setup and by 

balancing a product's placement time between multiple 
high-speed placement process steps. 

The Placement Machines 
The heart of our surface mount technology manufacturing 
Unes in terms of automated placement consists of two Fuji 
CP-in high-speed pick-and-place machines arranged in series 
and one Fuji IP-II general-purpose pick-and-place machine. 

A Fuji CP-ni placement machine supports two feeder banks 
each having 70 slots available for component feeders to be 
mounted on (see Fig. 1). The components are picked from 
their feeders and placed on the printed circuit board, creat 
ing a printed circuit assembly. A component feeder might 
take one or two slots. The tape-and-reel type feeder, which 
is the one we use at CCMO, is characterized by its width for 
slot allocation purposes. The standard feeder tape widths 
are 8 mm, 12 mm, 16 mm, 24 mm, and 32 mm. The 8-mm 
feeder tapes consume one slot each while the 12-mm to 
32-mm feeder tapes consume two slots. Additional feeder-to- 
feeder spacing constraints might increase the number of 
slots the feeders actually require. A component's presenta 
tion, package type, and style determine the tape-and-reel 
width and therefore the feeder size. 

Split-Bank 
A feature of the Fuji CP-III called split-bank addresses the 
problem of high setup costs by allowing one bank to be used 
for component placement while the other bank is being set 

Assembly 
Line 

Banks 

Component 
Feeders 

Components 
on Tape 

Slots 

Fig. 1. Simplified representation of a tape-and-reel type placement, 
machine. 
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First Bank Second Bank First Bank Second Bank 

First CP-III Second CP-II I  

Used for Offl ine Setup 

Used for Component Placement 

Fig. 2. The split bank feature of the Fuji CP-III assembly machine. 
The first feeder banks of each machine are used for offline setup. 

up offline. Fig. 2 illustrates this split-bank feature. In this 
configuration the first feeder bank on each machine is used 
to perform the offline setup, and the second bank is used for 
component placement. 

Setup Time versus Placement Time 
Our printed circuit assembly products vary quite a bit in 
their setup-slot requirements. They range from eight slots on 
the low end to 260 slots on the high end. For an average 
product requiring 45 slots it takes 45 online minutes to set 
up the feeders for placement. The average placement time is 
2.5 minutes per board, hi a low-to-medium-volume printed 
circuit assembly shop such as CCMO, the average lot size is 
20 products. Therefore, for an average run of 20 products, 
47% of the time is spent on setup (leaving the placement 
machine idle) and 53% of the time is spent placing the com 
ponents. This constitutes an unacceptable machine use and 
hence a low output from the manufacturing shop. It's not 
just the online setup time, but also the frequency of having 
to do these setups that affects productivity and quality. A 
fixed setup for an entire run would seem to be a solution to 
this problem. However, in a medium-to-high-product-mix, 
low-volume environment such as ours, fixed setups cannot 
be used. HP CCMO currently manufactures 120 products 
with 1300 unique components placeable by the Fuji CP-III 
equipment. 

Another quick solution to this online setup time problem 
would be to place a certain percentage of CP-III placeable 
components at a different process step. For example, we 
could use the Fuji IP-II for this purpose. This is not a feasi 
ble solution because the Fuji IP-II has a placement speed 
that is four times slower than the CP-III. We use the Fuji 
IP-II primarily for placing large components. 

Alternate Setup Methodology 
The setup time requirements mentioned above suggest that 
we needed an alternative setup methodology to minimize 
online setup time. The approaches we had available in 
cluded expansion on the split-bank option described above, 
clustering the printed circuit assembly products into fami 
lies with identical setup while still allowing the split-bank 
setup feature to be fully used, and balancing the two series 
CP-III placement loads as much as possible. Balancing im 
plies that the components would be distributed between the 
two placement machines so that both machines are kept 
reasonably busy most of the time. 

Since most of our printed circuit assembly products are 
double-sided, meaning that components are placed on the 
top and bottom sides of the printed circuit board, indepen 
dent balancing for each side of the printed circuit assembly 

was considered. However, family clustering as viewed by 
the layout process dictated that a double-sided printed cir 
cuit assembly should be treated as a sum of the require 
ments for both sides of the board. Thus, no machine setup 
change would be required when switching from side A to 
side B of the same product. 

Why Families 
While clustering products into families is a viable and an 
attractive solution, other possible solutions such as partially 
fixed setups augmented by families or scheduling optimiza 
tion to minimize the setup changes in the build sequence, 
are also worth consideration. 

One can imagine that none of the solutions mentioned above 
will provide the optimal answer to every online setup-time 
issue, but their reasonable combination might. The follow 
ing reasons guided us into choosing family clustering as an 
initial step towards minimizing online setup costs. 

* Intuitive (as opposed to algorithmic) family clustering on a 
small scale has been in place at our manufacturing facility 
for some time. 

* It appears that families give reasonable flexibility in terms of 
the build schedule affecting the entire downstream process. 

* Families can take advantage of the CP-IIFs split-bank feature. 
By altering the time window of a particular family's assembly 
duration (i.e., by shift, day, week, month, and so on), one can 
directly control a family's performance and effectiveness. 

We chose a heuristic approach to minimizing setup time 
because an exhaustive search is O(n!), where n is the num 
ber of products. Our facility currently manufactures 120 
products and expects to add 40 new ones in the near future, 
which would make an exhaustive search unrealistic. 

Primary Family 
As explained above, we wanted to use the family clustering 
approach to take advantage of the CP-III split-bank setup 
feature. One can quickly suggest a toggle scenario in which 
each feeder bank would alternate between the states of be 
ing set up offline and being used for placement. However, it 
would be difficult to synchronize the labor-intensive activi 
ties of perpetual offline setups in a practical implementa 
tion. Also, this option would require a sufficient volume in 
the toggled families to allow the completion of offline setups 
at the idle placement banks. Given these reasons, a strict 
toggle approach would probably not have worked to im 
prove the overall setup time in our environment. Instead of 
toggling, we selected an approach in which certain feeder 
banks are permanently dedicated to a family, and the re 
maining banks toggle between offline setup and placement. 
This approach led to the primary family concept. 

A primary family is one that will not be toggled and is there 
fore always present on the machine. Since the primary family 
is permanently set up it logically follows that each nonpri- 
mary family includes primary family components. The more 
primary family slots used by a bank containing a nonprimary 
family the better. The summation of two series CP-IU's banks 
provides four setup banks available on a line. We elected to 
dedicate the first bank of each CP-III to the primary family, 
leaving us with two banks for nonprimary families (see 
Fig. 3). 
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Fi rs t  Bank Second Bank RrctBank Second Bank machine balancing is the key that truly enables the family 
approach. 

F i r s t  C P - I I I  S e c o n d  C P - I I I  

- â€¢â€¢ â€¢ â€¢ - - 

|    j  N o n p r i m a r y  F a m i l y  ( T o g g l e r )  

Fig. 3. The setup for primary and nonprimary families. 

Fig. 4 shows how the primary family concept can be used to 
schedule a group of products to be built. Let's assume that 
we have primary family A and two nonprimary families AB 
and AC. (Products in families AB and AC contain compo 
nents that are also part of products in family A.) First, any of 
family AB's products can be built. Although primary family 
A's products could be built using the same setup, it is highly 
undesirable since it would waste the presence of family AB's 
setup. So, after all the demand from family AB's products 
have been satisfied, we can switch to products in primary 
family A while we set up offline for family AC. On the practi 
cal side, it is unnecessary to set up the entire nonprimary 
family unless all the family's products are actually going to 
be built. 

This example shows that the primary family concept is use 
ful only if it is incorporated into the build schedule and the 
primary family must have sufficient product volume to allow 
the behavior depicted in Fig. 4. 

Balancing 
Family clustering results in a shared setup by a group of 
printed circuit assembly products which among other things 
might share the same components. This creates the problem 
of ensuring that the assembly of all products is adequately 
balanced on the two series CP-III placement machines. If 
the load is not balanced, an undesirable starvation in the 
process pipeline might occur. Balancing is accomplished by 
properly assigning the family's components between the two 
series CP-III machines. An intuitive guess suggests that the 
success of family clustering might make the balancing ef 
forts proportionally harder. Although the online setup time 
reduction is the primary goal, it cannot justify a grossly un 
balanced workload between two serial CP-IIIs. Therefore, 

First CP-III 

F i r s t  B a n k  S e c o n d  B a n k  

Second CP-I I I  

F i r s t  B a n k  S e c o n d  B a n k  F a m i l y  

AB 

AC 

Used for Component Placement 

|  |  U s e d  f o r  O f f l i n e  S e t u p  

Fig. be An illustration of how the primary family concept can be 
used to schedule a group of products for assembly. 

Other Methods 
In addition to applying fuzzy set theory to solve our family 
assignment and balancing problem we also used two other 
approaches: the greedy board heuristic and an extension to 
the greedy board heuristic. 

Greedy Board Approach. A research group at HP's strategic 
planning and modeling group in conjunction with Stanford 
University suggested the greedy board heuristic approach to 
minimize high setup cost for semiautomated manufacturing 
operations. HP's Networked Computer Manufacturing Op 
eration (NCMO) implemented the greedy board approach at 
their site.1 

In the greedy-board heuristic a family is defined by the repeti 
tive addition of products, one at a time, until slot availability 
is exhausted. The selection criterion is a function of the prod 
uct's expected volume and its additional slot requirements. 
The greedy ratio is: 

GÂ¡ = Sj/Vj 

where sÂ¡ is the number of additional slots a product pÂ¡ adds to 
the family, and vÂ¡ is the product's volume. Since the objective 
is to minimize the number of slots added while maximizing 
the family's volume, the product with the smallest greedy 
ratio wins and is added to the family. New slots are obtained 
and the selection process, via the greedy ratio, is repeated 
until either there are no more slots available or no more 
products are to be added. See the greedy board example on 
page 54. 

The greedy board implementation at NCMO performs bal 
ancing by assigning components to the machines by a sim 
ple alternation until constraints are met. The components 
are initially sorted by their volume use. This approach bal 
ances the family overall, but it carries no guarantees for the 
products that draw from the family. 

Extension to Greedy Board Heuristic. The greedy board heuristic 
tends to prefer smaller, high-volume printed circuit assem 
blies in its selection procedure. At CCMO we extended the 
original greedy ratio to: 

Q .  

G i  =  ' i  x  C j  

where cÂ¡ is an average number of slots product pÂ¡ shares 
with products not yet selected. The CCMO extension slightly 
curbs the volume greediness at the expense of including a 
simple measure of commonality. However, the results 
showed the CCMO extension to the greedy board heuristic 
performed slightly better than the original algorithm. The 
results from the two greedy-board approaches and the fuzzy 
approach are given later in this paper. 

Despite the relatively good results achieved by our extension 
to the greedy board heuristic approach, we were still look 
ing for an alternative approach. This led us to explore using 
fuzzy set theory to find a solution to our placement machine 
setup problem. 
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The Greedy Board Family Assignment Heuristic 

As mentioned in the main article, a family in our manufacturing environment is a 
group of products (boards) that can be built with a single setup on the component 
placement machines. The greedy board heuristic is one way of assigning products 
to families for printed circuit assembly. The only data required for the greedy 
board algorithm is the list of components and the expected volume for each board. 
Each family is created by the repetitive addition of products, one at a time, until 
slot availability is exhausted. 

In the following example assume there are eight component slots available per 
family and that the following boards must be assigned to families. 

B o a r d  

Alpha 
Tango 
Delta 
Echo 
Beta 
Lambda 
Gamma 

E x p e c t e d  V o l u m e  ( v Â ¡ )  

1400 

132 

2668 

1100 

1332 

900 

C o m p o n e n t s  

A, F, K, M 
C, K 
H, D, R, F, K 
R, J, S, K 
G, F, T, L 
H, D, F, K 
A, J, E, K 

The board with the lowest greedy ratio is the first one added to the current family 
being created. 

B o a r d  

Alpha 
Tango 
Delta 
Echo 
Beta 
Lambda 
Gamma 

N e w  P a r t s  

(sÂ¡) 

4 
2 
5 
4 
4 
4 
4 

E x p e c t e d  V o l u m e  

(vÂ¡) 

1400 

132 

2668 

1100 

668 

1332 

900 

G r e e d y  R a t i o  
(GÂ¡ = sÂ¡/vÂ¡) 

0.0029 
0.0152 
0.0019 
0.0036 
0.0060 
0.0030 
0.0040 

Delta is the board with the lowest greedy ratio so it becomes the first member of 
the family. It has the highest product volume added per component slot used. 
Delta family. five components, leaving three slots to fill this family. 

With next components H, D, R, F, and K already in the family, for the next board the 
ratios are computed as follows: 

B o a r d  

Alpha 
Tango 
Echo 
Beta 
Lambda 
Gamma 

N e w  P a r t s  
(sÂ¡) 

2 
1 
2 
3 
0 
3 

E x p e c t e d  V o l u m e  

(vÂ¡) 

1400 

132 

1100 

668 

1332 

900 

G r e e d y  R a t i o  
(GÂ¡ = sÂ¡/vÂ¡) 

0.0014 
0.0076 
0.0018 
0.0045 
0.0000 
0.0033 

The Lambda board is the one with the lowest greedy ratio because its components 
are a Since subset of the components already in the family. Since adding 
Lambda to the family does not require the addition of any components to the 
family, the greedy ratios given above still apply for the selection of the next board. 
The Alpha board has the next lowest ratio and it adds two new components (A 
and M| to the family. This brings the total number of components in the family to 
seven â€” one slot left. 

After adding the Alpha board to the family, the new part-to-volume ratios for the 
remaining unassigned boards become: 

B o a r d  

Tango 
Echo 
Beta 
Gamma 

N e w  C o m p o n e n t s  
(sÂ¡) 

1 
2 
3 
3 

E x p e c t e d  V o l u m e  
<vÂ¡) 

132 

1100 

668 

900 

G r e e d y  R a t i o  
(GÂ¡ = sÂ¡/vÂ¡) 

0.0076 
0.0018 
0.0045 
0.0033 

Now Echo has the lowest ratio. However, the Echo board has two components, 
and since we already have seven components, adding the Echo components to the 
family would exceed our limit of eight components per family. Therefore, Tango is 
the only board that will fit even though it has the lowest theoretical contribution. 
Adding in Tango board fills up the family allotment. Finally, the components in 
the family include H, C, D, A, R, F, K, and M. 

The next family is defined by following the above procedure for the remaining 
boards: Echo, Beta, and Gamma. 

Fuzzy Set Theory 

The following sections provide a brief overview of some of 
the basic concepts of fuzzy set theory applicable to the top 
ics discussed in this paper. For more about fuzzy set theory 
see reference 2. 

Fuzzy Sets 
Unlike the classical yes and no, or crisp (nonfuzzy) sets, 
fuzzy sets allow more varying or partial degrees of member 
ship for their individual elements (see Fig. 5). Conceptually 
only a few natural phenomena could be assigned a crisp 
membership value of either yes or no without any doubt. On 
the other hand, most of the real-world's objects, events, lin 
guistic expressions, or any abstract qualities we experience in 
our everyday life tend to be more suited for a fuzzier set 
membership. Fuzzy sets allow their elements to belong to 
multiple sets regardless of the relationship among the sets. 

In spite of then" tendency to seem imprecise, fuzzy sets are 
unambiguously defined along with then- associated opera 
tions and properties. The fuzzy sets used in the fuzzy family 
assignment and machine balancing heuristic exist in uni 
verses of discourse that are finite and countable. 

Definition. To begin our discussion of fuzzy sets we define 
the universe of discourse X = {xj,X2. . .xÂ¡) and let (IA(XÃ) de 
note the degree of membership for fuzzy set A on universe X 
for element xÂ¡. The degree of membership function for fuzzy 
set A is HA(X) e [0,1], where 0 represents the weakest mem 
bership in a set and 1 represents the strongest membership 
in a set. 

Mxl 
Fuzzy set A = â€” ^   - ... + 

Xi 

where the horizontal bar is not a quotient but a delimiter. 

Examples. The following examples show different types of 
fuzzy sets. 
Number as a fuzzy set: 
- Universe U = (0, 1, 2, 3, 4, 5) 

Fuzzy set A = 0.2/0 + 0.7/1 + 0.8/2 + 0.2/3 + 0.1/4 + 0.0/5 
Fuzzy set A might be described linguistically as "just about 
2" because 0.8/2 has the highest degree of membership in 
fuzzy set A. 

Defining people in terms of their preference for certain 
alcoholic beverages: 

Universe Y = (beer, wine, spirits) = (yj, ... ya) 
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I  

â€¢s 
I  
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(80.45) 

60 
(96.54) 
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(km/h)  
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(b) 

Fig. 5. Crispy and fuzzy representation of the notion of average 
driving speed, (a) In the fuzzy representation the membership class 
average driving speed varies from zero for < 45 mi/h or > 65 mi/h to 
100% at 55 mi/h. (b) In a crisp representation membership in the 
average driving speed set is 100% in the range from 50 to 60 mi/h 
only. 

Fuzzy set B = y\ = O.I/beer + 0.3/wine + 0.0/spirits 

might describe somebody who doesn't drink much but 
prefers wine and dislikes spirits 
Fuzzy set C = 0.8/beer + 0.2/wine + O.I/spirits might 
describe a beer lover 
Fuzzy set D = O.OYbeer + 0.0/wine + 0.0/spirits might de 
scribe a person who doesn't indulge in alcoholic beverages 
Fuzzy set E = 0.8/beer + 0.7/wine + 0.8/spirits might 
describe a heavy drinker. 

Defining a person in terms of their cultural heritage: 
Universe Z = (Zirconia, Opalinia, Topazia) and [iF(zD repre 
sents a degree of cultural heritage from the three provinces 
in some imaginary gem-producing country. 
Fuzzy set F = 0.3/Zirconian + 0.5/Opalinian + 0.1/Topazian 
might describe someone who was born in Western Opalina, 
attended a university in Zirconia, and married a Topazian 
living in Diamond City, Zirconia. 

Lunch hour: 
Universe W = Day (continuous time of 24 hours) 
The fuzzy set L (1 100 to 1300) might represent the term 
"lunch hour" as shown in Fig. 6. 

Fig. 6. A fuzzy set representation of the term lunch hour. 

Operations. Operations such as union, intersection, and com 
plement are defined in terms of their membership functions. 
For fuzzy sets A and B on Universe X we have the following 
calculations: 
Union: HAUB(X) = ^A(X) v |iB(x) 

or Vxi : HAUB(XÃ) = Max((iA(xÂ¡), (ÃB(XÃ)) 

(see Fig. 7a). 

(a) 

1  A; 
A D B  

(b) 

( 0  

Fig. 7. Fuzzy set operations, (a) Union, (b) Intersection, 
(c) Complement. 
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Intersection: |IA/IB(X) = MA(X) A (iB(x) 

or VxÂ¡ : HAnB(xi) = Min(nA(xÂ¡), HB(XÃ)) 
(see Fig. 7b). 
Complement: HA(X) = 1 - HA(X) 

or VxÂ¡ : HA(XÂ¡) = 1 - HA(XÂ¡) 
(see Fig. 7c). 

All of the operations defined above hold for fuzzy or classical 
set theory. However, the two formulas known as excluded 
middle laws do not hold for fuzzy sets, that is: 

AUA = X 
AnA = o 

for classical set theory, but 

AUÃ€ 
AnÃ€ 

X 
o 

for fuzzy set theory. 

These laws, which take advantage of the either-or only 
membership for a classical set's elements, cannot hold for 
fuzzy sets because of their varying degree of set member 
ship. Fig. 8 provides a graphical comparison between these 
two formulas for classical and fuzzy set operations. 

Fuzzification and Defuzzification 
Fuzzification and denazification are operations that trans 
late back and forth between fuzzy and crisp representations 
of information, measures, or events. Since most of our envi 
ronment is more naturally represented in a fuzzy form rather 
than a crisp form, the need for a fuzzification step could be 
perceived as being a rare event. On the other hand, a dena 
zification procedure is needed more often, as in the case in 
which a fuzzy set has to be expressed as a single crisp num 
ber. There are several defuzzification methods. One of the 
most commonly used and computationally trivial is the Max 
method. The Max method simply chooses an element with 
the largest membership value to be the single crisp repre 
sentation of the fuzzy set. For example, for the fuzzy set C 
given above the Max defuzzification method would yield 
0.8/beer (i.e., fuzzy set C describes a beer lover). 

Fuzzy Relations 
The concept of relations between fuzzy sets is fairly analo 
gous to the idea of mapping in classical set theory in which 
the elements or subsets of one universe of discourse are 
mapped to elements or sets in another universe of discourse. 
For example, if A is a fuzzy set on universe X and B is a fuzzy 
set on universe Y then the fuzzy relation R = A <8> B maps 
universe X to universe Y (i.e., R is a relation on universe X x 
Y). The symbol Â® denotes a composition operation which 
computes the strength of the relation between the two sets. 
Please note that in general A <S> B ^ B <S> A and furthermore 
A * R Â® B. 

Special Properties. The following are some of the special 
properties of fuzzy relations. 
A fuzzy set is also a fuzzy relation. For example, if A is a 
fuzzy set on universe X and there exists I = 1/y as an identity 
fuzzy set on Universe Y = {y}, then fuzzy relation R = A Â® I 
= A. 
The same operations and properties valid for fuzzy sets also 
hold for fuzzy relations. 

A u A = x  J  

/ \ / \  
- t    V    V -  

1 1 

ADÃ = n 
~ \  A  / "  \ / w  

(a) 

â€¢See Fig. 7c for Ã€ 

(b) 

Fig. 8. A comparison of the excluded middle laws for (a) classical 
sets and (b) fuzzy sets. 

Fuzzy logic implication of the form P - Q can be also repre 
sented by a fuzzy relation since T(P -Â» Q) = T(P V Q) where 
T is the truth evaluation function. For example, if A is a 
fuzzy set on universe X and B is a fuzzy set on universe Y 
then a proposition P -Â» Q describing IF A THEN B, is equiva 
lent to the fuzzy relation R = (A <g> B) U (Ã€ (g) Y). Fig. 9 
shows a graphical representation of this relationship. 

Fuzzy Composition 
Fuzzy composition operations compute the strength of the 
relation between two fuzzy relations. To show the most pop 
ular composition operators, consider that we have fuzzy sets 
X, Y, and Z and that R is a fuzzy relation on universe X x Y 
and that S is a fuzzy relation on universe Y x Z. To find the 
fuzzy relation T = R (g) S on universe X x Z we use one of the 
following composition operations: 

Max-Min: H.Tt = 

(sj;k))vk : < plvi, j : i < a, j < y (1) , nssj;k 

MaxprodRrk i i ,  ( i s s j , kvk  :  <  pv i ,  j  :  i  <  a , j  <  y  (2 )  

Max-Product: 

Sum-Product: 

(3 )  

m/ - A Â ® B U A i g > Y  

Fig. = A graphical depiction of the fuzzy logic implication R = 
(A Â® B) U (Ã€ Â® Y). 
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where: 

a, p, y are the number of elements (cardinality) in the 
fuzzy sets X, Y, and Z 

i. j. k are subscripts for matrix representations for 
the fuzzy relations. 

The Max-Min composition operator selects the maximum 
membership value from all the minimal values of every cor 
responding membership pair. For example, the Max-Min 
value 0.4. the membership pairs [(0.4,0.6), (0.2,0.5)] is 0.4. 
The Max-Prod composition operator replaces the Min func 
tion in the Max-Min operator with the Prod function, which 
performs algebraic multiplication for every membership pair. 
The Max-Prod value for our example above is 0.24. Finally, 
the Sum-Prod operator is derived from the Max-Prod opera 
tor by replacing the Max function with the Sum function, 
which adds together the results of the Prod operations on 
each membership pair. Applying the Sum-Prod operator to 
the example above gives the value 0.34. The are many other 
composition operators available, some of which are designed 
for specific applications. 

Deriving Fuzzy Relations. The most difficult part about devel 
oping an application using fuzzy relations is obtaining the 
relations themselves. Some of the methods used to derive 
fuzzy relations include: 

â€¢ Intuitive knowledge, human experience, and opinions of 
experts 

â€¢ Calculation methods for membership functions 
â€¢ Fuzzy compositions 
â€¢ Converted frequencies and probabilities. 

Example. The following example illustrates how to derive a 
fuzzy relationship. Consider the fuzzy sets and universes 
described earlier: 

Universe Y = (beer, wine, spirits) 

Universe Z = (Zirconian, Opalinian, Topazian) 

We will assume for this example that the relation R on uni 
verse Y x Z is based on the opinions of experts who know a 
lot about the drinking habits of the inhabitants of the 
provinces contained in universe Z. 

Applying Max-Min yields: 

R = 
0.6 0.3 0.1 
0.4 0.8 0.3 
0.2 0.1 0.7 

Although the relation R is derived from intuitive knowledge 
and experience, we could have used one of the other meth 
ods to derive it based on some partial information. Remem 
ber that a fuzzy relation captures the pairwise strength of the 
relation between elements of both universes, which in this 
case consists of beer, wine, and spirits in rows and Zirconian, 
Opalinian, and Topazian in columns. For example, there is a 
strong (0.8) possibility of an Opalinian being a wine lover 
according to relation R. 

Now let's take a beer lover described by the fuzzy set 

C = Q.8/beer + 0.2/wine + O.I/spirits 

and perform Max-Min composition on the relation 

H = CÂ® R 

Max[(Min(0.8,0.6),Min(0.2,0.4),Min(0. 1,0.2)] = 0.6 

uH(Opalinian) = 
Max[(Min(0.8,0.3),Min(0.2,0.8),Min(0. 1,0.1)] = 0.3 

HlÂ·lCTopazian) = 
Max[(Mm(0.8,0.1),Min(0.2,0.3),Min(0.1,0.7)] = 0.2 

Therefore, the resulting fuzzy set H = 0.6/Zirconian + 
0.3/Opalinian + 0.2/Topazian might suggest that a beer lover 
is of predominantly Zirconian heritage with slight linkages 
to Opalinian influences and very slight Topazian influences 
based on the experts' opinion represented in relation R. 

Fuzzy Family Assignment Heuristic 

The goal of our fuzzy family assignment heuristic is to find 
products with similar components and group them into fami 
lies. In our family assignment heuristic there are two nested 
iteration loops: an outer loop for each family being created 
and an inner loop for selecting the "best-suited" product to 
assign to the family. The inner loop is terminated when there 
are no more products to be considered. The outer loop is 
terminated either when there are no more families or when 
no more products are being assigned to a particular family. 
The following is a pseudo-code representation of our 
algorithm. 

1. Family = Primary / Initialization family variable */ 
2 .  R E P E A T  I *  S t a r t  o u t e r  l o o p  * /  
3. Qualify = PC A / Products to be assigned to a family.*/ 
4. WHILE Qualify <> Empty / Start inner loop. Loop */ 

/ until there are no more product1- */ 
5. Find Product from Qualify with the highest seleci ivity 

measure (sÂ¡) 
6. IF (a qualified Product is selected AND the slots 

required by the selected Product < slot availability 
of Family 

7 .  T H E N  
8.  Assign Product  to  Family  and update  s lo t  

availability of Family 
9 .  R e m o v e  P r o d u c t  f r o m  P C  A  
1 0 .  E N D  I F  
1 1. Remove Product from Qualify 
12. END WHILE 
13. Family = get_a_new_family(Family) 
14. UNTIL (PCA does not change OR no more Families) 

P r o d u c t  p r o d u c t  b e i n g  c o n s i d e r e d  f o r  i n c l u s i o n  
in a family 

get_a_new_family returns next available family's name and 
slot availability 

slot availability counter for the number of placement 
machine slots available to a family (This 
number is decreased by the number of 
slots required by each product assigned 
to the family.) 

P C A  l i s t  o f  p r o d u c t s  t o  b e  c o n s i d e r e d  f o r  
family assignment (This list is updated 
each time a product is assigned to a 
family.) 
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Qualify same as PCA except that this variable is 
used to determine when to terminate the 
inner loop and is updated at each 
iteration. 

Slots: 

= ncs(pi,p2)/tns(pi) (5 )  

where ncs is the number of slots common to pi and P2, and 
tns is the total number of slots required by pj. It could be 
deduced that in general: 

comm(pi,p2) *â€¢ comm(p2,pi) unless tns(p!) = tns(p2). 

Commonality during primary family selection: 

comm (pj, 

ml ;  =  
N -  1 for product pÂ¡. (6 )  

N is the number of products not yet assigned to a family. 

Commonality during nonprimary family selection: 

^  c o m m ( p i , p j )  

m l j  =  -  â € ”  _  â € ”  -  f o r  p r o d u c t  p Â ¡ .  ( 7 )  

N is the same as above. 

Volume: 

demandipi 
j = N  
Max(demand(pj)) 

for product pÂ¡ (8) 

where demand(pi) is the expected volume demand for 
product PÃ and N is the same as above. 

m3j = 1 -  
slots(pi) 

slots_availablet 
for product pÂ¡ (9 )  

At the end of this algorithm there still might be products 
that cannot be assigned to any family because of slot avail 
ability, or there might be families with no products assigned. 

We used the concepts of fuzzy sets, fuzzy relations, and 
fuzzy composition to determine which products to select and 
assign to each family. The variables used in our algorithm 
include a fuzzy set pÂ¡ which represents the printed circuit 
assembly products, a selectivity measure sÂ¡, which is a value 
that indicates how each product pÂ¡ might fit into a particular 
family, and finally, the fuzzy relation r, which is used to 
capture the relation between selectivity sÂ¡ and product pÂ¡. 

Since the volume, commonality (common parts), and addi 
tional slots are the three independent qualifiers that describe 
a product, they were used to define the product universe P = 
{commonality, slots, volume). Thus, a product 

Pi = ml Â¡/commonality + m2Â¡/volume + m3Â¡/slots (4) 

is a fuzzy set on universe P where mlj, m2Â¡, and m3Â¡ are the 
membership values on the interval <0,1> for product pÂ¡. 

We implemented the following computational methods to 
obtain the membership values for universe P. 

General commonality. General commonality between product 
Pi and P2 is defined as: 

where slots(pÂ¡) is the number of additional slots required for 
product pi if it is selected, and slots_availablet is the number 
of slots available for a particular family during iteration t of 
the assignment algorithm. 

Selectivity and Fuzzy Relation 
Since the selectivity measure s is defined on the universe S 
= Â¡selectivity), the selectivity for product pÂ¡ is defined as a 
fuzzy set on universe S: 

sÂ¡ = m/selectivity. (10) 

Fuzzy relation r on universe R = P x S is used to capture the 
relation between product selectivity and the product itself. 
When we translate the general notion of a fuzzy relation into 
the reality of our problem, we end up with a 3 x 1 matrix 
representation of the relation. The column symbolizes the 
cardinality of universe S and the three rows relate to the 
product universe P (i.e., commonality, volume, and slots). 
Since different selection criteria might be desired at differ 
ent stages of the selection process, we found a need for at 
least two distinct relations. Thus, based on our experience 
we selected the following two categories that might require 
separate fuzzy relations r. 

1 First product assigned to a primary or nonprimary family 
Nonfirst product assigned to a primary or nonprimary family. 

The hardest part about using fuzzy relations is obtaining their 
membership values. We wanted the membership values de 
rived to the relation r to express the importance assigned to 
each of the three elements in universe P (i.e., commonality, 
volume, and slots) during the process of selecting products 
to add to a particular family. For example the relation: 

rÂ¡ = 
0.7 
0.4 
0.2 

(commonality) 
(volume) 
(slots) 

says that for product pÂ¡ during an iteration of the assignment 
algorithm, commonality is to be given greater emphasis in 
family assignment than volume or slots membership values. 

One can use one of many fuzzy composition operators to 
construct the relation, or one can intuitively guess the fuzzy 
relation r based on some empirical experience or expertise. 
In our prototypical implementation, we selected the second 
approach. 

Initially, we experimented with the empirically derived 
graph shown in Fig. 10 to come up with the membership 
values for the two categories of fuzzy relations mentioned 
above. Note in Fig. 10 that the fuzzy relationship values for 
commonality, volume, and slots are dependent on the slots 
membership value. For example, a slots membership value 
of 0.5 would provide the relation matrix: 

T i  =  

58 June 1994 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



0 . 2  0 3  0 . 4  0 . 5  0 . 6  0 . 7  0 . 8  0 . 9  1 . 0  

Slots Membership Value 

Fig. 10. Fuzzy relation membership values for our experimental 
functional approach to family assignment. 

This approach turned out to be too complex and cumber 
some because of our lack of experience with creating mem 
bership relations. Consequently, at the end we settled for a 
constant determination of a relation's individual values to 
get us started. This approach resulted in the following two 
fuzzy relations in our prototypical implementation: 

First product assigned to a primary or nonprimary family 

rÂ¡ = 
0.550 
0.150 
0.300 

for product pÂ¡ (1 < i < N) 

Nonfirst product assigned to a primary or nonprimary family 

r i = 
0.550] 
0.200 for product pÂ¡ (1 < i < N) 
0.250 I 

where N is the number of products not yet assigned. 

It is important to notice that in general no restrictions are 
imposed on fuzzy membership values, but since we used the 
Sum-Product fuzzy composition operator then the summation 
of the elements in each relationship matrix must be < 1. 

Example 
The fuzzy composition for our family assignment problem is 
Sj = rÂ¡ Â® pÂ¡. Although we investigated a number of fuzzy 
composition operators, we had the most success with the 
Sum-Product composition operator. 

The following example illustrates the actions performed by 
the assignment algorithm to select a product to assign to a 
particular family. 

1 Assume there are three products pi, P2, and p,3 and that we 
are selecting the first product to be assigned to a primary or 
nonprimary family. 

1 ncs (number of common slots) for pairs of pÂ¡, PJ for i < 3, j 
< 3 is: 

20 10 12 

10 30 21 

12 21 40 

â€¢ slots_available = 45 

â€¢ demand (pi) = 85, additional slots(pi) = 20 

From equation 4: 

Pi = mli/commonality + m2 Â¡/volume + m3i/slot 

where: 

by equation 5: comm(pi, pÂ¿) = 10/20 = 0.5 and 
!, p;3) = 12/20 = 0.6. 

From equations 7, 8, and 9: 

ml! =Â°-6 + Â°-5 = 1.1/2 = 0.55 

m2i = 85/Max(85, 100, 60) = 0.85 
m3j = 1 - 20/45 = 0.56. 

Finally, 
Pl = 0.55/commonality + 0.85/volume + 0.56/slot 

1 demand(p2) = 100, additional slots(p2) = 30, and 

P2 = 0.5 I/commonality + 1.00/volume + 0.33/slot 

1 demand(p3) = 60, additional slotsQpa) = 40, and 

P3 = 0.4 I/commonality + 0.60/volume + 0.1 I/slot. 

> Since 
0.550 
0.150 
0.300 

using equation 3, the Sum-Product 

operator, the fuzzy composition sÂ¡ = rÂ¡ (g) pÂ¡ for this example 
is: 

si = ri & P! = 0.55 x 0.55 + 0.150 x 0.85 + 0.300 x 0.56 
= 0.598 

s2 = r2 <8> p2 = 0.529 

SB = r3 Â® Pa = 0.348. 

â€¢ Finally, since Max(si, 82, 83) = sj, product pi has the highest 
selectivity measure and is therefore assigned to the family 
being formed during this iteration. 

Fuzzy Machine Balancing 

After the fuzzy family assignment algorithm assigns the 
products to their corresponding families, the fuzzy machine 
balancer tries to assign each family's components to the 
placement machines. The primary objective is to have each 
side of the assembled printed circuit assembly use the two 
series CP-IIIs as equally as possible. 

Constraints 
Aside from the inherent constraints introduced by families, 
manufacturing reality brings a few special cases of already 
predetermined machine assignments and constraints. 

Physical Process Constraints. Since the objective is to have as 
much setup slot room as possible, certain physical process 
related limitations arise. For example, constraints on the very 
last slot available on the bank do not allow a two-slot-wide 
feeder to be mounted on the last slot. If we have one slot 
still available on each machine and we have to place a two- 
slot-wide feeder, we need to move a one-slot-wide feeder 
from one machine to make room for the two-slot-wide 
feeder. Finally, a component whose package is higher than 
3.5 mm must be placed by the second machine since the 
component height might interfere with the placing nozzle on 
a densely populated printed circuit assembly. 
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Primary Family Products. If the printed circuit assembly mem 
bers in the primary family could be balanced without consid 
eration for the remaining printed circuit assemblies that use 
a portion of the primary family, balancing could probably be 
achieved at the expense of the remaining products' imbal 
ance. Thus, it is crucial that balancing for primary family 
products take into consideration the remaining products. 

Nonprimary Family Products. In the case of nonprimary family 
products, the problem is just the opposite of the problem 
encountered for primary family products. For nonprimary 
family products balancing has to incorporate the component 
assignments already committed by the primary family 
balancing procedure. 

Placement Time Estimation. The true placement time for a 
printed circuit assembly is a function of the placement se 
quence, which includes the placement table movement, the 
placing head rotation speed, and the feeder bank movement. 
The only information we have available is the placing head 
rotation speed and even that is an approximation. The maxi 
mum allowable speed for the placing head rotation is deter 
mined from a component's polarity, presentation, package 
type, size, and pickup nozzle size. Furthermore, the placing 
head has 12 two-nozzle stations that are all influenced by 
the head's speed selection. We approximated the placement 
speed by obtaining the speed of the head rotation. 

Products with Inherent Imbalance. In certain cases only the 
duplication of a component's availability among the CP-III 
placement machines would lead to good balance. For exam 
ple, it is possible that a printed circuit assembly's side re 
quires a placement-intensive component that greatly ex 
ceeds the total placement of the remaining components. 
Only an availability of that component in both of the CP-III 
setups would provide a shot at a reasonable balance. In our 
initial implementation we didn't use this approach. 

Algorithm Outline 
Just as in our family assignment approach we used the con 
cepts of fuzzy sets, relationships, and fuzzy composition to 
balance the series CP-III loads for each printed circuit as 
sembly side being assembled. The following is a high-level 
procedural outline of our balancing algorithm. 

1. Define component fuzzy set cÂ¡ for 1 < i < N 
2. Sort all cÂ¡ in decreasing order 
3. Initialize fuzzy relation r 
4. FOR 1 < i < N 
5. IF cÂ¡ has no predetermined matching assignment ma 
6 .  T H E N  
7. niÃ = r Ã‡g> cÂ¡ 
8. mÂ¡ Denazification => ma for cÂ¡ 
9 .  E N D  I F  
10. Assign component cÂ¡ to machine ma 
11. Update the relation r; r = rel_update(cÂ¡, nÃa) 
12. END FOR 
13. Ensure that all machine constraints are satisfied. 

Cj is the ith component represented by the fuzzy set c 
N is the number of components to be assigned 
mÂ¡ is the machine fuzzy set obtained for component 

cÂ¡ 
ma is an actual machine a to which the component cÂ¡ 

has been assigned 

r describes the relation between cÂ¡ and mÂ¡ 
<S> is the fuzzy operator. 

N 

Nonfuzzy sorting of fuzzy sets is based on ^ wij where Wy 
i = l 

is a value described for all fuzzy components cÂ¡ (described 
below), i is the ith component, and j is the jth product. 

Fuzzy Component c 
A fuzzy set cÂ¡ representing a physical component Q is defined 
on universe P = (pi,p2,...pq) where PI, P2,...pq represent 
products. Thus, fuzzy set 

=  ( w u / P l ,  W i i 2 / p 2 ,  . . .  W y  (11) 

where: 

W j j  =  W j / n o r n ^ C j )  ( 1 2 )  
wij = w_place(CÂ¡) x qty_per(CÂ¡,pj) x no_images(pj) 

x  I o g 1 0 ( d e m a n d ( p j ) )  ( 1 3 )  
w_place is a placement time weight factor 

for physical component CÂ¡ 
qty_per is the number of times a component 

CÂ¡ is placed on product pÂ¡ 
no_images is the number of times product pÂ¡ 

appears on a single manufacturing 
fixture (panel) 

demand is the expected volume demand for 
product PÃ 

n o r m ( C i )  =  M a x ( W j j )  ( 1 4 )  

Q is the cardinality of universe P. 

Machine Fuzzy Set m 
The machine fuzzy set m is defined on the universe M = 
(CP3.1,CP3.2). Consequently, the fuzzy set mÂ¡ is defined as a 
fuzzy set on universe M as: 

mi = wu/CP3.1 + wiÃ2/CP3.2 

and it is obtained by rt Â® cÂ¡, where Â® is the fuzzy 
composition operator of choice. 

(15) 

Fuzzy Relation r 
Fuzzy relation r on universe R = P x M is used to capture the 
relation between the physical component C represented by 
fuzzy set c and machine fuzzy set m. We developed the fol 
lowing general equation to obtain membership values for the 
relation r. 

rk â€ž = 1 - assigned_currentkin/assigned_expectedkin(16) 

where: 

0  <  k  <  Q  s ince  Q  i s  the  ca rd ina l i ty  o f  
universe P 

1  <  n  <  2  s i n c e  u n i v e r s e  M  h a s  t w o  
elements CP3.1 and CP3.2 

assigned_currentk>n is the current assignment for the 
kth product and the nth physical 
machine 

assigned_expectedk n is the expected assignment for 
the kth product and the nth 
physical machine. 
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If assigned_currentk.n > assigned_expectedk n then r^n = 0 
(rkitl should be in the <0.1> interval). 

We considered two possible ways to obtain values for 
assigned_currentk n and assigned_expectedk n- hi the first 
approach, we only considered the component placement 
time without any additional consideration for slot space 
limitations, hi the second approach, we tried to incorporate 
some of the known slot constraints. The following equations 
show the two approaches for obtaining the values for 
assigned_currentkjn and assigned_expectedk n: 

Placement time only. 

assigned_expectedk n = 

NACÂ¡Â£A 

I  w j,k + ack>n X PPk,n 

z = NACjÂ£Machn 

a s s i g n e d _ c u r r e n t k i n  =  !  

(17) 

ack>n (18) 

where: 

ack,n is the placement time sum for components 
committed to the nth machine for the kth 
product 

ppkjn is the percentile portion of the kth product 
preferred to be consumed at the nth 
physical machine 

Machn is a crisp set of all physical components C 
assigned to the nth physical machine 

n = 2 

A  =  U  M a c h n  ( 1 9 )  
n=l 

Wj k see the definition of the fuzzy component c 
given above 

N i s  the  number  o f  componen t s  to  be  a s s igned .  

Placement time with slot constraints considered. 

assigned_expectedkin = 

(WJ, J,k 

assigned_currentkin = 

X ava i ln  X PPk.n 

(Wj,k X Sj) 

where: 

ack,n is  the placement t ime sum for components 
committed to the nth machine for the kth 
product 

PPk.n is the percentile portion of the kth product 
preferred to be consumed at the nth 
physical machine 

Machn Â¡s a crisp set of all physical components C 
assigned to the nth physical machine 

Wj k see the definition of the fuzzy component c 
given above 

S j  i s  t h e  n u m b e r  o f  s l o t s  c o m p o n e n t  C j  
consumes 

availn is the number of slots available for the nth 
machine 

takenn is the number of slots already taken at 
the nth machine 

n = 2 
A = U Machn is a crisp set containing components 

n  =  i  a l r eady  ass igned  to  some  mach ine .  

Note that the ack n identifier used in both approaches in 
cludes the predetermined components already assigned to 
a machine. Thus, the fuzzy machine balancer does not ac 
tively consider predetermined components for balancing, it 
simply incorporates their passive balancing impact into the 
balancing process. 

The second approach is very complex and elaborate and tries 
to control a lot of independent measures simultaneously. 
Thus we selected the first approach for our prototype be 
cause we achieved much better overall balance with this ap 
proach even though we have to ensure that slot constraints 
are satisfied in an independent postbalancing step. 

The fuzzy relation r has to be updated every time a compo 
nent C is assigned to the nth physical machine. This proce 
dure ensures that the current component assignment is going 
to be reflected by the fuzzy relation r. This update is done 
fairly quickly by recalculating the assigned_currentk n value 
for the corresponding machine n and product pk (0 < k < 
Q). It is obvious that the update of assigned_currentk n 
changes the appropriate rk n and hence the fuzzy relation r. 

Fuzzy Composition 
Although the Max-Min and Sum-Prod composition operators 
were investigated, the Max-Prod fuzzy composition operator 
performed best for our balancing algorithm, and we used the 
Max defuzzification approach to select a component to assign 
to a particular machine. 

The following example illustrates our machine balancing 
algorithm. In this example we are trying to assign component 
c 10, and we have three products PI, P2, and pa to assemble. 
Components c\ to eg have already been assigned to one of 
two placement machines CP3.1 and CP3.2 

To simplify our calculations assume that acki0 is 0 for all k 
and all n meaning there are no predetermined components 
on any of the products in question. 

From equation 11: 

ClO = W10,l/Pl + Wio,2/p2 + 

and from equation 12 

= W10j/norm(Cio) 

If we assume that Wi0,(i,2,3) = (112.72, 150.0, 0.0) then using 
equations 12 and 14: 

WK,,I = 112.72/150.0 = 0.75 
wioÂ¿ = 150.0/150.0 = 1.0 
w io,:j = 0.0. 

Thus, 

= 0.75/pi + 1.0/P2 + 0.0/P3. 

Assume that after computing equations 17 and 18 we get the 
following values for each placement machine: 
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assign_expected = 

CP3.1 CP3.2 
1713.0 1713.0' 
2000.0 2000.0 
459.0 459.0 

Pi 
P2 
Ps 

and 

assigned to machine CP3.2 since it has the maximal 
membership value (0.54). 

â€¢ Step 9. Update the relation r. 

r = rel_update(q, ma) and updating 

.1273.0 
  ^ _ _ _    1 7 8 2 . 0  

[1273.0 498.0] 
1782.0 1560.0 

150.0 450.0 J 

assign_current = 
1273.0 601.72 
1782.0 1710.0 

150.0 450.0 
at i = 10 

The assign_expected matrix has the same values in both 
columns because we want to balance the load equally be 
tween the two placement machines for products Pi, Pa, and 
P3. Assign_current shows the component balance between 
the two machines for components cÂ¡ through eg at the 
current iteration of the balancing algorithm. 

Using equation 16 

makes 

r = 
0.26 0.72 
0.11 0.21 
0.67 0.02 

Referring to steps 6, 7, 8, and 9 in our machine balancing 
algorithm, the following items are computed. 

â€¢ Step 6. From equation 14, mÂ¡ = rt <8> q using the Max_Prod 
fuzzy composition operator in equation 2: 

rÃo Â® c 10 = Max* 0.75 1.0 0.0 
0.26 0.72 
0.11 0.21 
0.67 0.02 

= Max[(0.19 0.11 0.0)(0.54 0.21 0.0)] 

Thus, 

m10 = 0.19/CP3.1 + 0.54/CP3.2 

Steps 7 and 8. Denazification => ma for q is obtained by 
applying the Max defuzzification method to mÃo. Thus, 

> m2 = CP3.2 meaning that component CIQ is 

0.26 0.64 
0.11 0.15 
0.67 0.02 

for the next iteration. 

Results 

For this experiment we used two manufacturing production 
lines at our site. The first one is denoted as line 1 and the 
second one as line 2. The total line volume is equivalent be 
tween the two Unes. The statistics on the two lines include: 

â€¢ Line 1: 27 products, 13 double-sided, 413 unique components, 
and on average a component appears on 3.05 products. 

â€¢ Line 2: 34 products, 11 double-sided, 540 unique components, 
and on average a component appears on 4.69 products. 

Fig. 11 shows the setup families created for the printed 
circuit assembly products assigned to lines 1 and 2. 

Family Assignment 
Fig. 12 shows the percentage of component placement vol 
ume versus the cumulative contribution for each of the family 
assignment techniques described in this paper. 

Line 1. The results for this line were indeed phenomenal. 
The primary and A families together constitute 95% of com 
ponent placement volume for the line. This results in no 

P r i m a r y  A  

(b) 

Fuzzy Family Assignment CCMO Greedy Board 

D  E  F  

Setup Families 

NCMO Greedy Board 

Fig. circuit 1. The setup families created and the number of printed circuit assembly products contained in each family based on the type of 
family assignment algorithm used, (a) Line 1. (b) Line 2. 
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Fig. for A placement representation of the family assignments for line 1 and line 2 versus component placement volume, (a) Line 1. 
(b) Line 2. 

need for setup changeover for 95% of the volume for one 
month. The 28% reduction of the number of families is a side 
effect of the fuzzy family assignment optimization. 

Line 2. The major achievement of the fuzzy family assign 
ment technique for line 2 was not just the moderate volume 

improvements over the greedy board and CCMO greedy 
board, but its ability to produce the same solution we ob 
tained when we manually forced certain products into a 
primary family using the greedy board method. When we 
first investigated greedy board capabilities, we allowed 

Â£ 
I  

Produc ts  

NCMO Greedy Board 

Fig. 13. Machine imbalance for line 1. 
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Fig. 14. Machine imbalance for line 2. 

hand-picked products to be forced into a family, regardless 
of their greedy ratio. The forced products were carefully 
identified based on our intuition and expertise. 

Machine Balancing 
Figs. 13 and 14 show the percentage imbalance for individ 
ual printed circuit assemblies manufactured on lines 1 and 2 
respectively. The line 1 average imbalance was 12.75% for 
the fuzzy machine balancing approach and 35.9% for the 
balance obtained by the greedy board approach. The line 2 
results are 10.73% for the fuzzy machine balancing approach 
and 29.58% for the greedy board approach. The families are 
the same ones provided by the fuzzy family assignment 
method. 

i  Fuzzy Machine Balancing 
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