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In this Issue
Light-emitting diodes bright enough for outdoor applications in bright sunlight-
automobile tail l ights, for example-have been a long-sought goal of LED re-
search. HP's latest LEDs, described in the article on page 6, should meetthe
needs of  many outdoor appl icat ions.  Made f rom aluminum indium gal l ium phos-
phide (AllnGaP), they surpass the brightness of any previously available visible
LEDs and come in a range of colors from red-orange to green. Technically, they
are double-heterostructure LEDs on an absorbing substrate and are grown by
means of  a technique cal led organometal l ic  vapor phase epi taxy,  which has
been used for  producing semiconductor  laser  d iodes but  not for the mass pro-
duction of LEDs. In addition to the technical details of the new LEDs, the article

provides a history of LED material and structure development.

Let's say you have a computing network in which users need to share resources. A user needs to move a

compute job to a remote machine to free local compute cycles or access remote applications. You would
like your computers to be equally loaded, and you would l ike to make remote access as automated as
possible. Also, you want disabled machines to be automatically avoided. HP Task Broker (see page 15) is

a software tool that distributes applications among servers efficiently and transparently. When a user
requests an application or service, HP Task Broker sends a message to all servers, requesting bids for
providing the service requested. Each server returns its "affinity value," or bid, for the service, and the
server with the highest value is selected. Tasks are distributed at the application level rather than the
procedure level, so no modifications are required to any application. Besides load balancing and increased
avai labi l i ty ,  the benef i ts  of  HP Task Broker  inc lude mul t ip le-vendor in teroperabi l i ty .  easier  network
upgradabil ity, and reduced costs.

Real-time systems, unlike timesharing and batch systems, must respond rapidly to real-world events and
therefore require special algorithms to manage system resources. The HP-RT operating system is the
result of porting an existing operating system to the HP 9000 Model 742rt board-level real-time computer.
The HP-RT kernel  implementat iqn,  inc luding the concepts of threads,  count ing semaphores,  and pr ior i ty-

inheritance semaphores, is described in the article on page 23. The article on page 3l discusses the
handling of interrupts in HP-RT and tells how the HP PA-RISC architecture of the Model 742rt affected
the operating system design.

The HP Tsutsuji logic synthesis system (page 38) takes logic designs expressed as block diagrams and
transforms them into netl ist f i les that gate-array manufacturers can use to produce application-specific
integrated circuits (ASlCs). In many applications, the system reduces the time required to design an ASIC

by a factor of ten or more. Tsutsuji was developed jointly by HP Laboratories and the Yokogawa-Hewlett-
Packard Design Systems Laboratory in Kurume, Japan. Because the World Azalea Congress was being
held in Kurume when the project began, Tsutsuli-the Japanese word for azalea-was chosen as the
name of the system. Currently, Tsutsuji is only being marketed in Japan. The article covers its architecture,
its operation, and several applications.

4 August1993Hewlett-PackardJoumal



A desktop scanner d ig i t izes photographs,  documents,  drawings,  and three-dimensional  objects and
sends the in format ion to a computer ,  usual ly  for  e lect ronic  publ ish ing appl icat ions.  The Hp ScanJet  l lc
scanner (paqe 52)  is  a 400-dot-per- inch f la tbed scannerthat  has b lack and whi te,  co lor ,  and opt ica l
character  recogni t ion capabi l i t ies.  Using an HP-developed color  separator  design,  i t  prov ides fast ,
s ingle-scan,24-bi t  co lor  image scanning.  The ar t ic le  descr ibes the color  separaior  design and d iscusses
the chal lenge of  t ry ing to dupl icate human v is ion so that  co lors look the same in a l l  media.

lssues in the design of a workstation computerfor industrial automation applications include serviceabil iry
inpuVoutput capabil it ies, support, reliabil i ty, graphics, front-to-back reversibil i ty, mounting options, form
factor, airf low management, acoustics, and modularity. Howthese issues are addressed bylhe mechanical
design ofthe HP 9000 Models 745i and 747i entry-level industrial workstations is the subject ofthe article
on page 62.

Franco Canestr i  is  an appl icat ion and technical  support  specia l is t for  HP cardio logy products in  Europe.
He a lso cont inues the medical  laser  research he began as an assis tant fe l low at the Nat ional  Cancer
Inst i tu te of  Mi lan,  focusing on or thopedic surgery appl icat ions.  In  the paper on page 68.  he descr ibes
recentwork on an a lgor i thm for  real - t ime surg ical  laser  beam contro l  us ing HP 9000 computers.

The final three papers in this issue are from the 1992 HP Software Engineering Productivity Conference.
> 0n page 73 is a description of a defect management system created for so{tware and firmware devel-
opment  at  two HP div is ions.  The system uses a commercia l  re lat ional  database management system.
> The C++ language and obiect-oriented programming offer potential productivity gains, including code
reuse, but there can be pitfalls. The article on page 85 discusses these as well as some new features of
the language. > In developing real-time software. it may be diff icult to go from a structured analysis
model  to  a st ructured design.  To help make th is  t ransi t ion for  HP medical  u l t rasound sof tware.  one Hp
div is ion used a h igh- level  design methodology cal led ADARTS. l ts  d iscussed on page 90.

R.P Dolan
Editor

Cover

This photograph i l lust rates many of  the features of  the new HP Al lnGaP l ight-emit t ing d iodes,  inc luding
thei r  range of  co lors,  thei r  package types,  thei r  narrow-beam l ight  output ,  and thei r  br ightness when
viewed head-on. Although we took the picture in the dark, the main applications are daylight-viewable
displays and automotive l ighting.

What's Ahead
Featured in the 0ctober issue wil l be the design of the HP 54720 sampling digit izing oscil loscope family,
which offers sample rates up to 8 gigasamples per second and bandwidths from SbO megahertz to 2
gigahertz ,  the HP E14304 10-megahertz  analog- to-d ig i ta l  conver ter  module,  which has 1 ig-dB l inear i ty
and built- in memory and fi l ter systems, and the HP 43964 1.8-gigahertz vector network and spectrum
analyzer, a combination analyzer with laboratory-quality performance in all functrons.
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High-Efficien cy Aluminum Indium
Gallium Phosphide tight-Emitting
Diodes
These devices span the color range from red-orange to green and have the

highest luminous performance of any visible LED to date. They are
produced by organometall ic vapor phase epitaxy.

by Robert M. Fletcher, Chihping Kuo, fimothy D. Osentowski, Jiann Gwo Yu, and Virginia M. Robbins

Since light-emitting diodes (LEDs) were first introduced

commercially in the late 1960s, they have become a common

component in virtually every type of consumer and indus-

trial electronic product. LEDs are used in digital and alpha-

numeric displays, bar-graph displays, and simple on/off sta-

tus indicators. Because of their limited brightness, LEDs

have tended to "wash out" under sunlight conditions and

have not generally been used for outdoor applications' (Re-

call the quick demise of digital watches with LED displays in

the early 1970s.) However, the introduction of bright red-

light-emitting AlGaAs LEDs in the mid and late 1980s par-

tially eliminated this drawback. Now, another family of

LEDs, made from AlInGaP, has been introduced. These

LEDs surpass the brightness of any previous visible LEDs

and span the color range from red-orange to green. With this

brealcthrough in brightness in a broad range of colors, we

should see a wide variety of new applications for LEDs

within the next decade.

History

Although the various LED display and lamp packages are

familiar to many (for example, the usual LED single-lamp

package with its hemispherical plastic dome, or the seven-

segment digital display package), the diversity of materials

used in the chips that go into these packages is not as famil-

iar. Fig. I summarizes the various semiconductor materials

used in LEDs and charts the evolution ofthe technology

over the past 25 years. In the figure, luminous performance,

measured in lumens* of visible light ou@ut per watt of elec-

trical power input, is plotted over time starting from 1968

and projected into the mid-1990s.

The first commercial LEDs produced in the late 1960s were

simple p-n homojunction devices made by diffusing Zn into

GaAsP epitaxial material grown by vapor phase epitaxy on a

GaAs substrate.l GaAsP is a direct-bandgap semiconductor

for compositions where the phosphorus-to-arsenic ratio in

the crystal lattice is 0.0 to 0.4. Above 0.4, the bandgap be-

comes indirect.** The composition of 60% As and 40% P

produces red near-bandgap light at about 650 nm. Quantum

efflciency in a simple homojunction device such as this is

* A lumen is a measure of visible light flux that takes into account the wavelength sensitivity ot
the human eye. An LED's output in lumens is obtained by multiplying the radiant flux Output 0f
the LED in watts bv the eve's sensitivitY as defined bY the Commission Internationale de
I 'Eclairage (ClE).
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low, but these so-called "standard red" LEDs were and still

are inexpensive and relatively easy to produce. The red

numeric displays in the first pocket calculators were made

of standard red LEDs.

At around the same time, GaP epitaxial layers doped with

zinc and oxygen and grown on GaP substrates by liquid phase

epitaxy were introduced. The GaP substrate, unlike GaAs' is

transparent to the emitted light, allowing these devices to be

more efflcient than the GaAsP standard red diodes' How-

ever, the emission wavelength at 700 nm is near the edge of

the visible spectrum, which limits their usefulness.

A m4ior breakthrough in LED performance came in the

early 1970s with the addition of nitrogen to Ga-dsP and GaP

epitaxial materials.2'3'4 Nitrogen in these semiconductors is

not a charge dopant; rather it forms an isoelectronic impuriW

Ievel in the bandgap which behaves as an efficient radiative

recombination center for electrons and holes. In this way,

even indirect-bandgap GaP and indirect compositions of

** ln a direct-bandgap semiconductor, the recombination of electrons and holes has a high
probability oJ Occurring through a band-to-band radiative process in which a ph0ton is
emitted. In an indirect-bandgap semic0nductor, radiative band-t0-band rec0mbinati0n re-
quires the interaction 0f a lattice vibrati0n 1a ph0non) with the electron and hole. For this
interaction the pr0bability is low, and consequently nonradiative rec0mbination prOcesses

00mtna le .

9 1 0
o

o

: r

o

/ Red, Yellow,
and Green

0.1
1970 1975 1980 1985 1390 1995

Fig. 1. Timc evolution of light emitting dioclc techtroloSly'



GaAsP can be made to emit sub-bandgap light efficiently. By
the nfd-1970s, orange and yellow LEDs made from various
alloys of GaAsP and green LEDs made from GaP appeared
on the market.

The next brealrthrough occurred almost a decade later with
the introduction of AlGaAs red-light-enritting LEDs, grown
by liquid phase epitaxy. These provicled two to ten times the
light output performance of red GaAsPi,'ti J[p reason for the
range of performance of AlGaAs is that it can be produced
in various structural forms: a single heterostructure on an
absorbing substrate (SH AS AlGaAs), a double heterostmc-
ture on an absorbing substrate (DH AS AlGaAs), and a
double heterostructure on a transparent substrate (DH TS
AIGaAs). (See page 8 for an explanation ofheterostruc-
tures.) This was an important milestone in LED technology
because for the first time LEDs could begin to compete with
incandescent lamps in outdoor applications such as automo-
bile tail lights, moving message panels, and other applica-
tions requiring high flux ou@ut. Included in Fig. 1 is the flux
required for a red automobile tail light, which is well within
the perfornrance range of AlGaAs LEDs. Unfoftunately,
AlGaAs LEDs can efficiently emit only red (or infrared)
Iight, which nakes them unsuitable for many applications.

The latest technology advance, and the subject ofthis paper,
is the development of AlInGaP double-heterostructure
LEDs. These devices span the color range fron red-orange
to green at light output performance levels comparable to or
exceeding those of AS and TS AlGaAs.7,8 The AlInGap mate-
rials are grown by a technique called organometallic vapor
phase epitaxy. This growth technology has been used for the
production of optoelectronic semiconductors, especially laser
diodes, for a number ofyears, but it has not been previously
used for the n-rass production of LEDs.

Hewlett-Packard's AlInGaP devices currently being intro-
duced to the market have the highest lurninous performance
of any visible LED to date. As the technology matures
through the 1990s, performance levels are expected to in-
crease further and reach into the tens-of-lumens-Der-warr
rarge.

Properties ofAlInGaP
The bandgap properties of several compound semiconductors
used in LED technology are shown in Fig. 2. Illustrated is
the bandgap energy as a function of crystal lattice constant.
In a diagram such as this, binary compound semiconductors,
such as GaP and InP, are plotted as single points, each with
a unique bandgap and lattice constant. Ternary compounds,
such as A-lGaAs, are represented by a line drawn between
the two constituent binary compounds, in this case AlAs and
GaAs. Finally, quaternary compounds, such as AIInGap, are
represented by an enclosed region with the constituent
binary compounds at the vertices. The complex nature of
the crystal band structure and the transition from a direct-
bandgap semiconductor to an indirect-bandgap semiconduc-
tor are what give the enclosed region its characteristic
shape. Properties such as this are usually obtained from
both experintent and theory.

This type of diagram is useful for designing LED materials
for at least two reasons. First, it shows what compositions
ofAlInGaP are direct-bandgap and therefore readily useful
for making efficient LEDs. Second, for high-quality epitaxial

5.4 5.5 5.6 5.7 5.8 5.9
[anice Constant (A)

Fig. 2. AlLt(iaP allor,'svslom.

growth it is necessary for the epita-xial layers to have the
same lattice constant as the substrate on which they are
grown. This diagram shows what compositions of AlInGap
will provide this lattice matching condition for a given sub-
strate. For visible LEDs, the two common substrates used
are GaAs and GaP Clearly GaP is not immediatelv useful
here because it is at the indirect-bandgap end ofthe
AlInGaP composition region. This leaves GaAs as the only
suitable substrate. A vertical line drawn from the x axis
through the GaAs point intersects the AlInGaP region and
indicates the compositions that lattice match to a GaAs
substrate. The composition that gives this lattice match
condition is written as:

(Al"Ga1-je.5Ins.5P.

This notation, which is typical for describing compound
semiconductors, indicates the proportions of the constituent
atoms within the crystal lattice. In this case, half the group
III atorns are indium and the other half are some mixture of
aluminum and gallium. By coincidence, aluminum and gal-
lium have approximately the same atomic size within the
lattice. As long as the amount of indium remains fixed at 0.5,
the aluminum-galliurn mix can vary continuously from all
aluminum to all gallium, and the lattice constant will not
change appreciably. What will change is the bandgap of the
material. If the aluminum is kept below x : 0.2, the band-
gap is direct; above values ofx - 0.7, the bandgap becomes
indirect. This case is illustrated in Fig. 2 where the line of
lattice match crosses from the direct region into the indirect
regron.

The bandgap diagram indicates the potential of a material
for making LEDs, that is, whether a material has a direct
bandgap and whether the bandgap energy is within the
proper range for producing visible photons. The actual per-
formance of a device depends on a number of additional
factors. First, the growth of high-quality epitaxial material
must be possible. Ideally, the growth should take place on a
commonly available, inexlrensive substrate and should be
lattice matched to that substrate. Second, it must be pos-
sible to form a p-n junction in the material. Third, to obtain
the highest quantum efficiency, it should be possible to grow
a double heterostructure. In the case ofAlInGaP, all three of
these conditions are satisfied.

s50 E

600 E
6s0 +
700 g

800

g 2.0

all
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The Structure of LEDs: Ilomojunctions and

Light-emitting diodes come in a variety of types, differing in materials and in

epitaxial structure. GaAsP and GaP are used for the majority of red, orange, yellow,

and green LEDs cunently in use. All these LEDs are homoiunction p-n diodes with

either diffused junctions or junctions grown-in during the epitaxial process. Fig. 1

shows a cross section of a typical GaAsP homojunction chip ln other material

systems, such as AlGaAs and AllnGaP, it is possible to grow layers of different

compositions {heterostructures) and therefore different bandgaps while keeping

the lattice constantthe same in all the layers. This capability meansthat more

complex and efficient LED structures can be grown with these materials.

Fig. 2 illustrates an AlGaAs single-heterostructure (SH) chip. The epitaxial part of

the device consists of an n-type active layer where the light is generated, and a

single p-type window layer on top. The composition of the window layer is chosen

to have a significantly larger bandgap than the active layel and as such it is trans-
parent to the light generated in the active layer {hence the name window layer).

The single heterojunction (excluding the one with the substrate), which in this

case is also the p-n junction, is what defines this as a single-heterostructure
device. The efficiency increase is a result of the transparency of the window layer

and increased injection efficiency at the p-n heterojuncti0n.

A modification of the single heterostructure is the double heterostructure (DH)

shown in Fig. 3, again using AlGaAs as an example. In this case an additional
layer is grown between the active layer and the substrate. ln a double hetero-

structure, the two high-bandgap layers sunounding the active layer are referred to

as confining layers. Together they act t0 confine electrons and holes within the

active layer where they recombine radiatively. The lower confining layer efficiently
injects electrons into the active layer and helps channel some of the light out of

the chip, while the upper confining layer acts as a window for the generated light

p Contacl

I

n Contacl

Fig.1. GaAsP standard red homojunction LED.

Heterojunctions

p Contacl

I

I

I
n Contact

Fig. 2. AlGaAs single-heterostructure LED on an absorbing GaAs substrate

p Gontact

I

n Contact

Fig. 3. AlGaAs double-heterostructure LED on an absorbing substrate

OMVPE Growth of AlInGaP

AlInGaP and its related compounds GaInP and AIInP have

been the subject of study since the 1960s. Only within the

last eight years, however, have researchers been able to

grow AlInGaP controllably and with high quality. Double-

heterostructure AIInGaP semiconductor lasers that have a

GaInP active layer have been commercially available for at

least five yeaxs. The development oftechniques for produc-

ing AlInGaP LEDs has been slower because of the greater
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epitaxial layer thiclcresses required and because of the
larger quantities needed to supply market demand. Also,
high-performance LEDs require higher-quality epitaxial
growth than semiconductor lasers. This is because LEDs
generally operate at much lower current densities than
semiconductor lasers (tens of amperes per squaxe centime-
ter versus hundreds or thousands of amperes per squaxe
centimeter), and nonradiative defects can dominate the
recombination process.



n Contact p contact

I

II
p contact

Fig. 4. AlGaAs double-heterostructure IED 0n a transparent subsirate.

lf the upper confining layer is grown especially thick, it can act as a mechanical
"substrate," and the original absorbing GaAs substrate can be removed by chemi-
cal etching. This is a transparent-substrate double-heterostructure (TS DH) device
and is shown in Fig.4. In Fig.4 the chip is turned upside down so that the thick
AlGaAs confining layer is on the bottom. This is the most efficient type of LED
chip, with external efficiencies approaching 1 570 for red AlGaAs lamps.

Final ly, there is the Al lnGaP LED siructure. This device is shown in Fig. 5. l t
resembles the AlGaAs double heterostructure except f0r the presence of the GaP
window layer. In the case of AlGaAs. the upper confining layer can be grown many

t
I

n Col|tact

Fig. 5. AllnGaP double-heterostructure LED 0n an absorbing substrate.

micrometers thick, enough to couple light out of the chip efficiently. With AllnP
however, for epitaxial growth reasons it is not possible to produce a thick enough
layer of high-quality AllnGaP to act as an efficient window, 0r even to spread the
current effectively to the edges of the chip. By growing a thick GaP layer on top of
the active device structure. an efficient window is produced and the sheet resistance
of the p layers is reduced enough t0 promote adequate cunent spreading.

Vapor phase epitaxy (VPE) and liquid phase epitaxy (LPE)
a"re the commonly used techniques for the mass production
of LED materials. GaAsP is best grown using the VPE
method, and AlGaAs and GaP are grown using the LPE
method. Neither of these techniques works well for the
growth of AlInGaP. A third technique called organometallic
vapor phase epitaxy (OMVPE) does work well. OMVPE is
similar to conventional VPE in which the reactant materials
are transported in vapor form to the heated substrate where
the epitaxial growth takes place. The main difference is that
instead of using metallic chlorides as the source materials
(GaCls or InCl3, for example), OMVPE uses organometallic
molecules. The materials used in the case of AIInGaP are
trimethylaluminum, trimethylgallium, and trimethylindium.
Other similar organometallic compounds are sometimes
used as well. As in VPE, phosphine gas is used as the source
of phosphorus. By controlling the ratio of constituent gases
within the reactor, virtually any composition of AlInGaP
can be grown. The reactor is designed in such a way that
the thicknesses ofthe epitaxial layers can be precisely
controlled.

The schematic diagram in Fig. 3 shows a typical research-
scale OMVPE reactor. In this example, the substrate sits flat
on a horizontal graphite slab inside a qtrartz tube. Outside
the tube and surrounding the graphite is a metal coil con-
nected to a multikilowatt radio frequency generator. The
graphite is heated to around 700 to 800'C by RF induction.

There are many variations on the design of the reactor
chamber. For example, in some existing commercial

OMVPE systems, the wafers sit on a horizontal platter and
rotate either slowly or at high speed to achieve uniform
growth across the wafer. Other systems use a barrel-t54pe
susceptor inside a large bell jar, similar to VPE and silicon
epitaxy reactors. The method for heating the substrates can
be RF induction, resistance heaters, or infrared lamps.
Whatever the configuration, the conceptual nature of the
growthprocess remains essentially the same.

The organometallic sources under normal room temperature
conditions are either high-purity liquids or crystalline solids
and are contained in small stainless-steel cylinders measur-
ing about eight inches long by two inches in diameter. (Be-
cause they are p;rophoric, these materials arre never ex-
posed to air and require caxeful handling.) The cylinders are
equipped with an inlet port connected to a dip tube, and an
exit port. Hydrogen gas flowing through the dip tube and up
through the organometallic liquid or solid becomes saturated
with organometallic vapors. (This type of container is com-
monly called a "bubbler," referring to the action of the hydro-
gen bubbling through the liquid.) The mixture of hydrogen
and vapor flows out of the cylinder and to the reactor cham-
ber. The exact amount of organometallic vapor transported
to the reactor is controlled by the temperature of the bubbler,
which determines the vapor pressure of the organometallic
material, and by the flow of hydrogen. The temperature of
the bubblers is controlled by immersion in a fluid bath in
which the temperature is regulated within +0.1"C or better.
Special regulators called mass flow controllers precisely
meter the flow of hydrogen to each bubbler.

August 1993Hewlett-PackardJournal I



Phosphine

Diethyltelluride
(n-type Dopant)

Purilied
Hydlogen

At the entrance to the reactor chamber, the reactant gases

are mixed. These gases consist of phosphine, a mixture of

hydrogen and the organometallic vapors, dopant gases, and

additional hydrogen added as a diluent. As the gases pass

overthe hot substrate, decomposition ofthe phosphine,

organometallics, and dopant sources occurs. If all the condi-

tions axe correct, proper crystal growth takes place in an

orderly atornic layer-by-layer process. Hydrogen, unreacted

phosphine and organometallics, and reaction by-products

such as methane are then drawn out of the reactor and

through the vacuum pump for treatment as toxic exhaust

waste.

The growth of III-V epitaxial materials is typically complex,

and the successful production of high-quality films is depen-

dent on many factors. The growth of AlInGaP is definitely

no exception. Since this is a quaternary material system and

is not automatically lattice matched to the substrate (unlike

AlGaAs), the composition of the crystal lattice must be care-

fully controlled during the growth process. This means that

each layer in the double heterostructure has to have the

proper proportions of aluminum, indium, and gallium. Fur-

thermore, the transition from one layer composition to the

next often requires special consideration to avoid introduc-

ing defects into the lattice. Other factors, such as substrate

temperature, total gas flow through the reactor, and dopant

concentrations require careful optimization to achieve the

best final device properties. Even after years of research

with OMVPE, there is still a certain amount of art involved

in its practice.

AlInGaP Device Structure

As mentioned previously, the high-efficiency AlInGaP LED is

a double-heterostructlre device. Fig. 4 shows a cross-section

of a Hewlett-Packard LED with the individual epitaxial layers

revealed. The light-producing part ofthe structure consists

of a lower confining layer of n-type AIInR a nominally un-

doped AIInGaP active layer, ancl an upper confining layer of

p-type AlInP. Light is generated in the active layer through

the recombination of carriers injected from the p-n junction'

The confining layers enhance minority carrier injection and

spatially confine the electrons and holes within the active

Graphite
Susceptor

rrrt Fig. 3. Sirnplifiecl schematic clia
granr of an orSlarurrrtetallic vapor
ph:rse epit axy (OVN4PII) reacl.or.

Iayer, increasing the probability for band-to-band recombi-

nation. For such a structure, the internal quantum efficiency
(number of radiative recombinations per total number of

recombinations) can be very high, even approaching 10ff/o

for the bestquality materials.

On top of the double heterostmcture is grown another layer,

which serves two functions. First, it reduces the sheet resis-

tance of the p-type layers, promoting current spreading

throughout the chip, and second, it acts as a window layer

to enhance coupling of the light out of the chip. Early in the

development phase of the AIInGaP LEDs it was discovered

that the thin upper confining layer ofAIInP, ideal for confin-

ing electrons and holes in the active layer, is resistive and by

itself prevents current from the central ohmic contact
(shown in Fig. 4) from spreading out to the edges ofthe

chip. In fact, with only AIInP as the top layer, virtually all of

the current flows straight down, and light generation occurs

only beneath the contact and is blocked from escaping the

chip by the contact itself. With the addition of a thick con-

ductive window, such as GaP, the current is able to spread

out, and light generation occurs across the entire chip. Addi-

tionally, because the index of refraction of semiconductors

is high (typically around 3.5), without the window much of

the light produced is trapped inside the chip by total internal

reflection and is eventually absorbed by the substrate. Using

Snell's law and geometric optics, it can be shown that the

thick window layer increases the amount of light that can

escape the chip by a factor ofthree.v

Conceptually, any transparent and conductive epitaxial ma-

terial coulcl selve as the window material. From a practical

standpoint, however, there are few epitaxial materials that

can be grown on the AlInGaP layers that satisfy the require-

ments of transparency and electrical conductivity. The two

best materials are AlGaAs and GaP AlGaAs is a lattice

natched material with good epitaxial growth characteristics

and acceptable conductivity. However, it is transparent only

in the red and orange spectral range. At wavelengths below

about 610 nm, A-lGaAs begins to absorb significantly. GaP, on

the other hand, although mismatched to the AlInGaP lattice

by 4o/o, is highly conductive and transparent in the spectral
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region from red to green, which is perfect for the spectral
range of AlInGaP.

From an epitaxial standpoint, the successful abrupt growth
of lattice mismatched GaP on an AIInGaP heterostructure is
an interesting phenomenon. Normally, one would not expect
GaP to grow as a single crystal layer directly on a mis-
matched "substrate" such as an A-lInGaP heterostructure. It
usually takes special growth techniques, such as alloy grad-
ing from one composition to the other to achieve a gradual
change from the substrate lattice constant to that ofthe de-
sired layer. (This is the common technique used for GaAsP
epitaxy on GaAs and GaP substrates. The grading takes
place over a distance of tens of micrometers of epitaxial
material.) We have developed a technique for growing the
GaP window directly on the AIInGaP heterostructure. The
GaP at the interface with the AIInP contains a dense net-
work of crystal defects (dislocations) caused by the lattice
mismatch. The defect-rich layer is only a few hundred nano-
meters thick. It appears to have no effect on the transpar-
ency or conductivity ofthe window and the defects do not
propagate down into the high-quality heterostructure where
the light is generated.

Instead of growing the thick GaP window using the OMVPE
technique, after the heterostructure growth is completed the
wafers are removed from the OM\PE reactor and trans-
ferred to a conventional hydride VPE reactor where a

fop Contact Metallization
(8ond Pad) GaP Window Layer {p-type)

AllnP Upper Gonfining

45-micrometer layer of GaP is deposited to complete the
structure. The reason for the two-step growth process is to
save time and cost. Organometallic sources are expensive,
whereas hydride VPE requires only metallic gallium as a
source. Also, the crystal growth rate using VPE can easily be
ten times higher than with OMVPE, which is desirable for
the growth of thick layers.

Device Fabrication
The fabrication of LED chips is relatively simple compared
to IC chip technologies. There is generally no high-resolution
photolithography involved, and often there is no multilayer
processhg. The main problens arise because of the inherent
difficulties in working with III-V semiconductor materials.
These processes are notorious for working one day and not
working the next, often without a clear explanation for the
change. Processing operations, such as premetallization
cleaning, metal etching, contact alloying conditions, and
dicing-saw cut qualif are constantly monitored and adjusted
for optimum device performance.

In its simplest form, the process for making A_lInGaP chips
involves a metallization for the anode front contact pattern
(usually a circular dot with or without fingers to promote
current spreading), mechanical and/or chemical thinning of
the wafer to achieve the proper die thiclcress, metallization
on the back ofthe substrate for the cathode contact, and
sawing the wafer into individual dice. The dice are assem-
bled into the various lamp or display packages using auto-
mated pick-and-place machines. Conductive silver epoxy is
used to attach the die to its leadframe, and gold-wire ther-
mosonic bonding is used to bond to the top dot contact. In
the case of a lamp package, the manufacturing process is
completed by casting an epoxy dome around the leadframe.
A cross-sectional view of a chip in a lamp package is shown
in Fig. 4. Every device is tested to check the electrical char-
acteristics, including the forward voltage at a specified cur-
rent (usually 20 mA) and the reverse breakdown voltage at a
specified current (usually -50 pA). Optical performance is
also measured to check for light output flux, on-axis intensity,
and dominant wavelength.

AlInGaP Performance
The operating characteristics ofAlInGaP devices have al-
ready been briefly described, especially their high light out-
put performance compared to other technologies. A more
detailed analysis of AlInGaP performance is shown in Figs. 5
and 6. Fig. 5 shows the external quantum efficiency for
AlInGaP T-1'% lamps as a function of emission wavelength
from about 555 nm to 625 nm. (These LEDs have the same
double-heterostmcture configuration except for the com-
position of the active layer which is adjusted to vary the
emission wavelength.) Other types of "t-7% LED lamps are
included for comparison. Drive current is 20 mA in all cases.
External quantum efficiency is a measure of the number of
photons emitted from the device per electron crossing the
p-n junction and is dependent on the efficiency of the semi-
conductor device at producing photons (the internal quantum
efficiency) and on the ability to get those photons out ofthe
chip and out ofthe lamp package (package efficiency). If
every electron-hole pair produced a photon and every photon
were extracted from the device and measured, the external
quantum efficiency would be 100%.

Layer {p-type}
- 

AllnGaPActive Layer

. {Nominally Undoped}
\ 

AllnP Lower Confining
Layer {n-type}

GaAs Absorbing
substrate {n-rype}

l r' l
t l
Metal Lead Frame

Fig. 4. AllnGaP LED structure.
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Fig. 5. External quatrtum efficiency ofT-13/+ AllnGaP larnps compared
to other technologies. Also showl is the CIE human eye response
cutve.

Internal quantum efficiency is limited by the crystalline qual-

ity of the semiconductor, by the bandgap properties of the

semiconductor, and by the device stmcture (homojunction

or heterojunction). In the spectral range between 625 and

600 nm, the efficiency is almost flat. Here, crystalline quality

is good, and the bandgap ofthe active layer is direct and

well away from the indirect crossover. Also, the bandgap

difference between the active layer and the upper and lower

confining layers is large, providing adequate trapping of

electrons and holes within the active layer and efficient

radiative recombination.

As the wavelength is reduced by increasing the aluminum-

to-gallium ratio in the active layer, several effects begin to

lower the overall internal quantum efficiency. First, as the

direcVindirect-bandgap crossover is approached, there is a

greater probability for indirect-bandgap nonradiative transi-

tions. This effect increases dramatically as the wavelength is

reduced. Second, because aluminum is such a higNy reac-

tive atomic species, it has the tendency to bring undesirable

contaminants, especially oxygen, into the crystal lattice with

it. These impurities act as nonradiative recombination cen-

ters for electrons and holes. Consequently, as the proportion

of aluminum in the active layer is increased to reduce the

emission wavelength, more nonradiative recombination oc-

curs. Finally, as the bandgap ofthe active layer is increased,

the upper and lower confining layers become less efficient

at keeping electrons and holes contained within the active

layer before they recombine.

The relative importance of these three effects is still being

investigated. Models describing direct/indirect-bandgap

effects, defect-related nonradiative recombination, and con-

fining layer efficiency exist. However, these models are de-

pendent on an accurate lcrowledge of the bandgap of the

material. For AlInGaP, there is still uncefiainty about the

exact bandgap properties, notably the exact location ofthe

direcVindirect crossover. It is commonly believed that

higher efficiencies at the short wavelengths should be

achieved with improved epitaxial growth techniques,
possibly by improving the purity of the organometallic

source materials.
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Fig. 6. LED luminous performance for AllnGaP compared to other
tcchnologies. Lumiuous performance is the procluct of power effi-
cierrcy (roughly equal to quantum efficierlcy, Fig. 5) and the eye's
rcspollse.

Once the light is produced in the active layer the task be-

comes one of getting the light out of the chip. Because the

index of refraction of semiconductors such as AlInGaP is

high (n = 3.5, approximately), most of the generated light

that strikes the sidewalls of the chip is trapped within the

chip either because of total internal reflection or because of

FYesnel reflection. In the case of an absorbing substrate chip,

such as the present AlInGaP device, reflected rays generally

are Iost to absorption in the substrate. We have minimized

the losses from total internal reflection with the addition of

the thick GaP window layer. Nevertheless, even the best

external quantum efficiency theoretically possible for a

cubic-shaped double-heterostructure absorbing substrate

chip in air is only about?o/o.

The effects of total internal reflection and Fresnel reflection

are mitigated by encapsulating the chip within clea.r epoxy

plastic shaped with a hemispherical dome (the Wpical LED

Iamp package configuration). The plastic acts as an index-

matching medium between the semiconductor and the air,

reducing the effects of total internal reflection and FYesnel

reflection. The hemispherical shape of the plastic eliminates

total internal reflection within the plastic itself and acts to

focus the light from the chip. Generally, the external quan-

tum efficiency of an encapsulated chip is increased by a

factor of three, bringing the theoretical maximum external

quantum efficiency to between 6% and 7o/ofor an absorbing

substrate chip.

Flom Fig. 5 it can be seen that at the longer wavelengths,

the external quantum efficiency ofAIInGaP is about 6%,

comparing favorably with absorbing substrate DH AlGaAs at

7Vo. Orly TS AlGaAs has a higher external quantun efficiency

owing to the lack of absorption by the substrate. All other

LED materials are less efficient than AlInGaP from 625 to

555 nm. In the yellow-to-orange wavelength range, this

difference is an order of magnitude or more.

Included in Fig. 5 is the CIE relative eye sensitivity curve

which shows that the eye is most sensitive to green photons

and much less so to red photons. This curve is used to con-

vert external quantum efficiency data to the luminous per-

formance data in Fig. 6. Fig. 6 shows lumens of visible light
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Lamp Type

T-4, Clear

T-1 3/4, Clear

Tl 3/4, Clear

T-1. Clear

T-1 3/4, Clear

T{ 3/4, Clear

T-1, Clear

T-1 3i4, Clear

Dominant Viewing Angle Typical Inten-
Color {nm) sity (on-axis,

mi l l icandelasl

592 3" 8400

Typical V1 at
20 mA

1.9V

1.9V

1.9V

1.9V

Typical V, at
-100 pA

25V

25U

25V

25V

25V

25V

25U

25V

HLMA-BL|lO

HtMA-Ct00

HLMA-Dt()()

HTMA-Kt()()

HtMA-CH()()

HLMA-DH(lO

HtMA-KHOO

HLMA-DG()O

592

592

592

615

615

615

622.

emitted from the LED lamp per watt of power applied to the
diode (y axis) as a function of emission wavelength (x axis).
Tl.ris clata is representative of how the eye actually responcls
to various types of LEDs. The effect of the CIE curue is to
depress performance in the red part of the spectrum, result-
ing in a clramatic increase in apparent performance of the
AlInGaP lamps compared to even TS AlGaAs lalnps. It
should be pointed out that the AIInGaP data shown in Figs. b
and 6 represents the best reported results, whereas the data
for the other technologies shows typical production values.
Production performance values for AIInGaP are not yet es-
tablished. Initially the performance will be lower than the
data shown here but is expected to increase and surpass
this data as the technology evolves and matures.

Also indicated in Fig. 6 are the luminous per{ormance levels
for automotive incandescent lamps, both filtered and unfil-
tered. These benchmarks are useful becanse ofthe interest
in using LEDs instead of incandescent lamps for tail lights,
brake lights, turn signals, and side marker lights on automo-
biles and trucks. The high efficiency of AlGaAs and AlInGap
LEDs and their long lifetimes make them attractive alterna-
tives to incandescent light bulbs in the automotive industry.
Because LEDs can be assembled into a smaller package
than an incandescent bulb, automotive design can be more
flexible and overall manufacturing costs lower.

The reliability of AlInGaP LEDs is generally good compared
to other types of LEDs. Stress tests in which devices are
driven at currents up to 50 mA at ambient temperatures
ranging from -40 to +55"C show good light output and elec-
trical stability beyond 1000 hours. Since AIInGap LEDs have
not existed for very long, device lifetime data as long as
10,000 hours is scarce. However, indications are that there
are no inherent reliability problems associated specifically
with AlInGaP

For some stress conditions, AlInGaP performs significantly
better than other products. For example, in high-temperature,
high-humidity conditions, AlGaAs LEDs fail rapidly because
of corrosion of the high-aluminum-content epitaxial layers.
Since the overall aluminum content of AlInGap devices is
less than for AlGaAs, this corrosion problem does not ap-
pear, and AlInGaP LEDs perforrn very well in high-humidity
conditions. Also, it is well-known that standard yellow
GaAsP LEDs exhibit serious light output degradation when
operated at low temperatures. AlInGaP LEDs demonstrate
excellent low-temperature stabilitv.

Fig.  7.  Hrwlet t  I )uckarc l
Al l r r ( iu l '  l : r rnp pror lucl .s .

Of course, good LED device perfornrance and reliability clo
not happen automatically. There are ntany conditions that
occur during the growth of the epitaxial material ancl during
device processing that affect initial light output, electrical
characteristics, and device longevity. In fact, many factors
affecting performance are not completely understood at this
time. With ongoing analysis of the problems that occur, addi-
tional insight into the properties of AlInGaP epitaxial growth
and device design will follow.

HP AIInGaP Products
The proliferation of AlInGaP chips into various LED packages
will be an ongoing process over the next few years. Initial
market demands are for T-1% lamp packages for moving
message signs, highway warning markers, and automotive
and truck lighting applications. As of this writing, several
AlInGaP lamp packages are available in three colors from
amber to red-orange. These products are listecl in Fig. 7.

Conclusion

We have attempted to provide a general description and
understanding of HP's new family of LEDs made from
AJInGaP. We have compared the perf'ormance and production
of AIInGaP devices with other LED technologies. We have
also tried to give the reader a general rmderstanding of LEDs
and the III-V processes necessary for their manufacture.

HP's AlInGaP devices represent the brightest visible LEDs
that have ever been made. Interest in them is quickly grow-
ing as manufacturers come up with new applications for
them. Although comparably bright recl AlGaAs LEDs have
been available for several years, the appearance ofbright
orange and yellow lamps has made possible total LED re-
placements in applications where low-wattage filament
lamps have been used exclusivelv. The benefits ofLEDs
include long lifetime, performance reliability under a broad
range ofoperating conditions, and overall cost savings over
traditional incandescent lamos.

Acknowledgments

The development of the AlInGaP LEDs took a number of
years, starting from the initial R&D phase when we strrrg-
gled to grow even single layers of not-very-good epitaxial
material. Since then we have come a long way towards
bringing AlInGaP out ofthe laboratory and into the product
line. The authors wish to thank Chris Lardizabal, who has
worked on processing AlInGaP wafers and testing devices

1.9V

t.9v

t.9v

t.9v

2600

1000

20n

2600

600

200

600

7 "

3 0 '

45

7

30

45

30'

August 199;ll lcwlett-PackardJounlal l3



from the very start ofthe project, and Tia Patterakis, Susan

Wu, Anna Vigil, and Charlotte Balassa for processing the

wafers, helping with epi growth, and endless testing of

AlInGaP chips and lamps. Other people who deserve recog-

nition for helping to develop and understand AlInGaP LEDs

include Doug Shire, Dan Steigerwald, and FYank Steranka.

Finally, we would like to thank our R&D manager' George

Craford, for his continuous support and encouragement.

References
1. N. Holonyak, Jr., and S.E Bevacqua, "Coherent (Visible) Light

Emission from GaAsP Junctions," Applied PhAsi,cs Letters, Yol. l,

1962,p.82.
2. R.A. Logan, H.G. White, and W Wiegmann, "Efficient Green

Electroluminescence in Nitrogen-Doped GaP p-n Junctions,"
Applied, PhEsics Letters, Vol. 13, 1968, p. 139.

3. W.O. Groves, A.J. Herzog, and M.G. Craford, "The Effect of Nitro-
gen Doping on GaAsP Electroluminescent Diodes," Applied' Phgsics

Lctters, Vol. 19, 1971, P. lB4.

4. M.G. Craford, R.W. Shaq W.O. Groves, and A.H. Herzog, "Radia-

tive Recombination Mechanisms in GaAsP Diodes with and without

Nitrogen Doplnrg," Journal of AWlied, PhAsics, VoL 43, 1972, p. 4075.

5. J. Nishizawa and K. Suto, "Minority-Carrier Lifetime Measure-

ments of Efficient GaAlAs p-n Heterojunctions," ,IournaL oJ Aptplied

Physics, Yol. 48, 1977 , P. 3484.

6. EM. Steranka, et al, "Red AlGaAs Light-Emitting Diodes,"

Hewlett-Packard, Journal, Vol. 39, no. 8, August 1988, pp. 84-87.

7. C.P Kuo, et al, "High Performance A-lGaInP Visible Light-Emitting

Diodes," Applied Phgsics Lette'rs, Vol. 57, 1990, p. 2937 -

8. R.M. Fletcher, et al, "The Growth and Properties of High-

Performance AlGaInP Emitters Using a Lattice Mismatched GaP

Window Layer," .Iout-na't oJ Electroni,c Materials, Vol. 20' 1991'

p . 1 1 2 5 .

9. K.H. Huang, et al, "Tlvofold Efficiency Improvement in High-

Performance AlGaJnP Light-Emitting Diodes in the 555-to.620-nm

Spectral Region Using a Thick GaP Window Layer," Appli,ed Physi,cs

Letters, Vol.6l, 1992, p. 1045.

14 August1993Hewlett-PackardJournal



HP Task Broker: A Tool for
Distributing Computational Thsks
Intell igent distribution of computation tasks, collective computing, road
balancing, and heterogeneity are some of the features provided in the
Task Broker tool to help make existing hardware more efficient and
software developers more productive.

by Terrence P. Graf, Renato G. Assini, John M. Lewis, Edward J. Sharpe, James J. Tirrner,
and Michael C. Ward

HP Task Broker is a software tool that enables efficient
distribution of computational tasks among heterogeneous
computer systems running UNlX*-system-based operating
systems. Task Broker performs its computational distribu-
tion without requiring any changes to the application. Task
Broker relocates ajob and its data according to rules set up
at Task Broker initialization. The other capabilities provided
by Task Broker include:

o Load balancing. Task Broker can be used to balance the
computation load among a group of computer systems.
Since Task Broker has the abilifz to find the most available
server for a computation task transparently, it can effec-
tively level the load on a compute group, thus helping to
make existing hardware more efficient.

o Intelligent targeting. Task Broker can transparently target
specific servers most appropriate for a specialized task. For
example, a graphics simulation application may be more
efficiently executed on a machine with a graphics accelera-
tor or fast floating-point capability. These targeting charac-
teristics can be built into the Task Broker group definition
without requiring the user to have any machine-specific
knowledge. Thus, expensive resources don't need to be
duplicated in a network.

o Collective computing. Task Broker allows a network of
workstations to form a computational cluster that can re-
place a far more expensive mainframe or supercomputer.
This approach offers multiple advantages over the single
compute server model. Some of these advantages include
increased availability (no single point of failure), improved
scalability (ease ofupgrade), and reduced costs. See.Hp
Task Broker and Computational Clusters," on page 16.

o Heterogeneity. Task Broker can be used to create a hetero-
geneous cluster, allowing a network of machines from mul_
tiple vendors to interoperate in a completely transpa"rent
fashion. Task Broker will run on several clifferent work-
station platforms, all of which can interoperate as servers
and clients.

r DCE Interoperability. Task Broker is able to take advantage
of many of the services provided by HP's DCE (Distributed
Computing Environment) developer's environment. See
"Task Broker and DCE Interoperability," on page 19.

HP Task Broker runs on HP 9000 Series 300, 400, 600, 200,
and 800 conputers running the HP-UX{.operating system,
and the HP Apollo workstations DN2b00, DN3b00, DN4b00,

DN5500, and DN10000 running Domain/OS. In addition,
Scientific Applications International Corporation (SAIC) has
ported Task Broker to the Sun3, Sun4, and SpARCstation
platforms.

Automated Remote Access
The need to access remote computer resources has existed
ever since computers were tied together by local area net-
works. Remote access gives the user a means of increasing
productivity by allowing access to more powerful or special-
ized computer resources.

To access a remote resource, computer users have had to
rely on guesswork for determining optimal placement and
have been saddled with the tedious activity of manually
moving files to and from a resource.

Task Broker effectively automates the manual tasks required
for distributing computations by:

o Gathering machine-specific knowledge from the end user
o Analyzing machine-specific information and selecting the

most available server
r Connecting to a selected server via telnet, remsh (remore

shell), or crp (create remote process)
. Copying program and data files to a selected server via fto

(file transfer protocol) or NFS (Network File System)
. Invoking applications over the network
. Copying the resulting data files back from the server via ftp

or NFS.

Each ofthe above steps is done automatically by Task Broker
without the user needing to be aware of, or having to deal
with, the details of server selection and data movement.

Server selection is one of the most significant contributions
provided by Task Broker. For the user to determine the most
appropriate server for a job manually, all of the dynamic
variables of server availability would have to be captured
before every job submittal. Because this is a time-consuming,
cumbersome process, developers trying to run a job would
spcnd very little time selecting an appropriate server.

Instead, developers would revert to using either their own
machine for compute jobs or just a few popular machines,
overloading those machines and underloading others. In
addition, having to manage several network connections
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HP Task Broker and ComPutational
Clusters

A computational cluster is a gr0up 0f workstations networked together and used

as a single virtual computational resource. This notion is an extension 0f the Task

Broker cluster concept. since it is based 0n the idea that a cluster 0f w0rkstations

can actual lv rePlace a mainframe.

The motivation behind this c0ncept c0mes from customers who are downsizing

from a single compute server, such as a mainframe 0r supercomputer, 0r customers

who have computationally intensive tasks that can execute more effectively on a

cluster of workstations.

The advantages 0f the computational cluster over the resource that it is intended

to replace are several:
o The cluster can be considerably less expensive then a mainframe
. The cluster is modular and therefore more easi ly upgradable
. The cluster can consist of workstations that may already exist in the environment'

Task Broker has an obvious role in this area of computing, since the computational

cluster is really a special case of the Task Broker solution. However, it is imp0rtant

t0 note that, in terms of distributing computations, only a portion of the mainframe

replacement solution would be provided by Task Broker in its cunent form.

Task Broker represents the class 0f s0luti0ns that provide a mechanism for coarse-
grained paral lel ism (i .e.,  giving the user the abi l i ty t0 run mult iple tasks or appl ica-

r ions inpara l le l )  Thegoa l  o f  th is typeof  so lu t ion is toach ievepara l le l i smwi thout
impacting the application, 0r t0 maximize the use of hardware

A f iner level of paral lel ism can be provided by t00ls that can break up an applica-

t ion into subtasks and run them in paral lel.  The subtasks can be procedures, loops,

or even instructions. The goal of these solutions is t0 have an appllcation com-

olete in the minimum time possible, as opposed to those 0f the coarse-gralned

alternative.

This area of computing is obviously more involved then can be covered here The

point to be made is that customers are in need of new ways of optimizing their

useofhardware ,andTaskBrokercan, in i tscur ren t fo rm,prov ideaso lu t ion  Task

Broker can provide paral lel ism at the applicati0n level, which is a major port ion ot

the computational clusler s0lut i0n.

simultaneously to try to balance the workload is also

cumbersome, and tends to lead to the same result. The end

result is increased fiustration and decreased productivity.

Task Broker automates these services, which most developers

find difficult to manage manuallY'

Bidding and Execution

A machine mnning Task Broker can act as a client, a server'

or both. A Task Broker client is a submitter of jobs into the

compute group, and a Task Broker server is a machine that

provides services for clients. A single instance ofTask Bro-

ker, catled the Task Broker daemon, resides on each client

and server.

Each server provides one or more services for the work

group, each ofwhich represents a specific computejob.

Servers can provide any number of services, and services

can be provided by one or more servers (which would be

necessary to load balance lhe compute group).

Task Broker clients and servers interact to distribute and

execute jobs in the following manner:

1. A user submits a request for a service to the local Task

Broker daemon (client daemon).
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2. The client daemon sends a message to the group of

servers, requesting bids to serwice the submitted job.

3. The servers compute their bids, ot affinity aalues, for the

requested service, based on their availability to accept the

job. The bids are returned to the client.

4. The client waits a preset arnount of time for the servers to

return their bids and selects the server with the highest bid.

5. The client transmits the necessary files (if necessary) to

the selected server.

6. The server executes the job according to instructions in

the local execution scriPt.

7. At job completion, the server returns the output files to the

client, which are then placed in the user's working directory.

Since every job submitted to the work group involves bid-

ding before acceptance by a server, and the bids can be

computed dynamically based on the server's availability at

that time, the jobs are automatically serviced by the most

appropriate machine. A failing machine will automatically

be avoided by this bidding mechanism, increasing the fault

tolerance ofthe group. The basis for the bids or affinity

values is described later.

Ifthere are no available servers when bids are requested, or

if the retumed bids do not exceed a preset threshold because

the servers are all being heavily used, the job will be put into

a local queue. The jobs in the local queue will be resubmitted

for bids after a preset time limit or by receiving a callback

from a newly available server. In addition, the job may exe-

cute locally if the submitting machine can also provide the

requested serwice.

Each daemon maintains a log file that is used to record

daemon activity. These can be used to analyze the machine

use in the work group and can be the basis for fine tuning

the Task Broker installation.

Task Broker Setup

Task Broker setup takes place when the product is installed'

Installation and setup are performed by a Task Broker ad-

ministrator. The Task Broker administrator is a user with the

appropriate permissions to initialize and modify the Task

Broker installation of daemons and setup files'

When hardware changes are needed in the network the ad-

ministrator needs to make sure the Task Broker setup files

are kept current. In addition, the administrator can make

changes to the daemon's setup files to fine tune the installa-

tion. To assist the administrator in this analysis, Task Broker

can collect information about daemon and service activity

through the use of its logging feature or its accounting file'

Administrator duties are given in reference l.

Each machine running a Task Broker daemon needs some

or all of the following files to operate as either a client or a

server:

Configuration File. This file specifies what ser-vices are pro-

vided, when the services are available, and who ha^s access

to these services. It also specifies how services are to be

provided, and under what conditions (see Fig. 1). The con-

tents of a configuration file are divided into the following

categories:



Machine A

Client
Delinition

Class
Definition

Network ([AItl]

Fig. l. Al overview of Task Broker configuration files.

o Global parameters. These parameters specify changes to
Task Broker default values that govern the global conditions
on the local Task Broker computer. The parameter that gov-
erns the waiting period for the task placement process and
the parameter that specifies whether to record CPU time
used by local tasks are examples of global parameters.

. Cla.ss definition. This definition specifies the maximum
number of services belonging to a named class that can run
on the Iocal server at one time. Every service specified must
be a member of the specified class. For example, Spice
might be a member of a class specified as cadtools.

r Client definition. This definition specifies the servers that
can provide service to a client.

. Service definition. This definition specifies items such as
the local seryer's ability to provide a particular service, how
the service will be processed, the affinity value or affinity
script, and a list clients that have access to the service.

Service Script. This is a shell script that defines how each
service being provided by the server is carried out. This script
typically invokes an application that provides the requested
service. This script is specified by the ARGS parameter in the
service definition portion ofthe configuration file.

Affinity Script. This script defines the algorithm to be used by
the server to compute the affinity value when a job is bid on.
Ifa constant is used to define the affinity value, this script is
not needed.

Submit Script. This script, which is invoked from a Task
Broker client, submits a service request for a Task Broker
service. A service request contains information such as op-
tional parameters or data files that cause the service to be
nm in a specific manner.

Affinity Value
The affinity value is an integer from 0 to 999 that quantifies a
Task Broker server's ability to provide a specific service.
The value may reflect the availability of certain computer
resowces such as disk space or other factors essential to
perform the service.

Affinity values can either be hard-coded into the service
script, which resides in each server's configuration file, or
can be calculated before each bid submittal through the use
of an affinity script. For example, the following script uses a
hard-coded affinity value.
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# Task Broker Service Definit ion

Service foo
CLASS = service-tasks
MAX_NUMBER = 2
ALLoW = (12.34.567.*)
MIN_FREESPACE = 3()()()()
AFFINITY = l0

Endservic e

In the above case, when the server daemon receives a service

request for the foo service, it checks the service definition in

its configuration file. In this case, the daemon checks several

parameters for each service request it receives. Some of

these checks ask the following questions:
. Is the number of tasks running less than the maximum

(MAX_NUMBERX
o Is the requester allowed to run the service here (ALLOW)?

o Are there 30M bytes offree disk space (MIN-FREESPACEX

If the answer to all the above questions is "yes," the server

daemon sends the affinity value of 10 as its bid for the re-

quested service. If any of the answers is "no," no bid is

returned to the requesting client.

The service definition can also invoke an affinity script as in

the following example.

# Task Broker Service Definit ion

Servtce 100
CLASS = service-tasks
AFFI N ITY = "/users/tbroker/lib/f oo.aff "

Machine A
Network (LANI

Machine G

Endservic e

The shell script foo.aff could possibly include the paxameters

specified in the first example's service definition such as

MAX-NUMBER, ALLOW, and MIN-FREESPACE. It could also include

checks on the machine or user submitting the request and

checks on whether the data to be accessed is locally resi-

dent. The result is that depending on the outcome of the

checks, the script will or will not send an affinity value to a

requesting client.

For load balancing to take place properly' the affinity scripts

should be identical on every computer in the compute

group. Since the affinity values returned by the server dae-

mons directly affect the placement ofjobs in a work group,

proper pa.raneter selection in the affinity scripts is the key

to optimal server selection.

Example: A Distributed Make Facility

This example will show how Task Broker can be used to

create a distributed make facilifi enabling compilations to be

distributed to different workstations on the network so that

they can execute concurrently, resulting in linked binaries

when everything is completed successfully. The procedure is

summarized in Fig 2.

The process begins with the user on the client machine

creating C program source files ( a in Fig. 2) and placing

them in the source file directory. At u compiles are initiated

at the client by executing a makefile, which in turn invokes a

submit script (tbmake in this example). The submit script

Machine B

Fig. 2. The flow of activities dur-

ing a remote program comPllation

tQ)

User

@t

{^fn-'4)
'rent Working
tory Containing
ource Files

18 August 1993 Hewlett-Packard Journal



submits a compile request to the local daemon, and at ,, the
client daemon submits a make6.5 serv request, including infor-
mation about the directory containing the source files. The
servers each bid on the compile request and when the se-
lected serwer is available (machine A in this ca^se) its claemon
accepts the compile request and invokes its local cc service
script (,t in Fig. 2). The serwice script can access the client's
file system via NFS with Task Broker perfon.uing the fite
system nounts if necessary ( . in Fig. 2).

The client's submit script is written such that it will wait for
successful completion of all compiles before requesting bicls
for the link servir.e. When the seruer accepts the link reqllest,
the compiled code is linked to create atr executable program.
Finally, the file systenr containing the source files and the
executable program file is unmounted.

This example demonstrates several key features of Task
Broker:

o Multiple instances of existing applications can be executed
concurrently in a work group with very little effort.

. Task Broker provides a flexible way of delaying the exe-
cution of an application until conditions ne<.essary for its
execution are in place. In this case, the link operation
was delayed until the distributed compiles completed
successfully.

o The service scripts can be written to access remote clata via
mechanisms such a^s NFS mounts of client file svstems.

Configuration Strategies
The following two examples of Task Broker configurations
will demonstrate different philosophies of its use.

Task Broker with a Mainframe. The first example, which is
shown in Fig. 3, illustrates how a group ofTask Broker dae-
mons can have their services augmented by a mainframe.

New
Cluster

Existing
Compuler

Thsk Broker and DCE Interoperability

The HP DCE (Distr ibuted Computing Environment) developers environment pro-
vrdes a c0mm0n standards-based framework f0r distr ibuted administrat ion, aopl i ,
cat i0n devel0pment, and executi0n in a network of heterogeneous cOmpurer
systems. Designed t0 support the HP 9000 Series 700 and 800 compurer svsrems
runnrng the HP-UX 9.0 operating system, HPs DCE developer's environment rs an
rmplementati0n of the 0pen Software Foundation (0SF) DCE developer,s services
with addit i0nal tools for DCE-based application development.

The DCE core services include security service, remote procedure cal l  (RpC), direc-
t0ry servtces, trme service, and threads Extended services such as the distr ibuted
fr le systern are also provided.

The current Task Broker already benefits from, and can make use of many of these
DCE services. Since DCE was designed t0 provide benefi ts without necessari ly
requtnng changes t0 exist ing applications, Task Broker can invoke apolications
that expl ici t ly use some DCE services without modif icat ions t0 Task Broker or the
applications invoked by Task Broker. These DCE services include.

. Remote Procedure Call  (RPC). An application writ ten using RpC can be distr ibuted
in a work group by Task Broker.

. Time Servjce. The host machines in a compute group can use the trme servrce to
keep their clocks synchronized. This can greatly simpli fy the management of a
Task Broker installati0n because items such as the Task Broker daemon log files
wil l  have their t ime stamps synchronized

. Directory Services. Applications that make use 0f directory services can be
managed by Task Broker wlthout restr ict i0n.

. Threads. As with RPC, a mult i threaded application can be distr ibuted byTask
Broker without modif icat ion.

. Distr ibuted Fi le System. This feature is n0t 0nly c0mpatible with Task Brokel
but wi l l  greatly simpli fy distr ibuted access in the Task Broker work group.

. Diskless Support.  Task Broker wil l  0perate 0n diskless machines wrtnout
modif icat ion.

For Task Broker to take advantage of other DCE services such as the security
service wil l  require internal changes to Task Broker

Fig. 3. A group of Task Broker
dae'mons having their services
augmented bv a retmote main-
frame.

99ec++++
Surrogate Seruel
(with Task Brokerl
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Diskless Workstations
or X Terminals

Workstations that Can Be Clients or Serve]s

After-Hours Use

(a )

(b)

Each of the Task Broker daemons acts as a server represent-

ing a mainframe selvice in the work group. The bids made

by the claemons indicate the ability of the mainframe to take

on additional work. Using Task Broker to combine a group

of workstations with a mainframe in this way has several

key advantages:
The mainframe resources can become transparently and

seamlessly included in the work group without porting any

of its applications.
The workstation users can gain access to mainframe re-

sources without machine-specific knowledge' or even any

knowledge that the mainframe is being accessed in their

calculations.
A Task Broker daemon does not need to be present on every

host in a work group because a host can have a surrogate

server in the group acting on its behalf.

The result in this example is that Task Broker allows overall

hardware use to increase along with the group's productivity

with minimal impact on either hardware or software and

little added expense.

Flexible Work Group. The second example of a Task Broker

configuration denonstrates how Task Broker can be used to

create a flexible work group. During the day the clients

shown in Fig. 4 access a dedicated server group' and during

the evening hours, when most users have gone home, some

of the clients become servers.

This example makes use of Task Broker's ability to delay the

submittal or acceptance of jobs until after a certain time of
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Fig. 4. A fle'xible Task Broker

\ \ ( ' r k  g ru l l p  i n  uh i c l l  c r ' r l a i l L

workstations are configr:recl to be

either clients only or servers onll'

clepending on the time of daY. Of

course t,hese systems have lhe

softu'are ancl hardware capabili-

tres to be clients or scrvers. (a)

During thc claytirne these clual-

role systems are r:onfigttred to be

clients only. (b) In the afl.cr hours

thc systerns are usecl as servcrs

ortly.

day has passed. This can be done either in the submit script,

delaying the time when clients request bids for the service,

or by setting the "time-of-day" paxameter in the affinity

script, delaying the time when certain server daemons will

begin generating bids for any service.

Using Task Broker to implement this form of flexible

configurhtion can contribute to a group's productivity in

several ways:
o Workstation users can access dedicated compute services

during the day (in this case the server pool) and can have

their machine automatically added to the server pool after

work hours.
. Large jobs requiring a large amount of compute power can

be queued to execute after hours to take advantage ofthe

increased size ofthe server Pool.
. Once the Task Broker work group has been set up as de-

scribed, no intervention is needed to maintain a flexible

configuration. If a user wishes to remove a machine from

the server pool, a quick change to its affinity script is all

that is necessary.

These two examples are intended to show that Task Broker

can be used to add flexibility to an existing network as

well as increase access to computer resources that were

previously inaccessible.

Task Broker and Other Alternatives

The strategy behind the Task Broker design is that in most

cases the user is interested in:



o Having ajob placed and executed as efficiently as possible
and not in controlling the placement of a job

o Distributing tasks at the application level rather than the
procedure level

r Having a tool that will require no changes to the application
lo perform its function.

Job Placement. Atthough Task Broker provides the user with
the ability to target specific machines for specialized tasks,
its primary emphasis is to free the user from concerns about
job placement. In environments using scarce resources,
such as a single supercomputer, there is a similar neecl for a
tool to provide a way of preventing users from monopolizing
that resource.

For example, suppose some installation has a tool that con-
trols job queues on a mainframe. In this case, the user sub-
mits a request to one ofseveral queues along with a set of
options specifying execution limits, priority, and so on. The
tool then accepts or rejects the queued job based on re-
source limits and other factors. Ifaccepted, and there are
available slots for immediate execution, the tool removes

the request from the head ofthe queue ancl the request is
serviced. The request will execute concurrently with other
accepted jobs, based on an administrative lintit.

Task Broker provides a more general solution to this prob-
lem. It views the entire network of machines as a scarce
resource, and by load balancing the resources, it prevents
any one machine in the group from being nronopolized, or
any user fronr monopolizing too many resources. Thus,
Task Broker will not forward a job to a server unless one
is sufficientlv available.

In addition, Ta^sk Broker provides ntechanisnts such as file
transfers, rentote file systent mounts, iurcl affirdty calculatior-rs
based on configuration that obviate t,he need for concerns
aboutjob placentent.

Granularity of Distribution. Task Broker distributes tasks at the
application level. A-lternate strategies of distributed compu-
tation, such as remote procedure call (RPC), provide remote
placement at the procedure level.

HP Thsk Broker Version l.l

The accompanying art icie describes the features provided in the f irst version of
Task Broker. The new version of Task Broker contains all the features contained in
Version 1.02 and adds the fol lowing features.

. A graphical user interface (GUl) has been added t0 improve the oroduct's ease of
use. The GUI provides a visual interface t0 most 0f the Task Brokers command set
and configuration information. Fig. 1 shows some of the wjndows provided in this
new GUI for configurati0n management.

.  Central ized configuration management has been added t0 al l0w the entire Task
Broker instal lat ion t0 be init ial ized using a single group configuration and to be

administered from any single machine site. What this means is that the data in
the configuration f i les described in the accompanying art icle can be located at one
machine site.

. An integrated forms-based configuration editor is provided. The configuration
syntax is simpler and checking is done during the edit ing session.

. Final ly, an onl ine, conlext-sensit ive help subsvstem has been adueo.

Fig.  1.  The new Task Broker graphical  user
rrterlace.
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The difference represents a trade-off of computational con-

trol verstts ease of implementation' RPC requires procedure

calls in an application to be replaced by call stubs in an inter-

mediate definition language. These stubs handle the remote

placement ofthe actual procedure call. As such, RPC requires

customized application source code, most of which must be

redesignecl and reimplemented if not originally implemented

using RPC.

With RPC the procedure is usually located on a centralized

server, or replicated in several places (requiring the servers

to keep the replicas s;'nchronized). While the server side of

the application is executing, the client side is not, reflecting

the synchronous nature ofprocedure calls.

In summary, Task Broker is nonintrusive to application

source code (satisfying the third user interest above) and

allows the execution of the applications it distributes to take

place concurrently. It does, however, limit the user to remote

placement at the application level. RPC gives a finer level of

computational control, but requires source code changes and

does not provide a mechanism for concurrent execution.

Conclusion

Task Broker can provide many benefits to an organization

with a network of computers. Because of its flexibility, Task

Broker can easily be tailored to provide a simple distributed

solution to many additional types of situations. As a tool for

distributing computation tasks, Task Broker can provide a

way to make existing hardware more efficient by increasing

its level of use, and software developers more productive by

providing a way to access an erpanded set of computing

resources.
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The HP-RT Real-fime Operating
System
An operating system that is compatible with the Hp-ux" operating system
through compl iance with the POslx industry standards uses a mult , -
threaded kernel  and other mechanisms to provide guaranteed real- t rme
resp0nse t0 high-priority operations

by Kevin D. Morgan

IIP-RTi is Hc'wlett-Packard's real-tinte operating systenr fbr
PA-RISC computels. It is a r.un-tirue-oriented procluct (as
olrposed to a progranr-rleve,lopnrent-oliented product) basecl
on inrlustry st:urciarrl software ancl harrlw:rre interlar.es.
IIP-IIT is intcndecl to Lre userl as a real,tinre tlata acquisition
and s.ystenr c.ontrol operating syst('nl. It is designed arouncl
the real-tinte systent princ.iples ol' rletentrilisnt (predictable
behavior), responsiveness, user t.ontrol, reliability, arxl I'ail_
soll operation. 'Ihese charactetistic.s rlistinguish a real_tiure
operating systeln front a nortreal-tinre opcratirig systelu.
This article reviews sonre of these <.haracteristic:s of IIp-ItT
and discusses the specific <ksigns usetl to provirle these
I'eatures.

HP-RT runs on the IIP !1000 Morlel 74211 \MEbus bclard-level
conrputer', whi<:h is based on HI's pA-RISC 7100 teclutology
(see F'ig. l). The 74211 is ilesignerl to fit into a VMEbus card
cage or an HP 9000 Moclel 747i intlustrial workstation
cabinet. I

The IIP-RT kernel is conrpatible with the Ilp-UX opcrating
systenl through conrpliant.e with the foIowing industry
stanclards:

. POSIX (Portable Operating Systenr Interfar:e) 100;]. l, which
defines a standard set of prograntmatit. inter.faces fbr basic
operating system f acilities

. POSIX 1003.4 dralt 9, which tlelines the standanls for
real-tirtre extensions

o POSIX 1003.4a draft 4, which de,lines the stantlarcls for
process-level threads.

HP-RT also supports C/ANSI C, C++, PA-RISC assertrbly lan-
guage, and maly SVID/BSD (Systenr V [rtellace Defirftion/
Berkeley Software Distribution) conrntanrls and functions.

HP-RT Software
The IIP-RT software is divided into two rnain c.ategories: the
HP-RT kernel ald the optional IIP-RT serwices (see Fig. 2).

HP-RT Services. The optional Hp-RT selic.es int:lucle the
following components:

o Network serwices irx,luding thc Network F.ile Systenr (NFS),
TC'P/IP, Berkeley sockets, and ARpA4lerkeley networking
services

t  HP BI  s  der  ved f ro rn  a  th i rd  par ty  uperd t r r rg  5ysrc r  Ld  iEr r  Lyr^us  r r0 ' r  Lynx  Hear  r rn re
systems ,c A I kernel evel a g0frthms afl: i data srrrrturIs riesrrrber] r thrs papcr afe based
on Lvnx0S features.

(a )

r Liblaries for developing OSFiMotif graphical user interfac.es
and X c:lients

o Development tools to help users create applic:rtlons to run
in the HP-RT enviromnent

. C'ross rlebuggers hosted on an Hp-UX development work_
statiolt for rlebugging the HP-RT kcrnel or applir:ations
l"unlting on an HP-RT target svstenr.

(b)

t ' ig .  l .  (a)  Tl re HI,  1 l (X)0 Nl t . r t l t ' l  ?J2r ' t  l ro i i rc l - levL, l  conlputer .
(b)  Arr  IJ I '11(X)()  Nlor le l  747i  i r t r lust . t . ia l  r io lkstat ion wi t l r  a Mo( lc, l
I  l - t t  l ' , i r , i '  L L  i r r .
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Fig. 2. The HP-RT kernel and services.

Kernel So{tware. The HP-RT kernel is designed so that it can

be scaled to balance memory and performance requirements'

It is small to reduce overhead. The kernel components

include:
o A counting semaphore mechanism for process synchroniza-

tion and to help ensure atomicity axound critical sections of

code.
. A system clock that generates time interrupts every 10

milliseconds. Thus, time events using standard software

interfaces have a lO-millisecond resolution. For higher

timing accuracies, drivers anri user processes carl access

the hardware timers on the Model 742rt. These timers have

l-us resolutions and are 16 and 32 bits wide.
. VO drivers for Ethernet, SCSI II, RS-232-C, and parallel VO

for the Model 742rt computer, and guidelines for writing

\MEbus drivers
. Standard operating system services such as:

o Scheduling, multitasking, and multithreading
o Memory management
o Intemrpt handling
o Character VO
o lnterprocess communication
o POSIX 1003.1, .4, and .4a kernel services.

Many of these components are described in more detail later

in this article.

HP-BT Development Environment. The development environ-

ment for HP-RT is shown in Fig. 3. Programs created to run

on the Model T42rrinthe HP-RT environment are developed

(using PA-RISC compilers and linkers) on an HP 9000 Series

700 or 800 HP-UX system. The executable programs'can be

downloaded via LAN to a local disk on the target system

(Model 742rt), or implicitly downloaded when the program is

executed via NFS mounting between the HP-RT and HP-UX

systems. The user can debug the downloaded program from

the host system via the RS-232-C and LAN connections be-

tween the two systems. Users can customize the SoftBench

software development environment2 on the development

host to launch prograrns to a remote HP-RT system and to

launch the correct program debugger for HP-RT program

debugging.

Fig.3. The HP-RT develoPment

envlronmen[.

(lor Kernel Debugging)

Serial Terminal
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The items that come with the HP-RT development toolkit
include:

. Libraries for building HP-RT kernels and user programs

. Include files for compiling user programs and VO drivers for
executing in an HP-RT operating environment

o Installation and user program compilation scripts
. A pair of source-level debuggers: one for user program de-

bugging and one for VO driver and kernel-level debugging.

The two remote debuggers included with the Hp-RT develop-
ment kit are derived from the standard xdb debugger product
provided with the HP-UX operating system. The debugger
used for user program debugging is capable of debugging
multithreaded user processes and communicating with the
target HP-RT system using a TCP (Tfansmission Control
Protocol) virtual circuit socket. The kernel debugger is for
kernel-level and 7O driver debugging and commuricates with
the target HP-RT system via a dedicated RS-282-C serial
communication link. Using a dedicated communication link
allows the kernel debugger to operate without interfering
with the normal operation of the target operating system.

A set of user commands, a bootable kernel, and miscella-
neous files are included with the HP-RT system. These items
can be installed via LAN on a disk connected to the target
system. The HP-RT kernel can also be booted across a LAN
and commands and user programs can either reside in RAM
memory (via a RAM disk facility) or be accessed across the
network via NFS mount points. The command set on the
HP-RT target system is oriented around run-time operations
and system administration. Commands related to program
development (such as cc and the rcs and sccs tools) are not
supported and can only be used on the host.

HP-RT Hardware
The hardware that supports execution of the Hp-RT operat-
ing system is the HP 9000 Model 742rt VMEbus board com-
puter shown in Fig. 1. This system consumes consumes rwo
slots of a VMEbus backplane. The system processing unit
and onboard VO features of the Model 742rt include:

. PA-RISC 7100 processor, which has a clock frequency of
50 MHz and is capable of executing 6l MIPS

. 8M bytes of ECC (error correction code) RAM for main
memory, which can be upgraded to 64M bytes of ECC RAM
(The ECC RAM comes in a pair of SIMMs and provides
single-bit error correction and mr,rltiple-bit error detection.)

o 64K-byte external instruction cache and 64K-byte external
data cache

o Onboard VO ports for one SCSI II interface (up to seven
devices), two serial RS-232-C interfaces, one parallel
interface, and one Ethernet LAN interface

o \MEbus D64 interface, which provides an aslmchronous,
32-bit data bus that is capable oftransfer rates ofup to
40 MbyteVs.

The Real-Tlme Kernel
The HP-RT kemel and VO drivers are designed for real-time
response and determinism at a level never before accom-
plished in a Hewlett-Packard operating system product. The
HP-RT kernel ensures that the highest-priority operations are
serviced within 50 to 110 microseconds in the worst case and
typically much faster depending on the specific operation.
To accomplish this, the HP-RT kernel uses a fully reenrrant

and intemrptable design and makes extensive use of full
kernel support for threads for user and kernel processes.

Multithreaded Kernel
The fundamental unit of an executing task in Hp-RT is the
concept and structure of a thread. A thread contains a pro-
gram counter (next instruction pointer) and a stack for re-
cording local subroutine variables and calling sequence pa-
rameters. Threads do not own a specific address space or a
specific set of code. Threads typically share adoress space
(data area) and code with other threads. The concept ofa
process is simply a combination of a single thread, a code
segment, and a data area (see Fig. 4a). HP-RT extends this
concept by allowing a single process to create multiple
threads (see Fig. 4b). These additional threads execute code
in the same process code area and have identical access
rights to all data areas in the process. See "An Overview of
Threads," onpage 27 for abrieftutorial on threads.

HP-RT also implements the concept of a kernel thread. A
kernel thread is a thread of execution that only executes
kernel code at a kernel privilege level. Kernel threads are
used in HP-RT to provide kernel services asSmchronously
for any specific user process or thread with each service
executing at a user-specified priority.

Reentrancy and Interruptabitity
The HP-RT kernel's general model is to execute on behalf of
a thread of execution with intemrpts enabled and context
switching allowed. The specific thread executing may be a
thread associated with a user process or a kernel thread. All
threads, regardless oftype, have their own user-specified
priority, scheduling policy (time-sliced versus rarn-to-
completion), and system level.

The system level is a specification of the mode in which a
thread is executing. At system level zero, a thread runs in
user mode, with user-level privileges. Kernel threads by defi-
nition never use this system level. At system level one, a
thread executes kernel code with kernel-level privileges and
with all intemrpts enabled and context switching allowed.
At system level two, a thread executes kemel code with
context switching disabled, but intermpts enabled. Finally,
at system level three, a thread executes kernel-level code
with both context switching and intemrpts disabled. Table I
summarizes these system levels and execution modes.

Context switching and interrupt handling in HP-RT are
described in more detail in the article on page 31.

Fig. 4. Thread configurations. (a) A typical singlc-thread process
(b) A multiple-thread process.

(b ){a }
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System
Level

Zero

One

TWo

Ttree

Table I
System Levels and Execution Modes

Execution Gontext lnterruPts
Mode Switching

User Allowed Enabled

Kernel Allowed Enabled

Kernel Disallowed Enabled

Kernel Disallowed Disabled

The HP-RT system supports one nonthread mode of execu-

tion, which is based on execution using a single intermpt

stack. However, unlike timesharing systems and many real-

time systems, HP-RT makes very limited use of intemrpt-
stack-based execution because this mode of execution is

always at a higher priority than thread execution- Execution

using an intemrpt stack means that a fi'rll thread context is

not established, which means that a context switch to a

thread cannot be allowed until the intemrpt-stack-based
execution is complete. Most intemrpt service routines, such

as the handlers for the SCSI bus and LAN intemrpts' are

instead handled by a specific kernel thread. These threads

are scheduled when their corresponding interrupt occurs at

their specific priority and are not executed until all higher-
priority thread execution is complete.

Because of the general reentrancy of HP-RI explicit calls

are used in kernel code and VO drivers for managing reen-

trancy.f The macros sdisable(), srestore0, disable(), and restore()

are used to move a process to system levels two (context

switch disabled) or three (both context switching and inter-

rupts disabled) and back to the premove system level. T\rrn-

ing context switching off guarantees atomicity with respect

to the execution of other tlueads. Tirming off interupts guax-

antees atomicity with respect to execution of both threads

and intemrpt-stack-based handlers.

Data structures used by the kemel are generally $obal to the

entire kernel and norueentrant operations must be properly
protected. A simple example of this is the use-count field of

I ttr" io-"ot" inodett data structure. The use-count field indi-

cates the number of instan&s of a particular file that are

active (e.g., open). When a new process accesses an inode, the

equivalent of the code statement inode-ptr->i n-use++ (incre-

ment use-count) must be executed. On PA-RISC (and most

RISC processors), this code translates to a sequence of in-

structions that loads the use-count value, increments it, and

then stores the value to the memory location it came from'

Interleaving such operations, which can easily happen be-

cause of a context switch from one thread to another, will

cause the use-count to miss an increment, producing devas-
tating long-term results.

For example, Fig. 5 shows what can happen when athread
is intermpted before finishing incrementing the use-count
field for a particular inode. The use-count field is represented

t A reentrant process consists of logically separate code and data segments and a pravate stack.

MUlti0le instances of a reentrant process can share the same code segment but each instance

has its own data segment and stack.

tt An inode is the internal representation of a lile In a UNIX.-system-based operating system

An in-core inode is one that resides in maan mem0ry'

by the variable X, which is initially equal to one (i.e', some

other thread or process is accessing the same file). At @)

Thread I begins executing the instructions to increment X,

but just before storing the result in X, Thread 2 intemrpts at

@ and the scheduler hands control over to Thread 2. Thread

2 increments the same use-count field. When Thread 2 is fin-

ished, X = 2 and the scheduler returns control back to

Thread 1 at G). At @) Thread 1 finishes its work on the

use-count fleld by storing the value it computed before being

intemrpted into X. At this point X should be equal to three,

but because Thread I was intemrpted before it finished its

cri t icalsection,X=2.

The need for atomic increment and decrement operations

is so pervasive in the HP-RT kernel that special macros

called AT0MIC-INC() and ATOMIC-DEC() are used. These macros

generate inline assembly code that disables intemrpts' per-

forms the increment or decrement operation, and reenables

intemrpts.

Use of an intermpt disable versus a context switch disable

is a key design decision for every critical section of HP-RT

kernel code. The main question asked in arriving at a deci-

sion is whether the operation is critical relative to execution

of code that can run on the interrupt stack. Since very little

code in HP-RT executes on the intermpt stack, a context

switch disable usually suffices for protection. However, a

context switch disable is a more expensive operation tlurt

an intermpt disable operation. A context switch requires

memory access and an intemrpt disable only requires exe-

cution of an inline assembly statement which turns off the

intermpt enable bit in the PA-RISC processor status word.

Thus, very short operations are better protected with

intermpt disables.

This raises the question of how tlP-RT solves the problem of

long critical sections for which a context switch or an inter-

rupt disable last too long. In the analysis of customer re-

quirements and competitive systems, it was determined that

context switch off times should be held to as close to 100

microseconds as possible, and ideally less, and intemrpt

disables should be held as close to 50 microseconds as pos-

sible, and ideally less. Longer critical sections are managed

using kernel-level semaPhores'

Thread 1 Thread 2

X = use-coum Field in inodo Data Struclule
d0, dr = Registers

Fig. 5. What can happen when a thread is context switched in the

nfddie of a critical operation. Thread 1 is interrupted and context

switched just before it is about to increment the use-count value' As a

result, rvhen Thread I is finally able to finish its operation, the wrong

value is stored in use-count.

@ * = t
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An Overview of Threads

When a process is running i t  executes a sequence 0f instruct i0ns stored in i ts
address space in memory. This execution of a sequence 0f instruct ions is cal led a
thread of execution, or simply a thread. The execution of a thread requires that i t
have rts own prOgram counter t0 p0int t0 the next instruct i0n in the sequence,
some registers t0 hold variables, and a stack to keep track of local variables and
procedure cal l  information. Although threads have some of the same characteris,
t ics as a regular process, they are sometimes cal led a " l ightweight" process be-
cause they don't  cany around the overhead (or extra weight) of regular processes.
Table I l ists s0me typical i tems associated with each thread and each process.

Fig. '1 models processes and threads running in a c0mputer. The processes in Fig
1a have one thread of execution each. They also have their own aooress spaces
making them independent of each other. To communicate with each other {for
example, to share resources) they must do so through the system s interprocess
communication primit ives, such as semaphores, monitors,0r messages. In Fig. 1b
the three threads are in one process. Thus they share the same address space and
have access to all the perpr0cess items listed in Table l.

One of the reasons threads were jnvented was to provide a degree of quasiparallel
executi0n to be combined with sequential executi0n and blocking system cal ls. For
example, consider a f i le server that must block occasional ly to wait for the drsk. In
a single-process situati0n the server would get a request and service i t  to comple-
tion before moving on t0 the next request. Thus, n0 other requests would be serv-
iced while the server is wait ing on the disk. l f  the machine is a dedicated f i le
servel the CPU is also idle while the server process is wait inq on the disk.

Gomputer

Computer

(b)

Fig. 1. l\4odels of processes and threads running in a computer. (a) Multiple processes
(b) Multiple threads in one process.

Table I
Items Associated with Threads and Processes

Per-Process ltems

Address space

Global variables

F i les

Child processes

S igna ls

Semaphores

" All perthread items are als0 per process items.

lf the server is a multithreaded process, 0ne thread could be responsible for read,
ing and examining incoming requests and then passing the request to a thread
that wi l l  d0 the work. When a thread must block wait ing on the disk, the schedul-
ing thread can get another request and invoke another thread to run. The result of
using threads in this case would be higher throughput because the CpU would not
sit  idle, and better performance because i t  is much faster t0 switch threads than
t0 swltch pr0cesses.

In a real t lme system where a quick response t0 interrupts and other events is
cri t ical,  threads offer some definite advantages, especial ly i f  one considers
context switching between processes versus switching between threads. Table ll
summarizes some of the main differences between threads and processes.

Table l l

Differences between Threads and Processes

Per-Thread ltems*

Program counter

Stack

Reg isters

{a )

Processes

Program-sized

Context switch may be slower

Diff icult  to share data

Owns resources such as f i les and memory

Threads

Function-sized

Context switch may be faster

Easy to share data

Owns stack space and registers
only
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Kernel Semaphores and Priority Inheritance
An example of an extended critical section is the manipula-
tion ofan in-core inode. Critical inode operations such as the
addition of a file to the directory data of a directory inode
must be performed atomically. Each inode holds a sema-
phore which is locked and unlocked around these critical
operations.

The HP-RT kernel uses the simple semaphore primitives
swait0 and ssignal0 (corresponding to Dijkstra's p and V op-
erations)3 for process synchronization, mutual exclusion,
and atomic resource management. A single 32-bit integer is
used as a kemel semaphore data structure. This data struc-
ture supports two semaphore types: counting semaphores
and priority-inheritance semaphores. With an additional

Augrrst 199J Hewlett-Packard Joumal 27



Locked Semaphore

Linked List of
Waiting Threads
in Priority Ordel

Fig. 6. A locked counting semaphore and waiting threads.

level of lock and unlock code and using a sepa.rate integer as

a counter, priority-inheritance semaphores can also be used

as the basis for counting semaphores. Priority-inheritance

semaphores are described later in this paper.

The semaphore primitives ssignal and swait have the code to

interpret the contents ofthe kernel semaphore data struc-

ture and are able to differentiate between counting and

priority-inheritance semaphores.

A counting semaphore in HP-RT holds a positive count value

\Mhen the semaphore is unlocked and a resource is available.

An swait() operation on a positive-valued semaphore causes

the semaphore to be atomically decremented, and the calling

thread continues execution. An swait0 on a zero or negative-

valued semaphore (the resource is not available) causes the

thread to block (suspend) on the semaphore.

When one or more threads are blocked on a counting sema-

phore, the threads axe placed into a priority-ordered linked

list with the semaphore heading the list. To identify a sema-

phore that is locked and has one or more waiting threads,

the semaphore is set to the negative address of the first

waiting thread (see Fig. 6). The sem and owner flelds shown

in Fig. 6 are described below.

An ssignal() on an unlocked or locked-with-no-waiters count-

ing semaphore merely causes the nonnegative value of the

semaphore to be atomically incremented. An ssignalfl on a

locked semaphore with one or more waiters (one that holds

anegative thread stmcture address) causes the first (highest-

priority) waiting process to be unlinked and scheduled.

Table II summarizes the different states of HP-RT counting

semaphores.

28 Ausust 1993 Hewlett-Packard Joumal

Table l l
0iflerent States of Gounting Semaphores

State

0

-Address

> 1

Meaning

Locked with no waiters

Locked with waiters (The address
points to the first thread in the list of

waiting threads.)

Unlocked

One drawback of this semaphore methodology is that there

is no clear ownership of a locked semaphore. The second
drawback is the risk of priority inversion.

Priority Inversion
In most real-time operating systems, a priority-driven pre-

emptive scheduling approach is used. This scheduling
method works well when a higher-priority process (or

thread) can preempt a lower-priority process with no delays.

One important problem that sometimes hampers the effec-

tiveness of this scheduling algorithm is the problem of
blocking caused by the synchronization of processes that

share physical or logical resources.

The most common situation occurs when two processes

attempt to access shared data. In a normal situation, if the

higher-priority process gains access to the resource first,

then good priority order is maintained. However, if a higher-
priority process tries to gain access to a shared resource

after a lower-priority process has already gained access to

the resource, then a priority inversion condition takes place

because the higher-priority process is required to wait for a

lower-priority process to complete.

The following example, which is looselybased on an example

first described by Lampson and Redell,a shows how a prior-

ity inversion can occur. Although the term process is used in

the following example, the executing entity could just as

well be a thread.

Let Pl, P2, and P3 be three processes arranged in descending

order of priority. Let processes Pl and P3 share a common
data structure which is guarded by the binary semaphore X.

Fig. 7 and the following sequence shows the events that can

lead to a prioriby inversion:

1. P3 locks X and enters its critical section.

2. Pl arrives, preempts P3 and begins its processing.

3. Pl tries to lock X, but because X belongs to P3, Pl is

blocked.

4. P3 again attempts to finish its critical section.

5. P2 arrives and preempts P3 before it flnishes its critical

section.

6. Assuming there are no more preemptions at some point

P2 finishes, then P3 finishes, and Pl finally is unblocked on

resource X and allowed to finish its critical section.

In this scenario the duration of Pl's blocking is unpredictable

because other processes can show up before PB Iinishes its

critical section and is able to release X.



Pl Blocked

Pl Done

Executing

Pl ldle or
Blocked

P2

Pl preempts p2 preempts

Priority (Pll > Priority (P2| > Priodry (p3f

Priority Inheritance
The methodology used in HP-RT to avoid the priority inver-
sion problem employs priority-inheritance semaphores. The
basic concept of priority-inheritance semaphores is that
when process P blocks a higher-priority process, it executes
its critical section at the highest priority level of all of the
blockedjobs. Process P returns to its original priority level
when it completes its critical section, which then allows the
highest-priority blocked process to execute.

Ftom the example above if P1 is blocked by pB then accord_
ing to the priority-inheritance concept, pB inherits the same
priority as Pl while it executes in its critical section. When
process P2 arrives (while P3 is in its critical section) it
would not be able to preempt process pB because p3 would
be running at a higher priority than p2. Thus, process p2 will
not begin execution. When P3 finishes its critical section,
process Pl can preempt P3 and run to completion. Then
process P2 can begin execution.

Priority-inheritance semaphores can become quite complex
when nested semaphore locks are allowed as they are in the
HP-RT kernel. Not only must the current owner and all wait_
ers for a semaphore be Imown, but given the owner of a
particular semaphore, the highest-priority waiters of all
semaphores currently owned by that owner must be known.
This allows the system to manipulate priority properly as
semaphores are released. The priority must revert to the
priority of the current highest-priority waiter of all still_owned
semaphores.

To manage this complexity and yet retain a single interf'ace
and data structure for semaphore operations, Hp-RT uses
the semaphore value -1 to indicate unlocked for a priority-
inheritance semaphore. A value of one is not a possible
thread structure address, so this value cannot be confused
with the negative address of the first waiter of a counting
semaphore.

Tlvo fields in the thread structure are used to differentiate
between the various states of priority-inheritance and count_
ing semaphores when they are locked. A counting semaphore
that is locked and has waiters will have the sem field in the
first waiter thread holding the address of the semaphore
and an owner field containing zero (see Fig. 6). A priority_
inheritance semaphore that is locked and has no waiters will
hold the negative address of the owner thread, which has a
sem field with a value of zero (see Fig. 8a). Lastly, a locked

P3 Done
Fig. 7. A time line illustratins
priority inversion

priority-inheritance semaphore that has waiters will hold the
negative address of the highest-priority waiting thread. This
thread structure has a sem field holding the address of the
semaphore and an owner field holding the address of the
owning thread (see Fig. 8b).

To keep track of the highest-priority waiters for all owned
priority-inheritance semaphores, a doubly linked list contain_
ing the highest-priority waiters for each owned semaphore is
attached to the thread structu_re of each semaphore owrler.

Semaphore

I
P2 Oone

P3

Owner
Ihread

Semaphore
list of Waiting

Threads

Fig. 8. Data structures associatecl with prioritv-inheritance sema_
phores. (a) A locked semaphore with no waiting threads. (b) A
locked semaphore with waiting threads.

lisr of Highest-Priority
Waiters for All Semaphores

0wned by 0wner
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Executable
Threads at
Priority 1023

32 Words

Two-Level Ready Mask
(32 Groups of 32 Prioritiesl

- l

-Address of thread owner

Run-Oueue Iable

The different states of priority-inheritance semaphores axe

summarized in Table III.

Table lll
Different States ol Priority-lnheritanGe Semaphores

State Meaning

Unlocked

Locked without waiters
(sem field in thread
owner = 0)

-Address of highest-priority Locked with waiters

waiting thread (sem field in

highest-priority waiting thread
= semaphore address and owner

field = thread owner address)

Process Scheduling

HP-RT currently uses 64 distinct priority levels with the abil-

ity to extend support to 1024 distinct priority levels' Half of

all HP-RT priorities are reserved for use by kernel manage-

ment software. There is no explicit user prograrn interface

provided for placing a priority at these reserved le.vels' The

reserved priorities are interleaved with the user priorities

and are considered a "priority boost" on a user priority'

Thus, between any two user priorities N and N + I lies a

priority N + boost, which is more important than priority N

and less important than priority N + 1. Boosted priorities are

used by kernel service threads to provide service just above

the priority of the highest-priority requesting process, but

not at the next highest user priority which may be in use by

the system user. Priority boosting is also used for temporary

elevation of the priority of processes blocking on VO opera-

tions to maximize throughput. This type of algorithm is only

used in a user-specified portion of the overall priority range'

The HP-RT kernel internally manages priorities by convert-

ing from the user priority plus a possible boost value to a

run queue table index by using the formula:

Fig. 9. Data struclu-res for process

scheduling in HP-RT.

Intemal Priority = (user priority) x 2 + boost,

where boost is either zero or one. Hence, if user priorities

range from zero to 127, the internal priorities range from

zero to 255.

HP-RT maintains a run-queue table with one entry per inter-

nal priority. Each entry holds a ready thread list head and a

list tail pointer (see Fig. 9). To determine quickly the highest

priority for which there is a runnable thread, HP-RT uses a

twolevel bit mask called a ready mask in which a set bit

indicates a runnable thread. The top level of the ready mask

is one 32-bit word. Each bit in this word indicates that within

a set of 32 priorities, at least one thread is executable' Thus,

if as shown in Fig. 9 the high-order bit of the first word of

the ready mask is set, then there is at least one thread in the

internal priority range of 1023 to 992 that is executable' The

second level ofthe ready mask holds up to 32 32-bit entries

each of which indicates which of these 32 priorities holds

executable threads.

By using high-speed assembly language code to find the first

set bit in the ready mask, the highest-priority thread in the

nonempty run queue can be quickly determined'
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Managing PA-RISC Machines for
Real-fime Systems
ln the HP-BT operating system, the interrupt-handling architecture
is especially constructed t0 manage the high-performance timing
requirements of real-time systems.

by George A. Anzinger

The task of an operating system is to manage the computer
system's resources. This management should be done so as
to give the best possible per{ormance to user tasks or jobs
presented to the system. How this performance is measured
and valued differs depending on the task or mission of the
system. The three m4jor classes of tasks or missions pre-
sented to an operating system are timeshare, batch, and real
time. The important aspects of performance of these three
classifications differ, and, because they differ, require the
operating system to use different algorithms to manage
system resources.

llmeshare
Timeshare systems are usually designed to share system
resources with all contending processes. The m4ior resource
to be shared is CPU time, which is usually sliced into small
units (called time slices) and allocated to all runnable pro-
cesses in a "fair" way. Various notions offair exist and have
been used, but in general, rurmable processes contend at the
same level or priority for CPU time. Some (or even most)
systems modify this notion of fair to give more time to a
process that blocks olten and less to a process that is com-
pute bound. Some systems may also have preferred priori-
ties for processes that run on behalf of the system. Such
processes may be handling printers, communication lines,
or other things that are shared with several processes.

Batch

Batch systems are usually designed to maximize the through-
put of the system. That is to say, they attempt to get the
most work done in a given period of time. Such systems will
not usually use a timeshare scheduling algorithm because it
introduces overhead that does not add to the desired re-
snlt-throughput. To help achieve maximum throughput,
one popular batch scheduling algorithm is to mn the job that
has the least amount of time left to run. The point is that
batch systems typically do not need to make any attempt to
share CPU time.

Real Tlme
Real-time systems, unlike timeshare or batch systems, are
usually designed to mn the most important process that is
ready. Importance is assigned by the user or designer ofthe
system, and the operating system has little or nothing to say
about it. The system designer (i.e., the user who sets up the
system) decides the order of process importance and assigns

priorities for all processes on the system. The operating sys-
tem's job then is very simple: give the CpU to the highest-
priority process that is ready. The performance of a real-tinte
system is usually measured by how fast it can respond to
events that change the identity of the highest-priority ready
process. Such events are usually external and corne to the
system in the form of intemrpts, but can also be internal in
the form ofprocesses that promote other processes to higher
priorities (or demote themselves to lower priorities). Another
major event that real-time systems must respond to is the
passage of time. The indication of the passage of time also
comes to the system in the form of an external interrupt.

From this discussion, it is apparent that one major measure
of a real-time system is how quickly it can respond to an
intemrpt. A response consists of:

o Recognizing that the interrupt is pending
. Processing the intermpt (i.e., deciding what to do about it)
o Taking the indicated action.

Usually the indicated action will be to switch context to the
process that is to handle the intermpt. Context switching
encompasses the actions taken when control or execution
moves from one process to another as a result of an inter-
rupt or some other event (see "Context Switching in Hp-RT"
on page 32 for more about context switching).

Flom a system's point of view the response (or r.esponse
time) is the time it takes the whole systemt to do something
that changes the environment it is monitoring or controlling.
From an operating system vendor's point of view the re-
sponse stops when the user code gets control and the oper-
ating system's responsiveness is no longer key to system
performance.

While the system is dealing with one intermpt and preparing
a response, it may need to contend with other intemrpts that
are less urgent. The system must take the time to determine
this.

It is also possible that, at the time an interrupt arrives, the
system is in a state in which the intermpt system or context
switching is off. The system needs to go into these states to
protect shared data from comrption by contending processes
(see "Protecting Shared Data Structures," on page 33). Some
systems protect themselves and their shared data by turning
off context switching whenever they are in system code.

t This includes the operating system, the user application. and the external devices.
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Context Switching in HP-RT

Context switching can be defined as moving abruptly from one area of code to

another as the direct result of some influence outside 0f the program 0r programs

being switched to or from. Usually the context switch is the direct result of an

intenupt or trap (a trap is an internal intenupt caused by some program aclivity

such as divide by zero or illegal memory access) A context switch can also occur

as a result of a program or thread blocking. In this case the operating system wil l

context switch t0 a program or thread that is nOt blocked. These two different

ways of generating a context switch have different overhead costs as will be

explained below. One of the measures 0f a real-time system is how fast it context

switches. When used in this way the reference is to how fast one user process

can be suspended and another user process restarted.

To context switch, the operating system must save the from process's state The

state consists of all the machine registers that the program may depend on After

saving the from process state, the to process's state must be restored. As a result

0f this save and restore, both the to and from processes have their view of the

world preserved and restored respectively even if they are suspended for a very

long t ime.

For example, consider the case of a user program that has asked for some device

input. The program will be suspended or blocked on the device driver waiting for

the device to respond with the desired data While waiting, the operating system

will find some other pr0gram that is ready t0 run and switch t0 it When the de-

sired data arrives, the processorwill be interrupted and the operating system will

switch control of the processor to the waiting program

As an example 0f a context switch that is strictly the result of an external inter-

rupt, consider the case in whlch a time slice is exhausted. In this case, both the

program being switched from and the one being switched t0 are interrupted as

opposed to having to block and wait for a resource.

From a system overhead point of view there are four different types 0f context

swrtch:
. Both the from and the to or0cesses enter the blocked state pr0grammatically
. The from process blocks programmatically and the to process is interrupted
o The from process is interrupted and the to process is blocked programmatically
. Both processes are interrupted.

Because of calling sequence c0nventi0ns, processes that are interrupted incur

additional overhead to save and restore caller registers.

T0 take advantage of the savings possible when processes block programmatically,

HP-RT uses a context switch routine based on this type of block The extra work

required when processes are interrupted is performed by code in the system

interrupt handler.

This is not reasonable for a high-performance real-time

system that is trying to switch contexts in less than 50 ps.

For these systems it is necessary to recognize and process

intermpts in the 25-ps range. This implies that the intemrpt

off time plus the intemrpt processing time must be kept

below 25 us.

This paper will explore the problems a PA-RISC architecture

presents to real-time processing. These problems revolve

around the need for fast context switching, intemrpt han-

dling, and repeatability. Next, possible solutions to these

problems will be discussed, detailing the solutions used in

the HP-RT (real-time) operating system, which runs on the

HP 9000 Model 742rt \MEbus board computer. The hardware

and software components of the Model 742rt ate described

in the article on page 23.

PA-RISC Architecture

The RISC architecture is used to speed up CPUs by design-

ing them so that each instruction is simple and can be

executed quickly. The goal is usually to have each instruc-

tion take the same amount of time to execute and to design

the machine so that several instructions can be pipelined. To

get all instmctions to execute in the same time requires that

no one instluction can be complex. Operations that are com-

plex and require more than one instruction time are either

handled by subroutines or by coprocessors. Coprocessors

are designed to mn independently allowing the main proces-

sor to do other useful work while the coprocessor does its

work. For example, HP's PA-RISC machines use coproces-

sors to do floating-Point math.

In HP's PA-RISC processors, the following characteristics

are important for real-time applications:
r Memory reference instructions either load or store and do

nothing else. This means that there is no read-modify-write

instruction.
o Memory reference instructions may stall if the data is not

available. To help in this regard, a cache memory is used to

speed up the average access to memory.
. Since memory accesses are potential roadblocks' 32 general-

purpose registers are available as well as 27 control registerc

and 32 64-bit-wide floating-point registers. This allows the

processor to keep most of the variables of interest in

registers, avoiding slow memory access operations'
o All intermpt context is kept in control registers.

Real Time and HP's PA-RISC

FYom a real-time perspective, the characteristics of HP's

PA-RISC that are of concem are those that limit perforrnance

in the real-time sense. As discussed above, a real-time system

must be able to change its mind (context switch) quickly.

This implies that the large context associated with a process

can be a problem. Also, while changing context, as well as

doing other things, the system needs to be even more re-

sponsive to intermpts. This means we must not turn the

intemrpt system off for long times. In particular, we must

not turn it off for the duration of a context switch.

HP-RT is the result of porting a third-party operating systemt

to the HP 9000 Model T4ZrIboatd level real-time computer.

As such, the porting team was constrained to work with the

conventions existing in the system being ported. Likewise,

the porting team was not empowered to change any of the

language or hardware conventions that exist in HP''s PA-RISC

machines and the HP-UX* host operating system.

To take advantage ofthe best ofHP's PA-RISC processors'

the port team decided to restrict the system to PA-RISC 1' 1

architectwes. The 1.1 architecture provides shadow registers

that allow system intemrpt code to be run without saving

any context (see "The Shadow Register Environment," on

page 34).

On examining the way the system \tre were porting recom-

mends that drivers be written we found the following:

t Lvnx0S from Lvnx Real-Time Systems Inc.
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. After an interrupt, the system enters the intemrpt service
routine. The routine should be written in C and should make
a call to the operathg system function ssignal and then return.

r The function ssignal increments a counting semaphore, and
if the result is 0, the intemrpt service thread is put in the
ready list (execution threads and counting semaphores used
in the HP-RT operating system are described in the article
on page 23).

. Ifthe new entry in the ready list has a higher priority than
the current process, a flag is set indicating that a context
switch is needed. (Context cannot be switched while in an
intemrpt handler.)

o When the driver's interrupt service routine returns, the
system notices whether a context switch is pending and if
so takes the required action. If not, the system just returns
to the point of the interrupt.

The problem with this picture is that to call the intemrpt
service routine the system has to save most of the system
state. This is a lot ofoverhead for only one function call
and return.

The team decided that a better way to handle interrupt
servicing would be to code a companion ssignal function. The
new ssignal runs using only the shadow registers and still
does everything the original ssignal did. This schen-re allows
the whole ssignal call to be made without establishing a C
context, which involves saving and restoring the C environ-
ment (see "C Environment," on page 3b). However, some
restrictions are placed on 7O drivers in that they have to
make their semaphores known to the operating system.

In some cases, calling the ssignal function is almost all that
an interrupt service routine will do. It is also possible that a
few lines of assembly code might be required to complete
the intemrpt service routine. Such code might move a byte
of incoming data from the VO device to an internal buffer.
For applications that have these kinds of intermpts, the sys_
tem provides the ability to call an assembly language inter-
rupt service routine. To keep overhead low, the assembly
language intemrpt routine is restricted to using the shadow
registers and no system resources. The system inrermpr
dispatcher calls the ssignal function if the assembly language
routine retums a nonzero semaphore.

Some VO devices and drivers require full C-code intermpt
handlers. For these intermpts, the system establishes a C
context on an interrupt control stack. In this context inter_
rupts of higher priority are turned on while the intemrpt is
processed. These routines can also call a limited number of
system functions. For example, the system time base inter_
mpt is handled by a C intemrpt handler.

With three different possible intenupt handling situations,
the operating system needs to have the ability to decide
quickly which intern.rpt service routine to use. Usually this
is done by either a table index, in which the system deter-
mines the method to use via a number that is an index into a
table of routines to call, or a case statement, in which the
indicated method, again ex:pressed as a number, is used to
indicate which code to execute. A much quicker method
than these two is to put the address of the interrupt service
routine in the driver's table structure. This also allows the
system to be expanded easily to handle other interrupt
handler environments.

Protecting Shared Data Structures

Shared data structures are needed in any operating system to keep track of the
resources that the system is sharing among several processes. For example, each
process wrll need memory for its code and data. This memory is a snared resource
ano tne management structures must be accessed in a way that will not allow the
system t0 lose parts of the resource. One method of keeping track of a resource
like memory is t0 keep free pages of memory in a free list. When a page of mem_
ory is needed, the page at the head 0f the free list is removed from the list and
grven t0 the requesting process. This removal (and i ts subsequent return) must be
done in an atomic operation with respect t0 the contending processes. By this we
mean that, as far as any process cares, the removal of a page from the free list
happens as one indtvisible 0perati0n. Otherwise, a contending process could get
control and p0ssibly get the same page.

The importance of maintaining atomicity in deal ing with a shareo resource sucn
as memory on a free list js illustrated in the following example. The process of
removing page A from the free list involves.

l .  Picking up the p0inter t0 page A from the l ist head

2. Using the result ing p0inter t0 get the pointer to page B, which is in the f irst
word of page A

3. Storing the p0inter t0 page B in the lisr head.

lf the removal is intenupted after step 1 but before step 3, and the interrupting
process also tries to remove a page from the free list, both processes will get the
same page and most l ikely the system wil l  fai l .  Similar pro.blems on returning of
pages t0 the free list can result in lost pages or even circular free lists.

The solution t0 these problems is to make a sensitive operation atomic with respect
t0 contenders. lf only processes can contend, it is sufficient to prevent c0ntext
switches for these periods of time. lf one or more 0f the contenders runs 0n an
interrupt, then interrupts must be disabled to achieve the required atomic operation.

The HP-RT system supports three levels of contention protection:
. lnterrupts disabled
o Context switch disabled
. Semaphore locking.

From an overhead point of view, the cost is lowest for the interrupt disable and
highest for the semaphore lock. From an impact on performance point of view,
interrupts should be disabled only for short periods 0f time, context switch dis-
abled only for sl ightly l0nger t imes, and semaphores held as long as needed.

For short operations, such as the list removal operation described above, the
interrupt disable method is the best to use (even if the atomic test does not require
this level of protecti0n) because the disable time is short and the overhead of
Interrupt disable protecti0n is the lowest of the three methods.

A New Interrupt Environment
The need to deal with the three intern_rpt handling situations
described above and the requirement to handle interrupts
from the VMEbus meant that we had to design and imple-
ment a new intermpt handling environment. Fig. I shows a
simplified view of the logical VO architecture that the Hp_RT
interrupt handling subsystem is designed to service.

The nature of the VMEbus requires a second level of inter-
rupt dispatch. This is necessary because \MEbus interrupts
come into the PA-RISC processor via one of seven lines or
PA-RISC intermpt levels. As shown in Fig. l, each of these
lines can handle several independent devices, which implies
several intemrpts.

The \MEbus standard specifies that a device requesting an
interrupt must assert its request on the interrupt line it is
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Fig. 1. A krgical view of the I/O architecture the HP-RT operating

systeln is t lesigrred lu work r ' l r th.

using. The interlupt responder sees the request and sends

back an interrupt acknowledgment for that interrupt line'

Each device using the same line blocks the acknowledgment

signal from being seen by devices farther away from slot 0t

while it has an interrupt request pending. When a device

with an intermpt pencling sees an interrupt acknowledge it

responds by sending back an interrupt vector. The interupt

vector is a data element (byte or word) that identifies the

intemrpting device and is used by the intemrpt responder to

dispatch the interruPt.

The original plan for the Model 74Zrthardware was to inter-

mpt the PA-RISC processor when a \MEbus interrupt re-

quest was asserted and to do the interrupt acknowledgment

when the processor attempted to read the intermpt vector'

This plan required the operating system to stall in the inter-

rupt handler with the interrupt system off for an unspecified

length of time because \MEbus devices are not required to

yield the bus to a requester, making the actual time required

to do an operation on the bus open-ended. To solve this

problem, the HP-RT team decided that the interrupt vector

should be prefetched by the hardware before interrupting

the PA-RISC processor. In this way a VMEbus interrupt can

tS |o t0 inaVMEbuscardcagetyprca | |yhouses thecard0rcards tha tconta in theVMEbus
system c0ntroller and Other res0urces.

Interrupting VM€bus V0 Gatd

1 .

3.

Send interrupt to vMEbus processor,

Acknowledge the IAK and send an
interrupt vector to the VMEbus pro-
cessor. 7.

8.

9.

The Shadow Register Environment

ThePA-RISC' l . l imp lementa t ionaddedshadowreg is te rs t0 thebas icmach ine
archltecture. shad0w registers are seven registers into which the contents of GRs

(general registers) 1, 8, 9, 16, 11' 24, and25 are copied upon interruption The

contents 0t tnese general registers are restored from their shad0w registers when

an BFIR (return from interruption and restore) instruct ion is executed

U o t o T T h e s h a d o w r e g i s t e r e n v i r o n m e n t i n c I U d e s c o d e t h a t e x e c U t e s b e t w e e n a p r o c e s -
UO b"uic" s0r interrupt and the fol lowing RFIR instruct i0n. This code is executed in HP-RT

Groups using only the shadow registers. l t  is imp0rtant t0 n.te that the nature of thrs

environment is further defined by the nature of the processors behavi0r 0n inter

rup t .Whenan in te r rup toccurs theprocessor t rans fersc0nt rOI t0 the in te r rup t
code with the fol lowing state.

. Interrupt system off

.  Interrupt state c0l lect i0n disabled

. Virtual memory system (both code and data) off

. All access protection off.

Since the virtual memory system is off, all memory for both code and data must

reside in and be accessed by physical addresses Usually an operating system wil l

put the interrupt handling code in an area of memory that is "equivalently mapped "

This means that the physical and virtual addresses are the same This also means

that code running in the shadow register environment cann0t access mem0ry wlth

virtual addresses that are n0t equivalent since to do so would require the hard-

ware t0 map the address using i ts TLB (translat i0n lookaside buffer) ' t  The hazard

here is that the required entry may not be in the TLB, which would cause a trap t0

the TLB miss handler. Slnce traps are a form of intenupt, th'e miss handler would

not be provided with the interrupt state (because the interrupt state col lect ion is

disabled) and thus would not kn0w hOw t0 return t0 the pOint 0f the trap

0n the plus side, i f  the whole interrupt can be processed in the shadow register

environment. the RFIR instruct i0n is al l  that ls needed to return t0 the p0int 0f

i  ntenuption.

t The translati0n lookaside bufier or TLB is a hardware address translati0n table. The TLB

speeds up virtual't0 real address transJati0ns by acting as a cache f0r recent translatl0ns

be dispatched without the PA-RISC processor having to wait

for the \MEbus processor to fetch the intermpt vector' The

current hardware always does the interlupt acknowledge as

soon as possible but has the option of assefiing the proces-

sor interrupt either immediately or on completion of the

interrupt acknowledgment.

Fig. 2 shows the steps involved in handling a VMEbus inter-

rupt and Fig. 3 shows a portion of the system interrupt table

which is used for handling second-level \MEbus interrupts

HP-RT 0perating System Hunning on a PA-RISC Processor

VMEbus Processor

2. Send IAK (interrupt ackoowledge)
message to the interrupling device.

Decode interrupt to determine which
one of 32 intertupt lines caused the
interupt.

Use the result lrom step 6 to index
into the HP-RT inlerrupt table ( a in
tig. 3).

Since this intertupt is assosiated
with a VMEbus device. the $econd'
level intertupt table is accessed
( b in Fig.3 l .

The second-level code ('c in Fig.3)
is responsible for interpreting the en-
tries in the second-level interrupt
table.

10. The code mentioned in step I per-
lorms the following:

. Retrieves the interrupt vector that
had been placed at the arbiter ad-
dress in step 4 (ad , in tig. 3)'

. Creates an index to the imerrupt ac-
tion pointer by ANDing the value in
the mask entry (ie-l in Fig' 3l with the
interrupt vector.

.  Usesthe indextol indlhe handler
that will process the interrupt from
the interupting dev;66 ( f in tig.3I

. Transtersconlroltothe handler.

- *> 4. Storeinterruptvectoratthearbitel
address.

5. IntenuptHP-RT

Fig. 2. An exanrple of tlre \MFlbus itltcrrqrt hutcllitig process'

VMEbus Devices
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Types of Interrupt
Handlen Called

This group of entries is
repeated 32 times (one
group lor each bit in the
PA-RISC interrupt word).

At this point the entries
for tirst and second
levels are the same.

Fig. 3. The HP-RT interrupt table structure.

and non-VMEbus intemrpts. Note the correspondence be-
tween the intermpt table structure and logical VO architec-
ture shown in Fig. 1. The three different intemrpt handling
situations mentioned above are taken care of by allowing
one of the three types of interrupt routines to be specified in
the table (see the interrupt action entry in Fig. B).

Second-level \MEbus intermpts are handled by reading the
returned intemrpt vector, masking it, and using the result to
index to the interrupt action that will handle the interrupt
('r in Fig. 3). The masking is done to prevent indexing to a
location outside of the table and to allow the intemrpting
device to pass back status information in the high part of the

C Environment

C environment refers to the implied machine state when executing in a C language
program. This machine state is really a set of register use conventlons that are
defined in the software architecture for the pA-BISC processors (see Fig 1 ) Some
0f the basic assumptions made in C about these registers include:

. Register 30 is the stack pointer and p0ints at the first avarlable double word on
the stack. The stack grows with increasing addresses.

. Just below the current stack pornter is a standard stack frame with room for the
return address to be saved (if the callee needs to save rt) and room for each of the
call parameters to be saved.

. Registers 26,25,24, and 23 (as needed) contain the call arguments. lf more than
four arguments are passed, those above the first four arguments are stored in the
stack frame.

. Regrster 27 is the global data register and is used to address any global data
needed by the procedure.

. Register 2 contains the address t0 return to when the procedure is done.

. Fegisters 28 and if needed 29 are t0 contain the function result when the functron
returns.

. Registers 3 through 1B {the callee-saves registers) can be used only if they are
saved and restored before returning to the caller.

. Registers 19 through 22 (the caller-saves registers) and registers 1 and 31 are
available to use as scratch registers.

There are other conventions for floating-point and space registers which are
usually not important in operating system code.

The shadow register environment. which consists of registers 1 , B, 9, 16, 17 , 24,
and 25, is not compatible with the C environment.

GRl|

GRl

GR2

GR3
a
a

GRl8
GRl9

a

GRZ2
GR23

a

GF26

GB27

GR28

GR29

GR3O

GR31

Fig.1. Begister use conventions in the C environment

word- The mask is computed at system configuration time
from the user's specification of the high number to be re-
turned on a given intemrpt line. This number is rounded up
to the nearest power of two (2n). For example, if the highest
number to be retumed on a particular intemrpt line is 12
then n is four because 24 provides the nearest power oftwo
greater than 12.1 This results in a table that is larger than
needed but eliminates the need to check if the masked num-
ber is too large. Unused entries in both the firstlevel and
second-level interrupt tables are filled with entries that

t The largest value for n is 256.

Second-Level Interrupt
Table for VMEbus Intenupts
(There can be up to seven

of these structuaes.)
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Function 11 {Gallet}

L

a
a

result in system illegal intemrpt messages should such an

intemrpt ever happen.

britially, the HP-RT team wanted the intemrpt handler and the

intemrpt off times to be "blind" to intemrpts for a maximum

of 100 instruction times, including any stall states minus

cache misses. The notion of blind to intermpts was intro-

duced to cover the case in which the system keeps the inter-

rupt system off, but still processes the intemrpt in a timely

fashion. This occurs in the intemrpt handler, for example,
when after it processes an intermpt it looks at the pending

intermpts and if it finds one, processes it without turning

on the interrupt system. The operating system interrupt

dispatching code met the lOO-instruction time limit.

Handling Large Contexts
The PA-RISC architecture divides a program's context into

two register sets: caller-saoes and ca,llee-saues registers. The

caller-saves registers consist of registers that are expected

to contain values that do not need to be preserved across a
procedure call, that is, values the calling function does not

care about. Therefore, these registers are available for use

as scratch registers or for parameter passing by the called
routine. The callee-saves registers are used for values that

must be preserved across a procedure call. Thus, if the

called routine wants to use a callee-saves register, it must

first save it and then restore it before it retums. The PA-RISC

architecture also specifies where these registers must be

saved on the call stack (see Fig. 4). This caller-saves and

callee-saves convention is used by the PA-RISC compilers so

that the system can dePend on it.

HP-RT depends on the caller-saves and callee-saves division

to keep context management code to a minimum. In particu-

lar, on system calls the system saves only the user's (caller's)

return address, $obal register, and stack pointer. The system

call handler then calls the requested system call function
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Fig. 4. The relationshiPs between

function (or procedure) calls, the

caller- and callee-saves registers,

and the stack area. The caller
puts data it wants [o Preserve ln

the callee-saves registers before

making a call. If the called routine

(callee) needs to use any of the

callee-saves registers, it saves the

value contained in the register

and restores the value back into

the register before returning to

the caller.

depending on that function to save and restore any callee-

saves registers it may want to use. Likewise, on intemrpts or

traps where control must be transferred to the kernel stack,

only the caller-saves registers need to be saved because
HP-RT depends on callee-saves registers to be saved by any

function called. Therefore, since the context switch code is

called as a function, all it has to save are the callee-saves
registers. By saving only what needs to be saved at each

step, the system keeps the overhead low for register saves

and restores.

HP-RT also takes advantage ofthe fact that the floating-
point coprocessor is enabled by setting bits in a control

register. Ifthe coprocessor is not enabled, the system will
generate an emulation trap when a process attempts to use

any floating-point instructions. Processes start with the

floating-point coprocessor disabled. When a process at-

tempts to use floating-point instmctions, the code in the

emulation trap handler saves the old process's floating-point

registers and loads the current process's floating-point regis-

ters. In this way, the overhead offloating-point context

switching is limited to only the times when it is needed'

In deference to maintaining a low intemrpt-off time, the

system checks for pending intemrpts once it has stored the

old process's floating-point registers. Ifany external inter-

rupts a.re pending at this time, the system will set the floating-
point ownership flags to show that the coprocessor is not

owned and then handle the intemrpt. The current process

will be redispatched still not owning the floating-point co-
processor, but will immediately end up in the emulation trap

which will finish the context switch. Of course the intermpt

could cause the cunent process to lose the CPU, possibly

even to the process whose state the system just saved' For

this reason, a flag is kept to show that the registers were not

changed so the process may proceed with only a quick pass

Stack



through the emulation code to get the coprocessor bits set
again.

Setimp and Longimp Solutions
On rare occasions the operating system is required to abort
a system call. This occurs when the user sets up a signal
handler and the signal handler is specified as requiring the
termination of any system call that is pending when the sig_
nal is delivered. As mentioned above, the system takes ad_
vantage ofthe fact that functions called on a system call will
restore the callee-saves registers. These registers are saved
on the stack by each function in the call chain, starting from
the system call handler to the code that delivers the signal to
the user. The problem then is how to recover these registers
so the user code will have the correct register set when con-
trol is returned to it. The normal way to handle this kind of
situation is to do a setimp call to save the callee-saves regis_
ters in a local buffer and then do a longjmp call (which re_
stores the saved registers) from the signal delivering code.
The porting team decided that the overhead ofa selmo on
every system call was too high.

One solution that was considered was to identify all possible
places in the kernel where such a signal could be delivered.
Code could then be put in place to do a setjmp only when the
signal delivery was possible. This approach was abandoned
when it was found that these calls could come from user-
written drivers. The solution used is to unwind the stack,
picking up each of the saved registers until the stack is back
to the system call handler. This solution takes more time in
the rare case of a call being aborted, but does not put over_
head in the path of all system calls.

Hardware Help
It was mentioned above that the \MEbus hardware holds off
interrupts until the information needed to process the inter_
rupt is available. The HP-RT team also requested and re_
ceived a real-time mode in the intem_rpt convention for on_
board VO device interrupts. The normal convention was that
all onboard device intermpts were collected into one bit
(each bit corresponds to one interrupt line). Under this con_
vention the software intermpt handler would first decode
the intermpt source to this bit and then read an VO space
register that contained a bit map of all the onboard devices
requesting intemrpt service. The hardware convention used
was to clear this register when it was read. This required the
software to keep track of all the bits that were set and to
call the handler for each bit. The software management task
for this convention would have been fairly high because the
real-time system wants the intermpt system on most of the

time, which means that it is possible for another interrupt to
be received from another onboard device before the current
intenupt is completely processed. At the same time, the rest
of the main processor's intemrpt register would not be in use.

The HP-RT team asked for an intermpt mode in which each
onboard device has its own intermpt bit on which it can
interrupt the main processor. This convention not only elim_
inates the need to renember which bits were set, but also
eliminates a level of decoding in the intemrpt path.

Conclusion
One of the main goals of the Hp-RT project was to minimize
the time to handle intermpts. Table I, which shows the re_
sults of these efforts, is a task response time line that shows
the time consumed by each activity in the path from an in_
tenupt to the task (e.g., user code) that does something to
respond to the intermpt. For cases in which an intemrpt is
handled by an intermpt service routine in the operating sys_
tem and not user code, the intemrpts disabled and dispatch
intermpts times shown in Table I are the only times involvecl
in determining the total task response time. Their worst_
case times in this situation are 80 ps and 6 ps respectively,
giving a total task response time of 86 us. The g0 us time is
rare and work is continuing to reduce this time.

Table I
Time Line for HP-RT Running on the Hp 9000 Model 742rt

Tasks Performed
After an External Event

Interrupts disabled

Dispatch intemrpts

Other intermpts

Context switch off

Scheduling and switching

Return from system call

Total time

Task Response

Best Case Worst Gase

0 0

3 p s 6 p s

0  9ps t

0 166 pstt

27 ps

1.2 ps

31.2 ps

45 ps

4.6 ps

230.6 ps
t Three interrupts

tt This time is rare and is in c.de 'ther than the interrupt and context switch code. work is
contrnutng to reduce this time.

HP-UX is based on and is c0mpatible with UNIX Syslem lab0ratories,UNlX* operating system
It a lso c0mp I i es with X/0pen s* XpG3, p0S lX 1 003.1 and SVI D2 i nrerface spec ificarions.
uNlx is a registered trademark of uNlX System Laboratories Inc. in the u.s.A. and other countries
X/Open is a trademark of X/0pen Company Limited in the UK and Other countries.
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The HP Tsutsqii Logic SYnthesis
System
A new logic synthesis system has reduced the time to design ASICs by a

factor of ten.

by W. Bruee Culbertson, Toshiki Osame, Yoshisuke Otsuru, J' Barry Shackleford' and Motoo Tbnaka

Logic synthesis assists and automates the process of refining

digital designs from high-level, abstract conceptions to low-

level, concrete specifications for physical implementation'

The HP Tsutsuji logic synthesis system, a software package

that runs on HP 9000 Series 700 workstations, was jointly

developed by Hewlett-Packard Laboratories in Palo Alto,

California and Yokagawa-Hewlett-Packard ffHP) Design

Systems Laboratory GSL) in Kurume, Japan. Tsutsqli, the

Japanese word for azalea, was adopted as the name of the

product because at the inception of the project, Kurume was

hosting the World Azalea Congress.

Input to the Tsutsuji logic synthesis system is expressed as

block diagrams composed of adders, multiplexers, shifters,

register files, and so forth. Tsutsuji transforms these block

diagrams into efficient, electrically and functionally correct

netlists,t which can be implemented in various technologies
(see Fig. 1).

t A netlist is a list of logic gates and the interconnections, called nets, between them'

The most obvious benefrt of logic synthesis is that it reduces

the time needed to develop a new product. hr a competitive

market, the time needed to develop a product often has a

greater influence on profitability than the product's perfor-

mance or factory cost because ofits effect on the technology

potential in the product (see Fig. 2). In addition to shortening

the design phase of the development schedule, logic synthesis

can also reduce the debugging and testing phases by elimi-

nating the errors that inevitably occur when a gate-level

design is produced manuallY.

A disadvantage of the traditional digital design process is

that designs axe not captured precisely until they have been

reflned to too low a Ievel of abstraction (Fig' 3a)' At this

point, technological dependencies have been introduced and

high-level functions (Fig. 3b) have been obscured' Experi-

ence has shown that these designs can almost never be re-

used to take advantage of faster and cheaper technologies

when they become available. In contrast, TSutsqli accepts a

high-level, technology-independent design and automatically

maps it to the target technology. Reusing an old design can

be as simple as rerunning the synthesis tools. Freed from

Netlist

(tuncrion (outsl {ins}}
(nand {-A} (-W +X +Yl)
linv (+A)(-Al)
(la (+C2 +S1) (+Al +Bl +C0))
{nor{-W}(+A1 +81}}

Fig. 1, Tsutsuji is a high-performance logic synthesis system Designs

are expressed as block diagrams, which are transformed by Tsutsuji

into a netlist file that can be used by gate array manufacturers to

produce an application-specific integrated circuit (ASIC)
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Fig. 3. Designs that are expressed directly in the technology of
implementation (a) are often difficult or impossible to remap effec_
tively. Conversely, designs that are created by logic synthesis from
high-level modules (b) are inherently easy to remap.

the tedious low-level design tasks, a designer can devote
increased time to the more profound systemlevel design
issues, which can more signiJicantly influence performance.
Research into the art of implementing a specific function,
for example a multiplier, needs to be performed only once
to embed it into the logic synthesis system, after which it
becomes available to all users of the svstem.

Logic Synthesis
The initial focus ofTsutsuji is to assist the design of
application-specific integrated circuits (ASICs). ASIC vendors
typically provide lowlevel tools for placement and routing,
rule checking, and so forth. Tsutsqli is intended to comple-
ment and augment such tools rather than duplicate them.
Thus, the ou@ut of Tsutsuji is the set of files a vendor needs
to produce an integrated circuit.

After it is entered with a graphical editor, the block diagram
describing the circuit is translated to a technologSr-specific
netlist in two steps. In the first step, module generators,
driven by parameters supplied from the block diagram, ex,
pand the blocks into a generic netlist of simple gates. At this
stage, the gates have no restrictions on fan-in and fan-out
and are essentially equivalent to logic equations. However,
some modules such as multipliers can take advantage of
higherJevel primitives like full adders. If it is lcrown at this
stage that the target technology contains these higher-level
primitives, then the modules can be instmcted to emit them

rather than the lower-level logic gates. This makes the task
of technology mapping substantially easier and quicker.

During the second step, a technology backend manipulates
the generic netlist into a new netlist that satisfies the design
rules of the target technologr (such as fan-in and output drive
restrictions) and exploits the technology's special features.

Module Generators
The heart ofTsutsqji is a library ofmodule generators, each
of which can translate blocks of a single functional type into
a collection of simple generic gates. The library contains
module generators for all ofthe kinds ofblocks that are typ_
ically used to construct computer data paths and control
logic. There are currently about fifty module generarors,
including:

Adders ALUs
Comparators Decrementers
Dividers Encoders
Majority Logic Multipliers
Random Logic Registers
Selectors Shifters

Counters
Decoders
Incrementers
Multiplexers
Register Files
State Machines

It is important to stress that the library is not composed of
fixed designs, as are standard cell and gate array libraries.
Instead, it is composed ofgenerators that can produce an
endless variety offixed designs. For example, blocks are
synthesized with exactly the desired operand lengths. By
a{iusting the parameters given to the module generators,
the designer tunes the s1'nthesized circuit to achieve the
project's cost and performance objectives. The speed of the
synthesis process permits many design choices to be tried,
with actual cost and performance data gathered for each. To
produce a product upgrade, the current design can be reused,
with blocks regenerated using s;mthesis parameters that
yield higher performance. The new product is functionally
equivalent to the first; conSequently, the need for simulation
and testing is reduced.

Extensive literature exists describing the implementation of
data path and control logic functions, and much of this
knowledge has been incorporated into the generators. Often
there exist several algorithms that can be usecl to implement
a given function. For example, the module library includes
ripple-carry adders, carry-lookahead adders, and conditional-
sum adders. Multipliers can be syrrthesized using iterative
cellular arrays or carry-save adder arrays. Best ofall, the
designer needs little understanding of the alternatives since
all are functionally the same and since fast synthesis provides
a quick comparison of cost and performance.

Example: Shifter
Once an algorithm is chosen, there often remain a number
of structural choices that can influence cost and pedor-
mance. As an example, a 16-bit unidirectional shifter will be
considered in detail. The shifter has l6-bit input and output
data buses. There are also four weighted shift-amount inputs
and a shift-in input.

In the case of the shifter, the library has only one algorithm-
the shifter will be implemented as a collection of n-to-l multi-
plexers. On the other hand, there are many possible struc-
tural arrangements of the multiplexers that will produce the
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Fig. 4. All eight possible organizations for a l6-bit uniclirectional shifter are shown in this topology graph mosaic The organtzations clerive

frorri the factorizations of 1ii, the bit width. The factorizatio n (2 4 2) results in a shifter composed of a level of 2-to- 1 rnultiplexers followed

bv a level of 4,to-1 multiplexers ancl finally followed by a k:vel of 2-to-1 multiplexers

desired shifter. For example, the shifter could be structured

as one level of sixteen 16-to-l multiplexers, or two levels,

each composed of sixteen 4-to-1 multiplexers. Each factor-

ization of the number sixteen yields a different way to struc-

ture the shifter. For example, the factorization (2 8) corre-

sponds to a shifter with a level of 2-to-1 multiplexers and a

level of 8-to-1 multiplexers' Fig. 4 shows topology graphs of

the first-level (generic gates) implementations of all eight

possible organizations of a 16-bit unidirectional shifter' For

ar explanation oftopology graphs see "Netlist Topology

Visualization" on page 44.

Table I contains data for a selection of structures for the

shifter. The speed advantage ofthe (16) structure, which is

significant in the technology-independent (generic gates)

form, is not very pronounced after the CMOS technology

backend corrects the excessive fan-in and fan-out. Good

compromises between gate count and speed are offered by

both (2 2 2 2) and (.A \; Q 2 2 2) may be favored in a tech-

nology providing only two-input gates. The organization of

the shifter is specified on the module's tuning page. The tun-

ing page is made visible by selecting the module in the block

diagram and then clicking on the tuning page button to the

left of the drawing area. Note in Table I that the (4 4) organi-

zation of the CMOS shifter is only about four percent slower

than the (16) organization and requires only 4l percent as

many cells for imPlementation.

To summarize, module generators provide designers with

custom-produced functional blocks with exactly the required

operand sizes. Designers can choose from a large number of

functions. Given a function, a number of algorithmic and

structural choices are usually available.

Technology Backends

The technology backends perforrn two functions: optimiza-

tion and mapping. Optimization improves the cost and perfor-

mance of a circuit. Mapping converts the netlist of generic

gates procluced by the module generators into an electrically

correct netlist of gates that can be implemented in the target

technology. Mapping is necessary because the module gen-

erators use gates chosen from a fixed set of functions, which

may be different from those available in the target technol-

ogy. Also, the module generators assume gates may have
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Generic Gates:

Fan-in rrg

Fan-in**

Fan-outurg

Fan-out.*

Levels

Gates

CMOS Gates:
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Fan-in.* 10 6

Fan-outuu* 2.0 1.9

Fan-out.u" 9 8
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2.3 2.2 2.0 1.9

8 4 4 2
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16 16 16 16
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l6-8it Unidirectional Shifter
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no system we have seen will convert a ripple-carry adder to
a carry-lookahead adder. However, if the design is nearly
optimal to begin with, then the best optimizers can improve
it very little. Furthermore, these systems a.re so slow, even
working on small circuits, that they discourage the exper_
imentation and iterative desig;n approach that we wish to
promote.

Tsutsqii designs are, in fact, nearly optimal before they
reach the technologr backends. Because the implementa-
tion of data-path structures like adders has evolved to a very
high art, and because our module generators have captured
that art, circuits produced by the generators typically have
excellent fan-in, fan-out, and cost-performance characteris-
tics. For control logic, Tsutsqii uses generators that include
their own optimization algorithms. Since these blocks typi-
cally contain relatively few gates, the optimization per-
formed by the module generators is quick and effective.

The mapping and optimization applied by the backends in-
volve only small numbers of a{iacent gates at a time. These
transformations, ca)led peqhole optimi,aations, can be per-
formed far more quickly than the global optimizations used
in some other systems. Most of the transformations can be
specified as mles, each of which is a pair of patterns. The
design is searched for collections of gates that match the
first pattern in a mle. The collection of gates is then re_
placed with the second pattern in the rule (see Fig. b).

A gate with excessive fan-in must be replaced by the Tbutsqii
backends with trees of low-fan-in gates that implement the
same function. To avoid increasing delay, nets on the critical
path should enter the fan-in tree at its root while nets with
plenty of slackl can enter the tree at a deeper level. Fixing
excessive fan-out is analogous: the net with too many loads
is replaced with a tree of buffers plus the original driver,
which serves as the root. I-r this case, loads should be driven

t Slack is a measure of how critical the timing is at a gate or net, with zero slack being most
critical. lt is defined as the difference between the length 0f the longest path through the gate
or net and the length of the critical path.

1.8

2

1.7

1.087

unlimited fan-in and fan-out. The technology backends allow
Tsutsqii to realize an important goal the abitity to implement
one design efficiently in multiple technologies.

Our experience with Tbutsqii has shown that relatively simple
backends are most effective. We have tried other systems
with far more sophisticated optimization features. These
systems can considerably improve a poor design, although
often the result still leaves much to be desired. For example,
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Fig. 5. optimization rules are pairs of patterns. If the first pattern of a rule matches a fragment of the ciesign, the fragment is replaced by
the second pattern. (Eof = squal, the opposite ofX0R.)
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by gates at a tree depth not greater than the slack through

the load. An algorithm has been developed that builds opti-

mal fan-in and fan-out trees. Optimal in this case means that

no tree can be found that has less impact on the critical path'

Fig. 6 illustrates the construction of an optimal fan-in tree'

Human Interface

As massive VLSI becomes more prevalent, a way must be

found to manage the complexity of million-gate systems on

a chip. We wish to elevate the designer's perspective by en-

couraging optimization at the system level rather than at the

gate or transistor level.

A great deal of effort was put into creating a system that

would both encourage system-level thinking and synthesize

and map desigrs rapidly. To complement this system, we

wished to design a human interface that would evoke the

intuition and even the playfulness of the designer. Our intent

Fig. 6. A single gate with exces-

sive fan-in is replaced bY a tree of

gates by the technologY backend.

In this example the fan-in limit is

two. The shape ofthe tree and

the points where the nets enter

it are carefully chosen to avoid

increasing delay.

was that the designer would read the instructions after using

the system.

The analogr that the YSL design team chose for the Tsutsuji

human interface was that of the engineer's design notebook

(see Fig. 7). At a level above this is the concept of the library,

which is simply a collection of notebooks and component

catalogs that can be used in any design.

Design notebooks are broken down into pages. The first page

is the index page, by which all other pages can be accessed'

As the design progresses, pages are automatically added to

the design notebook. For example, in a hierarchical desigt, a

number of lower-level components would be created. Each of

these components along with the top-level design wor-rld then

automatically be added and appear in the index. Subsequent

pages would be added to reflect the results of technologr

mapping, timing, and topological analysis.

Fig. 7. Tsutsuji presents the

design as an engineer's design

notebook. At the level above the

notebook is a library consisting of

other notebooks and comPonent

catalogs.
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Block Diagram Design Entry
Nearly all substantial designs start out as block diagrams. We
have chosen this natural form of expression as the principal
form of design specification within Tsutsqji.

The design is entered by means of a block diagram drawing
editor. The editor allows the designer to create, copy, move,
delete, and connect graphical block diagram objects freely.
A block diagram object can be a wire or bus corurecting two
or more modules, a module, or even a list of logic equations.
Objects can be readily copied from other block diagrams in
other design notebooks. To connect modules, the designer
need only point at the appropriate connection points and
Tsutsuji will automatically route the line. Modules that
are already connected can be moved and Tsutsuji will
automatically reroute the connections to the module.

Hierarchical designs can be created by entering a design in
the normal manner and then putting the design in the design
book where it can accessed via the Tsutsqii index page. Tsu-
tsqji automatically constructs a s5rmbol for the user. How-
ever, fastidious users who want a more distinctive symbol
can use the drawing editor to alter the symbol shape.

T\rning parameters for modules are specified by first selecting
the module with the mouse and then clicking on the tuning
page button to the left of the drawing area. A special page
for the selected module will appear and then the parameters
can be entered (see Fig. 8).

Certain modules such as bus distributors, caxry-save adders,
and multiplexers require a different syrnbol depending upon
their configuration. Rather than force the user to specify the
shape for each configuration, Tsutsuji has a class of symbols
that are mutable-the form changes as a function of the
tuning parameters (see FiC. 8).

Fig. 8. The tuning page for a
module is accessed by selecting a
module with the mouse and then
clicking on the tutng page button
to the left of the drawing area.
Some s5.'rnbols such as the ca.ry-
save addcr automalically change
their form as a function of the
tuning parameters.

Textual Design Entry
Usually the data-path portion of a design is most naturally
expressed graphically. Text is sometimes appropriate, how-
ever, for specifying the control portion of a design. Logi.cal
Description Format, or LD$ is the Tsutsuji language for
specifying designs textually. LDF is similar to the C pro-
gramming language, so it looks familiar to many users.

To use LD$ the user places a box in the graphical design and
connects slgnals to it. With the mouse, the user then executes
a command that causes an editor window to appeax. By typ-
ing LDF text into the window, the designer specifies the
function ofthe box.

The first two examples in Fig. 9 both specify the same func-
tion, an adder, but do so using two different features ofLDF:
random logic and truth tables.

The first line in Fig. 9a lists the four signals that connect the
adder subdesign to the rest ofthe design. The last two of
those signals are prefixed with an ampersand to indicate that
they are outputs; the first two axe inputs. The third line,
which begins with the word net, creates and names two wires,
which will be internal to the subdesign. Other intemal signals
will be created automatically if they are needed to implement
the random logic expressions. The line carry = a & o;, iLs one
might expect, creates an AND gate, connects its output to the
signal carry and corurects its two inputs to the signals a and b.

Fig. 9b shows a truth table for an adder plus LDF text that
implements the tmth table. The truthtable feature in LDF is
merely a textual structure for expressing a truth table.

The automaton structure in LDF allows the user to specify a
state machine. It consists ofa list ofstates. For each state,
expressions are given for the outputs, and conditions are
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Random Logic

adder (a, b, &sum, &carry)
{

net local-net-l. local-nel 2:

car ry=a&b;
local nel-l = -a & b;
loca l  ne t_z=a&-b ;
sum = local nel-l I local-net 2;

l

adder {a, b, &sun, &carry}
(

truthtable a, b: sun, calry
{

case 0, 1: 1,0;
case 1 ,0 :1 ,0 ;
case 1 ,1 :0 ,  l ;
default 0,0;

)
l

(b l

Statet'rschine (a, b, oext. &0ut)
{

automaton {
STAIE O:

oul = 0;
if{nextlgotoSTATE 1;

"fll=';'0,
l 

qoto STATE-0;

)
(c)

Fig. 9. Most clesign entry is done graphically in Tsutsr-lji Howevet,

some portions of designs are nlore naturally expressed using text'

Tsutsuji provides the LDF language for this purpose This figure

gives three examples of LDF: (a) specifies some combinational logic

to implement an adder, (b) rlescribes the same adder using a truth

lable,  and (c- ;  speci f ies a s imple s la le machine.

given for changing to other states. Fig. 9c illustrates a simple

state machine with two states.

Netlist TopologY Visualization

The topology graph is a new means we developed for view-

ing a gate-level design. Unlike a traditional schematic, a

topology graph can display a large design in a single window

and can make the performance characteristics of the circuit

easy to understand. The topology graph also makes it easy

to trace the automatically generated gates back to modules

in the user's high-level design.

Fig. 10 is an example of a topology graph. Circuit inputs are

placed in a column on the lell side of the graph. The horizon-

tal coordinate ofa gate is set to be proportional to the delay

ofthe longest path from the inputs to the gate. Registers ap-

peax twice on the diagram. They are drawn flrst in the input

column with only the register outputs shown (register out-

puts are inputs to the logic gates). They appear again with

only the register inputs drawn at the right-hand endpoint of

one or more paths through the circuit. Circuit outputs also

appear at the right end of Paths.

A straight line is drawn between two gates if an ou@ut of one

of the gates drives an input of the other. The brightest colors

are used to show connections with the lowest slack. For ex-

ample, the critical path in Fig. 10 is drawn in yellow This

emphasizes the part of the circuit that limits the speed, which

is usually the part of the circuit the designer most wants to

see. Because delay information is inherently graph-oriented,

we have found this graphical presentation of delay informa-

tion to be an enormous improvement over the traditional

textual delay rePort.

Tsutsuji users typically make their highJevel designs func-

tionally correct before they bother to examine their designs

at the gate level. Once the design is functionally correct,

there rarely is any need to look at the gate-level design in

detail. Nevertheless, the topology graph program includes

features for scrolling to any part of the design and zooming

to any desired level of detail.

A particular gate can be selected by clicking with the mouse

or tlping the name of the gate. The green circle in Fig. 10

indicates a selected gate. Once selected, the gate can be

brought to the center of the screen and magnified. A pop-up

window of information about the gate can be requested; it

gives information like the type and name of the gate, the

gate's fan-in and fan-out, the slack at the gate, and so forth'

The tree of signals driving the selected gate and the tree of

signals driven by the selected gate c:ul be highlighted, as

shown by the red Portion of Fig. 10.

Once a gate has been selected, it is possible to request a

pop-up window showing the names of the gates that drive

and are driven by the selected gate. Clicking on one of the

narnes causes the corresponding gate to become the se-

lected gate. This makes it easy to navigate through the

design, following the circuit's interconnections.

When the user types a narne into a module selection win-

dow, the named module is then highlighted, as shown in red

in Fig. 11. This allows the designerto correlate blocks in the

highJevel design with gates in the gate-level design' The

user can also request a pop-up window of information about

the selected module.

The ability to see a particular highJevel module within the

topology graph of the entire circuit is invaluable for setting

module tuning parameters. For example, the designer might

use the mouse to select a gate on the critical path' From the

gate information window, the user would learn the module

from which the gate was slmthesized. Then the user would

select that module to highlight it on the topology graph' If

the module were contributing significant delay to the design,

the user might retune the module for higher performance' In

another scenario, the user might select a module that was

not on the critical path and retune it for a slower but

cheaper imPlementation.

Simulation
To achieve our project goal of substantially increasing

designer productivity, it was imperative to develop a fast

simulator for Tsutsuji. Tfaditionally, simulation has been a

process for verifying designs that were nearly complete'
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Computers were left unattendecl for hours or days while
simulations ran and produced reams of paper. We wantecl
the Tsutsuji simulator to aid the early phases of design, pro-
ducing results in real time and presenting them in the con-
text of the application. We wanted designers to be able to
experiment with significant design changes and see the
effects instantaneouslv.

Fig. 10. The topologv graph let.s
a Tsut.srrji user view an ent,ire
gate-krvol rlesign otr a single
s<:reen. Signals flo\4'from lclt to
right in the cliagr:rrn anrl the long-
est paths horizontally havr: t.he
most delay. The critical paths are
colored yellow. A gate has beelr
selected as inclicatecl by ther
green circle. Many features of thc
topology graph program relale to
the selccted gate; in this case, the
fan-in and fan-out trees for the
selected gate have been high-
lighted in red.

A previous YSL product included a simulator that evaluated
about a thousand gates per second. The Tsutsuji simulator
has achieved simulation rates as high as twengr-three million
gate evaluations per second.t Some of this increase is the

t This was measured while simulatrng a 5000 gate floating-point multiplier using an Hp 9000
lvlodel 730 computer.

Fig. 11. In this topology graph, a
name has been typed into the
Highlight N.4odule pop,up window.
This causes all the gates and in
terconnecttions within the named
nrodule t,o be highlighted in red.
A Module lnformation window displays
inlbrmation about the highlightecl
module. The ability to see how
one moclule rs situated within thc
entirc topologv graph is useful for
setting t,he module'.s tuning param-
eters. For example, if the critical
path flows through the module,
the clesigner may want to tune it
for higher speed. Converselv, if
no critical paths flow through the
module, the designer may want to
tune it for lower cost.
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result of an impressive leap in workstation performance that

occurred between the releases of the two products' Several

other factors also contributed'

The most significant factor was the development of a special-

purpose compiler that produces efficient simulation code'

Much of the work performed on each simulation cycle by

the previous simulator is now performed once during the

compiling phase. AIso, TSutsuji produces circuits that adhere

to strict design mles that make it possible to simulate the

circuits accurately with a much simpler simulation strateS/'

For example, the delay in the circuits can be completely and

quickly characterized by a separate static timing analyzer
program; hence, the simulator can ignore all timing issues'

Since Tsutsqii circuits use simple clocking and two-state

Boolean logic, each gate only needs to be evaluated once
per simulation cycle. A gate typically can be evaluated by

a single, simple, machine-level instruction on the host

computer.

When the user wishes to simulate a design, Tsutsqii displays

the graphical simulation window. The user can choose buses

to observe and can specify virtual instruments for driving or

viewing values on the buses. TSutsqii then automatically

mns the simulation compiler and starts the simulation and

the virtual instruments. The simulation program and the

virtual instruments run as sepaxate UNIX* processes that
pass vectors through UNIX interprocess communication
channels. This approach provides a flexible means for users

to add new virtual instmments. To do so, the user needs

UND( programming skill but does not need to lmow an1'thing

about the internal structure of Tsutsqli.

Simulator Register Allocation
One of the interesting algorithms developed for the simula-

ti'on compiler is the register allocation strates/. Computers

store data in memory and registers. Registers are scarce and

fast; memory is abundant and slow. Register allocation at-

tempts to minimize the movement of data between memory

and registers and to maximize the arnount of calculation

that is done in registers.

One of the first things the compiler does is transform the

netlist into a list of instructions for a simple, idealized com-

puter. These instmctions are similar in function to instruc-

tions executed by real computers and are simplified mostly

in the way they refer to data. Many optimizations that are

complex to perform on real computer instluctions can be
performed easily and effectively on the simplified instruc-

tions. The compiler removes the simplifications in several

stages until, finally, the simplified instructions become real

computer instmctions.

\pical ICs have at most several hundred input and output

signals but have thousands of internal signals. In the simula-

tion program, the values of the intemal signals are stored in

temporary variables. In the list of instmctions, there is a
point where a temporary variable first appears and another
point where it is last used. The number of instructions be-

tween these points is called the liJetime of the variable'

Storage (memory or registers) can be used for multiple

variables if their lifetimes do not overlap.

A temporary variable is often used in many instructions' The

first few instmctions calculate the value of the variable, while
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the rest use the value to calculate other values. The number

of instructions that use a variable is called lhe reference

count of the variable.

A variable's lifetime and reference count can be used to

measure the desirability of storing the variable in one of the

scaxce registers. If the lifetime is Iong and the variable is in a

register, then many other variables a.re prevented from using

the register. Hence, a long lifetime argues against putting a

variable in a register. If a variable has a high reference count

and is stored in a register, then many time-consuming memory

references axe avoided. Thus, ahigh reference count axgues

in favor of storing a variable in a register. Combining these

ideas, we define the cost of putting a variable in a register to

be the variable's lifetime divided by its reference count'

Our register allocation algorithm attempts to store low-cost

variables in registers. During register allocation, the compiler

passes sequentially over the instruction list. When a variable

appears for the first time, it is assigned a register if its cost

is low and a register is available; otherwise, it is assigned a

location in memory. After a temporary variable appears for

the last time, its storage becomes available again'

One question remains: how should Iow cost be defined?

Rather than try to choose a specific threshold to separate

high and low cost, we use an adaptive strategy. Whenever

the compiler tries to allocate a register to a low-cost vari-

able but finds none available, the threshold is lowered'

Whenever a high-cost variable is assigned to memory and

registers are available, the threshold is raised'

Our register allocation algorithm produces simulation code

that runs almost four times faster than code that keeps all

variables in memory. Yet, it is simple and requires minimal

time and memory while comPiling.

Virtual Instruments

By providing a set of versatile virtual instmments, we hope

to move the designer closer to the application domain and

away from the Boolean logic domain. Presently, Tsutsqii

includes benchtop accessories and instruments that range in

complexity from a simple on/off switch to a network ana-

lyzer. These are all instruments that the user carr interact

with in a real-time fashion as the simulation is progressing'

The high speed of the simulator makes the concept of virtual

instruments practical and allows the designer to participate

in an interactive environment.

Probe. Probes are automatically attached to all primary input

and output nodes when Tsutsuji is placed into simulation

mode. The user can optionally connect probes to internal

circuit nodes to aid in monitoring and debugging'

Switch. The switch (see Fig. 12) is a simple one-bit input

port. It provides a convenient way for designers to interact

with the logic simulation.

Constant Generator. The constant generator (see Fig' 13) is

the equivalent of a potentiometer connected across a fixed

voltage source and feeding an analog-to-digital converter'

The degree of quantization of the constant generator is auto-

matically determined by the width of the bus to which it is

cormected. Just like a laboratory potentiometer, the constant

generator has coarse and fine adjustments: the outer ring on

the knob is the coarse setting and the inner ring acts as a
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Fig. 12. Switches are a simple way for the user [o ilttcract with ancl
control the sinlulatioll. The switch is activatecl by use ofthe rnouse.
The name of the input port becomes the title clisplayed on the
switch panel.

vernier. For exact setting, the user can click on the displayed
value with the mouse and then type the value from the key-
board. The output can be changed between two's comple-
ment and unsigned by clicking on the selector button.

Function Generator. The function generator (see Fig. 14) is a
means of applying stimuli to the simulator. It is modeled after
a conventional analog signal generator. Multiple variable-
period, variable-amplitude waveforms are available (e.g.,
sine, triangle, squaxe, ramp). Data can also be read directly
from a file. The function generator's output bus width (i.e.,
quantization) is determined automatically by the width of the
bus to which it is connected. The binary output ofthe func-
tion generator can be presented in either unsigned or twos
complement form. An additional useful feature is that the
output of one generator can be used to modulate a second
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Fig. f3. The constant gelterator provicles a rneans for the user to
vary inputs to the circuit while the sintulation is under way by sinr_
ply turtring a knob. The resolution of the output is automatically
determined by the width of the bus to which it is connected. The
output can be presented in either twos complement or unsigned
integer form.

one to create complex waveforms. The modulation includes
amplitude, frequency, phase, and simple summation.

Data Viewer. The data viewer (see Fig. 14) is a multimode,
multichannel data display instrument. Each channel can be
individually configured to display data as a conventional
logic analyzer, as an oscilloscope, or in hexadecimal format.
Each charurel can represent the data as twos complement or
unsigned. The trace speed is variable and can be optionally
controlled by an extemal symc pulse. The data viewer auto_
matically increases the number of display charmels as more
input buses are connected to the instrument. Changing the
size of the window automatically rescales the data display.

Fig. 14. Several function genera-
tors connected to a data viewer.
The top trace shows an amplitude
modulated waveform supplied by
the top two function generators.
The function generator at the left
is supplying the modulation signal
for the generator to its right. The
second trace is a frequency mod-
ulated waveform supplied by the
two function generators in the
center. The next four traces show
sirte anrl trialtgle waves in both
oscilloscope mode and logic
artalyzer mode.
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Fig. 15. The network analyzer provides a swept-lrequellcy slgllal to

analyze a circuit's frecluency response with respect to botlr lrhase

and gain.

Network Analyzer. The network analyzer (see Fig' 15) auto-

matically analyzes a circuit's frequency response in terms of

both phase and gain. The instmment provides a signal whose

frequency is swept between the start and stop frequencies as

indicated on the front panel. The scale of the display can be

varied, as can the nature of the sweep (linear or logarithmic)

and the number of samples to be taken at each step'

Pixel Viewer. The pixel viewer (see Fig. 16) provides the user

with a virtual color CRT that can be configured to any geome-

try and pixel size. There are a number of $pes of pixel view-

ers, but they fall primarily into two classes: those that accept

a stream of pixels to be written in raster fashion and those

that allow individual pixels to be addressed and written'

Fig. 16. Tire pixcl viewer provirles the user with a virtual color CRT

lha l  c i r t r  l re  cu t t l igu t r ' r l  l ( '  i l l l )  Aeu l l le l f s  u l t t l  I i xe l  s ize

Examples

Tsutsuji is now being sold in the Japanese market by YHP'

Customers have used Tsutsuji to implement a wide variety

of ASICs ranging from digital signal processors to control-

lers to digital TV systems. The largest design to date has

170,000 gates, although Tsutsuji can easily handle designs of

one-half nrillion gates or more. The following examples illus-

trate how Tsutsuji readily involves the user in the domain of

the applicatiott.

Television Decoding Filter' Many Tsutsuji customers ale in the

business of designing television receivers. Fig. 17 illustrates

how Tsutsuji can be used to make fundamental design deci-

sions during the earliest stages of design. The example

shows an experiment to compare two TV decoder filters'

One filter is less expensive to build than the other but pro-

duces lower-quality results' Whether the less-expensive filter

would be good enough is an aesthetic questi<'rn that is almost

Fig.  17.  ln t l t is  exatnple, ' fsulsuj i

was usecl to coltlpare tlvo t'clevi-

sion decoc.ler filters. A clesigtl was

createci that itrcluclecl both filters.

Dur i r tg s inr t t lat io l t ,  both l i l ters de

ru , l r ' , I  t l r e  s rn re  i l r r i l g { ' .  p l l ) r l l l '  i l l g

Ih€' 1wo iurages ott thc fiSltl. sidc

of t.he screen. 
'l ' lrt' clesigtter coulcl

I l r e l l  I r ) l i l l ) i l l I  I l r , ' r r r  \ \ i t l r  I I t e  r ' 1 1 g

iunl  intage,  i t t  t l te cel t tet  cr f  the

s l l e l l l ,  i l l l r l  r  I t u o s e  l l t r ' t t t u s l

trppfopliate liller.
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impossible to answer without looking at the images the filter
would produce. Tsutsqji, with its friendly simulation environ-
ment, provided an ideal means for answering that question.

A design was entered into Tsutsuji that included both filters.
A switch, labeled Sel, lets the user switch between the two
filters during simulation. The function generator to the left
of the switch in this example n'rerely reads the original
image from a file and feeds it to the simulation. The image in
the center of the screen is the original image before encod-
ing and decoding. The tall pixel viewer on the right displays
the output of the simulation. The instrument labeled viewer
has been placed in oscilloscope mode and shows the input
NTSC television signal, the signal after it is decoded into
chroma and luminance (C and Y), and the signal again after
it is decoded into red, green, and blue.

The simulation was started with the switch set to select the
lowquality filter. The decoded image began filling the output
pixel viewer. Once an entire image had been simulated, the
highquality filter was selected and another image was drawn.
Once both decoded images were complete, the user could
compare them with the original and make a well-informed
decision about which filter to build.

lmage Processing ASIC. Fig. 18 shows an image compositor
ASIC that was designed using Tsutsuji for an image process-
ing system. The compositor ASIC merges two input images,
producing one output image. The images are merged using
one of two modes. In the first mode, the input images are
treated as though they were transparent, and the output
image is a blend of the two images. In the second mode, the
input images are considered to be opaque. If two objects in
the two input images overlap, then the object that is closest
to the viewer is shown in the output image. The image pro-
cessing system includes a tree of identical compositor

Fig. f8. This screen shows a de-
sign for an image processing chip
lhat was designed with Tsutsuji.
The designer spent two hours en-
tering the design, which was then
automatically synthesized into
8596 CMOS gate array cells in
less than a minute. Actual
lmages, appropriate in the image
processing domain, were used
when simulating the design. The
upper two pixel-viewer virtual in-
struments show the input images;
the lower viewer shows the
blended image produced by the
simulation.

ASICs. The tree has much the same function as an individual
compositor ASIC except that it combines many images (not
just two) into a single image.

Fig. 18 shows part of the compositor design and the result of
simulating the design in its blending mode. The simulation
inputs and outputs are viewed as images so that the designer
will neither waste time interpreting the simulation nor risk
misinterpreting it. Three pixel-viewer virtual inslrumenrs
can be seen. The two upper viewers show the input images
and the third viewer shows the blended result. The simula-
tion, which required evaluation of about b000 gates for each
of the 900 pixels in the output image, was completed in less
than a second.

The compositor design was entered into Tsutsqji by an inex-
perienced designerin two hours. The design consisted of
approximately thirty high-level modules. The high-level de-
sign was synthesized into a design at the generic gate level
in twelve seconds. It took an additional thirty-eight seconds
to accomplish the fcrllowing: the design was mapped into a
commercial CMOS gate array library, the mapped design
was translated into the file format that the gate array vendor
accepts, and arr exhaustive delay analysis was performed on
the circuit. The resulting design uses 85g6 gate array cells
and 169 VO pads.

low-Pass Filter. Fig. 19 illustrates a logic synthesis session
that has progressed to the point of logic simulation. The
example is that of a simple low-pass filter. Instead of the
streams of ones and zeros that are normally associated with
logic simulation, we see waveforms-an appropriate form in
which to view the input and output of a digital filter.

The illustrated low-pass filter takes a percentage of the
previous input and sums it with one minus that percentage
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times the current output to form the next output. We can see

that the major design paxameters ale indeed parameters' so

the designer can, for example, explore the effects ofquanti-

zation by changing the input bus width parameter and then

resynthesizing the design-a process that takes less than a

minute. The other maior parameter is the percentage of the

previous ou@ut used to compute the next output. Rather

than laboriously type the constant and one minus the con-

stant for each trial, the designer has added hardware to the

circuit to compute these two values. The constant can then

be applied from a constant generator and varied in real time

while the simulation is progressing.

After the design has been simulated to satisfaction, the final

synthesis can be performed. Here, the actual binary con-

stant selected during simulation will be entered. There is no

need to remove the superfluous adder. Since both of its in-

puts are now constants, all of its gates will be removed by

the optimizer. The multipliers will also be affected by the

optimizer, since each multiplier has a constant as one of its

inputs. The final task is then to select a particular technology-

specific library and perform the technology mapping. For

this example, a nine-bit filter, the initial synthesis resulted in

a design of 1401 gates. After mapping and optimization, the

design was reduced to 649 gates.

In this example, a designer who was familiar with filter de-

sign (but not necessarily familiar with multiplier design) was

able to enter and synthesize a design for a low-pass digital

filter in about ten minutes. Subsequently, different bit-width

designs were explored by simply changing the bus width

parameter. To observe the effect ofthe feedback constant in

real time, extra hardware was added to the design to save the

designer's time. This hardware did not penalize the design

Fig. 19. A sinrple low-pass filter

design exarnple. The function
generator on the left Provides a

high-frequency signal to be addecl

to the low-frequency signal of the

function generator on the rigltt.

The filter will remove varylng

arnounts of this high-frequencY

signa-l as a futction of the percent-

age feedback, which is controlled

by the constant generator. The

logic simulation is Perfornled at

the gate level so the real circuit

will perform exactly as observed

on the data viewer.

because it was later completely removed by the optimizer' In

an hour the designer was able to intuitively explore literally

dozens of designs without becoming enmeshed in the intri-

cacies ofgate-level design. Essentially all ofthe designer's

creativity and intuition was focused in the application

domain.

Conclusion
Tsutsuji is a product from YHP in Japan that provides a set

of fast and efficient tools for logic s5mthesis, simulation, and

design visualization. The graphical nature of the human inter-

face allows designs to be expressed quickly by the designer'

Rapid synthesis and mapping encourage the designer to ex-

plore the design space interactively in search of an optimum

system configuration. Applyrng creativity where it will have

the greatest impact, the designer remains focused in the

application domain, knowing that optimization and mapping

into the chosen technology will be automatic. Designs

produced by Tsutsuji are inherently reusable.
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participated in the module compiler development' Yoshihiro

Matsuda: helped with the early Tsutsuji concept design and

designed the first ASIC with Tsutsuji. Satoshi Naganawa: at

HP Laboratories for three years, created the module compiler

and converted innumerable modules from LISP prototypes

to C++ products. Hideki Nonoshita: developed the path ana-

lyzer. Yasufumi Otsum: original member of the YSL team,

worked in all aspects of Tsutsuji, including interprocess

communication and logic minimization. Miki Ohyama: con-

veyor of concepts through graphic arts. Takashi Okuzono:

developed the text editing portion ofthe block diagram editor

and contributed to the aesthetic presentation of Tsutsuji'

lchirou Sasaki: was in charge of the simulation environment'

Norio Tanaka: his clear descriptions made it possible for

other people to use Tsutsuji. Yasumasa Teshima: developed

the physical mapper. Koji Yamamoto: worked on the \IHDL

front-end prototlpe.

At HP Laboratories we would like to thank John Norris for

allowing a project to start without a project number, David

Horine for obtaining a project number, Ralph Patterson for

signing a last-minute trip request to Kurume, and for all these

years, a special note of gratitude is owed Dick Lampman for

his vision, guidance, and suPPort'

UNIX is a registered trademark of UNIX Syslem Lab0ratories Inc in the U S A and 0ther
countries.
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Designing a Scanner with Color yision
The challenge for personal computer imaging today is to duplicate numan
color vision, not only in scanners but also in monitors and printers s0 tnat
colors look the same in al l  media.  The HP ScanJet l lc  scanner uses a
proprietary color separator design to provide fast, single-scan, 400-dpi,
24-bi t  color image scanning.

by K. Douglas Gennetten and Miehael J. Steinle

The function of a desktop scanner is to digitize an image or
a document and send the information to a computer, a fac-
simile card, or a printer. This allows the digital information
to be processed, printed, and stored for archival purposes. A
deslrtop scanner can be used for many different job func-
tions and must be able to scan various types of clocuments,
photographs, line-art drawings, and three-dimensional ob_
jects that may be placed on the scanner platen. The wide
vanety of material that can be scanned presents challenges
for the scanning device.

HP ScanJet IIc Scanner
The HP Scanlet IIc scanner is a 400-dot-per-inch (dpi) flatbed
scanner with black and white, color, and optical character
recognition (OCR) capabilities. It is compatible with pCs
and Apple Macintosh computers and with desktop publish_
ing, presentation, and text recognition applications. It offers
fast single-pass scanning, easy-to-use software, print path
calibration, a legal-sized platen, HP Accupage technology
for text scanning, and low cost. Print path calibration opti-
mizes the quality of the final output by compensating for
differences in output devices and softw:rre applications. Hp
AccuPage technology, when combined with a software ap-
plication that supports it (such as Caere's Omnipage profes-
sional 2.0), uses special page recognition techniques and
automatically sets the intensity to improve accuracy on text
with nonwhite backgrounds. Accupage also includes logic
that joins broken characters.

The ScanJet IIc provides 8-bit grayscale and 24-bit color
scanning capabilities. It uses an SCSI (Small Computer
System Interface) for Macintosh computers and a dedicated
SCSI adapter for PC-compatibles and MicroChannel pCs.
Optimum brightness and contrast settings are selected auto-
matically. Custom scaling is available in one-percent incre_
ments. Online help provides reference and tutorial informa_
tion. An optional document feeder handles up to b0 pages
automatically.

HP DeskScan II, the image scaruring software included with
the HP ScanJet IIc scanner, has a layered user interface for
both beginning and expert users. Advanced functions are
easily accessed as pull-down menus or floating tools. Image
editing software is included, and a live preview feature
shows the results of changes immediately on the screen.

Color Science

The experience ofcolor is universal, transcending cultures
and oceans. This experience always has one common thread:
there are three elements in the experience of color vision.
The first element is a source of illumination, the second is
an object being illuminated, and the third is a detector to
measure the reflected illumination from the object.

Illumination

Humans and many but not all animals see electromagnetic
energy falling between 400 and 700 nanometers as urlsjble
light. Any energy within this range radiating from an object
will in{luence its color appearance. Sources of illumination,
whether natural or man-made, are characterized by their
spectro,L power d'i,stri,bution, that is, their strength along the
electromagnetic energy spectrum between 400 and 700
nanometers. The nature ofthis spectral distribution can pro-
foundly effect the color of an illuminated object. A common
illustration of this is the color shifts that occur under tung-
sten street lights. An extreme example would be laser light:
all objects that are not black are red when illuminated in red
laser light. To have a good color observation environment,
the source of illumination must be broatlbancl, that is, it
must contain a relatively flat and broad spectrum of energy
over the range of visible light. If any areas of the spectrum
are weak or missing, it will not be possible to illuminate
those portions ofar object's spectraL reflectance character-
istic. The fluorescent bulb in the HP ScanJet IIc is designed
with a mixture of phosphors to produce a broad spectrum of
light energy.

The Object
Photons from the source of illumination arriving at the object
can be affected in one of three ways. They can be transmitted
through the object, reflected from the object, or absorbed
within the object (and reradiated as heat or, in the case of
fluorescence, reradiated as light of a different wavelength).
Reflection is most relevant to the human experience of color.
Colored objects are characterized by their spectral reJlec-
tance distributi,on. A vast variety of spectral reflectance
distributions are found in the natural world.
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Objects viewed with scanners such as the HP Scan'Iet IIc are

usually in the form of documents. (In the case of the HP

ScanJet IIc, a noteworthy exception is three-dinlensional

objects. The ScanJet IIc's illumination, optics, and single-

pass color separation make it unusually capable as a three-

dimensional object scanner.) Colors found on documents

are usually generated with offset-press inks or photographic

dyes. These colorants come in four varieties: cyan, magenta'

yellow, and black. With only these four colors to work with,

very few of the spectral reflectance curves found in nature

can be even approximately reproduced. Forturately, because

of a phenomenon in human vision called metamerism, this is

not necessary. Without metamerism, any picture containing

grass would have to be created with chlorophyll to provide a

matching color.

The Detector

In the case of human vision, all of the infinite degrees of

freedom found in an object's spectral reflectance distribution

are reduced to only three tlimensions. This is the root of the

phenomenon of metamerism. Because of this, colors can

always be described with just three numbers. For example'

a color can be described by three numbers representing

amounts ofred, green, and blue. The sanle color can bejust

as precisely and unambiguously described by numbers rep-

resenting its hue, saturation, and lightness. Any of several

other three<limensional color systems could be used as well'

Like the human vision system, the human hearing system is

a spectral waveform processor. Unlike the vision system,

however, the hearing system retains all of the spectral con-

tent of audible sound all the way to the brain. This provides

a very importart capacity: when one Iistens to a chord

played on a piano, one can easily discem the individual

notes composing the chord. AJso, from the character ofthe

sound, it is obviously a piano chord rather than an organ or

flute chord played from the sante notes. An expert ear can

even teII the brand and sometimes the vintage of the pianol

In stark contrast, the eye cannot see chords. A white paper

illuminated with a yellow light can appear exactly the same

as the sane paper illuminated with a mixture of green and

red light. The spectral content, obserwable with a scientific

instrument, can be radically different while the appearance

is identical to a human. It is this ulammoth sinrplification

(loss) of inforntation that allows us to reproduce the color

of grass green exactly with only four inks or dyes' Unfoftu-

nately, there is a catch. This exact match is, strictly speak-

ing, guaranteecl under one and only one type of illumination'

More on this later.

From Man to Machine

Scanners like the HP ScanJet IIc bring the gift of sight to

computers. Producing any color image capture device such

as this requires a partial duplication of the human vision

system in the fomr of electronics and optics' The central

task in this effort is the accurate description of the human

vision system's nlethod of convefting spectral energy into

three dimensions of color. This was done tl'tany years ago'

Around 1930, primarily fbr the incipient color television in-

dustry a group of people were tested for their sensitivity to

monochromatic wavelengths over the visible spectrum'

400 500 600 700
Wavelength (nm)

Fig. 1. CIE stattdarrl observt-'l tlolor tllaltliiuSl cttrves

Each person adjusted the intensity of three lights until a

match of the test wavelength was achieved. A series of such

matches produced a set ofthree curves called the color

matching functions. An averaged set became the interna-

tional standard called the CItr star-rdard observer (see Fig' l)'

These curves form the basis of color television and the HP

ScanJet llc.

The color matching functions of the standald observer can

be convertetl into a new and equally valid set of three curves

by multiplying the original curves by a 3-by-3 matrix' The

U.S. National Television Standards Committee (NTSC)

adopted one such set of curves for use in color television

(see Fig. 2). This NTSC standard is used frequently by the

cornputer graphics industry and was chosen for the design

ofthe HP ScanJet IIc. To achieve a spectral sensitivity

natching the NTSC curves, a combination of the spectral

characteristics of all the optical elements must be consid-

ered. For'the ScanJet IIc this includes the document glass

platen, the lamp, the lens, three color separation filters'

three mirrors, and the photosensitive charge-coupled device

(CCD) detector. To duplicate the human color separation

process, the net combination of all these elements must pro-

duce three color channels that are directly related to the

standard observer through a 3-by-3 matrix operation'

The curves shown in Fig. 2 illustrate the ideal cetmera sensi-

tivities for NTSC color television. Note the presence of sev-

eral negative lobes. Because of these lobes, a petfect canl-

era would require nore than three detectors (adding one for

each negative lobe) and in fact the very high-end broadcast

cameras often have five or six detectors instead of the three

found in home video caneras. The inability to include nega-

tive lobes slightly din.rinishes the accuracy of the color sepa-

ration process. This degradation also exists for color film'

The result is "instmment metamerism": sonte colors that

match when viewed by a httnlall observer do not match

when viewed by the instrument, and vice versa'

-- l'o
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400 500 600 700
Wavelength (nm)

Fig. 2. NTSO color nratching curves.

HP ScanJet IIc Color Separation
Of all of the elements along the optical path of the Hp Scan-
Jet IIc, the lamp and the filters have the most conveniently
alterable spectral behavior, and in the case of the dichroic
filters, this is very restricted. Because ofthe color separa-
tion method used (see "Color Separator Design," page bb),
each color channel ha^s access to three mutually exclusive
bands of the color spectrum. The curves in Fig. 2 (and any
other set of color matching curves) contain a great deal of
overlap. Some wavelengths are visible to more than one
channel. Only a small amount of overlap is possible with the
method used in the ScanJet IIc, resulting in a stight degrada_
tion of the color performance. However, this color separa_
tion configuration has strong advantages in scanning speed
and single-pass operation. Foftunately, the degradation made
unavoidable by this configuration is small and is minimized
through the optimization process described in the next sec-
tion. The HP ScanJet IIc's color pedormance competes well
with the other desktop scanners in the n.rarketplace.

Measuring and Optimizing
The lamps in the HP ScanJet IIc are fluorescent. They are
produced with a custom mixture of phosphors that are spe_
cifically designed to aid in the recreation ofthe NTSC spec_
tral sensitivities. This ability to create custom spectral char_
acteristics (see Fig. 3) helps offset the limitations of the
filters. The color separation filters are a dichroic clesign (see
"Color Separator Design," page 5b). Their spectral charac-
teristics can be altered primarily by moving the crossover
frequencies. They have a fairly square passband perfor-
mance that does not match the shapes of the NTSC culves

very well. However, the conbination of the filters and the
lamp produces a much closer approximation of the desired
result. Extensive measurement and characterization of the
scanner was performed using a spreadsheet model of all the
spectral characteristics throughout the optical path. This
model was used to optimize the choice of lamps and filter
crossovers. Additional optimization was achieved through
the selection of a carefully deten.ninecl clefault B-by-B matrix
which is applied to all scanned pixels. This B-by-3 ntatrix
provides a closer approxinration of NTSC color.

Color Matching
The low-cost color sc.anners ancl printers available today
contribute to a growing denrand for accurate color image
reproduction. Users of desktop systems having color image
capture, display, and printing capabilities are demanding
better color image reproduction fidelity. Many factors con-
tribute to the challenges of color matching.

Scanner Limitations. Scanner inaccuracies a-re most, com-
monly caused by imperfect color matching functions in the
color separation process. Another less obvious sonrce of
eror is that typical document scanners provicle their own
light source. Any color scan from such a device can only
give color measurement data for documents viewed uncler
that particular light. Once the original document's spectral
reflectance is reduced to the three dimensions of color, it
cannot be reversed. The necessary information required for
accurately determining the document's color under a differ_
ent light source is irretrievably lost. This is true even for a
scanner with perfect humanlike vision and is unavoidable
without increasing the number of dimensions (sensor col-
ors) within the scanner. The result is that all color matches
are conditional. They may, and often do, fail when the view_
ing conditions are changed. The only way to procluce an
invariant match-one that holds regardless of viewing con-
ditions-is to capture and reproduce not the color of the
original but its spectral reflectance. Scanners and color
printers are not capable of this today.

Monitor limitations. Color monitors procluce a wide range of
colors by mixing three different colored phosphors. Espe-
cially in a wellJighted office, these monitors are limited in
their ability to recreate the range ofvisible colors. First, a
three-gun monitor, no matter how perfect, can never recre-
ate the colors ofthe rainbow or any ofa large region of
other saturated colors. Second, because ofthe surrouncling

Wavelength
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light, a typical monitor cannot produce a good black' Third,

such a monitor has difficulty producing a pure' bright white'

These last two points can easily be illustrated with a com-

puter monitor and a laser-printed page. Srhen the printed

page is held near the monitor, it will typically appear

brighter and whiter than the monitor's white. If the monitor

is turned off (to reveal its blackest black) the black toner on

the page will typically be much darker than the black of the

monitor. An accurate reproduction of a monitor display of a

white page with a black and yellow square would produce a

printed page with many dots in the "white" areas, magenta

dots in the "yellow" areas, and white dots in the "black"

areas. This is rarely the desired result. WYSIWYG (what you

see is what you get) is definitely not desired. Instead, it's

"what you want is what you get" that is desired'

Printer limitations. Further compounding the problems of

color matching is the color gamut limitations of low-cost o
color printers (a printer's color gamut is the set of all of the

colors it can print). Many displayable and scannable colors .
fall outside of the capabilities of most printers' Areas of .
images that contain these colors must be modified to ac-

commodate the printer limits. Once again, the most accurate

reproduction is often not the most desirable.

Managing all of these color matching issues and limitations

is a very complex ta^sk' However, advancements continue to

be made, and there is reason to hope for steady improve-

ment in the disquieting situation that exists today on the PC'

Color Separator Design

The objective of a scanner is to digitize exactly what is on

the document that is being scanned. However, this is not a

realistic goal because it would require a CCD (charge

coupled device) detector with an infinite number of pixels

and a lens with a modulation transfer function (MTF) equal

to 1.0, which does not exist. (Modulation transfer function is

a measure of the resolving power or image sharpness of the

optical system. It is analogous to a visual test that an optom-

etrist would use to determine a human eye's resolving

power.) Most important, the scanner user does not require

an exact reproduction ofthe original because the human eye

does not have infinite resolving power' The HP ScanJet IIc

scanner is designed to obtain very fine-detailed images for a

variety of color and black and white documents and objects

that are typicallY scanned'

To design a high-performance, low-cost deslctop scanner

required a team effort involving the disciplines of optical,

mechanical, electrical, firmware, and software engineering'

Some key clecisions that affected the design architecture

were resolution (dots per inch), gray level depth, optical

scanning resolution, scan time, product size, image quality'

and product cost.

After the product was defined, a color separation technique

was clecided upon. This affected all the engineering disci-

plines involve<t in the product design. Various color separa-

tion techniques are used in the image reproduction indttstry'

A few of the common techniques are:
. Colored clyes deposited on the CCD substrate' Used in

camcorders, scanners, and color copiers.

Fig. 4. Lens, CCI) detector, and color separator composltes'

Rotating or translating red, green, and blue filters' Ilsed in

scanners.
Red, green, and blue flashing lamps. Used in scanners'

Beam-splitting prisms with multiple CCD sensors' Ilsed in

scanners.

To meet the performance and cost goals for the HP ScanJet

IIc, a new HP proprietary color separation method was de-

veloped and implemented. The initial development was done

at HP Laboratories in Palo Alto, California and the technol-

ogy was transferred to the Greeley Hardcopy Division in

Colorado for continued development and implementation'

The color separation system consists of a lens, two color

separators, and a CCD detector as shown in the photograph,

Fig. 4. Each color separator is a laminated assembly as

shown in Fig. 5. Each assembly is made of three glass plates

that are bonded to each other with a thin layer of optical

adhesive. Red, green, and blue reflective coatings are depos-

ited on the glass before lamination. Specifically, dichroic

coatings (2 to 3 prm total thickness) are deposited onto the

glass substrates. Good spectral performance is obtained using

dichroic coatings, resulting in an accurate colorimetric

device.

The distance between colors at the CCD detector (see Fig' 5)

depencls on the thicknesses, index of refraction, and angles

ofthe glass plates separating the red, green, and blue reflec-

tors. The plates are thin glass substrates that have tightly

controlled flatness, thickness, and angle tolerances' The thin

plates are laminated to a thick baseplate, which provides

mechanical rigidity and flatness. During the multilayer di-

chroic coating process the thin plates are distorted, but lam-

inating them to the thick plate restores the flatness ofthe

reflective surfaces. The first laminated plate has the color

order of blue, green, red while the second plate has the or-

der ofred, green, blue. This configuration equalizes the opti-

cal path lengths to ensure simttltaneous focus for all three

colors. The order of coatings was selected to maximize

spectral efficiency ancl simplify the coating process'

Each color component is focused onto a CCD row, each row

consisting of 3400 imaging pixels (additional pixels are

available and are ttsecl for light monitor <'ontrol and dark

voltage correction). The CCD generates avoltage signal that

is proportional to the anlount of light incident on the detec-

tor. This signal is processed and then digitized' Having a

!,.
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CCD that integrates all three rows and senses all three colors
simultaneously yields a single-pass scanner with excellent
image quality. This color separation method also provides
high-performance scanning capability in a small integrated
package that is cost-effective anri manufacturable at hiph
volumes.

A layout of the optic:rl systenr showing the light path is
shown in Figs. 6 and 7. Fig. 6 also shows the solicls nrodel of
the carriage, which includes the dual lantJl assenrblv. three

Fig. 5. HP Scan.l t '1 I Icr c,olot.
sr 'paratiort rnethotl .

minorc, the lens, the color separator, and the CCD assembly.
The carriage is translated along the length of the clocument
glass platen by a stepper motor drive system and a belt that
is connected to the carriage. In Fig. 7 the light path is drawn
for several rays from the scannecl region. The lens is a six_
element double Gauss design that yiekls a very goocl MTFI,

The optical system was designed ancl evaluated using a
commercially available optical design program. Unlike many
other engineering disciplines such as finite element analvsis.

Scan L ine

Fig.  6.  Sol i r ls  nro. le l  of  l  l t ( '  I  l l '  S< an. l r - t  Ik
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6-Element

Lens

for which it is more difficult to predict accurately how a

fabricated prototype will perform, the performance of an

optical system can be calculated very accurately. The effects

of tolerances on the optical system were also modeled to

ensure that the product could be manufactured at high vol-

umes. Modulation transfer function (image sharpness) was

evaluated for tolerances such as lens centering, tilt, accu-

racy oflens radii, index ofrefraction, and color separator

flatness and thiclaress. A typical plot of modulation at 105

line pairs per inch (object side of the lens) as a function of

position across the page is shown in Fig. 8. Modulation is

the sharpness of the image at a specific line pair frequency,

whereas MTF is the sharpness of the image as a function of

line pair frequency. Fig. 8 demonstrates that the resolving

power of the scanner varies only slightly with the location

Color Separator
Assembly

Fig. 7. Ray trace of the oPtical

path (one color onlY).

on the glass platen. This data includes the effect of the

CCD's modulation:

Modulation = Modulationoptics x Modulationg6i.

For fabricated optics tested on an optical bench, the mea-

sured through-focus data agreed closely with the calculated

results.

To achieve precise optical alignment, custom tooling was

designed and fabricated to meet production goals' Ttansla-

tional alignment of +10 pm is required for focus and for cen-

tering the light path on the CCD. The alignment tools, consist-

ing of translational and rotational stages' are controlled with

an HP Vectra 386 computer and software that consistently

gives optimized optical alignment.

o

o

E

Center
Linc

Fig. 8. Modulation for horizontal

and ver l  ical  l ines al  105 l ine pairs

per inch (object side of lens) as a

function of platen Position for

red, green, and blue.

Location on Scanner Glass Platen
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0n past projects, he was a peripheral diagnostic engi-
neer and contributed t0 the development 0f the Apoll0
Domain operating system and to 0SF/1 from the Open
Systems F0undati0n. His other professional experi'
ence includes a stint at Honeywell/Bull as a test
technician and diagnostic engineer. Ron received a
BS degree in computer technology from Northeastern
University in 1989 He is manied, has two chi ldren,
and is actlve in vouth sports.

Renato G. Assini

w.

Edward J. SharPe

Ed Sharpe studied computer
science at the State Univer-
sity of New York at Buffalo
(BA 1 977) and at the Univer
sity of Southwestern Louisi-
ana (MS 1980). He has been
with HP since 1989 and has
worked on several operatlng
systems, including APollo

Domain, Mach, and 0SF/1. He's cunently an engineer
at the Open Systems Software Division and was re
sponsible for central ized conf iguration development
for HP Task Broker Ed is a member of the ACM and
the IEEE.

John M. lewis

Software engineer John
Lewis was born in Spring-
f ield. Massachusetts and
attended lowa WesleYan
College (BS mathematacs
1 974) and the University of
lowa {MS comPuter science
1977). He was a software
engineer for Data General

and Avatar Technologies before joining Apollo Com-
puter. He worked on personal c0mputer integrati0n
products at Apollo both before and after the HP ac-
quisit ion in 1 989. John is now in the Open Systems
Software Division and contributed to software devel-
opment and design for HP Task Broker. His outside
interests include f ly{ ishing and ski ing. A cert i f ied
professional ski instructor, he conducts instructor
training cl inics and is a supervisor at a local ski area

James J. Turner

Engineer James Turner
helped develop the graPhical
user interface and internal
l ibrary for HP Task Broker He
received a BS degree in com-
puter science from Boston
University in '1981 before
joining Apollo Computel
where he was a hardware

designer at the t ime ot the HP acquisit ion in 1 9B9 He
is now a member 0f the Open Systems Software Divi-
sion. Hes named as the inventor in a patent related
to high-speed memory access. James enjoys ski ing,
golf,  and playing ice hockeY

Mike Ward is an B&D sPe-
cial ist at the Open Systems
Software Division and has
been with HP since 1989.
For the HP Task Broker Proj-
ect, he was involved in the
development of the hard-
ware, software, and network
conf iguration required to

support the pr0duct quality plan. Previous HP projects
include instal l ing, maintaining, and repair ing R&D
hardware and network equipment, instal l ing and
maintaining the Apollo Domain operal ing system, and
testing 0perating systems before product release ln
previous professional posit ions, he was an engineer-
ing and production assistant and manager. Mlke has
a BA deqree in theater from the University of New

Michael C. Watd

&

Hampshire {1 976) and an AA degree tn computer
science from Hesser College (1 987).

23 HP-RT Operating SYstem

Kevin D. Morgan

Section manager Kevin
Morgan joined HP in 1980
and has worked on several
versions of the HP real{ ime
executive (RTE) oPerating

- system. He was a member
' 

of the marketing team for HP
BISC-based comPUters at
the time of their introduc-

tion, and was a project manager for a real{ime tnter-
face card for RISC systems. He's cunently working in
the Measurement Control Systems Division. Born in
Port land, Oregon, he studied computer science at the
University of Cali fornia at Santa Barbara (BS 1 980)
and the University of California at Berkeley (MS

1984). He's the author of a magazine art icle on real-
time systems. Outside of work, he's a musician, play-
ing guitar in a rock and blues band, and also enioys
surf ing. Kevin is married.

31 HP-RT OPerating System

George A. Anzinger

,. .  With HP since 1969, George
" Anzinger is a systems soft-

ware specialist for the HP-RT
operating system in HP's
Measurement Control Sys-
tems Division. He was born
in Waukegan, l l l inois and
recelved a BSEE degree from
the University of Wisconsin

at lvladison in 1968 and an MSEE degree from Stanford
University in 1969. While at HB he has worked on
DACE, a data acquisition and control executive system,
and on various functions of RTE, an HP real{ime exec-
utive system. For the HP-BT project, he managed the
development 0f the interrupt system and driver code
and services. George is married and has two daugh-
ters. In his spare t ime he helps his wife run a vlde0
store, and he's also interested in electr ic automobiles
and plans to bui ld one.

38 logic Synthesis SYstem

W Bruce Gulbertson

A member of the technical
staff at HP Laboratories,
Bruce Culbertson came to
HP in 1 983 and has worked
on PC software Products, on
an experimental real{ ime
cOmputer network, an0 0n
lCs and design software for
an HP PA-BISC processor.

For the Tsutsuj i  project, his contr ibutions include
developing key alg0ri thms and data structures an0
writ ing the simulat ion compiler and t0p0logy plotter
programs. Born in 0akland, Cali fornia, he studied
mathematlcs at the University 0f Cali fornia at Davis
(BS 1973) and at the University of Cali fornia at San
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Diego (MA 1976). He also completed work for an MS
degree in computer science from Dartmouth College
in 1983. His work on the emulation of three-dimen-
sional objects on a two-dimensional computer screen
resulted in a patent, and he s a member of the IEEE
and the ACM. Bruce l ikes ski ing, especial ly cross-
c0untry ski racing. playing and col lect ing ethnic
music, mountaineerlng, and bicycl ing.

Toshiki Osame

Born in Kagoshima, Japan,
Toshiki Osame received a
BS degree in physics from
Kouchi University in 1 977
and an MS degree in the
same subject from Osaka
University rn 1 979. He joined
the YHP Systems Laboratory
in 1986 and now is an R&D

engineer at YHP at Kurume. He contributed to the
development of a PLD design system and for the
Tsutsuji system designed compiler architectures and
developed the LDF language parser. the interface for
the module generator, and the C simulat ion model.
Toshiki is manied and has three dauqhters.

Yoshisuke 0tsuru

Yoshisuke Otsuru was proj-
ect manager for the Tsutsu.ii
project at Kurume Systems
Laboratory in Japan. Born in
Kurume, Fukuoka, Japan. he
earned a degree in mechani-
cal engineering from Kurume
Technical College in 1969,
and joined HP in 1985 He s

the author of a series of review articles on ASIC de-
sign. Yoshisuke is married and has two chi ldren. Hls
leisure activities include watching movies and playing
golf .

J. Barry Shacklelord

Barry Shackleford is a
principal project scientist at
HP Laboratories. He initiated
the project that resulted in
the Tsutsuji logic synthesis
system and was the R&D
project leader. He is presently
investigating new computer
structures for compilable

hardware. Born in Atlanta, Georgia, he completed
work for a BSEE degree from Auburn University in
1971 and for an MSEE degree from the University of
Southern California in 1975. Before coming to HP in
1 981, he worked for Hughes Aircraft and Amdahl. He
has worked on a variety of other projects at Hf in-
cluding a Kanji  computer terminal. He is named as an
inventor in two patents related to chip scan methods
and cel lular brrays and in four pending patents on
cellular-anayed computati0n structures. He's also the
author 0f two articles on neural networks and a
member of the IEEE. Barry speaks Japanese and en-
joys Japanese food and culture. He hikes in the hi l ls
near HP every day and is currently spending most of
his free time remodeling his home in P0rt0la Valley,
Ca l i fornia.

Motoo Tanaka

Motoo Tanaka joined
Yokogawa-Hewlett-Packard
in l9B4 and has held several
R&D posit ions. His past proj-
ects include contributions to
a PLD design system and a
PLD l ink for an eiectronic
design system. For the Tsu-
tsuji system, he was project

manager of the user interface team and did the con-
ceptual design and prototyping 0f the user interface
and circuit  editor Cunently, he is a technical cus-
tomer support speciailst. Motoo was born in Tokyo,
Japan and received a bachelors degree in electronic
engineering in 1 984 from the University of Electric
Communications. He s manied and has a son and
daughter. His outside interests include f ishing and
classical guitar-he s a member of the Kurume
Guitar Ensemble.

fl. Golor Scanner

Douglas Gennetten started
at HP in 1 978 as an electr i-
cal engineer. He has worked
on several magnetic disk
and tape products, earning
two patents on data separa-
tor and phase-locked loop
design. In 1989, he com-
pleted work for a degree in

rmagrng scrence and print ing technology from the
Rochester Institute of Technol0gy. He c0ntributed t0
the design of the HP ScanJet llc from its original con-
cepti0n. In his spare t ime, Douglas dreams of work-
ing parttime at HP to become a "starving artist." He
has developed an aesthetical ly pleasing computer-
generated sundial that maintains accurate local t ime
to within 30 seconds year-round. He transfers the de-
sign to bronze or stone and hopes to have installations
around the globe someday.

An R&D engineer at the
Greeley Hardcopy Division,
Mike Steinle joined HP in
1 984. He designed and de-
veloped the imaging optics
and i l lumination system for
the HP ScanJet l lc and col-
laborated with the manufac-
turing staff on the carriage

assembly. His cunent assignment is t0 design and
develop a next-generation optical system. Mike was
born in Galena, l l l inois and attended Augustana Col-
lege, from which he received a BA degree in physics
in 1 98'l . At Purdue University. he studied mechanical
engineering and received a BSME in 1 982 and an
MSME in 1984. He s the coauthor of four art icles re-
lated to the work he did on blood f low through a
heart valve prosthesis while he was at Purdue. His
work has resulted in four patents on color separator
design and scanner optical systems. Mike is married
and has two daughters. He volunteers at a l0cal youth
center and is act ive in his church. His leisure activi-
t ies include tennis, bicycl ing, hiking, attending sports
events, and social izing with family and fr iends.

Michael J. Steinle

M

n Mechanical Design

Brad Clements

Brad Clements received his
BSME and MSME degrees
from Brigham Young Univer-
sity in 1 g7B and 1 979. After
joining HPs Desktop Com-
puter Division in 1979, he
worked in materials engi-
neerrng and manufacturing
before moving to R&D He

has designed mechanical packaging for the HP 9000
Model217, the companys first HP-UX workstation,
for HP-HIL products, for the HP 9000 Series 300 work-
stat ions, and for the HP 9000 Models 745i and 747i
industrial workstations. Brad is named as an inventor
In three patents related t0 these products. Born in
ldaho Falls, ldaho, he is married and has five children

68 laser Gontrol Algofithm

Franco A. Canestri

Franco Canestr i  was born
in Novi Ligure, l taly and re-
ceived an undergraduate
diploma in science from the
Scienti f jc College in Genoa
in 1974. He completed work
for a PhD degree in biophys-
ics from the State University
of Genoa in l 979 and taught

mathematics and physics in secondary schools before
servrng in the ltalian army. For several years, he was
an lBlvl systems engineer and at the same time was
an assistant fel l0w at the National Cancer Inst i tute
of Milan. In 1984, he loined HPs Bdblingen Computer
Division as a business manager for the HP 1 000 com-
puter family, then transfened a year later to the Med-
ical Products Group Europe as a cri t ical ly i l l  patient
monitoring special ist.  He is currently an application
and technical support specialist for cardiology prod-
ucts in Europe. He focuses on surgical appl icat ions in
his research on medical lasers. He is the author of
ten papers on lasers in medicine and biophvsics.
Franco is manied and has two chi ldren. He enjoys
ski ing, playing squash, languages, travel, music, and
I rterature.

13 0nlineDefecttleoogorcnt , :

David A. Keefer

A software engineer, Dave
Keefer has contributed to
software tool development
for the software quali ty
department at HPs Boise
Printer Division. He contr ib-
uted to the implementation
of the HP defect manage-
ment system tool and to

design enhancements and is now developing a next-
generatiOn DMS user interface. Dave was born in
Reading, Pennsylvania and completed work for his BS
degree in mathematics from Boise State University in'1 9BB. He s now doing graduate-level work for a de-
gree in software engineering from National Technical
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University. With HP since 1980, he has also worked
at Fairchi ld Semiconductor. Dave is married and has
two sons. Before becoming a software engineer Dave
was a radio announcer, an endeavor he continues
today as a hobby by providing narrat i0n for f i lms such
as HP training videos on disk products and doing
some local radio commercials.

Brian E. Hoflmann

Brian Hoffmann was the
architect and imPlementer 01
the original defect manage-
ment system develoPed at
HPs Boise Printer and Net-
work Printer Divisions. Pre-
vious projects at HP include
software test and software
quali ty tools development

for HP LaserJet printers. Brian was born rn Detroit,
Michigan and attended the University of Michigan,
from which he received a BS degree in chemical en-
gineering with a process modeling emphasis in 1982
and an MBA degree in information systems in 1 9BB.
Before joining HP in 1 989, he was an engineer at
Ford Motor Company, did design work at Apple Com-
puter, and developed a UNIX user interface and Other
tools for Andersen Consulting. He's cunently develop-
ing f irmware for a future product. His professional
interests include database architecture and numeri-
cal analysis. Brian is married and has two daughters
He enloys camping, hiking, and woodworking.

Douglas K. Howell

Doug Howell is the software
quali ty engineering manager
at the Boise Printer Division.
He was the project manager
for the DIVIS project and
manages a team of software
quali ty engineers who are
responsible f  or develoPing
and supporting test Process

automati0n and software quality management t00ls
for HP LaserJet products. He ioined HP in 1 982 at the
Desktop Computer Division in Fort Coll ins, where he
was a software quali ty engineer and manager Doug
was born in Rushvi l le, Indiana and graduated from
Indiana University in 1979 with a tr iple major in
mathematics, chemistry, and German. He completed
work for an MS degree in statistics from C0l0rad0
State University in 1 983 and also did graduate-level
work in mathematics at the Eberhard-Karls-Universitdt
in Ti lbingen, Germany. He is named a cert i f ied qual i ty
engineer with the American Society for Ouality C0ntrol
and is a member of the American Statist ical Associa-
t i0n and the IEEE. In addit ion, hes the author of sev-
eral papers and training classes on software metrics'
software quality engineering, statistical quality control,
and methods for customer surveys. Doug is married
and his outside interests Include restoring 0ld spOrls
cars, col lect ing antique guns, and g0urmet c00klng.

85 Prodlctivity Gains with G++

Timothy G. 0'Konski
Born ln 0akland, Cali fornia,
Tim 0'Konski attended the
University of California at
Berkeley, from which he re-
ceived a BA degree in com-
puter science in 1976. He
joined HP's Santa Clara Divi-
sion in 1 984 and is now a
software designer at Tandem

Computers. His HP experience includes developing
user interface software for the Santa Clara division,
supp0rting C++ tool development f0r Corporate Engi-
neering, and working on the design and development
of C+r SoftBench in the Software Engineering Systems
Division. Previously, he worked on 0perating system
devel0pment at Texas Instruments and application
software at Apple Computer. He's the author of a Byte
magazlne art icle on reusable functions and a member
of the IEEE and ACM. Tim is married and has two
sons. He coaches youth soccer teams and is active in
his church. An avid rose gardener, he also enioys
photography, sailing, and family+elated activities.

$ Real-Time Design Tool

A project manager in HP's
lmaging Systems Business
Unit,  Joe Luszcz was born in
Ware, Massachusetts and
studied electr ical engineer-
ing and computer science at
Worcester Polytechnic Insti-
tute and at Northeastern
University (BSEE 1 973 and

MSEE 1983). With HP since 1 973, he has worked on
a number of electrocardiography and ultrasound
imaging products, and has managed software develop-
ment projects for the HP S0N0S 1 000 cardiovascular
imaging system. He is cunently leading a software
engineering team that is developing a reusable soft-
ware architecture for imaglng products. Joe is active
in youth sports and a local cub scout pack He is mar-
r ied and has f ive chi ldren and says family l i fe occu-
pies most 0f his time. but also enjoys softball and is
learning GLJi programming on his home computer.

A software engineer at the
lmaging Systems Division,
Dan Maier joined HP in
'1989. He was born in Roch-
estel New York and is a
graduate of Rensselaer PolY
technic Institute (BS com
puter science, 1987). For his
first HP project, he helPed

develop an on-l ine quanti tat ive analysis package for
the HP S0NOS 1000 ultrasound system. He later
worked on the team that developed the software
architecture for ultrasound systems and wrote end-
user applications. Previously, he developed software
for testing graphical display device drivers at the Cal-
Comp Company. Outside HP, Dan tutors grade school
chi ldren in mathematics. His other outside interests
include softbal l ,  basketbal l ,  ski ing, golf ,  and music
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Mechanical Considerations for an
Industrial Workstation
Besides being a compute and data processing engine, a workstation in an
industr ia l  and measurement environment must be mechanical ly designed
to handle the special requirements of these envrronmenrs.

by Brad Clements

The HP 9000 Models 745i and747i are entryJevel industrial
workstations. These systems are designed for test and mea_
surement, industrial process control, and electronic testing
applications. Both machines are basecl on Hp's PA-RISC

version 1.1 architecture,l and they both run the HP-UX* g.0
operating system. Except for dimensions and EISA and \r[{E
slots, both machines provide the same features. Fig. I shows
a rear view of the Model 745i and Z4Zi workstations.

Mass Storage
Module {0efaull
Front Access)

Four EISA
Expansion -

Slot Modules \

Internal Mass Storage
SCSI Gable Connection

Power Supply
Module

(al
I

SPU Module

Moss Storage Modtle
(Delault Eack Access)

\ \
\

lwo IISA Expansion

SPU Module

SGC (Gnphios)
Module

{bt

Fig. l. Rear views of HP 9000
Series 700i industrial work-
stations. (a) Model 745i. Overall
size 776.75 mm high by 425.45
mm wide by 412.6 mm deep
(6.97 inches by 16.75 inches by
16.2 inches). (b) Wailmounted
Model 747i. Overall size 310.15
mm high by 425.45 mm wide by
412.6 mm deep (12.21 inches by
16.75 inches by 16.2 inches).
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Background

At the begiruring of the investigation phase for the industrial

workstation project, a team from R&D and marketing set

oui to answer the question "what makes an industrial work-

station different from a standard workstation?"t Dozens of

customers in the measurement and industrial automation

markets lrere visited to help us understand their needs that

go beyond the features provided in HP's line of standard

workstations. This article addresses the mechanical design

aspects ofthe differences between standard and industrial

workstations, and the design strategy we used to meet the

needs of customers in the industrial marketplace who use or

could use engineering workstations.

ServiceabilitY

Unlike standard workstations, industrial workstations are

intended to be incorporated in large, very complex manufac-

turing processes that produce products worth extremely

large amounts of money per hour. The cost of downtime

demands the highest level of serviceability' Tfade-offs for

cost that compromise serviceability cannot be made' Our

goal was to provide access to all service-level components

in less than three or four minutes.

All service-level components in the Model 745i and747iin-

dustrial workstations including the backplane can be re-

moved and replaced from the cable end of the computer

while the computer chassis remains mounted in the rack'

This feature sets a new standard for serviceability in this

industry. To make the serviceable modules, or bricks,ll easy

to remove, an extractor handle was developed which holds

a captive spring-loaded retracting screw (see Fig' 2)' The

handle provides a trigger grip for the index finger and a ful-

cmm surface for the thumb when removing a{iacent bricks'

The handle also provides a surface to push on while seating

the bricks. Regulatory compliance dictated the use of a tool

to remove atl bricks. The captive screw, which is housed in

t A standard workstation is one that is typically used for program development or running

application prOgrams {e.g., CAD/CAM, desktop publishing, etc )

t tAbr ick is the termweusefora l l lhemodu lesdes igned{or the l \ '40de l745 iand747 i
workstatrons.

Fig. 2. CPU brick showing the
extractor handle.

the handle, visually pops forward to indicate to the operator

that the brick is unfastened. Once the bricks are removed an

internal wall (see Fig. 3) swings up to unlatch so that it can

be taken out of the cabinet to allow the customer to remove

the backplane by undoing a single captive fastener located

on the backplane.

Connectivity
In addition to the robust core VO capabilities offered by

HP's standard workstations, the Models 745\ and74Tipro-

vide an HP-IB interface as paxt of the core VO' To provide

VO functionality that goes beyond that offered as core VO,

expansion slots are provided. The number of slots requested

for industrial workstations is not only greater than for stan-

dard workstations, but the types of VO slots are mixed' Be-

sides the core VO, the current HP standard workstations

only provide EISA slots, which support several VO proto-

cols.2 In addition to supporting EISA slots, the Model 747i

Fig. 3. Gaining access to the Model 747i backplane by removing the

internal wall.
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also supports \MEbus. The package for these machines was
designed to be large enough to be able to house the larger
cards such as VXIbus cards.t

Support Life
Support life is a very important consideration to the indus_
trial automation customer. Once an industrial workstation
has been designed and installed into a factory process it is
rarely replaced or upgraded for reasons other than loss of
support. Suppott life is not something that is designecl in,
but rather a promise or commitment made to custonrers by
HP The current standard workstations are supportecl lbr
five years while the Models 74bi ancl 74Ti carry a l0_year
commitment. To reflect a long support life, the inclustrial
design of the Models T4SiandT4Tihas a nruch plainer and
timeless look (see Fig. 4) than the new line of standard
workstations.

Reliability
In many standard workstation applications the harclware
becomes obsolete long before physically wearing out because
of reasons such as the availability of lower-cost machines or
machines with faster graphics engines. With industrial work-
stations this may not be the case because certain items like
the fan may not have the same l0-year or even 20_year life
that a factory installation may have. For example, extensive
testing was done on fan bearing systems to select the best fan
for the Models 745i and T47i,btrt the life expectancy of the
fan is still not greater than the service life of the workstation.
Thus, the power supply carries a fan-tachometer signal and
an overtemperature signal, and is serviceable. More details
relating to fan and aidlow reliability are discussed later in
this article.

t As 0f this writing vXibus cards are n't yet supp'rred in the Hp 9000 series 700i machines.

Fig. 4. Rackrnount,ed Model 74Zi with noncablc enri out

Fig, 5. Racknrouttecl Moclel 747i with c:able encl out..

Graphics
In a typical standard workstation configuration only one
large color clisplay needs to be supported because the user
is able to access multiple applications using windows. How_
ever, in some industrial automation environments, industrial
workstations are required to support several large graphics
displays. For example, in a control roon application large
monitors are used to replace walls full of critical instrument
gauges. The user or control room operator neecis to lnonitor
more gauge images than can be seen on one monitor screen
without paging through windows. Windows are still needed
for less critical gauges and other operations.

Front-to-Back Reversibility
For measurement automation customers, the business end
or user interface end ofthe Models Z45i and 747i is the non_
cable end ofthe package (see Fig. 4). All the cables and clut_
ter are hidden in the rear of the machine inside of the rack_
mount cabinet, which has an access door in the back.
User-accessible mass storage bays, an on/off switch, and
diagnostic LEDs are located at the front end of the machine,
which is the most cosmetic surface of the product.

On the other hand, the industrial automation customer tJrpi_
cally wants the cable end of the machine to be the user mter_
face end of the product, with the diagnostic LEDs, orVoff
switch, and user-accessible mass storage bay also located at
the cable end of the machine (see Fig. b). The Models 74bi
and747i were designed to allow Hp rnanufacturing to con_
figure the computer to meet the needs of both the rneeuure-
ment automation and the industrial automation customer.
Front-to-back reversibility is providecl by redundant on/off
switches, redundant diagnostic LEDs, and a mass storage
brick that allows user-accessible devices to be located at
either end ofthe product.

Mounting Options
Standard workstations are designed to live in an office envi-
ronment with the workstation cabinet sitting under a monr_
tor on a desktop or as a rninitower on the floor beside the
desk. The industrial workstation is required to live in rack_
mount and other mounted environments. The Models Z4bi
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Fig. 6. Mastmounted Model 745i.

andT47ican be mounted in a variety of different configura-

tions. They can be rackmounted from the cable end, rack-

mounted from the noncable end, stacked on a bench with

other HP products, wallmounted with cables facing out from

the wall, or mastmounted close to the center of mass of the

product (see Fig. 6).

Package Form Factor

In a rackmount environment, package height is always im-

portant lo instntmenl and measurement automation cuslom-

ers, but perhaps more important to industrial automation

customers is the package depth. The Models 745iand747i

are designed to fit inside a 450-mm (17'7-in) deep wall-

mounted cabinet with the door closed' With the front bezel

removed the distance from the mounting wall to the VO con-

nector surface is 355 mm, leaving a 95-mm depth for cables'

The height of the package was driven by the nearest even

number of rackmount units that a 120-mm fan arld line filter

stack would fit in. With feet removed the Model 745i is four

EIA (Electronics Industries Association) standard rack units

(177 mm) high and the Model 747i is seven EIA standard

rack units (310.4 mm) high. The width of the package is 425

mm to allow nonrackmounted stacking on a lab bench with

other standard HP 425-mm-wide instruments.

Airflow Management and Acoustics

The HP acoustic noise goal for office environment products is

50 dBa maximum sound power level. Standard workstations

struggle to meet this goal while not making thermal compro-

mises. Industrial workstations can be found in control room

or factory-floor environments which can be warmer than a

typical office. The variety of mounting options provided by

the Models 745i and 747i introduce airflow inlet constraints

not required of standard workstations' To provide more

thermal margin at higher temperatures with constrained

airflow inlets, the 50 dBa goal was compromised' The Model

745i noise level is about 54 dBa and the Model 747i noise

level with two fans is about 57 dBa.

The Models 745i and 747i incorporate a negative pressure

air{low design. Unlike a positive pressure airflow design,

which allows airborne particulates to be filtered out through

ar-r inlet filter, the negative pressure system has no filter'

Small inlet filters fill with airborne particulates in a rela-

tively short time, greatly reducing the volume of air that

moves through the product' Experience has shown that

these small filters do not get cleaned as often as required

and lead to system reliability problems' Rather than filtering

dust, the negative pressure design passes most dust through

the product. The dust that does collect over time inside the

product is far less detrimental than a clogged filter' For ex-

tremely dusty environments the product should be housed

in an enclosure that provides air filtering on a scale that can

adequately and reliably filter airborne particulates' The neg-

ative pressure approach offers some additional benefits'

First, a much Iarger inlet area is possible which reduces

total airflow impedance through the product' Second, an

unintermpted airflow zone in front of the fan introduces

more laminar air{low to the fan blades, which reduces

acoustic noise. Finally, airflow is more uniform' Having

more options for inlet locations provides better airflow

rationing throughout the product'

When viewed from the cable end of the product, the main air

inlet is on the left side ofthe product (see Fig. 7)' In an in-

dustrial automation installation the left side typically has far

Fig. 7. Mass sloragc brick tl'ttlt

user-ar:cessible tleviccs located zrt

the cable etrcl. Also shown are the

:rir inlets artd thc' carriers that

hold thc lnass storage clcvices itl

p l ac t .
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fewer cables than the right side. This relatively small num-
ber of cables on the le{t side of the product creates little
air{low impedance.

In addition to the inlet holes on the left side, inlet holes are
provided on the front of the product. The front holes are
redundant, allowing the air inlet on the left side to be partly
restricted as in a very tight rack installation with little plenum
space on the sides. Air flows across the bricks and into the
power supply. In an industrial automation installation, the
cables that come into the system rack and lie along the right
side of the product can be so numerous that airflow through
them can be difficult. Therefore, the air exhaust designed
into the Models 745i and747iis otrtthe cable end of the
product through the power supply (see Fig. 8).

The power supply is equipped with a temperature sensor
that is located near the exhaust fan. This sensor controls the
fan speed and is located downstream in the airflow path so
that the fan will speed up when the system is heavily loaded,
the ambient air is relatively warm, or the inlet is partially
restricted. The air{low through the Model Z4bi is a generous
56 ft3lmin at low speed and Z0 ft3/min at high speed. The
Model747i with two fans moves 10b ft3lmin of air at low
speed and 132 ft3lmin at high speed.

In the Model 747i, which has two power supplies and one
sensor for each supply, each sensor can also sense when the
fan associated with one of the power supplies is nor operat-
ing properly. When this happens, the operating fan will be
sped up, pulling air through the power supply with the de_
fective fan. This should extend the life of the power supply
with the defective fan until the controlled process can be
shut down in a graceful and less disastrous manner or until
control can be passed to a redundant computer.

Brick Strategy
The wide range of measurement and industrial automation
customer needs could not be met with just one product.
Therefore, we had to develop a strategy to offer a high de-
gree offlexibility for product features. In an ideal world, the
best approach to providing different product features would

Fig. 8. Power supply module.
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be to design a family of subassemblies, or bricks, which
could be mixed and matched in many different conflgura_
tions. Each brick would adhere to standard size constraints
such as width, depth, incremental height units, and electri_
cal interconnect standards. Conceptually the OEM customer
would be able to select the mrmber, type, and mix of VO slots,
the number and type of graphics display interfaces, the num_
ber and type of mass storage clevices, and the number and
type of CPU options.

For the Model 745i and747i workstations, the width of the
standard brick was driven by the width of two EISA cards
laid side by side. The maximum depth of a brick was clriven
by the length ofan EISA card. The standard brick height
increment concept was abandoned to allow the products to
fit into a smaller package while adhering to EIA standard
rackrnount increments. The electrical interconnect standard
was also abandoned because of physical connector space,
connector cost, and high insertion forces. Flexibility for
future upgrades was traded off for greater serviceabiliW and
lower cost.

Industrial and measurement automation customers rarely
upgrade a system after it is installed. Therefore, rather than
designing a standard package with optional expanders that
carry the added cost ofbox-to-box interconnect and make
the removal of the backplane in the rack impossible, an ap-
proach of using standard bricks housed in a variety of differ-
ent sized chassis was implemented. Each brick has the same
backplane.

The Model 745i uses a 4U (four EIA instmment rack units)
high box and holds a CPU brick, a four-slot EISA brick, a
mass storage brick, and a power supply brick (see Fig. la).
The Model 747i uses a 7U package which holds a CpU brick,
a two-slot EISA brick, an SGC (standard graphic connect)
brick, a six-slot \MEbus brick, and two power supplies (see
Fig. 1b). The boxes contain two internal walls that support
the card guides, and a structure to support the bricks. These
walls can be separated from the chassis, making it possible
to design other versions of walls quickly. This feature allows
different versions of the industrial workstations to be de-
signed for OEM customers. The versatility offered by the
walls allows a shorter time to market for future products and
reduces the development cost of redesigning an entire pack-
age. The backplane, which provides power and bus signals
between bricks, is unique for each product developed.

CPU Brick. The HP PA-RISC processor delivers more than
enough processing for the vast m4iority of customers in the
industrial and measurement markets. However, customers
do want HP PA-RISC machines for the expected support life.
Standard 16M bytes ofSIMM ECC (error correction code)
RAM with optional configurations up to l28M bytes is sup-
ported. The core VO includes HP-HIL, parallel, two serial
ports, audio in and out, SCSI, AUI (access unit inter{ace)
IA,N, HP-IB, and onboard 1280-by-1024-pixel graphics mem-
ory. The CPU brick is housed in an aluminum extruded
frame to provide additional mechanical board support dur-
ing insertion, to protect surface mount components on the
underside when outside the product, and to offer a rugged
industrial appearance and feel. Fig. 2 shows the CpU brick.



Fig. 9. EISA card brick with four slots.

EISA Brick. To save space in the product the EISA VO cards

are oriented horizontally (see Fig. 9). The structu-re that sup-

ports the cards along with the converter circuits is easily

iemoved for service or upgrades. Easy access to EISA VO

cards is a feature that adds to the competitiveness of our

workstations in the industrial marketplace. Almost all of the

PCs used in the industrial marketplace require the user to

remove the workstation cabinet from the rack and then

open a clamshell case to service or upgrade VO cards'

Mass Storage Brick. The removable tray that holds the mass

storage devices is structurally reinforced so that the me-

chanical vibration frequency response is high' The tray is

flrmly supported at one end by three tight-toleranced pins

and at the other by two captive threaded fasteners' This

solid foundation approach required no additional vibration

mounts beyond those designed into the individual mass stor-

age devices by the manufacturer. This approach not only is

lower in cost for the majority of customers, but provides a

significantly more rugged system. However, customers with

systems that are vehicle mounted will require very soft

vibration isolators and thus a larger shock zone around the

disk, both of which lead to higher costs and a physically

larger product. Fig. 7 shows a mass storage brick'

The individual mass storage devices are held in place by

carriers that were leveraged from the high-volume HP 9000

Model 425e workstation. These carriers, which are shown in

Fig. 7, can be oriented towards either the cable end or the

noncable end of the tray by means of interlock details

located in different places on the tray.

The SCSI interface to the mass storage devices is provided

by an external shielded cable which comes from a filtered

connector on the CPU brick. This approach was leveraged

from the design used in the HP 9000 Models 720 and730'

Besides providing excellent EMI and ESD performance, this

design allows the user to corurect to an external mass storage

device rather than the devices on the mass storage tray' This

capability is useful for diagnostics.

VMEbus Brick. The \MEbus brick, shown in Fig' 10, provides

six VMEbus slots. The entire brick, which includes the VME-

bus cardcage, backplane, and translation circuit, is remov-

able as one piece. Customers are delighted to have the abil-

ity to remove the VMEbus brick and take it to a lab bench to

work on. With the brick removed, access to the P2 connec-

tort is convenient. A cable passage slot allows easy passage

Fig. 10. \MEbus brick with six VMEbus slots. The first lwo slots arc

occupied by a two-slot VMEbus moclule

of ribbon cable from the rear of the backplane to inside the

cardcage.

The cover shown in Fig. 10 is required to provide RFI regula-

tory compliance. The customer can modifii the cover to add

the desired bulkhead-style connector hole patterns and pro-

vide cables with seruice loops as required for each different

configuration. Most customers elect to eliminate this part

when it is not required.

SGC Brick. Standard graphic connect, or SGC, allows access

to HP graphics and is a standard feature of HP 9000 Series

700 workstations.

Power SupplY

The power supply delivers up to 300 watts. Once the power

supply is removed, the 120-mm fan housed inside the power

supply is accessible by removing only two screws' A floating

connector system prevents damage from mechanical shock'

The power supply is wrapped in metal. Besides protecting

the user from electrical shock, this reduces EMI between

the power supply and the CPU or other EMl-sensitive bricks'
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Online COz Laser Beam Real-fime
control Algorithm for orthopedic
Surgieal Applications
New data obtained from treating polymethyrmethacrylate (pMMA)with a
nonmoving, cw, 1O-watt, c02 laser beam is presented. Guidelines based
on this data can be used during precision raser surgery in orthopedics to
avoid unnecessary mechanical and thermar trauma to healthy bone tissue
A computerized algorithm incorporating these guiderines can be imple-
mented on an HP 9000 workstation connected to a central database for
mult ip le-operat ing-room data col lect ion,  onr ine consul tat ion,  and analvsis

by Franco A. Canestri

The work described in this article was done to confirnt in
greater detail the conclusions published in tgg3t on treating
polymethylmethacrylate (PMMA) with a nonmoving, CW,
10-watt CO2 laser beam and to investigate any possible addi_
tional relationship among the ablated methacrylate volume,
the surface crater radius R(t"), and its depth Z(t"), where to
is the beam exposure time in seconds. Because ofthe very
close thermodynamic similarity between PMMA and bone
tissue (see Table I), these results may be valuable in ortho_
pedic surgery where the procedures of cutting bone and
removal of bone cement (a methacrylate poly,mer) are well-
known sources of complications. Carbon dioxide lasers
have been used in continuous and pulsed modes in both
cases, but bone carbonization, thermal injury, and debris
result very frequently in inflammatory response with a re_
tarded rate of bone healing. Therefore, a method for clean
removal of bone cement and precise osteotomy without
mechanical and thermal trauma would have distinct
advantages over existing techniques.

In this article, equations for R(t") and Z(t") for each focal
length are presented. A very interesting relation was identi_
fied between the ablated volume for a given focal length and
the values of R and Z integrated between t" = Q anfl {" = !
seconds. The most important result is confirmation of the
very close relationship between the areas under the R and Z
curves and the volume. With a simple equation (equation 3,
discussed later), it is possible to compare the characteristics
of craters obtained with moving and nonmoving laser beams
at different operative conditions between 0 and 2 seconds, a
time interval that covers the majority of combinations of
output powers, scanning speeds, and focal lengths reported
in the literatu1".3-11 11t" close thermody,namic similarities
between PMMA and compact bone tissue have been demon_
strated, except for the water content (Table I. bottom).
which strongly influences CO2 laser beam absorption.

P0rti0ns 0f this article were originally published in the lnternatianal J0urnal of clinical
M1nit'ring and c,nputing.2 G) copytigft i992 Kluwer Academic pubrishers. H€0rinred with
permission.
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Therefore, a correction factor must be applied to the main
equation to calculate the ablated volume in bone tissue.

Table I
PMMA versus Bone Thermodynamic parameters

in the Near to Mid-tnfrared Wavelength laser Beam Region
(800 nm ro 10.6 pm)

PMMA Bone Tissue

Ll t19l  0.8 to 1.3 t5l

1.38 17) 1.3 to 23.1 tbl

0.rT l7l 0.16 to 0.34 tbl

1.06 t l l  r .0 to 2.2 tbl

9.6 l7l  2.1to 3.4 [14]
8.0 to 18.0 t10l

Density

(-L)
\cm' ' . /

Specific Heat
/  r \

\'-t/
Thermal Conductivity

( ,  . " ^ " . -  x  ro -z )

Thermal Diffusivity

/4 "  ro-r)
\ -  I

Fluence Ablation
Threshold

/  r \

t--  I\cm-/
Latent Heat of Ablation 3.85 IZI/ \

{  
J  

, x  r o , l l
\cm'' /

Ablation Energy 3.5 t7j
( '{  x ro'r)
\ o  /

Water Content (%o) 0.9 tlgl
immersed
24h @ 23 "C

3.7 to 13.0 I11l

3.0 to 14.0 t3l

10.0

The numbers in square brackets indicate references listed 0n 0a0e 72

t14l



rt\

1 [l, ll, l;,:;,:l
|  = |  2.5 s 7.5 10 12.5 15 17.5 .  I

| | ,u ? ro.5 t4 17.5 21 z4.s I

I L* 
e 13.5 18 22.5 27 tl. 

I

.I(FSm,}n)

(FSp, rq)

Fig. 1. Focal sequence matrrx.

Equipment and Symbols

As described in reference 1, our group at the National Cancer

Institute of Milan obtained results for laser wavelengths of

\ = 2.5 in, 1.2 = 5 in, l'3 = 7.5 in, and l.6n = 400 mm = 15'75 in,

using a commercial Valfiwe CO2 laser with a nominal output

of 10 watts on the beam spot. The transverse beam mode

was TEM11* and the focusing head was kept steady over

well-polished cubes of ester methacrylate (Vedril C from

Montedison) measuring 3 by 3 by 2 cm. The exposure inter-

vals of the nonmoving CW CO2 Iaser beam were set to 0'4,

0.7, 1, 1.3, 1.6, and 1.9 seconds.l2'r3 A nitrogen flow helped

remove powder and steam during irradiation. Knowing that

),2 -- 2 Ly, L: = 3 trt, and l.6o = 6.3 trt, a working matrix ry (Fig'

l) was defined in which the elements of each row represent

focal lengths n1,5, where n = l, 2,3, 4, . . ' and l'5 is the basic

focal length, varying between 1 inch and an arbitrary maxi-

mum in steps of 0.5 inch (first column)' The matrix W

represents a comprehensive set of commonly used focal

lengths3 tl'14 51rus1u1sd to allow quick access to the opera-

tional data on a given focal length. Each row ofrF defines

the concept of a focal sequence FS5 of a given basic focal

length 1.5.

Results
All of the existing experimental trials performed using a CW

CO2 laser beam with exposure times ranging bet'ween 0'4

arld 2 seconds on PMMA samples show clearly the strong

focal-length-relatecl ablative beam 
"11sgx5' 

l' 15-18 The data

points R(t") and Z(t") measured in this study can be ex-

pressed for t" between 0 and 2 seconds by the equations

shown in Fig. 2. The following empirical equation can fore-

cast the ablated volumes in PMMA for focal lengths of 2'5 in,

5 in,7.5 in, and 15.75 in (400 mm):

v(t",l.p, FS,,) : L(rb,Ik) ' c(t",l,p) ' vu(rr,)

r,(r,6, r,u) =

+ t4.741Lr + O.ZSI i.?

Fig. 3 compares experimental data for these tw^o exposure

times with plots of equations 2' For te = 0'4 s, rz = 0'996 and

for t" = 2 s, r2 = 0.987, where P is a measure of how well a

given analy'tical curve fits the experimental data (r2 = I for a

perfect match). These equations can also be used to study

For t" = 9.4 5,

v(lu) = (o.ioos +

F o r t " = 2 5 ,

v1l-) : "-r{,

0.5581 ).r - O.OZOO l,?)2

- 57.564 + 49.307 ),k

L = 2.5 in = 63.5 mm

a _ a E _  2 1 . 2
t22761

2 = r z - t $ f f i

AZ = t 0.34

2R = 0.258 + 0.642 tgo886

2R = 0.9

A2R = + 0.2

0 . 5 5 = t e < 2

0 < t e < 0 . 5 5

0<  t e  =  1

t " l 1

l , = 5 i n = 1 2 7 m m

,  = a r o  -  2 5
tg {475

I = 11 10e777

L7= x0.27

2R = 0.516 + o.lAl t!151s

2R = 1.3

A2R = + 0.42

t e 2 l

0<  t e  =  1

0 .23  t e  s l

t " ) l

I = 7.5 in = 1110.5 mm

Z = 14.13 In(l + te)

z=18_ff i
0 < t e = 1 . 5

te > 1.5

(1)
k l

) j

AZ = t0 .3

2R=0.174 + o.zos t l ls  o< te < 1

2R = f .il8

AZR = t 0.38

t " 2 l

r = 15.75 in = AlXl mm

Z = 2 . 5 t e

AZ = + 0.tl

2R = 2.2

A2R = a 0.4

0 < t e < z

zR = 1.625 + o.sls r$73s1 o< te =1

t " l 1

L :  ) , , .

In this equation, V(t", l.p,FS5) is the ablated PMMA volume

after t" seconds of )"p-focused laser beam irradiation. V5Q'1r)

is constant for each FS5. n is an integer multiple of )"6 = j +

0 . 5  i n ,  w h e r e  j  = 0 . 5 ,  1 , 2 , 3 , . . '

Recent investigations have shown that equation I can be

written in a more analytical form for exposure times t" of 0'4

and 2 seconds as follows:

Fig. 2, tlxperirnental bcst-lit eqtrations for R(t,,') ancl Z(t,') lbr non-

nrovirtg, 10 watt, CW laser bearns at focal lengths of 25'5' 7 5, and

15.?5 inches. R ancl Z aLc itt lttttt. t,' is in ser:otttls The tratrsverse

beanr tnocle was TEM11*.
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Fig. 3. Best-fit curves of average ablatecl volumes in pMMA for a
l0-watt, nonmoving, CW, TEM1 1* laser beam.

the effects of changing focal lengths, exposure times, and
ablated volumes. It is important to notice that there is a
maximum ablated volume for each exposure time tu, and
that increasing the focal length does not correspond to a
linear increase of the ablated volume.

LCA Algorithm: PreliminarXr Investigation and proposal

Since PMMAT,r9 and compact bone tissue have similar ther-
modynamic characteristics except for their water content, the
proposed equations can be used in a closed-loop computer_
assisted algorithm for orthopedic surgical applications. The
algorithm is named LCA after the two paxameters L and C in
equation 1.

The implementation of this algorithm on a Hp 9000 HP-UX*
workstation would provide the surgeon with an additional
safety tool to reduce the risks of bone injury during laser
irradiation, which often results in inJlammatory response
with a retarded rate of bone healing.a'15'ls This happens
quite frequently during general orthopedic sugery especially
because of incorrect settings of laser beam focal lengths
and,/or exposure times. Removal of bone cement (a pMMA_
based polymer) that is in close contact with healthy native
bone is the most critical operation in terms of potential bone
damage.T

Operation of the LCA algorithm is as follows (see Fig. 4).
The surgeon specifies the required crater diameter 2R and
depth Z and the maximum tolerances A2R and LZ, urd
chooses parameters trk, t", W, v that are likely to produce the
desired ablation. (W is the output power of the laser and v is
the scanning speed of the laser beam.) The computer pro-
gram checks whether 1.1 in FS5 is also included in FS2.5. The
focal sequence FS2.5 is lcrown experimentally and is there-
fore always used as the primary reference.

In parallel, the maximum ablation volum€ Vrnr* is calculated
and stored as described in reference lb, using the specified
values ofR and Z. The values ofV5, L, and C are calculated
using equation 1. If I is not an element of FS2.5, the algo-
rithm interpolates between the two closest focal lengths
belonging to FS2.5.

Equation t has to be corrected for a laser beam that is
moving with respect to the operating table and to take into
consideration the different CO2 laser beam absorption mo-
dalities of PMMA and bone tissue because of their different

Fig. 4. Flowchart of the LCA aleorithm.

water content. A nonmoving laser beam has the sarne cut-
ting capabilities of a moving beam if the former has arr
equivalent exposure time (t"or) given by the equation:2

-  W f i R s
W"o, 2v '
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where R" is the surface radius ofthe beam spot, v is the

scanning speed of the laser beam, W is the output power of

the moving laser, and W"ou is the output power of the non-

moving laser.

In the case of a moving laser beam (v - 0), equation 3 is used

to determine t"or. The crater diameter 2R and depth Z are

then calculated using the equations in Fig. 2' Their values

are compared with the specified values using the tolerances

A2R and AZ supplied by the surgeon as input data' The two

calculated values ale corrected by adjusting the exposure

time t until they are within the specified tolerances' Finally'

the data 2R,Z,Ieand V(t", l,6F$r) are proposed for valida-

tion after an additional safety check between the volume

V*o and V(t", l'p,FS5). This last step is necessa'ry to prevent

the ablation volume from exceeding the value V** calcu-

lated at the beginning, which is a "not-to-exceed" ablation

volume. This can happen if the wron$ l'1 and tu are selected

at the begiruring of the LCA simulation.

In case of a dangerous situation, a warning message appears

and a new focal length is suggested even if it belongs to a

different FS5 in r[. At the end of the simulation' a compre-

hensive final report is printed out for the swgeon's conve-

nience. In parallel, a central data base is automatically

updated for later review. Reports and statistics can be re-

quested either online for direct support in a specific case

Lhat needs more attention or later for teaching and research

activities. Video images stored during the actual operation

can also be recalled, printed, and attached to the report for

the complete documentation of each case.

For t" = 0.4 s and te = 2 s, equation 2 is used instead of

equation 1. This allows a faster determination of the final

total ablated volume for a given l.p.

System Design

By implementing a workstation-based design, each operating

room can be equipped with a CO2 laser mainframe which

can be interfaced to an HP-UX workstation able to perform

several tasks simultaneously in real time (Fig' 5)' For exam-

ple, one task is the general supervision of the laser beam

following the guidelines proposed, analyzed, and validated

through the LCA algorithm. This can be achieved by using a

Iaser control interface for dynamic a{iustment of the laser's

output parameters and by a multiplexer which physically

checks that the laser performs as requested' This is done by

using an optical device connected to the laser output focus-

ing head, which is also responsible for changing the laser's

focal length and the beam mode.

A second important task is network communication among

several similarly equipped operating rooms' Each indepen-

dent node can send LCA simulations, intraoperative data,

video sequences, and other results directly to a main data-

base over a multiple-user local area network' The network

also allows mutual point-to-point communication so that

operating room X can exchange data with operating room Y

for consultation. The database and the HP-UX operating

system are resident on a network server' The LCA applica-

tion software together with the related check routines is

loaded on each operating room's workstation, which is phys-

ically installed in a reserved area close to the operating

room but not in the patient's vicinity.

This method can increase the productivity of the operating

room suite of a hospital' It also offers the possibility of build-

ing a reference center for laser applications in surgery, using

a network concept that can be extended to other institutions'

Fig. 5. System design.
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Conclusions

The LCA method suggests a global but detailed set of guide_
lines to be followed during orthopedic surgery using a contin_
uous wave CO2 laser beam at different operating conditions.
Critical cases can be simulated on pMMA samples first and
then transferred to bone tissue. It has also been shown how
to transfer preliminary test results from pMMA to bone sam_
ples for moving or nonmoving CW laser beams. A computer_
ized system can store and control in real time the operative
procedures and a convenient database can be built for later
consultation. Additional investigation is needed to test the
validity of this method over a large variety of hard tissues
and during the use of pulsed and superpulsecl laser beams.

Acknowledgments

This paper is dedicated to my wife Britta and my son Fabrizio
for their continuous support and understanding.

Beferences
l. G. Fava, R. Marchesini, E Canestri, et al, ,,CO2 Lasers: Beam pat_
terns in Relation to Surgical lrlse,,' Lasers in Sutgety a,ncl Med.ici,ne,
Vol.2, 1983. pp. 331-341.
2. E Canestri, "Proposal of a Computerized Algorithm for Continuous
Wave CO2 Laser On-Line Control during Orthopaedic Surgery phase
I: Theoretical Introduction and First In-Vitro Tytals," IrLternati,ona.L
.Ioutnal oJ Clinical Moni,toting arul Computing, Vol. 9, 19g2, pp.
3l-44.
3. S. Biyikli and M.E Modest, .Energy Requirements for Osteotomy
of Femora and Tibiae with a Moving CW CO2 Laser," Lasers in
Surg ery and M edi,ci,ne, Y ol. 7, 1987, pp. b l2-b 1 9.
4. L. Clalnnan, T Fuller, and H. Beckman, .Healing of Contrnuous
Wave and Rapid Superpulsed Carbon Dioxide Laser_Induced Bone
Defects," ,lout"na| oJ Oral Surgery, Vol. 86, 1g7g, pp. 982_937.
5. S. Biyikli, M.E Modest, and R. Tarr, ,.Measurements of Thermal
Properties for Hun-ran Femora," Jout-nal oJ Biomettical. Materials
Research, Vol.20, 1986, pp. l335-184b.
6. S.J. Nelson, et al, "Ablation of Bone and Methacrylate by a proto_
type MidJnfrared Erbium:YAG Laser," Lasers in Surgery anrl
Medicine, Vol. 8, 1988, pp. 494-500.
7. C. Scholz, et al, "Die Knochenzemententfemung mit dem Laser."
Biomcdizinische Technik, Vol. 36. no. 5, 1991. pp. 120-12g.

8. C. Clauser, "Comparison of Depth anrl profile of Osteotomies
Pedormed by Rapid Superpulsed and Continuous Wave CO2 Laser
Beanrs at High Power Out:put,', ,lournaL of Orat Surgery, yol. 44,
1986, pp. 425-430.

9. R.C. McCord, et al, "CO2 Laser Osteotomy, Technical Aspects,,in
I. Kaplan, editor, l,nser Surgerll: pr.oceeclings of Llte Secon,d Inter_
nat'ionaL Symposi.um on Laser Sut.gery, Dallas, 1g77, Jerusalem
Academic Press, 1978.
10. R.C. Nuss, C.A. Puliafito, et al, ,,Infrarecl 

Laser Bone Ablation,"
La,sers i.n S.urgerg and Medi.c.i.ne, Vol. g, lggg, pp. 3gl_3g1.
Il. A. Charlton, A.,I. Freemont, et al, ,,Erb:yAG 

and Hol:yAG Laser
Ablation of Bone," Zosers irt MecIi.r:al Scicrtrt:, Vol. b, 19g0, pp.
365r173.

12. K. Hishimoto and J. Rockwell, ,,Carbon 
Dioxide Laser Surgery_

Biophysical Studies," Proccedi.rtgs oJ the Fourth Cottgr.ess of t,he
In[e.t'/.ot.ional. Societq.fbr Laset. S,urgery, Tokyo, November 3{, l9gl.
llj. J.T Walsh, T.J. Flotte, and T.Fl, Deutsch, ,,Erb:yAG 

Laser Ablation
of Tissue: Effect of Pulse Duration and Tissue Tlpe on Thermal
Damage," 1-aser.s in Surgery aut Medi,cine, Vol. 9, lgg9, pp. 314_326.
14. J.T Walsh and TR Deutsch, ,,Erb:yAG 

Laser Ablation of Tissue:
Measurement of Ablation Rates," Zasers in Surgery arul Med,ici,ne,
Vol. 9, 1989, pp. 327-337.

15. E Canestri, "A Proposed Clinical Application of a Model of CO2
Laser Radiation-Induced Damage Craters,,, Jout-naL oJ Medicat
Engineering and Technolog.tl,yol. 12, no. 3, lgg8, pp. f l2_1f 7.
16. E Canestri, "Control of CO2 Lasers during Surgery, " Joutnat ctf
Biomedi.cal Engineering, Vol. 9, f987, p. lg5.
17. R.J. Freiberg and A.S. Holsted, ,,properties 

of Low_Order Tfans_
verse Modes in in ArgonJon Lasers," Appliert Opti,cs, Vol. g, no. 2,
1969. pp. 355-362.

18. E. Armon and G. Laufer, ',New 
Techniques for Reducing Thermo_

chemical Damage in the Coruse of Laser Surgery', Lasers in Suryery
andMedicine, Vol. 7, 1987, pp. 162-168.
19. C. Tfibastone and C. Teyssier, "Designing plastic Optics for
Manufacturing," Photonics Spectra, Vol. 25, no. b, 19g1, pp. 120_12g.

HP-uX is based on and is compatibre with uNlX System Laboratories'IJNIX* 0peratrng system.
It also compl ies with X/0pen s* XPG3, p0SlX 1 003. j and SVID2 intertace specifications.
uNlx rs a registered trademark ot UNIX System Laboratories Inc. in the u.s.A and Offrer c0untres.
X/0pen is a trademark of X/Open Company Limited in the UK and other countnes.

72 August 1993 Hewleil.-packard Joumal



The defect management system, or DMS' described in this

article is an online transaction processing system for manag-

ing defects found during software and firmware develop-

ment and test. It was developed to enable HP's Boise Printer

and Network Printer Divisions to manage shared defects in

Ieveraged and concurrent products and to increase data

integrity and reduce overall defect processing time' The

DMS application is based on an off-the-shelf relational data-

base management system, which employs a client-server

architecture running on an HP 9000 workstation. The devel-

opment team employed an evolutionary delivery process to

ensure that the system met user needs and used proprietary

4GL (fourth-generation language) programming tools to

maximize productivity. This paper summarizes the rationale

for building DMS, details its implementation and design, and

evaluates the system and its development process.

Background

Since the introduction of the fust HP LaserJet prhter in 1984'

increasing customer demand for LaserJet products has kept

HP's printer divisions on a steady growth curve for years'

Market demand for new products with increased capability

has continually challenged the R&D and quality assurance

organizations to scale up their actMties, while improving

overall product quality and reliability. Furthermore, compet-

itive pressures for increased frequency of product introduc-

tions with shorter development times have challenged devel-

opment teams to drive out process inefficiencies so they can

develop more complex products in less time.

One of the responsibilities of the software quality organiza'

tion is to provide extensive defect tracking and software

process measurement services which enable R&D manage-

ment to gauge software quality and product schedule accu-

racy. This also entails maintaining all historical defect data

on LaserJet and related products, which provides manage-

ment information about historical product quality and past

and present project schedule trends.

As R&D activities continued to expand, we found that our

ability to support the existing defect tracking system became

limited. Foreseeing an inability to manage defect informa-

tion and software metrics at this scale with existing tools,

we set out to develop a defect tracking system that could

operate under these demands as well as tackle some of the

more difficult defect tracking challenges'

Existing Problems

Many features required for the divisions'defect tracking

process were not supported by the old defect tracking soft-

ware. Over time our process had evolved into a largely

manual system with Iimited electronic assistance' Fig' I

gives an overview of the key elements of our old defect

tracking system.

Three physical elements were required for defect submittal:

a paper submit form, defective hardcopy (if applicable), and

source files (if applicable). Since the existing (pre-DMS)

defect tracking software was unable to translate some of

these elements into an acceptable electronic form, manual

translation and filing processes became necessary' This mix-

ture of human and electronic processes created problems in

the following areas:
o Volume sensitivitY
o Tlacking defects through concurrent projects and code

leverages
o Data and process integrity
o Timeliness.

Volume Sensitivity. Among all the problems with the previous

defect tracking system, volume sensitivity was the most

notable. Because ofthe serial nature ofthe old process and

its requirement for extensive human assistance to move

defects through the system, bottlenecks would occur under

any serious load. Many steps required manual intervention

by engineers and administrative assistants to drive a defect

through its complete cycle. As a result, the labor demands

imposed by the defect tracking system became a tremen-

dous burden as the number of defects submitted by projects

increased.

Goncurrent Proiects and Code Leverages. Nearly all the R&D

projects that tracked defects were code Ieverage efforts

rather than new code development efforts. In addition, many

Ieverages of similar code were occurring simultaneously

among projects at multiple sites' However, no utility or pro-

cess in the defect tracking system dealt directly with the

problem of tracking defects in Ieveraged code' The problem

Online Defect Management via a
Client/S enrer Relational Database
Management SYstem
The abil ity to provide timely access to large vglumes of data, ensure data

and process integrity, and share defect data among related prgjects are

the main features provided in this new defect management system.

by Brian E. Hoffmann, David A. Keefer, and Douglas K' Howell
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was particularly noticeable at the beginning of a leveraged
project when R&D engineers were required to read entire
databases of defects to identify unresolved problems in in-
herited code. In addition, no formal notification mechanism
existed that would notify R&D engineers, for example, that
the code they inherited last week received a new defect
today.

Data and Process Integrity. An unfortunate and costly by-
product of a system without data and process integrity
checks is data comrption and unlcrown data states. Our old
defect tracking system was no exception to this rule. Given
the relatively open flat-file data structures and often unreli_
able e-mail-based transaction schemes of this system, we
often scrambled to recover or reconstmct a lost or broken
defect record-an activity that often consumed all the time
of the defect tracking system administrator.

Timeliness. A final wealcress of the old defect tracking system
was its inability to provide timely access to accurate defect
information and project metrics. Since portions of the pro_
cess were distributed among various people and tools, instan_
taneous information was not always available. Even simple
requests for defect information might require assistance from
the defect tracking administrator or specialized tools. This
serial process and its patchwork of components effectively
inhibited the free flow of defect information to R&D.

DMS Features

Implementation Guidelines
To maintain focus during the implementation of DMS, the
following guidelines were established to assess whether
DMS would achieve its design objectives:

. DMS must seamlessly and automatically encapsulate our
old defect process model which has proven itself in the past.

o DMS must rely on a client-server architecture to deliver its
capabilities via a network to as much of the development
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Fig. l. The original (pre-DMS)
defect tracking system.

communit5r as possible, while centrally maintaining and
ensuring 24-how, seven-day continuous operation.

o Given the rate at which R&D and quality assurance pro-
cesses are adapting to keep pace with market demands,
DMS must be able to adapt and embrace additional process
refinements as they evolve.

DMS Process Encapsulation
On the surface, DMS is an online database application that
offers engineers and managers ftilI electronic access to defect
information. DMS is much more than just a data collection
and reporting tool, it is also an electronic mechanism that
supports the defect tracking process that we have proven
and refined over time.

DMS functionality is divided into six core and six auxiliary
functions (see Fig. 2). The core functions were identified as
the minimal set required for an operational system. Auxiliary
functions were added incrementally in subsequent releases
of the tool. The core functions are Submit, Receive, Resolve,
Modify/Delete, Update, and Verify. The auxiliary functions are
Screen, Screen Resolve, Screen Update, Unreceive, Unresolve, and
Unverify. With the exception of Update, each of these functions
causes a defect to move from one state to another. The
states, which axe represented by rectangles in Fig. 2, are Un-
screened, Rejected Unscreened, Unreceived, 0pen, Unscreened Resolve,
Unverified Resolve, and Verified Resolve. Each state represents the
status of a defect record in the DMS database.

DMS functions axe accessed by the user from the menu
items presented by the initial DMS screen (see Fig. 3). The
Submit, Modify/Delete, and Receive fturctions are accessed
through the Submit menu item, the Resolve and Screen Resolve
functions are accessed through the Resolve menu item, and
the Verify function is accessed through the Verify menu item.
The auxiliary functions are accessed through the Update
menu item. Users navigate DMS forms either through the

Submit Report listings
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control keys shown in Fig. 3 or by selecting the desired item

with a mouse.

Three roles are played by DMS users, and each role has a

different permission level. The roles are user (lowest per-

mission level), screener, and manager (highest permission

level). Users typically perform the Submit, Receive, Resolve, and

Verify functions. Screeners typically perform the Screen and

Screen Resolve functions. The manager permission level is

reserved for individuals who are responsible for adding and

configuring projects in DMS.

Submit Function. This is where defect information is initially

entered into the DMS database, resulting in the defect being

placed in the Unscreened state (rar in Fi$. 2). The user is re-

quired to enter a minimal set of information relating to the

defect. The user also has the opportunity to add optional

information at this time. Submitters have the ability to at-

tach both text and object files to defects. These flIes may be

ofparticular use to engineers attempting to reproduce and

repair defects. Once a defect is submitted, the user can

continue to add additional information via the Modify/Delete

function,bj until the defect is screened.

Screen Function. This function is tlpically performed by a

person associated with the development team who has inti-

mate knowledge ofthe product or test process. The Screen

originator Fig. 2. Functions and states in
DMS. The circles rePresent core
functions, the octagons rePre-
sent auxiliary functions, and the
recl angles rePresent slat es.

function is the point at which the defect information is ex-

amined for completeness and correctness, and the defect

severity is added to the defect record. Ifinsufficient infor-

mation is provided by the submitter then the screener may

reject the defect, placing it in the Reiected Unscreened stater!r'

The act of rejecting a defect causes electronic mail to be sent

to notify the submitter that the defect was not accepted' The

Fig. 3. Initial DMS screetL. DMS functions are accessed fronr this

sct eell.
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Fig. 4. One of four pages of informatrou presented to the user
perlbrming a Screen Sesolve functiou.

submitter then has the option of deleting the defect or modi-
fying and retuming the defect to the Unscreened state via the
Modify/Delete function t' . It is important to note that this is
the only point in the DMS process where a defect can be
removed from the database. Once a defect has been screened
it is assigned an identifying number and made part of the
perrnanent project database upon its entry into the Unreceived
state ia).

Receive Function. A defect is routed to the person who will
most likely be responsible for defect repair via the Receive
function. The name of the responsible engineer is obtained
from a database list of all possible names for a given project.
When a defect is received, the defect is moved into the 0pen
state and an electronic mail notice containing the defect
number and brief details about the defect is sent to the
person named as the responsible engineer " .

Resolve Function. When a defect is repaired, the Resolve func-
tion is used to add flx information to the defect record and
promote the defect to the Unscreened Resolve state r . This
function is usually performed by the engineer who enters
the resolution code, the description ofthe resolution, and
any relevant files. Depending on the resolution code, other
information may be required as well. For example, if the
defect is resolved as a CC (code change) then the user is
required to add the name of at least one module that was
changed.

Screen Resolve Function. This function allows the project
screener to scan the resolved defect to make sure that the
resolution information is as complete and correct as pos-
sible. No additional information is added to the defect rec-
ord by this function. Screen Resolve allows each project
screener to make sure that the resolution information meets
the standaxds set by each project team. Ifthe resolution is
rejected by the screener, the defect is returned to the 0pen
state, and electronic mail is sent to the responsible engineer
stating that the resolution has been rejected s . Ifthe resolu-
tion is accepted by the screener, the defect is promoted to
the Unverified Resolve state and the submitter is sent electronic
mail stating that the defect is ready for verification n .

Fig. 4 shows one of four pages of information presented to
the user performing the Screen Resolve function. The user can
switch between pages with the View menu item. The File
menu item is used to move files between the Hp-UX* file
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system and the defect record. The Update menu item allows
users access to the Update function. The bottom two lines of
the form show that the defect is shared between two proj-
ects. The defect is in an Unscreened Resolve state for project
Training_1 (pr = Unscreened Resolve) and in an Unverif ied Resolve
(r = resolve) state for project Training_2.

Verify Function. The submitter uses the Verify function to deter-
mine if the defect is fixed. If the resolution is acceptable to
the subrnitter, a verification code is added to the defect and
it is promoted to the Verified Resolve state ( i in Fig. 2). If the
subnritter decides that the defect is not repaired then the
project screener is notified. The screener has the capability
to return the defect to the Open state via the Unresolve function.

Undo Functions. Screeners also have the abi l i ty to nlove
defects frorn the Verified Resolve state to the Unverified Resolve
state via the Unverify function and from the Open state to the
Unreceived state via the Unreceive function. When a defect is
moved to a previous state all information that was added by
the previous function is lost. For example, when a defect is
unresolved the information added by the Resolve function is
lost.

Update Function. When a defect is in the Unreceived state and
beyond, changes are made to the defect via the Uodate func-
tion. Changes made to defects by this function are either
applied directly to the defect record or placed in an update
queue based on the following criteria:

r If the person performing the update is a screener or is listed
as a responsible engineer for the project that owns the defect
then the update is applied to the defect record.

o If the person performing the update does not meet the above
criteria then the modified defect record is placed in the up-
date queue where a screener must approve the n-roclifications
before they are applied to the defect database.

There is also a set of configurable rules that may force an
update into the update queue. Ifthe screener rejects the
update, electronic mail is sent to the originator of the update
about the rejection ( : in Fig. 2).

There is an additional process step not shown in Fig. 2. It was
pointed out to the DMS developers that in the early stages of
a project, engineers frequently find and fix a great many
defects in a very short period of time. The engineers found it
very time-consuming to submit a defect and wait for another
individual (perhaps two) to screen and receive a defect so
that it could be resolved. In this case the DMS process was
seen as a deterrent to collecting complete defect history. The
process model was modified in the third release of DMS to
allow the responsible engineer to move a defect from the
Unscreened state to the Unscreened Resolve state via the Resolve
Unscreened function. This function can be pertormed only if
the submitter and resolver are the sane person, and the
resolver is the responsible engineer for the project that
owns the defect.

Users can readily determine the distribution of defects for a
project through the project snapshot screen (see Fig. b).
Accessed from the Reporr menu item shown in Fig. B, the
snapshot shows the number of defects in each DMS state
and the bugweight. The bugweight metric is calculatecl as
the sum of severities squared for all defects in the 0pen and
Unreceived states.
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Fig. 5. Project snapshot screen.

DMS fully encapsulates this six-step process and subjects all

incoming defect information to rigorous process checks'

Users can rely on the lmowledge that defects are in predict-

able states and benefit from the valuable process metrics

that are derived by measuring transitions from state to state'

ClienUServer Architecture

Another DMS characteristic that provides the foundation for

many DMS services is the fact that it is built on a commer-

cially available clienVserver RDBMS (relational database

management system). Among the many benefits of a clienV

server database architecture are distributed processing,

heterogeneous operating environments, and elimination of

many configuration management problems. An additional

database feature that enables DMS to guarantee data and

process integrity is transaction maragement. Since DMS

uses the OLITP (online transaction processing) capabilities

of the underlying database, all operations that modify data

in DMS are nested in real-time transactions. Modification

requests that fail as a result of invalid data or hardware fail-

ure, for example, do not cormpt existing data' Bad transac-

tions are automatically rolled back to lorown previous

states. See "ClienVServer Database Architecture," on page 78'

Defect Shadng. One of DMS's most important implementa-

tion details is the relational structue of a defect record' By

making use oftraditional relational design guidelines, defect

record implementation in DMS enables information for one

project to be shared easily with a record from another proj-

ect. As Fig. 6 indicates, the pre-DMS implementation of a

defect record consisted of project-dependent submit and

resolve information, which could not be easily shared

between projects.

In DMS, relational structuring has been used to separate

submit information from project-specific resolve data' One

submit record can be shared among many different proiects'

with each project having a potentially unique resolution re-

cord. This model is shown in Fig' 7. The major benefits of

this structure are twofold. First, all projects charged with

the same defect automatically share project independent

submit information. Second, the structure provides an auto-

matic communication path for project dependent resolve

information to all the projects that share the defect' Thus,

each project can quickly obtain another project's status

information for a shared defect.

P,oiectAE-@=

P,.iec,BE.@B

Fig. 6. A pre-DMS defect record consisted of project dependent

submit and resolve information tied together in one record structure'

Sharing defect information between projects was difficult'

Flexible Architecture. DMS has been able to derive several

benefits from its relational implementation. Of these bene-

fits, structural extensibility is perhaps the most important'

Given that the system was designed and implemented in an

evolutionary delivery model, a relational architecture
proved to be an ideal complement. Existing structlres cart

be easily reused and new structures can be added without

massive structural rewrites. For example, elaborate user

coffigurability was not supported in early releases' For sub-

sequent releases, however, it was a simple matter to add

user configuration tables to the schema without altering

existing defect record structures.

Connectivity. DMS's clienVserver architecture has also en-

hanced various aspects of connectivity. The physical separa-

tion of data manipulation code (back end) from user interface

code (front end) maximizes modularity, resulting in more

readable, less error-prone code. As a side benefit of the sep-

aration, incremental functionality can be added to the front

or back end of the code while online without affecting either

end. From a maintenance perspective, the clienVserver ar-

chitecture eliminates many traditional configuration man-

agement headaches. Software distribution problems, for

example, are eliminated since client interface code is ex-

ported to users on the network from one central location via

NFS. From a network perspective, a heterogeneous client

environment is fully supportable. Since the server requires

no knowledge of client type, multiple client platforms have

equal access to DMS.

Bobust 0 perati on. Tbansaction management capabilities

round out the list of major DMS features. Given that DMS

was a migration to a multiuser online transaction processing

system, full transaction arbitration became a must' During
(continued on Page 80)

Unlimited Sharing

Fig. ?, The reiational structuring of DMS records allows submit

information to be shared between different projects'
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Client/Server Database Architecture

Database management systems implemented under client/server computing
models have enjoyed increasing popularity in recent years. Advanced networking
capabilities coupled with powerful minicomputer and microcomputer systems
c0nnected t0 networks have favored cltent/server database architectures over
more traditional centralized database management systems. While the specific
benefits of implementati0ns vary, client/server databases typically distinguish
themselves in four general categories.

. Separation of presentati0n services from data manipulation services

. Scalable high performance
o Server-enforced rntegrity and security
o Heterogeneity and distribution auton0my.

Separation of Presentation and Data Manipulation Services
unlike traditi0nal centralized databases, client/server database environments cleanly
separate presentati0n (user interface) services from data manipulation services. A
database client performs all application or user-specific services necessary to
convey information t0 and from a user. The data server focuses all services on the
efficient and secure manrpulatt0n of data conveyed to it from the cljent. Fig. l
i l lustrates the labor division jn tradit i0nal and cl ient/server architectures.

The net result of this separation is an optimum divisjon of labor: data management
and transacti0n functions are managed independently from user interface and pre_
sentati0n functions. The benefits 0f this approach are twofold. First, distribution of
client services to each client CPU enables the servert0 maintain a respectabte
resp0nse time performance advantage over traditional databases. Fig. 2 shows
typrcal response curves for traditional versus client/server databases. Since client/
server databases are less demanding of operating system overhead, they tend t0
perform better under Ioad.

The second major beneiit of the client/server separation is the leverage 0f exjst-
ing CPUs on the network. Client/server architectures stretch an orqanization s

Host Computsr

Fig. 1. Division of processing labof in traditi0nal versus client/server architecrures
(a) Traditional architecture. {b) Client/server architecture.

Fig. 2. Throughput and response time performance in traditional and client/seruer architectures

overall CPU investment by ensuring that overall processing loads are properly
balanced between client and server processino.

Scalable High Performance
A unique performance trait 0f most client/server database architectures is their
ability to enhance server performance much more than traditional database archi-
tectures. As seen in Fig. 2, response time as a function of user load tends t0 scale
more linearly under client/server architectures. This performance advantage is
often rooted in the following design fundamentals:

' use of stored database procedures. which often include control flow extensi0ns t0
the data manipulat ion language

. Use of remote procedure calls (RPCs) for server-to-server communicatron

. Implementation of the server as a single multithreaded process In the operating
syslem.

Stored procedures are the hallmark of client/server databases. Typically, they exist
as specialized database executables. These executables are c0nstructed by c0m_
piling source statements from the same data manipulation statements {e.g., SOL)
used with the server in an interactive fashion. 0nce a procedure is compiled and
stored in the database's data dictionary, an application can issue a run-time call t0
the procedure. The procedure then executes the same data manipurarron or query
that was deflned by the source statements that built the procedure.

Stored procedures offer many major performance benefits. First, network c0mmu_
nications are dramatical ly reduced since one procedure cal l  replaces many individ-
ual data manipulati0n statements. Second. since stored procedures are atrea0y
compiled at run time, performance measurements indicate that thev can orocess
data manipulation statements five t0 ten times faster than a sequence of single
data manipulation statements. Fig. 3 illustrates the execution differences between
stored procedures and traditional database servers.

Third, stored procedures often possess the ability to control logic flow in database
operations. C0ntrol constructs such as branching and looping c0mbtned with the
ability to declare local variables and create temporary database objects, such as
tables, enable stored procedures to perform complex data manipulation sequences.
Stored procedures can also be nested t0 invoke a series of database events wttn a
single function cal l .

AnOther feature high-performance servers possess is the implementation 0f the
server as a stngle operating system process while accommodating mult iple simul
taneous clrent processes. Fig. 4 illustrates the architectural differences between
single-threaded and mult i threaded server implementations.

A muhithreaded server design frees the database from nearly all 0f the operating
system overhead that Iimits traditi0nal database architectures. For example, the
amount 0f memory required for a database user connecti0n in a multjthreaded
implementation is around 50K bytes. In contrast, tradjt ional single{hreaded serv
ers can require up to 2M bytes of memory per user connection, operating system

{h}
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Fig. 3. Execution profiles in traditional and client/server architectures.

overhead included. Hence, multithreaded server implementati0ns make m0re

memory available for disk caching and other applications.

Server-Enforced Integrity and Security

The client/server approach also has many advantages in preserving the integrity

of information in a database. tJnlike traditional approaches to maintaining data

and process integrity, business rules and data transaction checks in a client/server

database envir0nment are exclusively enforced by the server. 0pp0rtunities for

data conuption resulting from maintenance efforts are significantly reduced. since

business rules and transactions only have t0 be modified in the server instead of

in every client application using them.

A specific mechanism often employed by a client/server database for enforcing

integrity constraints is known as the trigger. A trigger is a special type 0f stored

orocedure that is attached to a table and automatically called, 0r triggered. by an

attempt t0 insert, delete, 0r update data in a table. Since triggers reside in the

server with the database, they are particularly effective as integrity mechanisms

since thev adopt a data- and business-rule-driven approach to integrity, as opposed

to an applicati0n-controlled integrity approach. Trigger code is written 0nly 0nce,

instead of many times in multiple client applications. An application cannot avold

firing a trigger when it attempts t0 modify data in a table.

Another c0mmon use of triggers is for the maintenance of internal database con-

sistency, or referential integrity. For example, duplicate data rows in related tables

can be prevented by a uniqueness constraint defined in an insert trigger 0f either

or both tables t0 guarantee the 0ne-t0-0ne unique relationship that exists be-

tween two tables. Since client applications cannot be relied on to maintain the

consistency of a database, triggers prove to be the ideal mechanism for this task.

Some integrity mechanisms seen in client/server database environments impose

data constraints on single data fields directly. These mechanisms include rules,

defaults, and user-defined data types. A rule is a programmable mechanism tor
performing conditional data checks such as data range checks or conditional

comparisons as well as structural checks on data syntax. Defaults simply provide

a user-specified value on inserts in the event that one is not provided with the

insert statement. User-defined data types prOvide integrity 0n values that are at

higher levels 0f abstracti0n than numerical types alone provide. Some higher-level

user-defined data types might include money, color, 0r postal code

Fig.4. Server designs. (a) Traditional, single-threaded design with one process per user {b)
Client/server, multithreaded design with one process for multiple users

Heterogeneity and Distribution Autonomy

Client/server databases deliver an open architecture that facilitates p0rtability t0

and management of the multivend0r components within a networked c0mputing

environment. Hardware independence is much more easily achieved in client/

server situations since the architecture can cleanly divide client hardware from

server hardware. Furthermore, m0st c0mmercial vendors of client/server database

environments offer mechanisms for easily linking different operating platforms

together. Thus, existing and new hardware resources have a much higher compati-

bility likelihood and can therefore be used more efficiently Additionally, hardware

budgets can be spread further and take full advantage 0f downsizing to w0rk-

stations and supermicrocomputer systems.

In addition to supporting hardware independence in networked database environ-

ments. client/server interfaces also permit open communication in heterogeneous

software environments. The same formalized software interfaces that connect a

client to a server can be leveraged by other applications or software environ-

ments. Foreign data sources and applications can be seamlessly integrated Into a

client/server daiabase envir0nment.

Alth0ugh the client/server approach breaks down the traditional barriers that
prevent data distributi0n, it simultaneously creates potential for excesstve com-
plexitv in distributed database processing. As the risk of data corruptl0n lncreases

with the complexitv of distribution schemes. the old "centralize versus decentralize"

debate becomes justifiably fueled. F0rtunately, implementati0n under a client/

server approach does not require an all or nothing approach to distribution 0f the

database system. Developers are free to choose the level to which the database

system is t0 be distributed. thus retaining a high degree of autonomy on the lssue

of distribution. Furthermore, the client/server approach allows devel0pers t0

evolve the system incrementally toward more or less distribution as required by

the applicati0n. In traditionat database architectures, the choice is fixed, with

evolut ion t0 m0re distr ibuted and heterogeneous environments made virtual ly

imoossible.
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hear,y operation, the server reliably conducts more than b0
simultaneous client sessions. A beneficial side effect of
transaction management for DMS is that the integrity of all
process steps can be maintained. Any process change that
fails will simply be rolled back. Tbansaction management
also provides the capability to assign user permissions to
process transactions. Wth transaction mles and user roles
fully defined in DMS, all process rules can be enforced
through user permissions.

Physical Overview
DMS is implemented in two distinct components: a data
server and a user interface client (see Fig. 8). In addition,
mail clients and report clients exist that can also interact
with the server. The data server is a commercially available
relational database that contains the procedures, triggers,
rules, and keys that control data manipulation. These ele-
ments are stored in the server as part of the DMS build
process.

Stored Procedures. Stored procedures are database routines
that are constructed from individual data manipulation state-
ments. They reside in the data server as database executable
routines. Similar to ftrnction catls in programming languages,
stored procedures can accept input arguments and return arr
exit status. However, unlike traditional firnctions, stored pro-
cedures can return a variable-length stream of data, which
is organized into rows and columns. Columns typicaily rep-
resent data fields, which are placeholders for information in
a database table. Rows usually represent the data records
that are stored in a database table. Results are typically re-
turned in ASCII tab-delimited format for presentation or
postprocessing.

A stored procedure may contain one or more batches of SeL
(Structured Query Language) statements. The SeL state-
ments make use of input axguments (if any), perform some
data manipulation operation, and return a strearn of for-
matted data (if any) to the client application that made the
call. In addition, stored procedures can make use of control
flow constructs such as if...else, while, and so on to perform
complex data manipulation tasks. Stored procedures carr
also call other stored procedures performing a series of data
manipulation operations with a single fuhction call. In DMS
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Fig. 8. Software components of
the client/server architecture
used in DMS.

stored procedures are used extensively. For example, the
entire DMS process shown in Fig. 2 is supported as a series
of stored procedures.

DMS clients are able to call stored procedures and receive
data returned from them via a bidirectional communications
protocol. In DMS, this protocol is fully supported by the
database manufacturer in the form of a series of libraries
that link the user interface forms code with the database
manipulation language (e.g., SQL).

Triggers. Operations performed by stored procedures that
modify data may cause the execution of a server trigger. A
trigger is a special type of stored procedure installed on the
server to ensure the relational integrity of the data in the
DMS database. Any operation on a table or column that modi-
fies data will cause a trigger to be executed. Tfiggers are used
in DMS to enswe that all operations that modify data are
carried out consistently throughout the database. For exam-
ple, a trigger will prevent a user from being deleted from the
DMS database if that user is referenced in an open defect.

Rules. Rules are another database object used in the DMS
process to enforce integrity constraints that go beyond
those implied by a particular data type. Rules are applied to
individual columns of tables to ensure that the values ap-
plied by insert or update operations conform to a particular
set or range ofpossible values. For example, the table col-
umn that denotes the state of a defect is a character data
type of up to two characters. The rule applied to this column
ensures that a prospective insert or update will not succeed
unless the new value corresponds to one of the seven states
shown in Fig. 2. The following example illustrates this rule:

create rule status_rule
as @status in (" n ", " nr", " t) ", " o ", " pr ", " r ", " v " l

The states "n" and "nr" refer to the Unscreened and Rejected
Unscreened states respectively. The remaining states repre-
sent ( in order) Unreceived, Open, Unscreened Resolve, Unverif ied
Besolve, and Verif ied Resolve.

Tables. The DMS database is constructed of a number of
tables. The tables serve to gather data items into logically
related groups. Separate tables exist to contain information
relating to the submit and resolve portions of defects. Other
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tables exist to maintain information about fixed modules,

attached files, and auxiliary information. There is another

group of tables that maintain information about projects,

users, and DMS server sites. These tables are related to one

another via server keys which serve to map the relationships

between tables in the database and help ensure relational

integriff (see Fig. 9). When a stored procedure that returns

rows from more than one table is executed, keys are used to

make sure that the information is joined properly and that

the data returned does not contain any unwanted rows'

User Interface Client. The user interface client is constructed

from a commercially available 4GL forms language and a

custom C language run-time executive. The forms language

development environment allows the rapid construction and

evaluation of groups of atomic user interface objects like

input fields, pull-down menus' and form decoration. Stored

procedure calls are triggered by these atomic objects caus-

ing the server to generate rows of result data. The forms

language is designed to manage retumed data rows effi-

ciently with a minimal amount of client coding. The C lan-

guage run-time executive provides the interface client with

access to HP-UX* commands and custom C functions. Mail

generated by DMS originates from the client interface

through the mailx{l) command. Files that are attached to de-

fects are loaded into the server via a call to a C function by

the interface client.

The user interface client can be compiled to execute on a

number of hardware platforms. In addition to HP 9000

Series workstations, users routinely execute the tool from

networked Macintosh computers rururing Mac-X and PC-

compatible computers running X server software or W100

terminal emulation. The latter is particularly convenient for

users who wish to mn the tool from home via modem. Fig. l0

shows the DMS interface as seen from a W100 terminal emu-

Iator. The example in Fig. 10 shows the lookup choices given

to the user for the "how found" field of the submit function.

The main difference between this and the Xl1 presentation

is that the user must navigate the forms via control keys

instead of a mouse.

Utility Clients. Other types of clients, firpically report clients,

can be created using C language libraries purchased from the

database manufacturer. Programs generated using these

Iibraries differ from other types of host language interfaces

Fig. 9. A portion of the relational

table structure hierarchy in DMS.

that rely on embedded SQL. The libraries do not require a

host language precompiler to process the source code into

some intermediate form. These libraries have been used to

generate custom reporting tools which can be executed ftom

any suitably configured workstation as illustrated below:

$ subnum -f i le parms -proiect SUNFLOWER -sort submifter I

extract I csv-report> report-file

The client subnum generates the key values for every defect

belonging to project SUNFL0WER which meets the criteria

contained in file parms ordered by the name of the submitter.

These key values are piped to the client extract which pulls

information about each defect from the database. This infor-

mation is then piped to a text processing script and deposited

in a file. Using this scheme, data can be extracted from the

DMS database and readily formatted for spreadsheet appli

cations as well as plain ASCII text reports. Additionally, there

are a number of third-parby software vendors that provide

products that are designed to interact with DMS provided

that the PC has network access to the data seryer.

Execution Environments. DMS data servers are typically set up

on dedicated hosts. The server at our division server is cur-

rently inStalled on an HP 9000 Model 710 computer config-

ured to connect with up to 200 simultaneous clients (see

Fig. 10. DMS interface as seen from a W100 terminal emrllator
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ClienVServer Gommunication (Using Tabular Rate Stream protocol)

Fig. 1l). Client code may reside on arry suitably configured
workstation. For convenience and maintainability we have
placed the user interface client cocle on a single Hp 9000
Model 380 server which distributes the code to other client
hosts via NFS.

Beporting and Searching. Reports can be generated from DMS
via the Report menu item from the top-level form shown in
Fig. 3. A variety of canned reports are available as an ad-hoc
query mechanism. Fig. 12 shows how a user might generate
a report ofall open defects for a particulax engineer. When
initiated, the interface prompts the user for the name of a
responsible engineer from a list ofresponsible engineers
who have open defects for a given project. Users can readily
generate reports of open defects ordered by submit number,
submit date, severity, and others. Fig. 13 shows a summary
list of open defects ordered by submit number. These reports
can be printed or saved to a file in a number of formats.

The ad hoc query mechanism allows customized summary
reports to be generated based on any combination of selec-
tion criteria. This utility can be used to produce, for example,
a list of resolved defects for a given project with a particular
submit version, resolution code, and fix time greater than
eight hours. These customized reports are generated by the
Search Editor selection shown in Fig. 12.

Fig. ll. The hardware compo-
nents of the DMS client/server
architecture.

We use PC-based and HP-UX-based spreadsheet packages to
produce custom graphic reports for project management.
These reports are generated and distributed on a weekly
basis. The reports can also be generated on a demand basis
by the individual project tearns. Figs. 14 to 18 show samples
of some of these reports.

Current Status
DMS is currently in its fourth release after two years of de-
velopment. The latest release, version 2.0, contains all ofthe
original target functionality and a significant number of user-
requested enhancements. This latest release contains features
that allow online project configuration, user configuration,
and defect modification. These features, along with other
new features, reduced the amount of system administration
time to expected levels. Enhancements in version 2.0 include
changes to make similar operations exhibit more consistent
behavior throughout the tool and changes to the defect man-
agement process to satisff the demonstrated needs ofproj-
ect teams. Finally, the enhancements provided in version 2.0
of DMS that have evolved over several releases reflect the
maturity of the product and the relative stability of the
feature set.

Currently DMS is in use at six HP divisions on four sites.
More than seven hundred users in R&D, eA, and technical

Fig. 12. A screen for generating a list of clefects belonging to a
particular engineer.
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support have logged over 7500 defects against 25 major

projects in 18 months of use.

Lessons Learned

As anticipated in early design sessions, choosing an interface

toolset with incomplete graphical user interface capabilities

proved to be a significant hurdle for many users. In its cur-

rent form, DMS employs a character-based windowing

scheme that runs in both Xll and ASCII keyboard environ-

ments. While this interface style maximizes connectiviry,

allowing virtually anyone with LAN access to use DMS, it

has proven to be a tough sell to R&D users who expect tools

to exhibit an OSF/lVIotif look and feel. As a result of the deci-

sion to trade off connectivity for Xl1 rurd OSF/Motif support,

more non-Xl1 users have access to DMS at the expense of

Xl1 users who are inconvenienced by a more primitive

interface.

While an evolutionary delivery can be used to deliver just-in-

time functionality to users, one cannot underestimate the

importance of user involvement in making design decisions

and prioritizing implementation tasks. The users group and

steering committee proved to be successful tools in guiding

the evolution of DMS. The users group is an open fomm that

> - '
> o

o o
O F

o o

Fig. 15. This report tracks open defect counts against estilllales of
projected opcn defccts neccssary to meet a scheclulecl completiott

deaclline.

allows communication between users and developers. The

steering committee consists of a group of expert users who

ensure that the tool evolves in a consistent direction.

Conclusion

DMS has achieved its objective as an "industrial-strength"

defect management solution. Since its introduction, it has

been used to manage defect information for many flagship

products over many divisions. It has proven itself a^s a

24-hour-a-day workhorse, serving as many as 40 to 50 simul-

taneous users during normal business hours. In fact, the

real-time reliance on DMS has necessitated scheduled main-

tenance during late night and weekend hours. DMS enabled

us to extend its contribution into the R&D community by

providing the services of a self-contained software process

tool with minimum administration. As a result, DMS has

increased the scale at which we can provide defect tracking

services without incurring significant personnel increa^ses'
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Another major success for DMS is the degree to which re-
lated projects can now share defect information. Based on
the immediate acceptance and use of the defect-sharing ca-
pabilities of DMS, users now actively treat defect informa-
tion as sharable, and are conscientiously communicating
with other projects via this mechanism. For multisite opera-
tion, DMS successfully demonstrated the ability to cross-
submit and cross-track over multiple sites transparently. By
making use of passive server-to-server communication
mechanisms, DMS servers at different sites can easilv be
configured to communicate defect information.

An area where DMS has greatly assisted R&D management is
in metrics analysis. Using SQL, raw defect data is much more
readily analyzed and converted into a digestible form. The
rate at which more extensive ad hoc analyses can be deliv-
ered has greatly increased. In addition, protecting process
and data integrity has enhanced the accuracy ancl reliability
of all queries, ad hoc or standard.

Timeliness has been another major success of DMS. As can
be seen in Fig. 19, DMS has succeeded in shortening much
of the defect life cycle time from arr average of days to hours.
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Fig. 19. The difference lx'tween the clef'ect lifc cyr:les belbre ancl
after DMS. This shows the elapscd time betweell clefeci fincl clatc
and engineer assign clate.

In addition to the direct benefits DMS has provided, we have
observed some interesting cultural shilts in the R&D and test
communities in the printer divisions at our site. Project team
members have come to place great reliance in the ability to
get instantaneous defect information. The rigorous process
imposed by DMS ensures that alt defects contain the mini-
mally required set of information and that all of the informa-
tion has been validated against centrally maintained lookup
tables. Users have come to appreciate the ease with which
defect information can be located and manipulated 24 hours
a day, seven days a week.

DMS has also empowered users to manage defects within a
proven process model. Given that the number of projects
and the defects they generate will continue to increase, it is
clear that the number of individuals needed to move a de-
fect through the process needed to be minimized. DMS has
been successful in that it has encapsulated a defect manage-
ment process known to work for the laser printer firmware
development process and has decreased the number of indi-
viduals needed to manage defect information. DMS allows
project teams to manage all aspects ofthe defect process
without the need for the intervention of defect tracking
experls or other outside agencies.

hr an unanticipated use, DMS has allowed us to share defects
with third-party software vendors and still maintain security
of intemal defect information through the passive server data
exchange mechanism. We have successfully used this mecha-
nism to import and track defects that originated from a pub-
lic DMS database server that was accessible to third-party
engineers. This capability has generated much interest from
project teams that use DMS and have extensive interaction
with third-party software vendors.
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In many cases there is a long delay between starting to work

in the C++ language and realizing the potential productivity

gains of the object-oriented paradigm, including code reuse'

Before this delay can be shortened or eliminated entirely,

practical issues relating to the multiparadigm nature of C++

and its C ancestry must be understood.

The ob.iect-oriented benefits of data abstraction and inheri-

tance coupled with type checking give C++ a natural advan-

tage when attempting to build both system and application

software. Additional productivity gains can be obtained by

reusing a class library if the following considerations can

be met:
. Programming mechanisms contained within the class library

must be understood by the programmer before they can be

expanded and reused correctlY.
o When selecting a C++ library class or class template, the

size, performance, and quality characteristics of each class

or class template component must be apparent to the

programmer.
. Appropriate class or class template definitions must first

be properly located by the programmer so they can be in-

corporated into the program currently under development'

o The time taken by the programmer to learn how to use the

library correctly must be much less than the time necessary

for the programmer to create new code. Otherwise, the pro-

grammer might attempt to rewrite the C++ library, inhibiting

the productivitY gain.

This paper describes our experiences with developing new

C++ software and modifying existing C++ libraries. It also

looks at possible uses of templates and exception handling

clefined in the new emerging ANSI C++ standard X3J16.

Mixing Programming Paradigms

The following discussion describes some standard C++

programming paradigms and their associated problems.

Concrete Data Types. Concrete data tlpes are the representa-

tion of new user-defined data types. These user-defined data

types supplement the C++ built-in data types such as inte-

gers and characters to provide new atomic building blodks

for a C++ program. All the operations (i.e., member func-

tions) essential for the support of a user-defined data type

are provided in the concrete class definition. For example,

types such as contplex, date, and character strings could all

be concrete data types which (by definition) could be used

as building blocks to create objects in the user's application'

The following code shows portions of a concrete class

called date, which is responsible for constructing the basic

data structure for the object date.

typedef boolean int;
#define TRUE 1
#define FALSE 0

class date {
o  ub l i c :

date ( int month, int day, int year); / /Constructor
-d ate( ); //D estructor

boolean set-date(int month, int day, int year);

/ /  Add i t iona l  member  func t ions  cou ld  go  here . . .

pflvate:
Int year;
int numerical-date;

/ /  Add i t iona l  da ta  members  cou ld  go  here . . .

);

Designers of concrete data types must ensure that users of

this class will not want to add functionality to the class

through derivation. Otherwise, the class must be designed to

handle incremental additions in advance. Failing to do so

could cause an ill-<tefined set of functions (for example, a

missing assignment or copy constructorr) which in turn

would cause a defect to be uncovered by unsuspecting users

of the concrete data tYPe.

Abstract Data Types. Abstract data types represent the inter-

face to more than one implementation of a common' usually

complicated concept. Because an abstract data$pe is abase

class to more than one derived class, it must contain at least

one pure virtual function. Objects of this type can only be

created through derivation in which the pure virtual function

implementation is filled in by the derived classes'

The following is an example of an abstract base class:

class polygon {
oub l i c :

/ /  constructor, destructor and other member functions

/ /  cou ld  go  here . . .
virtual void rotate { int i l=0; l la pure virtual function

/ /  o ther func t ions  go  here . . .

\;

Realizing Productivity Gains with C++

Although c++ contains many features for supporting highly productive

software development, s0me characteristics of this object-oriented
programming language tend to s low the real izat ion 0f  these
productivity gains.

by fimothy C. O'Konski
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Glossary

Although the terminology associated with 0bJect-0riented programming and C++
nas become reasonably standardized, some object-oriented terms may be sl ightly
dif ferent depending on the implementation. Therefore, brief definit ions of some of
the terminology used rn this paper are given below For more information on these
terms see the references in the accompanying art icie.

Base Class. To reuse the member functions and member data structures 0f an
exist ing class, C++ provrdes a technique cal led class derivation in wnrcn a new
class can derive the functions and data representati0n from an old class. The old
class is referred to as a base class since i t  is a foundation (or base) for other
classes, and the new class is cal led a derived class. Equivalent terminology refers
to the base class as the superclass and the derived class as the suocrass

Catch Block.One (or more) catch slatements fol low a try block and provide
excepti0n-handiing code t0 be executed when one (or more) exceptions are
thrown. Caught exceptions can be rethrown via another throw statement within
the catch block.

Class. A class is a user defined type that specif ies the type and structure 0f the
jnformation needed to create an obiect (or instance) of the class.

Conslructors. A constructor creates an object, performing init ial izatt0n 0n bOtn
stack-based and free-storage al located objects. Constructors can be overloaded,
but they cann0t be virtual 0r stat ic. C++ c0nstructOrs cannot specify a rerurn rype,
n01 even v0t0.

Derived Class. A class that is derived from one (or more) base classes.

Destructors. A destructor effectively turns an object back into raw memory. A
destructor takes n0 arguments, and no return type can be specified (not even
void). However, destructors can be virtual.

Exception Handling. Exception handling, which is a feature definerl  in the ANSI
X3J16 Draft and implemented in HPs 3.0 C++ compiler, provides language suppon
for synchronous event handling. This feature is n0t the same as exist ing asynchro_
nous mechanisms such as signals which are supported by the underlying environ,
ment. The C++ exception handling mechanism is supp0rted by the rhrow sratement,
trv blocks, and catch blocks.

Member Functions. Member functions are associated with a specif ic object of a
class. That is, they operate 0n the data members of an object. Member functions
are always declared within a class declarat ion. Member functions are sometimes
referred to as methods.

Mult iple Inheritance. A derived class can be derived direct lyfrom 0ne 0r more
base classes. Any member function ambiguit ies are resolved at compile t ime.

0biect. 0blects are created from a part icular class definit ion and manv obiects
can be ass0crated with a part icuiar class. The 0bjects associated with a class are
sometlmes cal led instances of the class Each object is an independent object
with i ts Own data and state. However, an oblect has the same data structure (but
each object has i ts own copy of the data) and shares the same member functions
as al l  Other objects of the same class and exhibits similar behavior For example,
al l  the 0bjects of a class that draws circles wil l  draw circles when requested to do
so, but because of differences in the data in each oblects data structures, the
circles may be drawn in dif ferent sizes, colors, and locations depending on the
state 0f the data members f0r that part icular 0bject.

Template. A class template provides a mechanism for indicating those types that
need to change with each class instance. The generic alg0ri thm associated with
the class remains invariant. Later in the class instantiat i0n, these tvpes are bound
to bui l t  in or user-defrned tvoes.

Throw Statement. A throw statement is part 0f the C++ exception handling mech
anism. A throw statement transfers control from the point of the program anomaly
to an exception handler. The exception handler catches the exception. A throw
statement takes place from within a try block, or from a function in the try block.

Try Block. A try block defines a section of code in which an exception may be
thrown A try biock is always fol lowed one 0r more catch statements. Exceptions
may also be thrown by functions cal led within the try block.

Virtual Functions. A virtual function enables the programmer t0 declare member
functions in a base class that can be redefined by each derived class. Virtual
functions provide dynamic ( i .e.,  run{ime) binding depending on the type of obiect.

Other classes, such as square, triangle, and trapezoid, can be
derived from polygon, and the rotate function can be filled
in and defined in any ofthese derived classes. Note that
polygon objects cannot be constructed. The C++ compiler
will prevent this from happening because there is at lea^st
one pure viftual member function not yet defined.

Abstract data types sometimes suffer from too many func-
tions being declared virtual. This adds both size and some
slight overhead to the progran's speed of execution. Inlining
will usually compensate for the speed overhead incurred by
a virtual function, but will add even more to the size of the
program or library object file.

Node Classes. Node classes are viewed as a foundation
class component upon which derived classes can be built.
Designed to be part ofa hierarchy, a node class relies on
services from other base classes and provides some unique
services itself. A node class defines any virtual functrons
necessary to change the object's behavior or fill in any pure
virtual function definitions still left undefined in the derivecl
class. Additional functions are also a<lded by a nocle class to
widen the behavior ofan object. Node classes, by theirvery
nature, will not suffer the fate of misconstrued concrete
data types described above, but mav suffer from some
progranmdng errors.

Common problems in declaring node classes stem from the
fact that they are designed to be sources of object deriva-
tion. Because ofthis, the presence ofany virtual functions
(in either the base or any derived classes of the node class)
will require the presence of a virtual destmctor to ensure
proper class cleanup. Because one cannot determine ifand
when a virtual function might be added by a class deriva-
tion, it is better to be safe and declare the destructor virtual
in the base class. This is because the "virtualness" ofthe
destructor cannot be added in any derived class. It must be
paft of the base class destructor declaration.

An additional problem common to a node class is improper
verification ofprotected data ntenbers. Because a derived
class can modify or change protected data members, they
could be invalidated by any derived class. Adding assert
statements to a special "debug" version of the node class
that validates the protected data can detect this type of
programming error.

Interface Classes. Interface classes are the most humble but
inportant and overlooked of all classes. The purest form of
an interface class doesn't cause any code to be generated.
Clonsider the following unsafe class called List, which is
wrapped by the class template Safelist:
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template<class T>
class Safel ist :  pr ivate List<void*> {
p  ub l i c :

void insert(T* p) { List<void*>:: inseft(p); }
void append(T* p) { List<void*>::append(n); }
T* get() { return (T") List<void*>::getO; }

);

Here, a class template called Safelist is used to convert an

unsafe generic Iist of void* pointers into a more useful family

of type-safe list classes.2 Tlpe-safe means that the compiler

checks for correct pointer tlpes instead of allowing any

pointer (e.g., void*) to be used within a list template. The

very nature of a void" pointer is that it may contain a pointer

to any object. By adding the SafeList template, we are ensur-

ing that a List template can only contain pointers to classes

that we have defined for use with a List template.

Interface classes are used to adjust an interface, provide

robustness with a greater degree oftype safety, or prevent

member function names from two different class hierarchies

from clashing.

Handle Glasses. Handle classes provide an effective separation

between an object interface and its implementation. Handle

classes provide a level of indirection via pointers. Additional

beneflts include an interface to memory management and

the ability to rebind iterators for a class representation. An

iterator is a function that returns the next element in a list,

aruay, string, or any collection of items each time it is called.

A handle class is a good candidate for a class template:

tem0late <class T> class handle-class {
T* representation;

pu  b l i c :
T" operator->0 { return representation;}

t ,

This code fragment shows how a handle class is used to

manipulate pointers to objects of type T, instead of actual

user-defined class representations of objects of type T' A

problem with handle classes is that they require cooperation

between the class being handled and the handle class itself.

C Roots

The fact that C++ is based on the C programming language

is evident throughout the language. C is retained as almost a

subset of C++ and so is the emphasis on C facilities that are

lowlevel enough to deal with the most demanding system

programming tasks.

Once a class definition has been agreed upon by a program-

ming team, the programmers have the abiliry to proceed with

implementation by using member function code stubs when-

ever necessary. This practice of filling in stubs with real func-

tion code when necessary in conjunction with C++'s static

type checking enables a forrn of rapid prototlping via incre-

mental developnent.ll C++ allows iterative design and im-

plementation to proceed in parallel, facilitating a more rigor-

ous design methodology than conventional C programming.4

Because of the C roots of C++, most or all of the lowlevel

programming tasks that are within the range of C are still

within the scope of C++. However, some of the problems that

have plagued C programmers also effect C++ programmers.

The problems encountered in this regard include: uninitial-

ized pointers, data narrowing, memory leaks, and conflicting

#defines, typedefs, and enums.

Uninitialized Pointers. An uninitialized pointer might contain

a garbage address, and if used in its uninitialized state may

cause the program to abort.

int *pint;

/ /  other code (*pint is not ini t ial ized to any address)

*pint = 9; / /  may result in a "Bus erro(coredump)"

Data Narrowing. on a system where sizeof(short) is two, the

code:

unsigned short s = 65535;
s i g n e d i n t i = s ;

will silently change the value of s to be -l when i is printed.

This is because in the unsigned version, the high bit is used to

increase the value of the unsigned short, while in the signed

(i.e., int i) version, the sign bit is used to signify a negative

number. When the unsigned value s is assigned to the signed

int value i, the number changes from a large tursigyred value to

a small negative value because its high-order bit is interpreted

in a different manner.

Memory Leaks. When a location that contains a pointer to

memory is deallocated, a "memory leak" occurs (iust as in

C). This means that the location that contained the pointer

to memory allocated out of free storage is no longer valid.

Thus, the allocated memory cannot be accessed for the

duration of the program. For example, in the sequence:

{
char  ' s  -  new char [10 ] ,
/ /  some code here. .  .

]
/ /  the  var iab le  s  i s  no  longer  access ib le

the pointer s is out of scope and a memory Ieak will occur

immediately after this code segment if a delete s operation is

not performed before the end of this code fragment.

#defines, typedefs. and enums. Problems with these declarations

occur on a per-program basis when declared at file scoping'

For example,

ll header Iile #1:

typedef int boolean;

<eof>

and then:

ll header flle #2'.

typedef unsigned boolean;

<eof>

will cause the linker to issue an etror and abort because of

conflicting typedef declarations in two different source flles'

Tlpical Problems with Libraries

The ANSI C++ Committee X3Jl6 and a parallel ISO (Intema-

tional Star-rdards Organization) committee are currently

standardizing the C++ language' Over the past six years the

C++ language has continued to evolve through five major
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releases. This moving target has resulted in libraries and
programs that typically have upgrades that accommodate
the new language features without taking full advantage of
them.5 This means that the prograrnmer must make dec!
sions regarding which feature is the correct one to use with
each new release of a class library.

Requiring C++ library users to be conversant with both the
previous and current C++ versions is a hardship on the C++
progranuner. As a result some prograruners have completely
avoided new versions of C++ and stayed with the C++ release
upon which their product is based. This problem will sub-
side significantly when the X&I16 committee work becomes
solidified into a dra.ft standard.

The traditional object-oriented approach of using class deri-
vation (i.e., inheritance) to reuse existing functionality is not
necessarily the best way to make use of C++ classes to pro-
vide a has-a relationship as opposed to the traditional inher-
itance use to provide an is-a relationship. Is-a relationships
are provided for by C++ via inheritance, which is commonly
known as a class derivation. For example, if class B is
derived from class A, B has all the characteristics ofA plus
some of its own, and we can safely say that B is-a kind of A.
Has-a relationships are supported by composition rather
than by inheritance. Composition is implemented by making
one class a member of another class.6 For example, we have
a has-a relationship if B is contained in A.

It is still not clear whether to use multiple inheritance to
combine the features of two different class libraries (i.e..
both via is-a relationships) into a new class. One school of
thought argues that multiple inheritance gives the class de-
signer much more flexibility than single-inheritance class
relationships.s'7'8

Classes that incorporate the new exception handling mecha-
nism (described below) and also reside in multiple libraries
do not yet exist on the marke@lace. Therefore, conclusive
evidence regarding the utility of multiple inheritance as a
language feature to be used when combining classes from
multiple libraries cannot be constructed until such C++
libraries exist and are successfully reused.

Templates
Templates provide a type-safe way of creating what is essen-
tially a macrolike textual substitution mechanism and marrip-
ulating different types in a generic fashion. Templates provide
a way to define those types that need to change with each
class instance. Templates are created by parameterizing
types in a class definition. These parameters act as place-
holders untilthey are bound to actual types such as int,
double, short, and char. For example, in the following code
fragment, which is a template for an array class, Alphanum is
the parameterized type.

const int arraysize = l6;
template <class Alphanum>
class array {
ou  b l i c :

array{int sz=arraysize)

{size=sz; indx=new Alphanum [size]; ]
vir tual -arrayfl  {delete indx; }

orivate:
int size:
Alphanum *indx;

];

When this template is used, objects of the array class might
look like:

main  { }
t

array <inb intx l2l; ll integer objects. . .
array <double> doublex(2ll: ll double objects...
array <char> charx(2t,; ll character obiects...

)

This shows that the actual type is substituted for the generic
Alphanum defined in the template.

Using template classes creates a need for specific configura-
tion management and tool support.G Additionally, template
syntax is complicated and makes the code more difficult for
others to understand. Tool support is needed to help cover
the template syntax issues and for manipulating the interac-
tions between templates, classes, and exceptions.

Exceptions
An exception is an event that occurs during program execu-
tion that the program is typically not prepared to handle. This
event usually results in the program transferring control to
another part of the program (exception handler) that can
handle the event. Exception handling is necessary for robust,
reusable libraries. Since exceptions may cause resources to
be released in an unexpected manner, acquisition ofre-
sources and appropriate cleanup is a new requirement on
class libraries. The typical mechanism of acquisition and re-
lease of files can easily be handled by using object construc-
tors and destructors as shown in the following example.

class Fi lePtr {
FILE* p; l l  declare pointerto a f i le.. .

ou bl ic:
Fi lePtr(const char* n, const char* a) / /class constructor
{ p = fopen{n, a); }

Fi lePtr{FlLE" pp) { p = pp; }
-Fi lePtr0 { fclose(p); } / /  class destructor closes f i le.. .

operator FILE* () { return p; }
\:

With this object class, a file pointer p can be constructed
with either a File* or the arguments required for an fopen{). In
either case FilePtr will be destroyed at the end of its scope
and the destructor will close the file. A simple example of
this programming technique would look like:

void use_fi le(const char* name)
{

FilePtr f(name, "r");

/ /  use  f . . .
I
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The destructor will be called regardless of whether the

function is exited normally or an exception occurs.

Other C++ language issues that need to be considered when

reusing C++ libraries that incorporate exceptions include:

. Converting existing libraries to handle exceptions properly

r Remapping unexpected( ) and terminate( ) functions
. Combining the exceptions of one library with those of

another library in a single program
r Handling asynchronous events (e.g., signals) and

sy,nchronous C++ exceptions simultaneously.

The followhg example program shows how multiple threads

of control, which are represented by HP-UX* as;rnchronous

signals and synchronous C++ exceptions, do not work to-

gether simultaneously. The second throw statement (re-

throw) in the myhandler poftion of the code, which tries to

transfer control outside the exception handler, will not work

at this time. The compiler cannot detect this condition be-

cause of the possibility of separate compilation of the signal-

handler code and the code that traps to the signal handler.

#include <unistd.h>
#include <stream.h>
#include <signal.h>

* types needed below {used to be in <signal.h>, but were removed in
* HP.UX 8.0)

+ Note: This program (and the other code in this art icle) was compiled on an
* HP 9000 Model 730 running HP-UX A.08.07 using HP C++ A 03.00

Wpedef void SIG-FUNc-TYP(int); /* for UNIX+ System V compatibi l i ty */

typedef SIG-FUNC-TYP *SlG-TYP;

#define SIG_PF SIG-TYP

i n t i = 0 ;

/* The function myhandler is cal led when the SIGINT is detected by the
* program; afterwhich a "sleep" and then a "throw" is performed (i .e.,  in
* a svnchronous manner). PLEASE N0TE: This signal handler could reside
* in a separate compilat ion unit,  making i t  impossible for a compiler to
* check for this error condit ion.

void myhandleo
1

trY {
(void) signal (SlGlNT, (SlG-PF) myhandler);
cout << " in myhandler now... \n" << f lush;
s leep( t  ) ;
throw i;  / /  error: N0 throws al lowed in signal handlers i f  they

l l  are not caught in the signal handler
I

catch ( int i)  {
cout << "catch inside myhandler now... \n" << f lush;
throw; //this is an error because rethrows (or throws)

//  are not al lowed to propagate outside a signal handler

)

)

/* This main program waits for a SIG-PF, ( i .e.,  usual ly CTRUC)
* which causes a core dump because of the throw propagation restr ict ion
* mentioned above. This mixture of asynchronous signals and the
* synchronous exception handling causes C++ to exhibit  a routine fai lure.

" Therefore, this construct should be avoided.

int main 0
t

cout << "start ing the program..\n" << f lush;

/ /  Arm our  s igna l  hand ler . . .
(void) signal (SlGlNT, (SlG-PF) myhandler);

/ /  forEVER looP...
for (; ;)

{
try { / /  Now that we are in a try block, let 's throw something. ' .

throw i;
)
catch ( int i)
{  / /  Now we're in the catch block, so let us noti fy the user and

/ /  s leep fo r  a  moment . . .

cout << " in main catch now... \n" << f lush;
sleep(1 );

]
l

/ /  we' l l  never get here, but for completeness. - .
return 0;

l

Conclusion

C++ is an effective language for promoting both incremental

development and code reuse. The additional capabilities of

templates and exceptions need to have more idioms formal-

ized for their proper use. Because of C++'s increasing com-

plexity, stronger environmental support is critical for the

continuation of the language's success'
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Bridging the Gap between structured
Analysis and Structured Design for
Real-fime Systems
A real't ime software design technique has been applied to the design ol
the software architecture for ultrasound imaging products.

by Joseph M.Laszcz and Daniel G. Maier

Structured analysis (SA) and structured design (SD) are
two widely used methodologies for sofbware development.l,2
Structured analysis specifies the functionality to be imple-
mented by a software system, and structured design is used
for partitioning a single task into a set of fi;nctiona.l modules.
See "Structured Analysis and Structured Design Refresher"
on page 92 for a brief review of the structured analysis and
structured design notation and terminology used in this
paper.

When designing and implementing a software system repre-
sented by a sh'uctured analysis model, it is usually necessary
to partition the functionality among a number of concurrent
tasks to meet the timing constraints placed on the software
system. In addition, to achieve a design with the characteris-
tics oflow coupling and high cohesion, it is desirable to
partition the functionality into objects or packages for data
hiding.

Although stmctured techniques provide designers with a
methodologr for partitioning a complex system into manage-
able pieces for analysis and design, there are some problems
in making the transformation from SA to SD for real-time
systems design. For example, the transformation from SA to
SD does not easily support concurrency. Processes need to
be grouped into concurrent tasks before detailed design.
Another example is related to object-oriented design. SA
and SD do not strongly support producing well-encapsulated
objects.

Because ofthese problems a software developer, after
specifying a real-time system using SA techniques, is often
not sure how to proceed to a design and typically resorts to
ad hoc design techniques. A methodology is needed to help
the designer bridge the gap between SA and SD.

The ADARTS Solution
ADARTS (Ada-based Design Approach to Real-Time Sys-
tems;r'is a high-level design methodology that effectively
fills the gap between SA and SD by providing a systematic
means (called process steps) for partitioning an SA specifi-
cation model into a set oftasks, packages (objects), and
communication links, which can then be designed using SD.

* Although ADABTS uses Ada constructs, its use is n0t limited to Ada. ADARTS was created by
a gr0up 0f companies called the SOftware Pr0ductivity COns0rtium {SpC). Two versions of the
ADARTS specificati0n have been produced by the c0ns0rtium. This paper is based on the first
version.3
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The deliverables from ADARTS include a set of high-level
architectural diagrams and a set of specifications called
component interface speciflcations for each task and pack-
age. These deliverables are described later in this article.
Fig. 1 shows a simple overview of how ADARTS fits into the
software development process with SA and SD. The nota-
tion and graphic symbols for the ADARTS diagram shown in
Fig. 1 are described in more detail later in this paper.

We have been using ADARTS for embedded software devel-
opment at Intaging Systems Division (ISY) since early lgg0.
ADARTS helped us deal with the complexity inherent in the
design ofthe ISY shared sofbware architecture, and we found
it indispensable in turning SA models into realizable designs.

While the ADARTS technique suppofts the synchronizing
constructs inherent to the Ada programming language, it is
not necessary to program in Ada to derive the majority of
the benefits from ADARTS. We easily adapted the methodol-
ogy and its diagramming terminology to a more conventional
operating environment consisting of high-level language
programs running under the control of a real-time operating
system. At ISY, we develop software in the C language run-
ning under the pSOS-68K operating system. However, our
approach.to using ADARTS works with any language.

The diagramming notation used in ADARTS is based on the
Buhr notation,4 which is used to represent the tasks, pack-
ages, and communication paths resulting from the design
decisions made in ADARTS (see Fig. 2). This diagramming
notation is supported in commercially available CASE tools.

The rest of this paper gives a brief overview of the ADARTS
methodology (defining the notation shown in Fig. 2 along
the way) and then presents an example ofour experience
with using ADARTS for software architecture design.

ADARTS Process Steps
The ADARTS process involves following the steps listed
below to create the ADARTS deliverables mentioned above
and then using the deliverables to design and implement the
system.

1. Develop a real-time structured analysis specification, and
Ievel the data flow diagrams to create a single (flat) diagram
from the hierarchical set of data flow diagmms in the originat
model.
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Fig. 1. The role of ADARTS in the software development

2. Identify concrurent tasks by applying task structuring

criteria, and determine the kind of communication and syn-

chronization mechanisms for the data and events passed

between tasks. Task structuring involves combining those

processes that should be combined or keeping separate

those processes that must be sepaxate.

3. Identify packages (objects) by applying the package

structuring criteria to produce well-encapsulated software

objects.

4. Add support tasks to provide required synchronization

and message buffering services. An example of a support

task is a task that synchronizes access to a data store that

is accessed by multiple tasks.

5. Package the tasks (we skipped this Ada-specific

requirement).

Loosely Goupled
Communicalion

Message
0ueue

Ct+
Message

0ata

6. Develop an NRL (Naval Research Laboratory method)

module hierarchy (we skipped this step).

7. Define component interface specifications.

8. Perform the detailed design of task and package internals

using structured design or an alternative methodology'

9. Implement (code) the tasks and packages.

10. Store the completed components and design

documentation in a (reuse) library.

Note that the ADARTS process steps are all-inclusive, cover-

ing the development of the software system from conception

to delivery. Steps 2 through 7 are the contributions of

ADARTS that are above and beyond SA and SD.

Tightly Goupled
Task Communication

Fig. 2. ADARTS notation.
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Structured Analysis and Structured Design Refresher

Structured analysis and structured design concepts have been in use for several
years now and thus the c0ncepts, terminology. and graphic symbols are fair ly well
known. The fol lowing are some very brief definit ions of the SA and SD graphics
symbols shown in Figs. 1 and 2 and used in the accompanying art icle. Fig. 3 shows
the process f low from customer requirements t0 code when SA and SD are used
in software development. References 1 and 2 in the accompanying art icle contain
much more information about SA and SD techniques.

Structured Analysis l\lotation
Structured analysis notat i0n and methodology provide.

. A graphic and concise representati0n of software functionality
o A technique tor part i t ioning a problem into manageable pieces
. A way t0 represent software functional i ty in a nonredundant fashton
. A way t0 create a logical model 0f what the software system does rather than

how to do i t .

Context Diagram

Source/Sink Account ltlumber Sink

The fol lowrng definit ions are associated with the notat ion in Fig. 1.

Data Flow Diagram. A data f low diagram is a network 0f related functions or
processes and the c0rresponding data interfaces between these components. The
notatt0ns shown in Fig. 1 that are used to depict a data f low diagram consist of '

r  Labeled arrows, which show the data f lows ( information f low) between processes
. Circles (or bubbles), which represent the processes or transformations being

modeled bv the svstem
. Two paral lel i ines, which represent data stores, or places where information can

stored
o Bectangles, which represent the data sources and destinations (sinks) in the system.

Modules

Data Flow Diagram z/
,/

Account
File

Unverified
Oaily Oeposits

Account
Number

o
t

Error
o+

Account
Number

Deposit

?

Itlew
Balance

lncorrecl
Deposit

Process or
Translormalion

Error List

Fig .1 .  The essent ia l  e lements  o f  s t ruc tu red  ana lys is  n0 ta t i0n  us ing  bank  t ransac t  Ons as  an
example .

Deposit

O* Data Flow

G- Flag

F ig .2 .As t ruc turechar tsh0wingtheessent ia  e lementso fSt ruc tureddes ignnota t i0n f0r the
bank example .

Data
Flow

Accounl
Number

Task Structuring Criteria
Task structuring criteria are rules that guide the designer in
combining SA process transformations (process bubbles or
pSpecs) and control transformations to form concurrent
tasks, while separating those transformations that need to
be separate into independent tasks. These criteria reflect
the same reasoning that an experienced real-time system
designer might use when deciding on a concurrent task
structure. ADARTS organizes these criteria for systcmatic
application to software design.

The following are ADARTS task structuring criteria for
combining transformations to create concurrent tasks:

o Sequential cohesion. Combine transformations that execute
in sequence wit,h other transformations, such as a state ma-
chine and the processing that occurs on a state transition
(see Fig. 3).

. Temporal cohesion. Combine transformations that must run
at the same time as other transformations, such as trans-
formations that must respond to the same event (interrupt)
or the same time tick. Fig. 4 shows the transformations that
take pla<:e when a sensor monitoring patient temperature
senses an out-of-limits temperature.

r F\rnctional cohesion. Combine transformations that perform
one or nore relatcd functions. These functions typicallv
operate on thc sante data stmcture or sanle VO device. For
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Leveled
Data Flow
Diagram

Specity
Using

Structured
Analysis

[-\nnn
b.l b-l b'rl b*l

IT
Design r

r--\ [-} 1-}
h-IUM

Process Specif ications

Data
Dictionary

Structured SPecilication Model
(Structured Analysis)

Fig.3. The role of structured analysis and structured design in the sottware devel0pment pr0cess

Gontext Diagram. This is the top-level diagram which shows the environment in

which the software system being designed is supposed to work The context

diagram consists of one circle and the sources and sinks in the systems operatlng

environment. This diagram forms the basis from which the rest 0f the system is

designed. One or more levels of data flow diagrams can be derived from the con-

text diagram. Multiple levels are created by partitioning the processes in the data

f low diagrams.

Data Dictionary. The data dictionary is used t0 define all data flows and compo-

nents of data flows and data stores. lt prOvides a single place to record information

that is necessary to understand the data in the data flow diagram.

Process Specifications. When a process can no longer be partiti0ned, the

resulting processes are called primitive processes. Process specifications. or
pSpecs, are used to describe these primitive processes. The notations commonly

used in pspecs include structured English, decision trees, and decision tables.

A data dictionary and process specifications are symbolically represented in Fig. 3

Minispecif ications

. Detailed Design Model
(Structured 0esignl

Structured Design
Structured design is the process of refining the output from the structured analysis
phase to design the module structure that will lead to a particular implementation

0f the software system. The steps in the process include:
. Derive a representation of the program structure with a structure chart While the

structure chart can be created from any system specification, it is typically created

from a flattened data flow diagram. The structure chart consists of three basic

features: boxes representing modules, anows connecting the modules, and short

anows with circular tails representing data passed from one module to another
(see Fig 2).

. Expand the high-level definition by identifying lower-level modules needed t0

carry 0ut the higher-level functions.
. lmprove the representati0n by employing the design principles of cohesion and

coupling. Coupling measures the degree to which modules depend on each othet

and cohesion measures the degree to which elements within a single module are

related to each other.
.  Complete the detai led module design by employing a procedural logic descript ion

such as a minispecification (mSpec). An mSpec is similar to a pSpec for processes

in structure analysis, except this time each module is being documented.

example, a process that computes trip statistics contains

functions that access a database of collected trip data and

then compute the required statistics (see Fig. 5).

The criteria for separating transformations into independent

tasks include:
r Event dependency. Use a separate task for each transforma-

tion or group oftransformations dependent on:

o Device VO constraints such as responding to as1'nchronous

VO requests
o User interface constraints such as independent users or

user interface sequential activities such as windows
o Periodic events (events that initiate transformations at

regular time intervals).

. Control T?ansformation. Use a separate task for each
independent control transformation such as a state machine
controller or a transformation that is enabled and disabled
by a control transformation.

. Task Priority. Use separate tasks for time-critical or

computation-intensive activities.
. Multiprocessing. Use separate tasks for transformations

that must execute on separate physical processors.

ADARTS specifies the order in which task stmcturing criteria

should be applied so that the frst criterion assigned to a
transformation is usually the predominant one. However,
subsequent criteria may contradict the original classifica-
tion, and when that happens the original decision should be
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Structured Analysis Model

ADARTS Model

Fig. 3. An example of sequential cohesion in which two transforma-
tions that occur in sequence are combined into olte task.

reconsidered using good engineeringjudgment to decide
which criterion is dominant.

Intertask Communication and Synchronization
Once the task stmcture has been defined, the data and event
interfaces between tasks must be determined. The ADARTS

Structured Analysis Model

Sbuctured Analysis Model

Speed
Requesl

Average
Speed

Fuel
Consumption

Temperature Too High

I

ADAfiTS Model

Fig. 4. An example of temporal cohesion in which three processes
activated by the same event are combined into a single task.
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I
I

Y

-
-rYaIIfmI
rttf.rilr-

t -
f

ADAfiTS Model

Fig. 5. Atr erxamplc of functiorral cohesion in whrch two tratrsfot'nta
tions perlbrrning funr:lions relatecl to trip data are cornbirrecl in1,o a
single task.

process provides guidelines for choosing how each data and
event flow will be passed between tasks:

. Tightly coupled communication. This type of communication
involves sending messages or events and then waiting for a
response. A model of tightly coupled communication is
shown in Fig. 6a.

r Loosely coupled communication. This t;rpe of communica-
tion is implemented by a message or event queue with no
response. In the producer-consumer model, the producer
would continue to send messages to a queue without waiting
for a response from the consumer, which extracts messages
from the queue at its own pace (see Fig. 6b).

. Loosely coupled communication with multiple producers.
This communication style is implemented by a FIFO buffer
or a priority queue. This is the case in which many produc-
ers might try to communicate with one consumer at the
same lime fsee Fig. 6c].

Each communication or sSmchronization flow is represented
in ADARTS a.rchitecture diagrams by a distinguishing sSrmbol,
and each type of flow is implemented by a specific mecha-
nism within the run-time environment of the svstem being
designed.

Package Structuring Criteria
The package structuring criteria are mles for creating pack-
ages, or objects. The application ofthese criteria produces
well-encapsulated software objects using the concept of
information hiding. The ADARTS package stmcturing pro-
cess does not contain many original ideas, but represents a
compilation of existing ideas and strategies applied to a new
domain (real-time systems). These rules fall into one of the
following categories:



Consumer

Fig. 6. ADARTS cliagrams rrrtldeling intr:rtask tlommunical'ion ancl

svnchronizal,ion. (a) Tightly couplecl comntttnication. (b) Loosely

crouplecl cotnnlunication. (c) Loosely cor4rled communicatidl with

multiple proclucers.

o Hardware hiding modules. These modules are used to en-

capsulate parts of the virtual machine such as the operating

system or communications mechanisms or interfaces (e'g',

device drivers) to particular VO devices (see Fig. 7).

. Data abstraction packages. Each structured analysis data

store becomes the basis for a data abstraction package,

which hides system behavior requirements or software

design decisions associated with data (see Fig. 8).

. Servers. Serwers are passive modules that provide services

for other tasks. Files selvers and print selvers are examples

of these types of modules.

Component Interface Specifrcations

Component interface specifications (CIS) are textual de-

scriptions of each ADARTS task and package containing

information that is needed to inspect the highJevel design

ancl move to the detailed clesign and implementation of that

component. Each component interface specification contains

the name and type of the component, what the component

tloes and when it cloes it, the operations provided by the com-

ponent (including individual access procedures or functions

Structured Analysis Model

To Consumer

ADARTS Model

To Consumer

InPut Sensor
Access Procedure

Fig. 7. An exanrple of a hardware hiding module showirtg thc

intcrface to an input sensor.

Structured Analysis Model

Signal

I

Current
Temperature

ADAfiTS Model

Fig. 8. A ntorlel of a clata absl rirction pa(:kagc
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Scannitrg_state obiect

DESCRIPTION:
The scanning-srare_obied takes a stale stimulus as input and produces the
new scanning state (or an error code) as output (i0 the torm of the scanning-
state events). The obiect also has the ability to go explicitly to a particular
state.

Errors will be explicitly listed in the state tables. This will make the stale
tables a better reflection of system operation.
A script will be written to compile descriptions ol the scanning-state tables
into R0M data tables. The scanning-state tables tor various system configu_
rations should all be explicitly present in the source tiles, then compiled by
the script to prodnce the C source for the state tables.

DATA STORES:
Scanoing-state transition table.
Inilial scanning state - tor use at power on/reset.

OPERATIOIIIS:
Scnsr initialize( )

This entry point should be called at power-on/resel to set up the state
transition table and inilialize scanning state variables.

Scnst chg_state (stimulus)
"Stimulus" is one ot an enrmeration of possible stimuli. This entry point
chooses a new scan state based on the stimulus or produces an eror
code if the stimulus is not allowed in the current scan state. lf the scan
state is changed the new scan state is output as an event.

Scnst_goto state {state}
"State" is one of the possible scanning states.
This is meant to be used by internal applications. lt causes the scan-
ning state to be changed to the indieated state.

Fig.9. An example ofa component interface specification_

with parameter definitions), and the effects of the compo-
nent's operations. Fig. 9 shows an example of a component
interface specifi cation.

Experience with ADARTS

Architecture Design
We used ADARTS in the design of a software architecture
for new ultrasound imaging products. This project was di-
vided into two parts. The first part dealt with the develop-
ment of the system softwaxe that provides a framework for
application development and all generic services required in
the application domain. The second part ofthe project dealt
with the development of the software applications that pro-
vide the specific functionality required by a target system.
Each of these two parts of the project used SA and
ADARTS, but in slightly different ways.

First, the architectural stmcture and system components
were developed. The highJevel functions ofthe architecture
were specified using stmctured analysis. This specification
treated all functionality in terms of the general processing
flow required for any application, without defining the spe-
cifics of any particular application. The specification model
was validated by walking through test cases derived from a
number of representative applications.

After the SA specification was complete, the ADARTS
technique was applied to design the task and package struc-
ture and identify the communication mechanisms to be
used. Component interface specifications were created, de_
tailing the interfaces and functionality of each system com-
ponent, followed by the detailed design and implementation
of each component. Fig. 10 illustrates a key part of the
ADARTS process, in which functionality is grouped into
coherent tasks and packages using the appropriate structur_
ing criteria. The sacks drawn around the various groups of
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data flow diagram elements in Fig. 10 show the application
of the task and package structuring and intertask sy.nchro-
nization criteria described above. After several iterations
these sacks were transformed into the simplified ADARTS
architectural diagram shown in Fig. 11. The letters in Figs.
10 and 11 show the correspondence between the two system
representations.

After the architecture was specified, clesigned, and imple-
mented, attention was turned to the second part of the
project-developn.rent of applications to mn within the new
architecture. Once again, structured analysis was used for
specification of the software. However, we enhanced the
design step by adding supplemental criteria to guide the
designers in allocating application functionality to pre-
viously designed architectural components. For example,
within certain architecture components places were left
open to plug in application software that:

. Processes a keystroke (see vk (virtual key) functions in
Fig. 11)

o Defines an application-specific parameter (see the agents
data stmcture in Fig. 11)

. Adjusts an application parameter value when other parame-
ters it depends on change (see the check routines function in
Fig. 11).

The supplemental criteria helped the application designers
determine where each aspect of the application functional-
ity should reside within the architecture. The ADARTS
methodology was thus used as a template for creating a
more specific high-level design method. Detailed design for
each component ofthe application then proceeded in the
usual way.

Package Design
The degree to which the package structuring procedure of
ADARTS was used during the project varied significantly. In
some cases, the structuring criteria were applied rigorously.
For example, in the continuous loop review application,
which is an ultrasound application that supports acquiring
video images into memory and playing them back as contin-
uous loops, the criteria were applied to a leveled data flow
diagram, leading to a highly modular ADARTS design
consisting of objects with cohesive operations.

In many cases, ADARTS was used simply as a notation to
show an object representation of a system's functionality.
Some ADARTS designs were derived from a complete and
leveled SA and others were derived from a high-level or
abbreviated SA. Although the package structuring criteria
were not explicitly used here, designers still applied the
information hiding concepts recommended by ADARTS. For
example, the Interpret Stimr_rlus component shown in Fig. 11,
which encapsulates the user interface functionality of the
system, is quite complex. The ADARTS design for this com-
ponent, although not derived from a complete SA, is very
useful for showing the interactions between the packages.
The component interface specifications for this component
made it easier to understand the individual packages
contained in the component.

Similarly, while the criteria developed to guide engineers in
allocating specification functionality to architecture compo-
nents were not always used explicitly, they communicated
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Scan Controls @
Support Task

0isplay Feedback Process

user leedback

Inlerpret Slimulus

* Some of the places left open in packages lor plugging in application software.** The component interface specitication shown in Fig. 9 is tor this package.

Fig. 11. The ADARTS architectural diagram obtained, after several rlesign iterations, from the sl.ructured analysis cliagranr shown il F ig. 10.

@

to designers the choices that had to be considered when
assigning the functionality of the application being designed
to the appropriate components.

Tools and Techniques
We used a commercially available CASE product to generate
the ADARTS diagrams. Since the product was targeted for
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Ada users, we had to deal with several drawbacks in using
the tool because we were using the C language and a real-
time operating system. For example, the product provided
no direct suppoft for the message queue symbol (used to
show loosely coupled communication between processes),
so we constructed the required symbol from primitive line
stmctures. In addition, there was no integrated mechanism

Synchronize
lmager

Perlorm Actions



for creating component interface specifications and tying

them to ADARTS components. Also lacking was a traceabil-

ity mechanism for tracing system requirements from SA to

ADARTS to SD.

Since the architecture software is a key part of the imaging

product, we paid extra attention to using the development
process to attain high-quality software. We adopted a gen-

eral software development framework for the project. The

steps in our process and the deliverables are summarized in

Table I.

Table I
Development Process Using ADARTS

Phase Deliverable

RequirementsGeneration SoftwareRequirements
Specification

System Specification

Architecture Design

Detailed Design

Implementation

Structured Analysis

ADARTS

Structured Design

Source Code

Each step in this process was usually followed by an inspec-

tion by the appropriate individual or group.

Summary

The following is a list of the streng$hs and weaknesses we

found by using this version of ADARTS in our environment.

Strengths, Some of the contributions and positive aspects of

the ADARTS technique include:
r Continuity and task structure. ADARTS provides a linkage

between an SA model and the detailed design of individual

software modules by partitioning the specification into the

optimal set of concurrent tasks and the appropriate commu-

nication mechanisms between them. SA and SD alone do not

aid in the design of the overall concurrent task stmcture.
o Package structure. ADARTS, through its package structur-

ing criteria, provides a method for achieving a reasonable

- object stmcture for the functionality represented by the SA

model. SD alone, through its transform analysis and trans-

action analysis techniques,* is not effective for building

encapsulated objects. Encapsulation is the predominant

object-oriented design concept applied to our software

development activities, and ADARTS supports this design

aspect very well.
o Visibility. ADARTS design deliverables (architecture diagrams

and component interface specifications) make a software

design more visible, promoting more effective design inspec-

tions and making design concepts clear to other engineers

who have a need to understand or maintain the software.
r Systematic approach. The steps used in ADARTS provide a

systematic approach to systemJevel design, reducing the

thrashing that can occur when following unstructured or ad

hoc system design methods.
r Intuitive. ADARTS is easy to understand for new and expe-

rienced software engineers and intuitive to those familiar

with real-time software design.

* Transacti0n analysis is a design strategy based 0n a study 0f the transactions the system must
process. Transform analysis is a design strategy based 0n the study 0fthe data flows in a
svstem and the transformalions 0erformed 0n that data.

r Acceptance. ADARTS was accepted by the engineers using

it at ISY, although their reasons variep widely. Each of the

strengths stated above was cited by one or more engineers

as the most valuable contribution of ADARTS.

Weaknesses. Just as we found many strengths in the

ADARTS technique, we also found some weaknesses in us-

ing ADARTS in our environment. These wealcresses include:
o Object orientation. ADARTS falls short in its support for

several of the currently accepted object-oriented design

characteristics. For example, there is no provision for

defining object classes or inheritance.
. Tools. Manipulating the architecture diagrams used in

ADARTS (as well as the data flow diagrams and stn.rcture

charts used in SA and SD) with the currently available CASE

tools is time-consuming and has been a frequent complaint

from engineers using these methods.
o Ada. We didn't have a need for the Ada-specific stmctures

discussed in the ADARTS paper, and therefore we did not
gain the full benefit inherent in the ADARTS methodology.

Conclusion
We found ADARTS to be an extremely effective technique

for bridging the gap between a structured analysis specifica-

tion and the structured design of the software modriles that

make up a software system. By providing a path between

the two techniques, it makes both far more valuable thart

they would be otherwise. For stmctured analysis, the con-

tribution to the definition of concurtent tasks and communi-

cation mechanisms is indispensable, but even if there is no

concrrrency required, ADARTS helps in identifying an ob-
ject structure before applying the next detailed design step.

Even if ADARTS is used on an SA specification that requires

neither concunency nor objects, it produces the trivial-case

high-level design consisting of a single task in a single pack-

age which can then be constructed using SD. Thus, there is

no harm in applying the technique to all designs.

Acknowledgments

The dedicated efforts of the members of the software archi-

tecture project team were key to the successful application of

ADARTS within [IP's Imagrng Systems DMsion QSY]: Stephen

Agyepong, Janice Bisson, Risa Bobroff, Marc Davidson,

Paula Hart, Bill Harte, Peter Kelley, Martin Moynihan, and

Kris Rovell-Rixx. We also thankJoe Kobrenski and Paul

Kelly for their contributiors in promoting the use of ADARTS

within the project during its formative stages, and Bill Koppes

and Arthur Dickey for supporting the group in its efforts to

improve our development process during the project. Finally,

we thank Dr. Charles Butler of Colorado State University for

his guidance in the proper use of structured methods at ISY.

References
1. T. DeMarco, Stractured Analysis and Sgstem Specification,
Yourdon Press, 1978.
2. M.P. Jones, The Practical Guide to Stttlctured Systems Design,
Yourdon Press, 1980.
3. H. Gomaa,,4D, ,BTS-An Ada-basetl Design Approachfor Real
Time Systems, SPC-TR-88-021 Version 1.0, Software Productivity
Consortium, August 1988
,1. R. J. A. Buhr, Sgstem Design u'ith Atla, Prentice-Hall, Inc., 1984.

Ausust 1993 Hewlett-Packard Journal 99



-a

Hewlett-Packard Company, P.0. Box 51827
Palo Alto, CA 94303-0724

ADDRESS CORRECTION REOUESTED

Bulk Rate
U.S. Postage

Paid
Permi t  N0.3913

Portland. 0R

582633 JRN3720

i:*il!bl+i'lu+u
BELLEVUE r  t {A

?4?n

PL

98005-1838

CHANGE 0F ADDRESS: l?,''uX'fii;lil3ii,'ift:Si';;:tfii;ffJi",ff'T,'J;'J,'.'[HJ[3,[ffiliJ^.;';ffi;'o'.1:*'"'PackardJourna''
5091 -81 56E



 
HP Archive 

 
 

This vintage Hewlett-Packard document was 
preserved and distributed by 

www.hparchive.com 

Please visit us on the web! 

 

 

 

 

 

 

 

On-line curator: John Miles, KE5FX 

jmiles@pop.net 
 
 
 
 

               for his contribution of this material.
The HP Archive thanks Dennis Tillman



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


