
HEWLETT.PACKARD

JOT]RNAL
June 1993

PZI Fi=Y"'ffJ

HEWTETT-PACKARD

JOT]RNAL June 1993 Volume tl4 r Number 3

6
g

12

,drticles

0BCA: Optimized Robot for Chemical Analysis. by Gary B. Gordon, Joseph C. Roark, and
Afthur Schleifer

The HP 0RGA System 0utside the Analytical Laboratory

Gravity-Sensing Joy Stick

' l
{ nmoture DigiratEncoder

/ | | HP OpenODB: An Obiect-0dented Database Management System for Gommercial- - Appfications, by Rafiul Ahad and Tu-Tng Cheng

3 1 The HP ultra vGA Graphics Boad, by Myron R. Tuttle, Kenneth M. wilson, samuel H. chau,rJ I
and Yong Deng

A A

+ |
POSIX Interface for MPUiX. by flajesh Lalwani

47 ^Process for Preventing Software Hazards, by Brian Connoily

$J
Connsuration Management for Software lests, by Leonard T. Schroath

Editol Bichard P Dolan . Associate Editor, Charles L. Leath . Publicatiotr Production Manager. Susan E. Wright. lllustration, Ren6e D. pighini
Typography/Layout, Cindy Rubin . Test and Measurement organization Liaison, Sydney C. Avey

AdvisoryBoard,WilliamWBr0wn, lntegratedCircuitBusinessDivision,santaClara,California.FrankJ.Calvillo,Grceleyst,rageDivision,Greeley,CaloradocHarry
Chor, Miuowave fechnology Division, Santa Rosa, California e Derek I Dang, Systen Supplrt Division, M\untain View Califunia-o Bajesh Desai, Connercial Systeni
Division'CUpertino'California.KevinG'Ewe|1,|ntegGtedsystensDiviSion,Sunnwa|e,calif0rnia.BenhardFischeLBnblingenMedi;a|Division'Bb|ingen,Gdrnany.
Douglas Gernetten, Greeley Hatdcopy 1ivision, Gteeley, Colorado. Gar Go.on, HP Lab0rat0ries, Palo Aho, Califunia . Matt J. Harl ine, Systefs fe chnoiogy Division,
R1seville, Califonia. Eryan Hoog, lale Sre@s lnstrunent Division, Everctt, Washingtln. Grace ildy, Grenoble Netw}rks Division, Cupettino, California J BogerL.
Jungetnan, Microwave fechnology Divisi0n, Santa Bosa, Califlrnia.PaulaH.Kanarck, lnkjet Conponents Division, Coruallis, 1regon.lhonasF.Kraener, Col6rado
Springs Division. Colorado Springs, Colorado. Ruby B.lee, Netwlrked Systens Gnup. Cupeftino. Catiflnia. Bill Ltoyd, HP Laboiatories Japan, Kawasa(i, Japan.
Altred Maute, Waldbronn Analytical Division, Waldbronn. Gernanl. [4ichael P Moore , VXI Systens Divisiln, Llveland. Colorado. Shelley i Mcore, San Dieg1 printel
Division, San Diego, Californta. Dona L. Morill, W1rldwide Custonet Support Division, M\untain View, California. \Nilltan M. Mowson, 1pen Systens Sof:tware
DiviSi0n'che|nsfo|d,MassachUsetts.StevenJ'Narcis0'yX/si/stems,lvision'Love|and,c0tUad0.Ga|roro|ini,S0ffvarereChnologyD
Raj jza, Software lechn1logy Division, Mjuntain View California. HanltanPhua, Asia Peripherals Division, Singaplrc e Ken poulton, Hp labo rat1ries, palo Altl,
California. Giftet Biebesell, Boblingen lnstrunents Division. BAblingen, Gernany. MarcSabatella, Sofware Eigineering Systens Division, Fort Clltins. Cotorado.
l\y'ichael B. Saundefs, lntegrated Circuit Business Division, Coruallis. 1regon . Phtlip SIenIor. HP Laboratuies Brsiol. Brisiol, England. Beng-Hang Tay, Sngapore
Netwo*s2pereti1n,Sngapore.StephenR.Undy,S,,stensTechnologyDivision.fortCollins,Cotorado.RichardB.Wells, DisiMenoryDiiision.Boise,ldlio.Jin
Wllits,NetworkandSystenManagenent0ivision,FonCollins,Colorado.KoiehtYanagawa,KabelnstrunentDivision,Kobe,JapanoDennisC.Y0il, CoruailisDivision,
Coruallis. 1regon c BarbarcTimmeL Coryarcte Engineeing, palo Atto, Califonia

OHewlettPackard Company 1993 Printed in U S.A

2 June 1993 }lewlett-Packard Jomal

The Hewlett-Packard J0urnal is printed 0n recycled papel

60lmplementing and Sustaining a Software Inspection Program in an R&D Environment,
by Jean M. MacLeod

ft{ ff,r Use of Total Ouality Gontrol Techniques to lmprove the Software
\'r I bv John W. Goodnow Cindie A. Hammond, Witliam A. Koppes, John J.

Rovell-Bixx. and Sandra J. Warner

Localization Process.
Krieger, D. Kris

68Tools for the language Translation Process

7 1
A Transaction Approach to Error Handling, by Bruce A. Rafnel

I f
e"o, Definition

User Interface Management System for HP-UX System Administration Applications,
by Mark H. Notess

SAM versus Manual Administration

Departments

ln this lssue
Cover
What's Ahead
Authors

The Hewlett-Packard Journal is published bimonthly by the Hewleft-Packard Company to recognize technical contributions made by Hewlett-Packard
{HPl personnel. While the information found in this publication is believed to be accurate. the Hewlett-Packard Company disclaims all warranties ot
merchantabil ity and fitness for a particular purpose and all obliqations and liabil i t ies for damaqes, including but not l imited to indirect, special, or
consequential damages, attorney's and expert's lees. and coun costs, arising out of or in connection with this publicatron.

Subscriptions: The Hewlett-Packard Journal is distribured lree of charge to HP research, design and manufacturing engineering personnel, as well as to
quali l ied non-HP individuals, l ibraries, and educational institutions. Please address subscription or change of address requests on printed letterhead lor
include a business card) to the HP headquarters otfice in your country or t0 the HP address on the back covel When submitting a change ol address,
please include your zip or postal code and a copy oI your old label. Free subscriptions may not be available in all countries.

Submissions: Although articles in the Hewlett-Packard Journal are primarily authored by HP employees, anicles from non-HP authors dealing with
HP-related research or solutions to technical problems made possible by using HP equipment are also considered for publication. Please contact the
Editor before submittinq such anicles. Also. the Hewlett-Packard Journal encourages technical discussions of the topics presented in recent articles
and may publish letters expected to be of interest to readers. Letters should be brief, and are subjecr to editing by HP

Copyright O 1993 Hewleft-Packard Company. All r iqhts reserued. Permission to copy without fee all or part of this publication is hereby granted provided
that l) the copies are not made, used, displayed, or distributed for commercial advantage; 2) the Hewlett-Packard Company copyright notice and the tit le
oI the publication and date appear on the copies; and 3) a notice stating that the copying is by permission of the H€wleft-Packard Company.

Please address inquiries, submissions. and requests to: Editor, Hewlett-Packard Journal,3200 Hil lview Avenue, Palo Alto, CA 94304 U.S.A.

BO
B1

4
5
5

71

June 1993 Hewlettj'ackard Joumal

ln this Issue
The HP ORCA {0ptimized Robot for Chemical Analysis) system is a different kind
of robot. In the words of Gary Gordon, one ofthe robot's designers and coauthor
of the article on page 6, "Why would a company choose to optimize its f irst robot
for init ially doing chemistry instead of. say. circuit board or instrument testing?
The answer is that there was a pressing customer need. HP is a major supplier
of analytical instrumentation such as gas chromatographs. Such instruments
help ensure the cleanliness of the food we eat and the water we drink by detect-
ing harmful contaminants such as pesticides and industrial wastes. The first
step in detection is sample preparation. lt is tedious, t ime-consuming, and error-
prone-in short. a ripe candidate for automation. Sample preparation entails

reducing a matrix such as apples, pil ls, or blood serum to a clear concentrated fluid suitable for injection
into the chromatograph. lt involves such wet chemistry operations as crushing, weighing, centrifuging,
extracting, and fi l tering. These are not enriching tasks for most people, yettens ofthousands of chemists
are locked into the tedium of their repetit ion. What scale of sample-prep automation is appropriate? The
variations from one procedure to the next rule out dedicated instruments. Instead a robotics approach
fits best, interfaced with common laboratory apparatus such as centrifuges and balances. A search for
commercial robots showed that they were typically too big and heavy, were optimized for precision as-
sembly such as install ing machine screws. and only accessed small work volumes. The HP 0RCA robot
system is quite different. ltmanipulates small (subkilogram) oblects such astesttubes and probes in and
out of t ight places within a huge several-cubic-meter work volume at l ively speeds. Much of the contribu-
tion of the HP ORCA system lies in the intuit ive software interface and a gravity-sensing teach pendant
that simplif ies teaching the robot new tasks. The HP 0RCA system can be easily integrated with other
applications to create sophisticated, turnkey, automated systems."

In obiect-oriented programming technology, an object consists of some data and the methods orfunctions
that can be used to access or operate on the data. 0blect-oriented programming is gaining wide accep-
tance for the development of large software systems because it makes developers more productive and
makes software more maintainable and reusable. Centralto many large commercial applications is a
database management system, which allows efficient storage and flexible retrieval of large amounts of
data. HP OpenODB (page 20) is an oblect-oriented database management system designed to support
complex commercial applications. lt combines a fast relational database management system with a
specially developed object manager and has a clienVserver architecture. HP 0pen0DB provides tools
that allow developers to use object-oriented modeling techniques to build a database. For data access,
it has a procedural language called 0S01, which is based on the industry-standard SOL {structured
Ouery Language). lt also offers run-time performance features such as late binding and schema modifi-
cation and features to control access to data and ensure data integrity. The 0penODB model differs from
other object models (there is no standard object model); how and why are explained in the article.

The HP Ultra VGA board is a video accessory card for the HP Vectra family of personal computers. (The
same functionality is embedded in HP Vectra 486/U PCs.) Using hardware accelerators, the Ultra VGA
board enhances video performance for graphics-intensive applications. lt offers display resolutions up
to 1024 by 768 pixels, refresh rates up to 72 times per second, and up to 256 colors. Software display
drivers allow applications to take advantage ofthe performance enhancements. The article on page 3l
traces the ancestry of the Ultra VGA board-from CGA to HGC to EGA to VGA-and discusses its design,
including the hardware/software trade-offs, the use of a custom integrated circuit and video RAM
memory devices, and the driver implementation.

POSIX stands for Portable 0perating System lnterface, a standard ofthe lnstitute of Electrical and
Electronics Engineers. lt defines a standard operating system interface and environmentthat guarantee
that any POSIX application wil l run under any operating system that supports the POSIX interface, which
is similarto the UNIX* operating system. As explained in the article on page 41, the MPViX operating
system, which runs on HP 3000 Series 900 computer systems, does just that. In MPV|X. the functions,

4 JunelggSHewlett-PackardJournal

services, and application program interface specified in the P0SIX standard are integrated with HP's
MPE XL operat ing system. MPE XL appl icat ions can access POSIX f i les and POSIX appl icat ions can
access MPE XL fi les. Existing MPE XL applications are not affected. The integration team had no trouble
visualizing MPE XL and P0SIX as one operating system, but found challenges in the areas of directory
structure. f i le naming, and security. The article describes their solutions.

Six papers in th is issue are f rom the 1992 HP Sof tware Engineer ing Product iv i ty Conference. > HP's
Medical Systems Unit has been researching and experimenting with methods of preventing software
failures in safety-crit ical medical applications. The paper on page 47 describes their software hazard
avoidance process, a combination of testing for hazards and analysis aimed at prevention. > lf software
can be reused, so can software tests. With this in mind, two HP printer divisions are implementing a soft-
ware test l ibrary management system to make it easier to locate existing tests, determine their suitabil-
ity, and combine them into test suites (see page 53). > While the value of software inspections as a part
of software development is well-accepted, in a busy R&D lab it 's not always easy to get an inspection
program started, maintain it once started, and meaningfully measure its success. The article on page 60
discusses one HP division's successful effort. > Total Ouality Control, or T0C, is a process improvement
technique used extensively within Hewlett-Packard and by other companies. In the article on page 64,
software engineers at HP's lmaging Systems Division tell how they successfully applied it to reduce the
time required to localize, or translate, software text used in medical diagnostic ultrasound systems. > A
substantial number of engineering hours are spent developing system administration applications for the
HP-UX* operating system, resulting in a major challenge in achieving user interface consistency. The
article on page 7l describes the design of a special application program interface that enforces consis-
tency and shields developers from the underlying user interface technology. > Typically, error-handling
code is dispersed throughout a program. In the article on page 80, Bruce Rafnel argues thatthis makes
programs hard to write, read, debug. enhance, and reuse. He suggests handling errors in programs as
they are handled in a database transaction recovery mechanism: the entire transaction is canceled as if
it had never occurred if an error is detected anywhere in its processing.

R.P. Dolan
Editor

Cover

This photograph of the HP ORCA analytical robot in action was taken by author Gary Gordon with project
manager Greg Murphy controll ing the robot and artist Nicola Gordon providing art direction.

What's Aherad

In the August issue we'l l have articles on HP's new line of high-brightness AllnGaP LEDs, the HP Tsutsuii
logic synthesis system, the HP ScanJet l lc color scanner, the HP-RT (real-time) operating system design,
the mechanical design for the HP 9000 Series 700i industrial workstations, the computation task distribu-
tion tool HP Task Broker, and three papers from HP's 1992 Software Productivity Conference-one on a
defect management system, one on productivity and C++, and one on a modeling tool for real-time soft-
ware systems. We'l l also have a research report on surgical laser control.

HP-UX is based on and is compatible with UNIX System Laboratories' lJNlXr operating system. lt also complies with X/0pen s* XPG3, P0SIX 1 003.1
and SVID2 interface specif ications.

UNIX is a registered trademark 0f UNIX System Laboratories Inc. in the U.S.A. and other countries.

VOpen is a trademark of X/0pen Company Limited in the UK and other countrles.

JunelggSHewlett-PackardJoumal 6

ORCA: Optimized Robot for Chemical
Analysis
This analytical PC peripheral is a congenial assistant, a sophisticated
robotic teaching environment, and an interesting study of robotic
archi tecture. Al though opt imized for the analyt ical laboratory, i t a lso
has applications in electronic test, quality assurance, and the clinical
laboratory, where heavy commercial assembly robots are unsuitable.

by Gary B. Gordon, Joseph C. Roark, and Arthur Schleifer

Analytical chemists currently spend approximately two
thirds of their time preparing samples to be placed into in-
struments for analysis. This sample preparation is not only
tedious, but also subject to errors introduced by human in-
teraction and human variation. At the same time, an ever-
increasing number of samples to be analyzed each year
coupled with a declining pool of skilled chemists has re-
sulted in a pressing need for automation to improve the
productivity of the analytical laboratory.

Samples arrive in the laboratory in liquid, solid, and gas
form. Quantities range from the microgram or microliter
size to tank cars filled with tons of material. The instru-
ments that are used to analyze these samples, such as gas
and liquid chromatographs, usually require that the samples
be cleaned up to remove almost all of the components of the
material except for the chemical compounds of interest.
Sample preparation involves many steps, including weigh-
ing, grinding, liquid pipetting and dispensing, concentration,
separation, and chemical reaction or derivitization. In most
cases this work is done by hand, although instruments are
available that perform particular preparation operations. To
provide a system that performs a majority of the operations
required for sample preparation requires a great deal of
fl exibility and versatiliff.

A robotic system seemed like the appropriate solution. But
what type of robot? Robots designed for manufacturing and
assembly are not well-suited for the analytical laboratory.
The requirements for a laboratory robot go beyond the tradi-
tional characteristics associated with manufacturing sys-
tems. Since today's laboratory and instruments axe designed
for people, automation is difficult because not all the pieces
of the laboratory are designed to work with robots. In con-
trast, assembly lines redesign the environment, process, and
products to work easily with robots. It will be a long time
before the chemical laboratory retrofits for automation.

Manufacturing robots in general are optimized for a differ-
ent problem: very accurate positioning of often healy pay-
Ioads, in seldom reconfigured environments. These robots
perform a small number of tasks very precisely in a small
work volume. In contrast, an analytical robot is required to
perform a wide range and number of tasks over an existing
laboratory workbench and interact with efsting laboratory
containers and instruments. The same might be said of a

6 June lgg3 llewletfPackardJoumal

robot for many other applications, such as electronic test,
quality assurance, or clinical laboratory analysis (see "The
HP ORCA System Outside the Analltical Laboratory" on
page 9). To fit into existing laboratory environments, a robot
must be installable without modification to the laboratory
furniture. This will allow both rapid installation and easy
relocation of the robot within the facility. The robot's work
volume must allow the robot to reach the entire bench area
and access existing analytical instmments. There must also
be sufficient area for a stoclcoom of supplies for unattended
operation.

The laboratory robot can be involved in three types of tasks
during an analfiical experiment. The first is sample intro-
duction. Samples arrive in a variety of containers. It is time-
consuming and a potential source of error for the operator
to transfer the sample from the original container to one
that is acceptable for automation. The robot, however, carr
be trained to accept a number of different sample trays,
racks, and containers, and introduce them into the system.

Fig. l. !,pical analytical laboratory work volume. (Photo reproduced
with pernission of Scitec SA, Lausanne, Switzerland.)

The second set of tasks for the robot is to transport the sam-
ples between individual dedicated automated stations for
chemical preparation and instrumental analysis. Samples
must be scheduled and moved between these stations as
necessa.ry to complete the analysis. The third set of tasks for
a robot is where flexible automation provides new capability
to the analytical laboratory. There will always be new chem-
ical samples that require analysis steps that have never been
automated. To prototype the automation of such steps, the
robot must be programmed to emulate the human operator or
work with various devices. This last use may require consid-
erable dexterity for a robot. All of these types of operations
are required for an effective laboratory robot.

Additional considerations for a laboratory robot are that it
be the size of a human arm and have the dexterity needed
for interaction with current chemical instrumentation. Inter-
changeable end effectors (robot fingers) are required to al-
low the robot to work with the wide range of existing con-
tainers and consumables used in sample preparation. The
robot should provide a simple and clean work area with no
external wires to catch on glassware or instruments.

Alter evaluating a number of existing robots for this applica-
tion, it was finally concluded that a robot could be designed
that was optimized for chemical sample preparation and
other applications that have similar requirements, as men-
tioned above. The results ofthis analysis are the concept
and design described in this article. The new HP analytical
robot is called ORCA, which stands for Optimized Robot for
Chemical Analysis. Fig. 1 shows it installed on a lab bench.

An anthropomorphic arm mounted on a rail was chosen as
the optimum configuration for the analytical laboratory. The
rail can be located at the front or back ofa workbench, or
placed in the middle of a table when access to both sides of
the rail is required. Simple software commands permit mov-
ing the arm from one side of the rail to the other while main-
taining the wrist position (to transfer open containers) or
locking the wrist angle (to transfer objects in virtually any
orientation). The rectilinear geometry in contrast to the
cylindrical geometry used by many robots, permits more
accessories to be placed within the robot workspace and
provides an excellent match to the laboratory bench. Move-
ment of all joints is coordinated through software, which
simplifies the use of the robot by representing the robot
positions and movements in the more familiar Cartesian
coordinate space.

The physical and performance specifications of the HP
ORCA system are shown in Table I.

A robot alone does not satisfy the needs of laboratory auto-
mation. Besides the physical aspects of the robot, the system
must be able to work with other devices, computers, and
softwaxe. The other m4jor development of the ORCA project
was the control software, which is called Methods Develop-
ment Software 2.0, or MDS. MDS runs on the HP Vectra and
other PC-compatible computers under the Microsoft@ Win-
dows operating environment. It is designed to allow instru-
ments to be added easily to the system. By the use of indus-
try-standard communication interfaces, MDS can configure
devices, and procedures can be developed to control and
collect data from external devices. It is designed to be

Table I
0RCA Robot Arm Hardware Specifications

Arm

Degrees of freedom

Reach

Height

Rail

Weight

Precision

Finger travel

Gripper rotation

Teach pendant

Cycle time

Maximum speed

Dwell time

Payload

Vertical deflection

Cross-sectional
work envelope

Power requirements

Operating
environment

Articulated, rail-mounted

Six

+54 cm

78 cm

l a n d 2 m

8.0 kg

+0.25 mm

40 mm

+77 revolutions

Joy stick with emergency stop

4 s (move I inch up, 12 inches
across, I inch down, and back)

75 crn/s

50 ms typical (for moves within a
motion)

0.5 kg continuous, 2.5 kg transient
(with restrictions)

< 1.5 mm at continuous payload

1 m 2

100V, 120V, 220Y, or240Y (+5o/o,
-1@/o), 350 VA, 47.5 to 66 Hz

5'C to 38oC at 0 to 9fflo RH
(noncondensing)

extensible; new modules can be added to the system at nur
time. MDS is also designed to be remotely controlled by
other programs. This allows the laboratory robot system to
be a server in a hierarchical automation system.

Most previous robots were programmed in coordinate space
with computer-like languages. The HP ORCA system, on the
other hand, is taught by first demonstrating to the robot a
move, using another new development, the gravity-sensing

teach pendant (see "Gravity-Sensing Joy Stick," page 12).
The move is then given an intuitive name, for example
get_testtube. Later, this or any other move can be called out
by name and built into higher-level procedures. Simple to
grasp yet powerful, this concept is easily expanded to con-
trol an entire benchtop oflaboratory equipment. The user is
freed to think about the greater task at hand rather than
specific software details.

Having these components leads to our vision of the auto-
mated laboratory bench. For the first time, it is possible to
provide automation for the analytical laboratory all the way
from sample introduction to the final report without human
intervention. The HP ORCA system provides the physical
glue to tie together the individual chemical instruments as
well as the information or data bus, so that the system can
request, acquire, and distribute information to all components
ofthe workbench.

Jme 1993 Hewlett-Packrd Joumal 7

ORCA System Overview
The HP ORCA system is shown pictorially in Fig. 2, which
shows the m4jor functional blocks. In the broadest sense,
the input to the HP ORCA system is a high-level command,
such as to analyze a dmg (such as aspirin) for purity. Near
the output end, the ORCA electronics deliver strings of mil-
lions of individual millisecond-by-millisecond commands to
the six robot servos. To keep this transformation task from
becoming overwhelrning, it is broken down into manageable
hierarchical levels.

Input to the system begins with a user interacting with the
PC, which is rurming MDS. MDS provides experiment con-
trol through its own programming language. In coqiunction
with other applications on the PC, such as HP ChemStation
sofhware, MDS can also be used for chromatograph control.
MDS consists of a core system, which is used to build and
run reusable tasks called procedures, and one or more
modules. such as the robot module.

The MDS robot module accepts MDS procedure commands
for controlling the robot and parses the commands into end-
points for each of the segments of the robot moves. A typical
robot move might be from a starting point taught to the robot
and named 0verBalance to an ending point named OnBalance.
These endpoints define straight-line segments. The ou@ut of
the MDS robot module, and in fact the output of the PC, is a
string of taught Cartesian waypoints representing the robot
moves, sent every few seconds over €m HP-IB link (IEEE
488, IEC 625) to the kinematics processor.

Analyze
Aspirin

o
o

^l

;.''

The kin'ematics processor consists of software rururing on a
dedicated 68000 microcomputer. One of its tasks is coor-
dination of the six axes of the robot to provide smooth mo-
tion and arrival at the Cartesian endpoints. This is €lccom-
plished in part by interpolation. The kinematics processor
also handles tool offsets, so that, for example, a test tube
can be rotated about its lip hstead of its point of support.
The final function of the kinematics processor is to compute
the acceleration and deceleration profiles and the speed of
each move so that motion is smooth and the axes'speed
limits are not exceeded.

Physically, the kinematics processor shares a cabinet with
the servo power supply. This cabinet has no controls and
can be located out oftle way under the bench. The output
of the kinematics processor is coordinated position com-
mands in joint space for motion along the path, sent over an
R5422 bus to the robot at a frame rate of 25H2.

The last functional block of the system is the joint interpola-
tors, which are distributed throughout the robot. T\e 25-Hz
commands from the kinematics processor a.re coa.rse
enough that they would cause the robot to vibrate and
growl, so instead they are linearly interpolated into 1.25-
millisecond demand signals, which are sent to the digital
servomechanisms.

{continued on page 10)

Joi||r
Microprocessorc

-*'*
f

Processor
I

I
/

Fig. 2. ORCA robot system diagram.

{8lXl Hz}

'll

8 June 1993 Hewlett-PackardJoumal

The HP ORCA System Outside the Analytical Laboratory

There are many applications in industry where the precision of a manufacturing
robot is not required. 0ften, in fact, such robots are genuine misfits. They are
costly, bulky, heavy, and too complex to program for these simpler jobs. The HP
ORCA system, 0n the other hand, is much better suited for these lighter tasks. lt
weighs 1/10 as much as i ts industr ial relat ives. yet is just as rel iable, and i t is far
easier t0 use because i t behaves l ike an appliance or a PC peripheral. The robot
can be connected to a PC, shown a task to do, and put to work without much fuss.

There are numerous small appl icat ions in manufacturing where one might not
normally think of using robots. They include many of the repeti t ive tasks people
now perform in assembly, test, and quality assurance.

At HP, two areas being looked at are instrument front-panel circuit board test and
instrument final test. Fr0nt-panel controls are n0t very accessible electronically,
and typically require human intervention to verify the 0perati0n 0f kn0bs, switches,
and displays. These panels are quite amenable to robotic automation. R0b0tic
f ingers can manipulate controls, and canied sensors can monitor displays. Such
robots fulf i l l a niche in medium-scale assembly, where the number 0f products t0
test is t00 many t0 d0 by hand, yet not enough to just i fy designing, bui lding, and
keeping track of hardlooled test fixtures.

0ther manufacturing uses l ie in assembly tasks for which the HP ORCA system s
0.25-mm precision is sufficient. This rules out board loading and fastener inserting.
0n the other hand, as an assembly operation is studled, it often becomes apparenl
that there are many tasks jn which dramatic savings and quality improvement can
be had through robotics. Two examples are pick-and-place assembly and adhesives
appl icat ion.

The 0RCA group at HP was encouraged when other HP groups came to us and
wanted robots t0 try out. Four early users were in two areas: gas chromatograph
manufacturing at HP's Lit t le Fal ls si te in Wilmington, Delaware, and column manu-
facturing at the Scientific Instruments Division in Palo Alto, California. The following
story relates how the 0RCA/NC lathe project came about at Little Falls.

The 0RGA/NC Lathe Proiect
The 0RCA/NC lathe project, conceived in a typical HP aisleway conversation, was
init iated to address both cunent business needs and visions for the future. A shop
supervisor at HP's Avondale, Pennsylvania Division, where many HP 0RCA system
c0mponents were fabricated and assembled, was able to bait an R&D manager
with the dream of a robot building itself. The manager promptly found a prototype
unit to donate t0 the shop, and an investigati0n 0f potential applications began.
Five months later, the latest-model HP ORCA system was operating an unattended
NC lathe.

Potential shop applications for a small flexible robot included the transfer 0f parts
between hydraulic presses in a sequence of staking operations, the loading of
components on a pneumatic manifold, and the loading and unloading of parts on a
machine 1001, such as a lathe or mil l . The application of the lathe loader was
chosen because it was the simplest in concept. lt contributed to profitability by
using outdated equipment (a ten-year-old lathe) and by reducing the shop cost
driver rate, an important metric determined in part by the total 0f unattended
machining hours.

The experience gained in the lathe loader project was expected to provide a
knowledge base for future projects. l t would help in establ ishing guidel ines, plan-
ning resources, and scheduling more complex applications. Also, an understanding
of the HP 0RCA system s capabilities with respect t0 the fabrication business was
needed. The experience ob.jective was made explicit because other lathe autoload-
ers exist that are more accurate and simpler in design than the HP OBCA system.

The project team consisted of a fabrication process engineer, a t00ling designer,
and a lourneyman machinist. The f irst chal lenge was posit ioning ORCA on the

lathe. We wanted to access the full width of the lathe so we chose t0 bolt 0RCA'S
rail onto the machine bed and operate the robot completely within the lathe
shields. Although the 0RCA rai l ends are outside the shields, this decision meant
that the r0b0t would be operating in an environment with coolant and metal chips.
Since the lathe is still used B0% 0f the time for bar-fed jobs, the robor is protected
when not in use by being parked behind the turret under a plastic bag. 0RCA-
loaded jobs are run without coolant and the robot is isolated from chips by a
telescoping cover that extends over the rail cover.

The 0RCA/NC lathe system includes an OBCA robot, a Hardinge HNC lathe, an HP
Vectra 05/20 PC, and an optointerface board. The custom hardware consists of
four part staging magazines, special grippers for the robot. a V-blocr, ano a sec-
ondary,rai l cover The vert ical magazines are mounted across the lathe bed behind
the lathe turret and hold 75 parts each. The grippers are oriented such that the
axis of the gripped part is perpendicular to 0BCAS twist axis The V-block is self-
centering and spring-loaded, and is mounted on the lathe turret. The secondary
telescoping rail cover is attached to 0RCAs torso casting.

ln one cycle 0f the 0RCA/NC process, running 50 seconds, the r0b0t removes a part
from the magazine, then pushes the part into the V-block and moves t0 a safe posi-
tion. The lathe turret moves so that the V-block stuffs the 0art into the c0llet. The
c0llet closes, the part is machined, the spindle stops, and the c0l let opens. 0RCA
removes the part and drops it down a slide leading to a box of completed parts.

The HP OBCA system and the specialized tooling were set up in a lab for develop-
ment and moved 0nt0 the lathe two weeks before startup. ln the lab, parts of the
overall c0ncept were simultaneously prototyped, then tested together. For exam-
ple. the custom gripper fingers were revised five times. The purpose 0f two 0f the
revisions was to increase the maximum gripping force transmitted to the part.
0RCAs grip had to exceed the holding force of the magazine and V-block by
enough force to pick and place parts rel iabiy.

Critical requirements for success were robustness over time and the ability to run
f0r one shift with0ut operator intervention. Robustness is defined as the ability to
run day after day without a crash or robot recalibration or repair. The applicati0n
ran in the lab for thousands of cycles.

Overall system control is vested in an ORCA MDS program that calls robot subrou,
tines and starts, pauses, and stops the lathe program via the interface board. To
startthe applicati0n cycle, the lathe program is loaded and started, and then the
MDS program is started. The robot positions within the move subroutine programs
were roughtaught with 0RCAs joy-stick teach pendant and refined by keyboard
input. Accuracy and repeatability of the movements were further enhanced by
unidirect ional programming.

The OBCA/NC system is currentlv used t0 machine two brass and aluminum valve
stems. 0nly one part was used in the system's development. The other part was
implemented by the machinist two months after release of the application. ln six
months 0f operation, about 1 6 hours per week, there have been no problems. This
is partially because of the robustness 0f the system and very much because of the
ease of use of the system software.

The 0RCA/NC |athe project met every initial objective, is a good example ofteam-
work, and has become a shop showpiece. The machine shops at Avondale were
bought by two former managers in November of 1 992, when HP moved to Little
Falls. The HP 0RCA system continues to run '16 hours per week at the new company,
American Manufacturing Technology.

Nancy Adams
Manufacturing Process Engineer
Little Falls 0peration

June 1993 Ilewlett-Packard Joumal

Forearm Casting

,

Hand/Gripper Assembly

Elbow Joint

Upper Arm
Casting

Shoulder Joint
Elbow and Wrist

Motor Printed
Circuit Assembly

Torso Printed
Circuit Assembly

Rail Motor

servos, and spread it over the surface ofthe robot, where it
is dissipated by convection. The shells are ribbed internally
for torsional rigidity so that the robot is mechanically sound
with the covers removed, allowing easy service.

ORCA is scaled roughly to the proportions of humans. The
similarity continues with its "muscles"-its motors-which
are physically displaced toward the torso; the elbow and
wrist motors are situated at the shoulder. This reduces the
static moment loads the robot must carry because of its own
weight.

Particular effoft went into refining the hand to cut weight and
bulk to a minimum. One interesting feature is that the axes
that pinch and rotate the fingers are coupled mechanically
and in software. The fingers are mounted to parallel gear

racks, which are opened and closed by spirning a pinion
gear that engages them both. Without coupling, whenever
the flnger bar was rotated, it would wind the finger racks
around the center pinion gear, open the fingers, and drop the

object. The easy solution is to feed a proportional correction
signal to the pinch servo any time the finger bar is com-
manded to rotate; software is cheaper than mechanisms.
Fig. 4 shows the interior of the hand.

Because of the immense advantages of keeping the hand
light and small, gear technology was pushed near its limits.

Forearm Cover

/,

/q,
I f , .1
WJ

Upper Arm
Cover$;

Shoulder Motol
Assembly

Torso
Casting

Chassis

Fig. 3. Exploded view of the robot arm.

Mechanical Design

Robot design benefits greatly from a careful optimization
oflightness, stiffness, speed, and payload. Airplanes seem
almost simpler in comparison, with some being able to carry
100% of their empty weight, compared to l0o/o to 20o/o for
robots.

Playing off against the performance goals were economic
considerations, so exotic materials such as titanium and
carbon fiber were not seriously considered. Further, with
the continuing shrinking of electronics, a decision was made
to imbed much of it in the stmcture itself. This diminished
the payload slightly, but greatly simplified the wiring and
improved the reliability.

The ORCA industrial design achieves other less-tangible goals

with little or no additional expense. It provides a smooth
structure for easy cleaning, accessibility for maintenance, a
compact design for dexterity in tight places, and an attempt
to achieve pleasing lines.

ORCA, unlike any other commercial robot, is an anthropo-
morphic shell or exoskeleton, with its chambers tightly
packed with six axes ofservo control electronics. Fig. 3
shows an exploded view. The shells are of aluminum, cho-
sen over plastics for thermal conductivity. They draw out
what little heat is generated by the pulse-width-modulated

l0 June1993Hewlett-PackardJoumal

Fig. 4. Interior c.rf robot hancl.

Hardened ground gears and tight machining tolerances are
employed to maintain the flve-year minimum lifetime goal
for all mechanisms.

ORCA is supplied rnounted on an optical-bench-style table-
top, which comes in several sizes. This surface forms a
stable platform, and its grid of threaded holes provides con-
venient attachment points as well as reference locations for
instruments and accessories. A Iinear rail assembly is fitted
to either the rear, the front, or the centerline ofthe surface.
The chassis contains the rail motor, which propels the torso
by engaging a steel-cable-reinforced plastic chain stretched
tightly alongside the rail. A simple flat cable similar to that
used in printers also folds into the rail cavity and canies dc
power and the serial ORCA bus, which affords bidirectional
commnnications with the six robot joints.

The most interesting feature of the shoulcler and elbow
joints is their harmonic drive reduction units, shown in
Fig. 5. These drives use a ring gear with intemal teeth,
which engages a flexible inner gear shell. The flexible inner
gear has slightly fewer teeth than the outer rigid ring gear.
For example, in the shoulder reducer, the ring gear has 102
teeth, while the flexible gear has 100 teeth. Lobes inside the
inner flexible gear shell force it into an egg shape and into
contact with the rigid outer ring gear. One rotation of the
Iobe assembly causes the two gears to displace relative to
one another by two teeth, or 2% of one revolution ofthe
flexible gear. Thus the reduction ratio ofone stage is 50:1, or
far larger than that obtainable with a single stage of pinion
gears. Furthermore, since many teeth are engaged, the torque
transmitted can be substantial. Because the engagement is
compliant, harmonic drives exhibit little or no backlash.
They are more expensive, but are common in robots and
other high-peffonnance applications because they perform
better and reduce the total number of parts required.

Proceeding outward towards the hand, the moment in-
creases, and saving weight becomes more and more impor-
tant. Every gram saved becomes a gram ofpayload. Saving
bnlk is of equal importance. The hand, shown in Fig. 4, packs
two servos for rotating the finger bar and changing the grip,
all into a cozy 20 cubic inches. Since the drive train for the
grip extends through the rotating finger bar, commalrds to
these two servos must be coordinated; otherwise, rotating
the finger bar would drastically change the grip on the object
held, as explained previously.

The Kinematics Processor

The kinematics processor is one of the most interesting
blocks of a robot, and gives an insight into how robots work.
Its input is position data received from the PC over the
HP-IB every few seconds, directing the robot to move in a
coordinated nanner from the last Cartesian position to the
next. For example, a command string might direct the robot
to move from coordinates over a test tube rack to coordi-
nates over a balance a meter away. Altogether it looks like a
complicated task, but when broken down into individual
steps it is easy to grasp.

Bobot Joint Space and Cartesian Space. One importalt simpli-fi-
cation in unclerstanding roboLs is to understand the difference
between two different coordinate spaces: the Cartesian space
in which the task is defined, and the robot joint coordinate
space in which ORCA operates.

It takes six coordinates to specifi/ the position and orienta-
tion of an object in space. In our familiar Cartesian system,
these coordinates are x, y, z, yaw, pitch, and roll. ORCA is
fixed in yaq so we restrict our interest to the other five de-
grees offreedom. A sixth degree is added, however, and that
is pinch, to control the fingers. In friendlier terms, we will
refer to these six degrees offreedom as rail (x), reach (y),
height (z), bend, twist, and grip.

Robot joint space is defined as the joint positions of the
robot that must be established to place an object in space
with a specified position and orientation. ORCA has six
movable joints, each controlled by a servo. Setting each of
these correctly will position an object in Cartesian space.
The six joints represent the six degrees of freedom in robot
joint space. They are rail, shoulder, elbow, wrist, twist, and
grip. Note that only rail, twist, and grip are the same in both
coordinate systems.

Part of the reason for belaboring these differences in coordi-
nate systems is that as the tasks of the robot are divided up,
some axe distinctly easier to perform in Carlesian space and
others in robotjoint space. In any case, the transformation
must eventually be made to the joint space coordinate system
to control the robot.

Fig. 5. Harmonic drive reduction unit

June 1993 llewlettj'ackad Joumal 1 1

Gravity-Sensing Joy Stick

What is the most intuit ive way to teach moves t0 a robot? For the HP 0RCA
system, j0y st icks rapidly became front runners. They are portable, al low control
of many degrees of freedom, and combine del icate movements with the capabil i ty
of high speeds.

The problem is that six degrees of freedom need to be taught: rail (x), reach (y),
height (z), bend, twist, and pinch. Two degrees of freedom are easy to master.
Everyone who picks up the joy stick can intuitively fly the robot in traverse and
reach (x and y). The questlon was, "What would be intuitive and affordable for
commanding the other axes?" Shift keys on the st ick housing are common but they
rarely become habitual, and relearning which one to press distracts ones attenti0n
away from teaching the robot.

The HP solut ion is to add gravity sensors t0 the st ick box that sense i ts 0rientat i0n
and dynamical ly reassign the axes, transforming the joy st ick intO a teach pen'
dant. Fig. 1 shows the joy st ick and the sensors. The three mutual ly perpendicular
t i l t switches required to sense the six possible orientat ions are mounted along the
(1 ,-1 ,1), (-1 ,0,1), and (1 ,1 ,1) vectors

Fig. 1. 0RCA robot joy stick and 0rientati0n-sensing tilt switches.

In use, t i l t ing the J0y st ick t0 i ts r ight changes the st ick from cOntrol l ing traverse
and reach to control l ing height and reach. In other words, i f the J0y st ick won't at
f irst bend or move in the desired direct ion, reorient the box so that i t wi l l . Point ing
the stick right, left, towards the user, or even down all have the expected result.
The only exceptions are that wrist twist and bend are control led by p0int ing the
stick away from the operator, and twisting the knob atop the stick always controls
f inger grip. l t 's a teaching system 0ne never forgets. The user moves the robot in
Cartesian space, not robotjoint space, which is a tremendous simpli f icat ion for
the user.

Controlling the Robot. The first step in robot control is to de-
fine the straight line along which the coordinated motion
will occur. This is a matter of straightforwaxd interpolation
in Cartesian space. For example, when the robot is 40o/o of
the way to its destination, the six individual coordinated
degrees of freedom (x, y, z, bend, twist, grip) will each be
40% of the way to their final values. If the final twist of a
pouring operation stafting at 50 degrees is to be 100 degrees,
for example, then at the 40% point, the instantaneous twist
command will be 70 degrees.

The second step is to compute the velocity and acceleration
profiles so that the robot will accelerate up to speed, tra-
verse a distance, and decelerate and smoothly stop at the
end of the move. Here the task is twofold. One is to allow
the MDS software to control the speed of the move. The
second is not to exceed the hardware performance limits of
any robot axis. This situation arises because an articulated
robot like ORCA is capable of much faster speeds in some
directions and portions of the working space than in others.
For example, if the arm is fully outstretched it can move
vertically very rapidly, but if commanded to move inward
towards the torso, its speed is limited for a moment as the
elbow tries to accelerate vertically to infinite velocity. The
HP ORCA system avoids such situations by limiting the
velocity and acceleration to the lower of two numbers: the
command from the PC or the limits of the joint servos.

The kinematics processor code is mathematically intensive

and requires a fairly powerful 16-bit microprocessor. The
processor has quite a number of tasks to perform in addition
to computing waypoints along the straightJine trajectory
between the robot's initial and final positions. It takes the
processor 40 milliseconds per walpoint to complete all of
its computations and tasks. Thus the determination of
where the robot should be is not continuous at this point but
periodic, and the period is relatively long. However, this is
just an intermediate step in the control process. The infor-
mation is still in the wrong coordinate system and is far too
coarse for smooth motion control of the robot.

Immediately after computing each coarse Cartesian way-
point (every 40 ms), the kinematics processor converts the
point into robot joint space coordinates. The x coordinate is

easy to transform since it is the same in both spaces; the
robot merely moves a certain number of millimeters down

the rail to the new x coordinate. The same is true with grip

commands to the gripper. The y (in and out) and z (height)

coordinates are slightly more contplicated to transform, and
use trigonometry to compute the shoulder and elbow joint

angles in robot space. The wrist joint is not a factor if it is
kept horizontal; its angle bears a simple relation to the
shoulder and elbow joints.

In addition to transforming the walpoints from Cartesian
space to robotjoint space, the kinematics processor also
applies the tool offset parameters, if there are any, so that a

test tube can be rotated about its lip instead of its point of

support, for example. The kinematics processor outputs a
joint-space vector every 40 ms and sends it to the six joint

servos for [urlher processing.

,.i::ll::l?!

. : : :1 , : l i * .

.r,::l::i::i:.

:,, 'r:. t-

L,:,::.,.

i , i
' : i ,
, i : l l i
1r ,:: .

r. i i :1,::,
. , l . l l : : l:rlta::

' I
, 1

12 June i993 Ilewlett Packard Joumal

Joint Servos. TWo wires of the four-conductor ORCA bus that
snakes through the robot carry the serial RS-485 joint com-
mands to the joint servos, which are embedded in the robot
shell. The other two conductors carry uruegulated 32V power.
The data stmchrre sent over the ORCA bus is shown in Fig. 6.
Each pair ofjoints is serviced by a microprocessor which
strips off its command from the bus at 40-ms intervals. After
each joint's two-byte position command is sent, an idle space
is provided for the joint to send back its position and status.

The fourth step in the robot control process takes place in
the joint microprocessors, which further interpolate the
40-ms interval down to 1.25-ms position demands for the
joint servo. What is the purpose of all this interpolating? If
the 40-ms points were sent directly to the servos, the robot
motion would be jerky. Yet it is uneconomical to generate
them faster than 40 per second; that would take an unneces-
sarily fast kinematics processor and would take up too
much bus communication time. There is an easier way to get
the fine increments to send to thejoint servos to ensure
smooth motion. This interpolation step is the task of the
joint microcomputers, which divide the motion down into
1.25-ms intervals. This interpolation produces smooth, non-
jerky robot motion by keeping the step noise at a frequency
well beyond the passband of the robot servos.

This is a particularly easy interpolation to accomplish, since
the number of steps chosen, 32, is a power of two. Interpola-
tion then consists of subtracting successive positions, divid-
ing the difference by 32 (a right-shift of a binary number by
5 bits), and successively adding that quotient into an accu-
mulator initialized to the starting servo demand position.

A consequence ofthis design expedient is that the robot
actually moves in slight scallops, 40 ms long, since a straight
line in robot joint space is curved in Cartesian space. How-
ever, these deviations are on the order of thousandths of an
inch and are insignilicant.

The remaining task performed by the joint microprocessors
is to close the digital servos at each joint. These servos use
incremental encoders, dc motorns, and pulse-width-modulated
amplifiers-technology borrowed from HP plotters. 1 Briefly,
each joint demand position is first subtracted from the actual

position of that joint to generate a position error value. The
servo motor is then commanded to move at a velocity pro-
portional to that position error, with the velocity and posi-
tion of the joint servo motor being derived from the incre-
mental encoder. Since each joint position is fed back to the
PC, the control software lcrows if the robot has bumped into
anything, and can also employ integral control to correct
small errors such as sag of the arm caused by the influence
of gravity.

A new HP technology introduced in the HP ORCA system is
digital absolute position encoding (see "Absolute Digital
Encoder," page 14) at each of the m4ior joints. Its purpose is
to allow the mechanism to ascertain its position when first
powered up.

Application Development Environment
Although clearly the most conspicuous element, the robot is
but a piece of a total automation system that also involves
controlling and collecting data from analytical instmments
and common laboratory devices, such as pH meters and
balances. The HP Methods Development Software (MDS),
written to address this need, provides a development envi-
ronment for creating automation systems with laboratory
robotics. MDS runs under Microsoft Windows on an HP
Vectra or other PC-compatible computer. This choice was
based on users'preferences for a PC-based system, compati-
bility with HP ChemStations, and the features that Microsoft
Windows provides for a multitasking gfaphical user interface.

The targeted customer for MDS is a laboratory robotics ap-
plication developer, gpically an analltical chemist with
instrumentation and BASIC programming experience. These
developers create applications that a technician mns and
monitors. Robotics programming has to be presented in a
conceptually simple format that makes it easy for the chem-
ist to create tasks, which can then be combined to form an
application.

Again, the differences between the use of a robot in the lab-
oratory and the manufacturing environment were considered.
Whereas a manufacturing robot is typically programmed to
repeat a small set of tasks in a world that can often be

32V Power

Response Slots

= E
6 E

EI

gE
E F

-oa
EE
tr3

ze
iE

a

. E E
F O

E

9 G

4 3

o

€ =
e E

E
o

E

r,w Fig. 6. ORCA bus and data
structure.

June 1993 Hewlett-Packard Journal

40-ms Frame Period

l3

defined with information from CAD drawings, a laboratory
robot is used to perform a wide variety of tasks in a world
where very little predefined lcrowledge is available. The
laboratory robot must be taught how to interact with test
tubes, vials, racks, balances, and other instruments.

Teaching a robot all ofthe individual positions and trajecto-
ries it must follow for every step in a laboratory application
would be very time-consuming and tedious. The teaching

process can be greatly simplified by providing a mechanism
for teaching small manipulations instead of individual posi-

tions. These small manipulations can be used (and, most
important, reused) as building blocks. This idea led to the
concept of a robot moti,on. A motion in its simplest form is a
sequence of robot positions. The motion is taught interac-
tively using a special motion editor and the robot teach pen-

dant. The motion is given a descriptive name, which is used
in a program to have the robot execute, or move through,

Absolute Digital Encoder

The HP 0BCA robot uses digital servos with incremental encoders. which need to
be initialized when the robot is first turned on. Many digital servo products, such
as plotters and impact printers, can initialize themselves by traversing t0 the ends
of each axis. For many other applications. such as, for example, car seats with
memory robots, or machine t0ols, this expedient is either impractical or risky. one
s0luti0n is to add a potentiometer. but this carries a cost, complicates the wiring,
and is incompatible with leadscrew drives.

The encoder developed for the HP ORCA system is a small package less than 1 cm
thick, which fits at the rear of the motor ahead 0f the incremental encoder. lt uses
a system of permuting gears, whose phases are measured to ascertain m0t0r
revolution number. Fig. 1 shows the encoder mounted t0 a servo m0t0r, with its
housing cut away to show the gears.

4 4 r ^ ^ r L - ^ - L : - ^ . ^ l - i , , ^ ^ l ^ ^ + : -
l l l p l a c U c e , a L e l l t e l g e a t d l l u d U d l l S l c l g c d l w l U l z J L t s u u l u u l l l u l l l t s t u u l l v v p l d i u u

satellite gears with 24 and 25 teeth. In operation, as the m0t0r turns, the satellite
gears gradually fall farther and farther behind the drive gear. Thus, as the motor
continues t0 spin, the gears g0 through a lengthy list of combinations of relative
angles. This effect is shown in Fig 2 for the first two rotations, an arbitrarily large
number 0f rotations. and rotation number 599 where the cycle is nearing comple-
tion. lf the gears have numbers of teeth that do not have common multiples, then
the cycle is unique and does not repeat until 24x25 = 600 revolutions have occuned.
Since this is more revolutions than ORCA requires to traverse any axis, any gear
orientation conesponds to one unique revolution number and therefore one unique
robot axis position. The gear phases are measured by shining light from LEDS
through slits in the gears and 0nt0 optosensors.

In use. the signals from both the absolute and the incremental encoders are routed
via a ribbon cable to each conesponding joint microcontroller, where a simple
algorithm based on modulo arithmetic is used to convertthe phase measurements
into a revolution number When each servo wakes up, its joint motor rotates one
revolution and stops. This produces a slight motion, and in milliseconds the micro-
controller knows the absolute position. HP is interested in exploring commercial
applications for this or binary versions of this component and techn0logy.

Fig. 1. R0b0t p0sition encoder mounted on a servo motol

Rotation fll

Rotation #1

Rotation #2

Rotation #195

(e) Rotation #599

Fig. 2. Absolute digital encoder operation.

(a)

{b)

{c }

{dt

14 June 1993 Hewlett-Packad Joumal

the sequence of positions. In MDS, the program is called a
procedure. Procedures are used as building blocks to connect
robot actions with control of other devices and instruments
into higherJevel ta.sks. Procedures can call other procedures,
much like a subroutine call in BASIC.

The concept of a motion was generalized to be an abstract
execution object, which led us to consider other tlpes of
objects that could be provided to simplify robotics pro-
gramming. These types include:

. Tool. Defines the endpoint of the robot arm.

" FYame. Defines a frarne of reference for a motion.
. Motion. A sequence of robot positions.
n Rack. A rectilinear array of positions (similar to a pallet).
n SyrconJig. A configuration for a syringe pump dispenser.
. Procedure. The basic programming unit.
. Device. A configuration for an RS-232 or HP-IB device.

The metaphor used to create and store these objects is that
of entries in a dictionary. Motions, racks, tools, frames, syr-
configs, devices, and procedures axe all types of entries that
can be created. An entry is an execution object, and a dictio-
nary is a file that holds the entry objects. Users create and
name entries, and save them in a dictionary. Each entry type
has its own special editor, or form, for defining or teaching
the entry. Entries can be used as commands (motions and
racks), or as modifiers of entry commands (tools and
frames).

For example, the following procedure statement will exe-
cute a motion PickUpDispenserNozzle using a tool offset defined
by the tool NozzleGripper and referenced to a frame NozzleStand:

PickUpDispenserNozzle WITH NozzleGripper AT Nozzlestand

The frame and tool that a motion uses can also be attached
to the motion from within the motion editor, and may provide
defaults for the motion to use when it is executed. The use
of Iong (31-character) names and the command modifiers

WITH and AT provide a very natural-language-like look to pro-
cedure statements for robot control and help the procedure
code to be self-documenting. The use of longer names is
simplified and encouraged by providing a variety of selec-
tion, copy, and paste features in the user interface, which
reduces typing and programming errors that arise from
typing mistakes.

MDS allows two dictionaries for editing and execution of
entries: a user dictionary and a master dictionary. When an
entry is referenced in a procedure statement, the user dic-
tionary is searched first, and allows redefining entries that
are in the master dictionary. Although developers are free
to choose their own guidelines, the master dictionary is
recommended for saving entries that are to be used across
multiple applications and the user dictionary is generally
application-specific.

The user interface for selecting entries to edit and for general
browsing of the dictionaries is the MDS dictionary manager
window (see Fig. 7). This window is the main user interface
to MDS, and provides access to administration utilities, dic-
tionary and entry manipulation, and selection of various
views for the entry listings. Double clicking on an entry
narne presents an entry information dialog box, which in
turn allows access to editing, execution, or printing of the
entry. Keystroke accelerators are provided for quick access
to common functions, such as editing and execution.

The dictionary manager also provides a command line, with
history for execution of commands. MDS supports the con-
cept of a live command line, from which a user can execute
anything at any time. The new execution preempts current
execution. This feature is used most often to access or
change the value of a variable quickly, and to execute proce-
dures to correct problems when the application is paused.

Fig. 7. Methods Development
Software (MDS) development
envrronment.

GET_THIMBLE_FROM_SFE
User: sfe_prep Vlew: All l-0r 3l

l-0l,fl vlaltareM=o ! Empty wt ol curl'l-0151
vlallulMrt=0 | full wt of current

I -0 I 6l vialcount=0 lcurrent 2ml vial in

Entry Edit eontol Ieach Vlew Dontchange EattRobot!
Rslatiw Tool-Point Position:

Rail Roach Height
-102.5{ -50.03 -0,57

Edit Position:

8,XlTf "''
Relalive

June 1993 Hewlett-Packad Joumal l5

Program (EXE)
(Hidden)

uy[d i l [u L i l r i uurdr t

(Drrl

MDS Message Links

Variables that axe defined exist until they are explicitly re-

moved. These features give MDS an interactive feel, and

allow the creation and testing of an application in terms of

small units.

The other main user interface window is the MDS monitor
(see Fig. 7), which shows display output from procedure

statements and provides execution control and debugging

facilities. Debugging facilities include execution stepping,

tracing, and logging display output and errors to log files. A

variable-watch window, which can be used to monitor the

values of variables as they change, is also provided via the

MDS monitormenu.

The procedure editor is the other most commonly used ele-

ment for developing an application. Each procedr.ue is edited

within its own window. Multiple edit sessions are possible,

and text can be copied and pasted between them. The pro-

cedure editor also allows execution ofthe entire procedure

or any highlighted text. This feature allows quick and simple

testing ofstatements and procedures. The procedure editor

also provides direct access to other types of entry editors,

including other procedures. For example, the user need only

double click with the mouse to highlight the name of a pro-

cedure, or other entry and press Gtrl+E to access the editor

for that entry. The procedure editor's features encourage the

use of small procedures that can be easily tested to become

building blocks for higher-level procedures and enhance the

interactive feel of MDS.

MDS Architecture

In addition to supporting the features described in the pre-

vious section, MDS is designed for extensibility. Because of

the wide-ranging nature of laboratory robotics, and because

it is a developing field, the types of instruments and objects

16 June 1993Hewlett-PackardJournal

Fig. 8. MDS architecture.

with which the robot must interface cannot be predefined in

the softrarare. Thus the software has to be both configurable

and piecewise upgradable. The software also has to support

multitasking of execution and simultaneous editing and pro-

gramming during execution. These requirements suggest a

modular design, with several prograrns that interact with a

defined protocol. Fig. 8 shows the MDS architecture.

The design of MDS is based on a core system that can be

enhanced by the addition of software modules. It is imple-

mented as several Windows progr€uns that communicate

with a set of MDS messages, and a set of Windows dynamic

link libraries that provide the basic "glue" for the architec-

ture. In Windows, the use of dynamic link libraries allows

sharing of common code and sharing of data between pro-

grams. MDS takes advantage of dynamic link libraries for

both of these purposes. Since Windows itself is implemented

as several dynamic link libraries, the various programs that

make up MDS do not have to include code for the windowing

interface. Run-time memory requirements are also minimized

by taking advantage of Windows memory management facil-

ities that allow code segments and data to be marked as

load-on-call and discaxdable.

An important design rule for MDS was that no data structure

definitions could be shared between the programs and dy-

namic link libraries that make up MDS. This nrle allows MDS

to be truly modularized so that parts of MDS can be modi-

fied without affecting or requiring changes to other parts. A

direct benefit was that it enabled the core system to be de-

veloped in Palo Alto while the robot and dispenser modules

were developed at the Avondale site, 3000 miles away.

I

l-:l- .i:l
I . . i i . . . , , : , , i r . . ' . r : .1

l l.. ' .".rr:,:. ::' l

--.

-

Instead of data structures being shared, a set of data objects
were defined and supported with calls to access their prop-
erties. These data objects are supported within dynamic link
libraries, which provide the function call access, and which
"own" the data and allow it to be shared. For example, the
MDSDICT dS.namic link library supports the dictionary and
entry objects, the MDSCFG dynamic link library suppofts
the configuration and module objects, and the MDSCPLIB
dynamic link library supports objects used for execution.
The use of the dynamic link library's local heap for allocating
the objects compensates for the performance penalty of the
overhead ofthe calls to access the object data. Handles to
the objects are passed among the MDS programs using MDS
messages, which specifii an action to take with the object.

Certain objects and their corresponding calls and messages
are considered "core-only" property. Modules can only ac-
cess information in these objects using an intermediary ob-
ject that can be properly shared with modules. For example,
the entry and dictionary objects are core-only, so an entry
edit block object is used to create and edit an entry object
and is accessible by modules. Even in this case, though, not
all of the object's properties-its corresponding entry and
dictionary for example-are accessible by modules. These
properties can only be set by a part of the core (the module
m:urager or browser in this case).

MDS modules extend the functionality of MDS by providing
support for new entry types and commands. Currently, there
are three modules available: the MDS system module, the
ORCA robot module, and a dispenser module that supports
the HP 1243A syringe pump dispenser. The system module is
different from the other modules in that it is an integral part
of the MDS core, while the other modules can be optionally
configured to mn as part of MDS. Modules are responsible
for the control of their respective hardware and entry editorc,
and for execution of the commands and functions that they
register with MDS. Although the current modules all support
hardware, modules can be written simply to add commands
or other functionality to MDS, such as interfacing with
another software package.

MDS Gore. The MDS core system consists of the module
manager MDS.EXE, the browser MDSUSER.EXE, and the
executive MDSEXEC.EXE (see Fig. 8). The executive in turn
supports the MDS command processor MDSCPEXE as a sep-
axate prograrn that it manages. Three dynamic link libraries,
MDSCFG.DLL, MDSDICT.DLL, and MDSCPUB.DLL, complete
the MDS core.

The module manager is the main MDS program. Its window
appears only momentarily to show booting information, and
is then hidden. The module manager acts as the main gate-
way for all MDS messages. It is responsible for maintaining
the configuration of MDS modules (via MDSCFG.DLL) and
dictionaries and entries (via MDSDICT.DLL). When MDS
boots, the module manager reads configuration information
from the MDS.INI file, and executes the module programs
that are to be activated. Modules dynamically register their
entry type and keyword information with the module man-
ager at boot time. The module manager also supports dia-
Iogs for modifying the configuration, and for creating and
saving entries.

The browser is the main user interface for MDS. Its window
title is MDS Dictionary Manager, because that is how it appears
to function to the user. Internally, however, it is not the dic-
tionary manager; it serves only as the user interface to the
module manager, which is responsible for maintaining dic-
tionaries. This distinction between how a user views MDS
and how MDS is implemented internally was important for
maintaining a consistent internal design. The browser win-
dow provides the command line and a listing of entries de-
fined in the selected dictionaries. The browser also supports
the server portion of Windows dynamic data exchange
(DDE) for MDS.

The executive provides the other window into MDS, the MDS
Monitor window, which displays output from procedure PRINT
statements. The executive also manages the MDS command
processor and provides the user interface for execution
control and debugging facilities.

The MDS command processor is responsible for procedure
and text execution. AII execution begins as text execution
(from the command line, a procedure editor, or remote DDE
execution), which is parsed and executed the same as a pro-
cedure. The syntax for the MDS procedure language is
based on the HP ChemStation macro language (which is
BASIC-like) with a number of enhancements.

Among the enhancements are support for the MDS entry
concept and a PABALLEL command. The PARALLEL command
allows procedures to be executed in parallel, sharing the
same global s;'rnbol table and dictionaries. A set of com-
mands for synchronization ofparallel execution is also pro-
vided. This multitasking feature is used to increase the over-
all throughput of an application. For example, a procedure
that tares a balance can be done in parallel with another
procedure that uses the robot to get a beaker for weighing.
When a PARALLEL command is executed, a new instance of
the MDS command processor is run. Because Windows
shares code segments for multiple instances of the same
prograrn, the command executes quickly, and the demands
on memory are limited to the additional data segment for
the new instance.

The MDS command processor parses and executes each line
of a procedure at run time. An execution block object is
used to pass execution information between the command
processor and the modules during execution. Parameters to
module commands are preevaluated for the module and
passed on a shared stack object, whose handle is part ofthe
execution block object.

An important part of automation is the ability to detect and
recover from error conditions. MDS supports the 0N ERR0B
statement, which specifies an error handling procedure to
call. Through the use of a RESUME statement, the error han-
dler can propagate the error back (RESUME EXIT), fix and
retry the statement (RESUME RETRY), skip the statement
(RESUME NEXT), or have the user decide (RESUME ALERT). The
automatic error handling can be disabled, so that an error
dialog box is always presented to allow the user to decide
what action to take. The user can execute new procedures
to fix the problem and return the application to a continua-
ble state. This feature is particularly helpful during develop-
ment ofthe application, and reduces the need to abort and
restafi an application when something goes wrong.

June 1993 Hewlett-Packrd Jomal 17

User: sfe_prep View: All

Entry Edit Gontrol Ieach View Dontchange llaltRobot!

Rail Reach Height Bend Twi6t Grip Speed

| 7 . 3 8 - 2 4 9 6 2 6 0 5 0 0 0 0 0 0 0 0 0 1 0 0

Edit Posit ion:

EDtry Edit gontrol Ieach View EaltRobot!

mi,",@EGatr,rl

Rsck S '1e
-_ lT Fe ls tve I oo l Porn t Pos i l ron

Rows co ls I Ra i l Reach He ighr
1 0 x 5 l - s 0 8 1 2 4 . 8 1 2 8 0 3

xF] @__l til l T-- l

Curren t Too l :

Curent Tool Point Offset (cm):

X Y
0 0 0 0 0 0 B

Edir Ofiset:

Fno--_l flg l F oo l

n^.
(,1P1
HP. .

Chonsblid

MDS System Module. The MDS system module provides sup-
port for procedures and devices. It is a "core-smar1" module

in that it uses certain calls and messages that are considered

core-only. For this reason, it is usually thought of as part of

the core system. Also, it is not a true module, in that it only
provides for the creation and editing of procedures and de-

vices. Procedure execution is handled by the MDS command
processor, which is maintained by the MDS executive. Device

entries are used in procedures, so their execution is also

handled by the MDS command processor.

Dispenser Module. Liquid handling is impofiant in many labo-

ratory robotics applications. Solutions must be prepared,

filtered, ar.rd extracted. The use of liquid dispensing in com-

bination with a robot and a balance allows the gravimetric

preparation ofsolutions, eliminating errors that often occur

with the more traditional volumetric methods.

The dispenser module supports the syrconfig entry type, and

control of the HP G1243A syringe pump dispenser. A sy'rcon-

fig specifies which syringe to use, the syringe size, and the

dispense speeds. An AutoFill feature allows the user to set

levels at which a syringe will automatically refill. When en-

abled, this feature eliminates the need for the application to

keep track ofsyringe levels, thus reducing procedure coding.
The dispenser module also registers a set of commands that

are used -sitl.. the syrconfig entry to dispense and fill liquids.

The dispenser module is implemented as a single program.

For example, the following statement will dispense 10 ml of

Iiquid using the syringe specified within the syrconfig Buffer:

DISPENSE 10 ML Buf fe r

With AutoFill enabled within the Buffer syrconfig entry, the

syringe will fill and empty until 10 ml are dispensed, using

the volume setting in the entry as a guide. During the fill ancl

empty cycles, a valve is automatically switched so that fill-

ing is done from a reserwoir and emptying is done out

through anozzle.

18 June1993llewlelt-PackardJoumal

Fig. 9. Robot, motion, rack, attcl

tool cclitors.

Robot Module. The robot module supports the HP GIZUJA

ORCA robot. The robot module provides the tool, frame,

motion, and rack entry types, and a set of commands and

functions for explicit control of the robot arm. The main

robot window presents current robot position and status

information, and provides access to calibration and entry

edits (see Fig. 9). Multiple editors can be opened at any

time, and positions can be copied and pasted.

All ofthe robot entry editors except for the tool editor are

used interactively with the robot and its teach pendar-rt. The

user can also manually enter position information. For ex-

ample, the motion editor presents a form for recording a

sequence ofpositions. Pressing the remote teach pendant

Enter key automatically records the current robot location as

the next position in the motion. The motion editor allows

setting force (grip) and torque (twist), as well as speed for

individuat steps in the moti<,rn. These parameters, along with

a reference frame and tool offset, are called motion attri-

butes. Another attribute, Don't Change, can be applied to indi-

vidual a-xis values, and indicates that the axis value does not

change for that position, no matter what value might have

been taught. Once taught, positions in a motion can be

rearranged or copied between motions. A motion that is

used to pick up an object can easily be reversed and saved

as a motion that replaces the object.

A rack is defined by teaching two cor-ner locations and an

access location, and by entering the number of rows and

columns for the rack in the rack editor. Once defined, the

desired rack location, or index, is specified as a parameter

to the rack name in the command to move the robot to that

rack access location. By teaching a rack with respect to a

three-point frame, the rack can be accessed in viftually any

orientation, with the robot bend and twist axes changing to

reflect the new access angle. A hand-reference mode of

teaching, by which the bend is locked at an angle petpendic-

ular (or parallel) to the rack surface, greatly simplifies

teaching access to tilted racks and centrifuges.

The robot coordinate system is presented as a Cartesian sys-
tem with additional bend, twist, and grip axes. The robot
module provides the frame and tool offset transformations
for motion and rack positions. The conversion to joint values
and the straight-line trajectories are all computed in the robot
kinematics processor. When executing a motion, for example,
the robot module applies the frame and tool offsets to each
position in the motions, convefting these values into absolute
positions to send to the robot kinematics processor.

Use of Other Laboratory Equipment
A critical requirement for the MDS software is that it be able
to support common laboratory devices through standard
interfaces. MDS supports control of HP-IB (IEEE 488) and
RS-232 (COM) interfaces using the device entry type and
procedures written to use the devices. The device entry type
provides a simple form for assigning the address, COM port
parameters, and buffer sizes. The MDS procedure language
suppofts using the device entry name in place of a file name
in the BASIC-like 0PEN statement. This allows the BASIC
examples included with most manufacturers'instmments to
be easily incorporated into MDS.

Dynamic Data Exchange (DDE). Early in the project we envi-
sioned MDS as being the master controller of the robotics
bench. As the project progressed, it rapidly became evident
that MDS must also be capable of being controlled by other
applications and must be able to exchange data with other
applications. High on the list of other applications were the
HP family of ChemStation products and software provided
by other manufacturers for instruments that HP does not
provide.

Windows dyrramic data exchange (DDE) was chosen as the
mechanism for the control and exchange of data. DDE al-
lows Windows applications to control and pass data using a
clienVserver model. MDS supports DDE in both client and
server modes. The DDE client support is handled by a set of
commands that allow developers to add DDE to their appli-
cation at a very high level. MDS handles all of the low-level
details of the protocol. The DDE server support is handled
by the MDS browser and command processor, and allows
remote execution of any block of text that follows MDS
command sy'ntax. AII MDS variables are accessible via DDE,
both for setting and requesting values. In addition, MDS vari-
ables can be put on advise, or "hot-linked," which means
that the client application is notified whenever the variable's
value is changed.

By supporting DDE, MDS is able to interact with a wide vari-
ebr of software that runs under Windows. Features that MDS
lacks, such as database management and report processing,
can be provided using software designed for that purpose,
using DDE as the connection with MDS. Another example is
the use of HP ChemStation software with MDS. Using DDE,

MDS is able to instruct the ChemStation to load and run
methods for samples that the robot has prepared and placed
in the chromatograph's injector. The use of DDE to integrate
MDS with other Windows applications provides a new level
of systems automation for the analytical laboratory.

Conclusion
The HP ORCA hardware and software provide a robotics
system that is easily adapted to the needs and requirements
of the analytical laboratory. The use of a gravity-sensing
teach pendant, in co4iunction with a graphical user inter-
face, provides an intuitive and simple means for program-
ming the robot. Supporting both client and server d5mamic
data exchange, the HP ORCA system can be fully integrated
into the information flow as well as the sample flow of the
analytical laboratory. Applications outside the analytical
laboratory are also easily found (see "The HP ORCA System
Outside the Analytical Laboratory" page 9).

Acknowledgments

The ORCA project involved an extraordinary amount of
cooperation between groups at HP Laboratories and the
automated chemical systems prograrn at the HP Avondale
Division (now at HP's Little Falls operation in Wilmington,
Delaware), along with valuable input and support from HP
Analytical Products Group management and the field engi-
neering force. The authors enthusiastically aclmowledge the
numerous outstanding contributions made along the way by
many indMduals as the HP ORCA system emerged from a
feasibility study and grew into a product. The HP Labs con-
tributors included John Michnowicz (department manager),
Miles Spellman (kinematics software), Jim Young (torso and
product design), Stu Lerner (arm and finger mechanics),
Carl Myerholtz (bus and joint sewos), Andrew Stefanski
Qoint refinement and kinematics), Hans Neumann (arm and
hand mechanisms), and Bob Widmayer (digital servos).
Many valuable discussions were had with indMduals who
had worked on HP plotter technology.l The Avondale R&D
team, led by Greg Murphy, included Eric Park (mechanical
design), Gil Siegal (kinematics softwa.re), Phil Fuhrman
(servo electronics), Dave Clouser (robot module), and Jeff
Griffith (dispenser module). The manufacturing engineering
team included Andrea Morris (hand), Dan Liszewski, and
Bill Boyd. Marketing people who were key in shaping the HP
ORCA system's feature set are Mark Shuman, Bill Berry,
John Rollheiser, and John Poole. Lastly, special thanks to
upper management for their support of the ORCA project.

Reference
1. W.D. Baron, et al, "Development of a High-Performance, Low-
Mass, Low-Inertia Plotting Technologr," Heulett.-Packard Jout-na|
Vol.32, no. 10, October 1981, pp. 3-9.

Microsoft is a U.S. registered trademark 0f l\,4icr0soft Corp0rati0n.

June 1993 Hewlett-Packad Joumal 19

HP OpenODB: An Obiect-Oriented
Database Management System for
Commereial Applications
The functionality of object-oriented technology and basic relational
database features such as access control, recovery, and a query language
are provided in HP Open0DB.

by Rafrul Ahad and Tir-fing Cheng

HP OpenODB is an advanced object-oriented database

management system (ODBMS) that is designed to support

complex commercial applications. Commercial applications

require support for large numbers of concurrent userc, many

short transactions, security and authorization procedures,

high availability of information access to other databases,

and high Lntegrity. HP OpenODB is a hybrid ODBMS that

.combines several years of research and development on a

database object manager with a decade of investment in

relational database technology. This powerful combination

brings the two pieces that make up an object together in an

ODBMS. It also enables a smooth evolution from, and coex-

istence with, a relational database management system

(RDBMS).

In the current release, all of HP OpenODB's stored data is

managed by ALLBASE/SQL which is HP's ANSI standard

relational database and is tuned to be the fastest RDBMS on

HP platforms. The HP OpenODB object model is imple-

mented by an object manager which provides unlimited

user-defined types of information. HP OpenODB is designed

to port easily to other RDBMSs.

HP OpenODB is well-suited for applications with one or

more of the following characteristics:
. Complex and varied data stmctures
. Various data formats
. Access to data stored in different systems
r Constantly changing environment
. Multimedia storage and manipulation
. Multiuser access to information.

This article will describe the features and the software

architecture of OpenODB and the object model provided in

OpenODB.

Product Features

OpenODB's object-oriented features help reduce develop-

ment and maintenance costs by allowing the developer to

model business problems more intuitively. These features

can be divided into the following categories:
. Tools that allow developers to use object-oriented modeling

techniques to build a database

. Programmatic capabilities that allow storing code in the

database and interfacing to external functions that support

access to external data and preexisting applications
. Run-time performance features such as Iate binding and

schema modification
. Access control and data integrity features.

Obj ect-Oriented Modeling

The features in this category allow users to use OpenODB

objects, types, and functions to model the attributes, rela-

tionships, and behavior of things in the real world.

Obiect ldentity. Each object stored in OpenODB has a system-
provided unique handle called an object identifier (OID).

OIDs reduce duplication of information and relieve the de-

veloper of the need to create unique keys to identify stored

information in the database.

Gomplex Obiects. Complex objects can be constmcted from

simpler objects. Complex objects relieve application code of

the need to manage the relationships between simple objects.

Beferential Integrity. Since OpenODB lcrows about the rela-

tionships between objects, it can manage referential integ-

riW. With this feature, if objects referenced by other objects

are deleted, the system removes all dependencies. The user

can speciff whether or not to cascade changes orjust to

delete the immediate dependency. For instance, if manager

Al supervises employees John, Mary and Joe, and employee

Joe is deleted, function call Name(Manages(:Al)) will return just

John and Mary. The result is a simplified database schema

and simplified application code that can be developed more

quickly since the user does not need to manage referential

integrity explicitly.

User-Defined Data Types. Users can construct user-defined

data types in OpenODB rather than having to do it in the

application code.

Type Hierarchy. \pes can be organized in a hierarchy. This

hierarchy of types and related functions allows users to mini-

mize the translation from a business model to an OpenODB

schema. The hierarchy also enables a type to inherit func-

tions defined on paxents, eliminating duplication of functions.

20 Jue 1993 Hewlett-PackardJoumal

Multiple Inheritance. Functions defined on a type can be
inherited by one or more subtypes. By inheriting rather than
redefining functions, developers can easily extend the func-
tionality of an application by reusing existing functions.

Overloaded Functions. Several functions can have the same
name with different implementations. In an application, all
that is needed to do is to call a function (e.g., Salary). Open-
ODB will determine which code (salary for employee or
salary for manager) to execute based upon the parameter
passed at run time. As a result, application code is simplified
since the logic for determining which function to execute is
in OpenODB.

Dynamic Typing. An object's types can be dynamically
changed without having to destroy and recreate the object.
This is possible because an object can belong to more than
one tJ4)e.

Encapsulation. OpenODB supports the combination of data
and user-defined functions. Since OpenODB only allows
access to data through these functions, an application is
protected from changes to the function implementation
and the user has control over how to access information
in OpenODB. Encapsulation allows modification of the
function body without changing application code.

Programmatic Features
Procedural Language. OpenODB provides the language
OSQL (Object-Oriented SQL), which is based on SeL. OSeL
includes programming flow statements, including IFIIHEN/
ELSE, F0R, and WHILE. This procedural language allows Open-
ODB functions to be quite complex, simplifying application
code. Also, application code can be moved into the data-
base, allowing applications to share code and get all ofthe
benefits of sharing data. The code is tightly coupled with an
object type, and OpenODB manages the integrity of the code
and its associated type. This is one ofthe features that dis-
tinguishes OpenODB from more mature database architec-
tures in which all of the application code is located in the
application (see Fig. 1).

External Functions. Using external functions, distributed data
and code stored outside of OpenODB can be accessed, re-
gardless of data format or location. This simplified view of
an enterprise allows programmers to develop complex ap-
plications that integrate existing data and applications more
easily. For instance, a programmer can develop an OpenODB

File Based l{etwork Relational

Unique Code

Unique Code

195lls to 1960s

application that accesses data stored in other databases
(e.9., ALLBASE/SQL, T\rrbolmage, or DB2) as well as data in
flat files. OpenODB acts as an integrator so that an applica-
tion just needs to know OSQL. OSeL statements can call
functions that access data and encapsulate code stored
outside of OpenODB.

Run-time Features
late Binding. OpenODB suppofts functions that are resolved
at run time. Late binding allows more flexibility in applica-
tion development and gives the full power of overloaded
functions as described above. Late binding also shields user
applications from changes to functions since these changes
can be made online and the new function definition resolved
at run time.

Dynamic Schema Modification. New functions and t)1pes in
OpenODB can be created at run time. Users can also change
the implementation of firnctions without having to recompile
applications.

Performance. To improve run-time performance, functions
can be compiled ahead of time. Also, related functions carr
be stored close to each other (clustered) to optimize
performance.

Access Control and Data Integrity
High Availability. OpenODB maximizes the availability of
information by providing:

. Dual logging to ensure the integrity of the log file
o Database replication on other systems so that more users

can effectively access the same information and applica-
tions can quickly switch over to another system in case of
an unscheduled shutdown

o Automatic switch to a second log file if the original log file
is damaged or becomes full

. Dynamic file expansion to expand the size of the OpenODB
file system if it becomes full

. Online backup ofthe database, which backs up the database
while it is being accessed.

Multiuser Goncurrency Gontrol. OpenODB is designed to
support hundreds of users accessing the same information
whi-le guaranteeing the integrity of that information.

Access Methods on Stoled Data. Indexes are automatically
defined on object identiliers (OIDs) when types and functions
are created. These indexes help provide quick access to

0biect-0riented

Fig. l. With each new database
architecture more and more major
components have been moved
from the application level to the
database level. The years show
approximately when the architec-
ture was introduced and the peak
years of use. By the way, all of
these architectures are sti_ll in use.

June 1993 Hewlett-Packard Jomal 2l

c

6
o

o
G

o
cl 1960s ro 1970s

f
-

l Applicarion Code

l97(h to 1991h

1990s--_J

information stored in the OpenODB database management

system. Users can also define indexes.

Authorization. Access to OpenODB is controlled at the data-

base and function levels and is based on authorization level

(individuat or group). Authorization statements provide a

flexible way to control access to tlpes and functions in

OpenODB.

Persistent Data and Code. OpenODB allows the storage of

data as well as code between application sessions.

Recovery. OpenODB uses the robust logging and recovery

facilities of the ALLBASE RDBMS. In case of a failure,

OpenODB can handle rollback or rollforward recovery to a

particular time, using the log file to recreate saved work.

Transaction Management. OpenODB ensures the logical and

physical integrity of the database by giving the user com-

plete control over the unit of work to be performed within a

single transaction. With this control, a transaction can be

saved or rolled back (temporary work thrown away) to any

point in the transaction.

Multimedia. OpenODB allows the storage and integration of

large, unformatted data in binary format. Some examples

include graphics, images, or voice data. Users can also de-

fin-e fi-rrctions in OpenODB to manipulate this multimedia

information. For example, the user can store a picture as

well as the function to display the picture.

Product Structure

OpenODB uses a client/server architecture, enabling the

user to use available computer power effectively. The OSQL

interface and a graphical browser are located on the client

side, and an object manager with a relational data storage

engine and an external function interface are located on the

server (see FiS. 2).

Fig. 2, HP OpenODB client/sewer components.

The user can write OpenODB applications using any language

that links with the C programming language including COBOL'

FORTRAN, Pascal, Ada, and C++. Any fourth-generation

language (4GL) or CASE tool that generates C code will in-

teract with OpenODB. Application development can also be

made easier by using tools that generate user interface code

(e.g., OSF/IVIotif) in an X-Windows environment.

A software developer uses OSQL as an object definition,

manipulation, and ad hoc query language that interfaces with

the OpenODB server. OSQL can be used either interactively

or from a program. We chose an evolutionary approach for

developing OSQL by using ANSI standard SQL commands

where possible and adding the full power of objects.

The graphical browser tool allows a developer to explore

the structure (schema) ofthe database and its contents. The

graphical browser is designed to increase the speed of appli-

cation development by making it easier to reuse code stored

in OpenODB.

The object manager supports all of the object-oriented fea-

tures. This includes complex objects (objects that contain

objects), dy'namic schema modification, d}'namic typing and

multiple inheritance, encapsulation, Iate binding, object

identity, overloaded functions, type hierarchy, and unlimited

user-defined types.

The HP ALLBASE /SQL relational database provides the

data storage and dynamic schema manipulation capabilities.

These include authorization (security), declarative queries,

high availability, multimedia support, multiuser concrilrency

support (e.g., graphics, images, voice), recovery referential

integrity, and transaction management. HP ALLBASE/SQL is

transparent to the application developer and end user'

In keeping with an evolutionary approach, we recognized

the need to access data and applications that already exist

in a company's network. It is important to provide a devel-

oper access to this information regardless of which vendor's

system it is stored on and regardless of its format. A gate- .
way approach was considered but rejected because a signifi-

cant arnount ofvaluable data is stored in legacy (in-house)

databases that axe either custom-designed within a company

or are spread across many different vendors'databases, and

HP would never have the resources to build all the gateways

needed to support commercial applications' Instead, we

created an external function interface that acts like an exit

subroutine in application code. Through this interface, data-

base developers can access any code or data that resides

within a company's network. Once external data is brought

into the object manager, it can be integrated with data stored

inside OpenODB and put into a format that is appropriate

for the object-oriented application and the end user.

System Environment

The OpenODB server and all clients are available on HP-UX*

8.0 or later versions for the HP 9000 Series 700/800 systems'

and on MPE XL 4.0 or later versions for the HP 3000 Series

900 systems.

OpenODB requires TCP/IP transport and ARPA Berkeley

Services. The OpenODB graphical browser requires the X

Window System.

22 June1993Hewlett-PackardJoumal

Pointers to 0ther
0biects

Fig. 3. The structure of a t5,pical object. Notice that the data part
contains pointers to the data (or other objects).

Object Models

There is no standard object model. The popular models in
the programming language community are the C++ modell
and the Smalltalk model.2 These two models and others
share many common features.

The commonly accepted definition of an object is something
that contains data and code (called methodst) that operates
on the data. This feature is lcrown as encapsulation. External
users retrieve or manipulate the data stored in objects by
sending messages to the object. These messages are handled
by the methods in the object.

FYom a database standpoint, the data stored in an object is
the object's attributes or its relationship to other objects.
The relationship is typically represented as a pointer to an-
other object. The methods are the possible operations on
the object.

For example, an employee object may have an employee
identifier and name attributes (see Fig. 3). The object may
also have information about the employee's heatth provider
and who the employee works for. Notice in Fig. 3 that the
relationship information is represented by pointers. Opera-
tions on data in an object may include setting or retrieving

t The terms methods, functi0ns, and oDerations refer to the code in an 0biect.

Class Emptoyee

data values in the object, or doing some computation on the
data. For example, in the employee object there is an opera-
tion to add a provider to the data and another operation for
computing the total premium for the employee.

A data abstraction technique called classification abstrac-
tion3 is commonly used in object models. In this technique
objects of similar characteristics are modeled using classes.
A class is used to define the structure of the data part of the
object and the code that operates on the data structure.
Each object that belongs to the class is called an instance of
the class, and it has a copy of the data structure of the class
and can be operated on by the methods specifred for the
class (see Fig. 4). For example, to define employee objects,
we would define the class Employee. The class definition of
Employee would state the data structure and the methods in
some syntax. Once the class has been defined, any number
ofinstances (employee objects) can be created by sending
an appropriate message to the class.

Another abstraction technique called the generalization/
specialization abstractiona is also used for object models. In
this technique, a superclass may be created to model the
common characteristics of two or more classes. Conversely,
a class's characteristics may be refined by creating sub-
classes. For example, we may define a class Manager:rs a
subclass of Employee. In this case every method and data
structure definition applicable to the employee object is also
applicable to the manager object. Fig. 5 shows that the
classes Manager and Staff inherit the methods and data struc-
tures from class Employee and also have their own methods
and data structures.

The OpenODB Model

The OpenODB model is based upon three concepts: objects,
t1pes, and functions. OpenODB objects are still modeled as
data and methods but data is no longer automatically private
to the object. Tlpes are used to define functions, and func-
tions are used to define the attributes, relationships, and
operations on objects.

Fig. 4. An illustration of the data
abstraction technique called clas-
sification abstraction. With this
technique each object that be-
longs to a class is ca.lled an
instance of that class. Although
each instance contains data
unique to that instance, the data
structure is the same as that de-
fined for the class the instance
belongs to. Note that the same
methods defined for the class
are used for all instances of the
particular class.Instances of Class Employee

June 1993 Hewlett-Packaxd Joumal 23

lnherited Methods
and Data Structures

llom Employee

| .stot
| : ; : i . r . :Lt I

Employeg0bioet I -, .r .
--;;,,i-

- I -
ll{|ll, fllilfilil Minagerand'ry

I' sraffobiecrs' ' - -
?rK

t l \ \ r t \ '/

, / \ 'ous",\
a

- . - . -- - -
- - -

d Er @u
I

Subclasses to EmPloYee obiect

Methods and Data
Structures Added to

Those lnherited
lrom Employee

Fig, 5. An illustration of the generalizatiorVspecialization data ab-

straction technique. Here two objects Manager and Staft inherit charac-

teristics from the superclass Employee. They become subclasses when

the methods and data structure inherited from Employee is augmented

with new methods and data structures in each object.

Object

An object is a model (computer representation) of a thing or

concept in the real world. Unlike data, which models the

static aspects of the thing such as its attributes and relation-

ships, an object also models the dynamic behavior in terms

of the methods applicable to the object.

Conceptually, an OpenODB object is an encapsulation of

data and operations. However, there are two important dif-

ferences between OpenODB objects and those defined for

object-oriented programming languages (OOPL). First, every

data item in OpenODB is created as a function and is acces-

sible and modifiable only through functions. This allows a

uniform view of an object since there is no distinction be-

tween accessing an bbject attribute and invoking a method

that returns values. For example, suppose the employee

identification number data item in the employee object is

defined as the function IDN with an integer return type. To

access the employee identifier, we would evaluate the func-

tion IDN(e), which is equivalent to using a method in an OOPL

model to access the employee's identification number in an

employee object e. The difference is that OpenODB does not

support strictly Iocal data items as does the OOPL model, in

which local data items are directly accessible only by the

methods defined for the object. With OpenODB, since every

data item is a function, any user who has the proper access

privilege can evaluate the function and modify the data

associated with the object.

It would seem that this model defeats the purpose of private

data in the object-oriented methodologr. However, OpenODB
provides mechanisms for maintaining the concept of private

data. Access control mechanisms provided in OpenODB are

discussed later in this article.

The second difference between an OpenODB object model

and an OOPL object model is the way in which an object's

data is organized. In OOPL, the object's data is stored in

some contiguous axea of main memory and the object's ref-

erence is the address of the first byte of this memory axea.

For example, a reference to an employee object is an ad-

dress in memory in which an instance of the employee data

structure is stored. In OpenODB, the object's data may be

stored (either clustered or dispersed) anywhere in main

memory or on disk. The reference to the obiect is indepen-

dent of the data associated with the object. This allows

OpenODB objects to evolve gracefully without requiring the

schema to be recompiled every time the object gains or

loses data items.

OpenODB supports three kinds ofobjects: surrogate, literal,

and aggregate (see Fig. 6).1 Surrogate objects represent

things or concepts in the application domain. The character-

istics of the thing or concept that the surrogate represents

are obtained by applying relevant functions to the surrogate

object. In OpenODB, a surrogate object is identified by a

unique object identifier (OID) that is totally separate from

any data associated with the object. Examples of things that

could be modeled as surrogate objects include persons, em-

ployees, parts, and manufacturing plants. Surrogate objects

may also represent entities used by the OpenODB system to

manage its own data such as the types and functions that

keep track ofOpenODB objects. Surrogates must be explic-

itly created and deleted either by the system (for system-

defined objects) or by the user (for user-defined objects).

Literal objects are self-identifying in that they have extemal
(printable) representations that correspond to well-lcrown

concepts. For example the number 123 and the string'abc'

are literal objects.

An aggregate object is a set, bag, list, or tuple of other

objects. Table I lists the characteristics and some examples

of aggregate objects.

The difference between a list object and a tuple object is

that list objects and tuple objects have different constraints

on the object types that make up their collections. These

differences are described in more detail later. Sets are

subtypes ofbags.

In OOPL aggregate objects are supported by built-in con-

stmcts such as arrays, structures, and a library'ofpredefined

classes of aggregate objects.

t Note that literal and surr0gate objects and types are sometimes collectively referred to as
atonic t\Des.

0biect

t ,
Atomic Aggregate

(List, Bag. Set' TuPle)

Literal surJogate
(e.g.,123,'abc') I

System-Defined
(e.9., Functions that
Manage 0pen0DB

0biectsl

Fig. 6. The taxonomy of OpenODB objects.

User-Defined
(e.9., persons, partsl

24 June 1993 Hewlett-Packard Joumal

Type

Set

Bag

List Ordered collection of List('ab','ba','ab')
objects that may contain
duplicates

T\rple Ordered, fixed-sized
collection of objects

Thple(1,'abc',2)

TVpe
A type is an object that implements the classification ab-
straction technique described earlier. OpenODB t54)es are
similar to OOPL classes. However, there are two m4ior dif-
ferences between an OpenODB type and an OOpL class.

First, an OOPL class must have a declaration of the data
structure for the data part of its object instance (if there is
any data part for a particular object). Since an OpenODB
object is independent of its data part, OpenODB flrpes do
not have any data structure declaration. The data for an
OpenODB object is defined by means of functions on the
type, and such functions may be defined at any time, not
only when the type is created. This difference can have a
profound effect on the evolution ofthe application. Con-
sider the following fragment of a data schema (written in
hypothetical syntax for OOPL) for an application. Assume
that the classes or types Company and Department have already
been defined.

With OpenODB we simply define a new function DOB (date-
of-birth) on object Employee to return a date (which is a pre-
defined type). Furtherrnore, the definition ofa DOB function
can happen even while the application is running.

The second difference between an OpenODB type and an
OOPL class is that an OpenODB type has an extension, which
is a set of instances of that type. This feature facilitates
queries over classes of objects. For example, in OpenODB, if
we want to obtain the name of an employee whose IDN is
123456789, we simply pose a query as follows:

Select name(e) for each Employee e where IDN(e) = 1234567g9;

OpenODB is able to find the correct employee because for
this example it keeps track of all the objects of type Employee.

The taxonomy of types is topologically identical to the tax-
onomy of objects because types are also divided into three
groups: literal, surrogate, and aggregate. Literal tlpes in-
clude integers and characters with extensions that are pre-
defined and infrnite. An extension of a type is the set of
instances that belong to the type. For example, l, 2, B. . . are
predefined extensions of the literal tlpe integer.

Surrogate types include system and user-defined types.
When a surrogate type is first created, the extension is
empty. However, the extension for a surrogate type expands
or contracts as objects are explicitly added to or deleted
from the type. For example, the function Create person would
create a Person object and store it in the extension ofthe
type Person.

The aggregate types supported are bag, set, tuple, and list
types. They are referred to by type expressions consisting of
constmctors BagType, SetType, TupleType, and ListType respec-
tively. Their extensions are automatically maintained and
the user cannot explicitly insert objects or delete objects
from extensions of aggregate types. For example, the type
SetType(Person) refers to a type whose instances are sets of
persons. If p is a person, then the object Set(p) is an instance
of the type SetType(Person).

The difference between a list type and a tuple type is that a
list type permits the specification of only one type for its
members while the tuple type permits the specification of
multiple types for its members. For example, an instance of
the type ListType(Person) is an ordered collection of any num-
ber of objects of gpe Person or its subtlpes. On the other
hand an instance of the type TupleType(Person, integer, char) is an
ordered collection ofthree objects, the first is oftype person,
the second is of tlpe integer, and the third is of type cnar.

OpenODB supports subtype/supertype relationships among
types. The subtype/supertype relationship implements the
specialization and generalization abstractions described
earlier. This relationship induces a directed acyclic graph on
the types lcrown as the OpenODB type hierarchy (see Fig. Z).
The type hierarchy is rooted in the type 0bject. If an object is
an instance of a type, it is also an instance of all the type's
supertypes. Thus the functions defined on the supertypes
can be evaluated with instances of subtypes as axguments.
Conceptually this is the same as subclass inheritance in an
OOPL. For example, we can define the type Manager as a

Table I
Aggregate 0bjects

Characteristic

Contains no duplicate
elements

May contain duplicate
elements

Example

Set(123,'abc')

Bag(123,123,'abc')

OOPL Declaration

Class Employee:
Data

IDN integer;
Name cha(20);
Providers Set(Company);
Worksln Department;

Methods

OpenODB Declarationt

Create type Employee;
Create function IDN(Employee)

-> integer unique as stored;
Create function Name(Employee)

-> cha(20) as stored;
Create f unction Providers(Employee)

-> SetType(Company) as stored;
Create Function Worksln(Employee)

-> Department as stored;

The OpenODB declaration could also be writterr as:

Create Type Employee Functions (
IDN in teger un ique,
Name char(20),
Providers SetType(Company),
Worksln Department)
as stored;

Assume that sometime after the application has been in use,
we decide to include date-of-birth information for employees.
With OOPL, we would have to declare the date-of-birth field
in the data structure for the class Employee, define relevant
methods for it, and then recompile the entire application.

t The 0pen0DB program fragments used here and in the rest 0f the document are based on
0SOL {object oriented S0L}, which is 0pen0DB s database programming larrguage.

June 1993 Hewlett-Packard Joumal 25

subtlpe of the type Employee. Since by definition members of

subtypes are also members of supertypes, every manager is

an employee. Therefore, all the fiurctions defined on Employee

can be applied to any manager object. We can define addi-

tional functions on Manager. For example, the function Super-

vises(m) which takes a manager as an argument and returns

the set of employees supervised by the manager, can be de-

fined on type Manager. In general, this function cannot be eval-

uated with an employee object as an argument because not

all employees are managers and the function is not defined

for those who are not managers. Finally, since OpenODB al-

lows a given type to have multiple supertS4res, the inheritance

is actually multiple inheritance (see TeachingAssistant in Fig. 7).

Functions

A function is an object that represents an attribute, a rela-

tionship, or an operation on an object. A function maps ob-
jects from one tlpe to objects in another (not necessarily

distinct) type. A function has one argument type, one result

tJ4)e, a result constraint, and an extension consisting ofa set

of tuples.

The result constraint can be specified for functions stored in

the database (stored functions) only. If the stored function's

result type is an atomic type or a tuple type of atomic t54les,

the result constraint can be specified as unique or nonunique

(default). A unique constraint states that the function will

never produce the same results for two different axguments.

For example, the function IDN will never retum the same

integer for two different employees. More important, a unique

constraint will not permit setting the same number as the

result of two different arguments. For example, two em-

ployees cannot be updated with the same lDN, otherwise an

error will occur. For a flrnction whose result type is SetType,

the result constraint can be specified as disjoint or nondis-

joint (default). The disjoint constraint states that the results

of two different axguments will never overlap. For example,

the function Worksfor(manager) -> SetType(Employee) returns a set

of employees that work for a particular manager. Thus,

Worksfo(john) returns {mary, iack, jill}, and Worksfor(henry) returns

{cathy, abe, tom}. Each call results in a distinct set of names

being returned. If the result constraint is nondisjoint and iack
works for john and henry, then jack would appear in both sets.

Table II summarizes the ffpes allowed to be assigned to fiutc-

tion pararneters and the relationships between the instances

0biect

r ' -_--_-

. J;'
-i..**

,,.,, '.i-\--__

. :: ,"],on :-. .

Employee

..'''-l------:'

,*in , [,tu,l"s", n]r"t",

Teaching -/
Assistant

Fig. ?. An example of OpenODB subtype and supertlpe relationships

26 June1993llewlett-PackardJoumal

Table l l
Function Parameters and Their Relationships

Argumenl
Type

A

A

Result Type Result RelationshiP
Gonstraint Modeled

R Unique One-to-one
(e.g., IDN to
employee)

R Nonunique ManY-to-one
(e.g., em-
ployee to
manager)

Set of R Disjoint One-to-many
(e.9., manager
to employees)

Set, Bag, or Nondisjoint Many-to-many
List ofR (e.g., skills to

employees)

A = R - atomic types 0r tuple of atomic lypes
Atomic = literal or surrogate type

of atomic types and a tuple of atomic types that are modeled

by the different pa.rameter settings.

The specification of the function name, its argument and

result types, and the result constraint constitutes the decla-

ration of a function.t Like types, functions also have exten-

sions that represent the attributes of and relationships be-

tween objects. For example, consider the function Name

which is defined on type Person. This function retums a

string of characters whenever it is called with the appropri-

ate parameter. A set of object identifier and string pairs

makes up the extension of the Name function' For example:

{<0 lD l , John> <01D2, Har ry> <01D3, He len> . }

where 0lDn represents the unique object identifiers and the

narnes represent the strings oftype Person. The declaration

and implementation of a function may take place at different

times in the database schema creation. The implementation

of the function can be changed without recompiling the ap-

plications (although the database functions may have to be

recompiled).

A function can be implemented as a stored function, a

derived function, a computed function, or an external func-

tion. Derived and computed fimctions are collectively lcrown

as OSQLbased functions.

Stoled Function. In this case the extension ofa function is

stored in an SQL table. For example, the functions lDN, Name,

Providers, and Worksln are stored functions. Their result values

can be assigned and modified by the user. The following

script creates an employee and assigrs an employee identifier

and a name.

Create Employee e;
IDN{e) := 1234s6789;
Name(e) := 'Smi th ' ;

t The argument type 0r the result type could be v0lD, in which case the functi0n has no argu'
ment 0r n0 result resoectivelv. Functi0ns with n0 results are typically used t0 model database
uodate ooerations.

A

Derived Function. In this case the extension is described by a
query using other functions. This is analogous to views in
the relational data model. For example, assume we have arr
overloaded function called Name and we want to create a
function Employeelnfo that returns the identifier, employee
name, and department name for a given employee. We could
use the following script:

Create function Employeelnfo(Employee e)
-> TupleType(lntegelChar,Char) as osql

select single IDN(e),Name(e),Name(Worksln(e));

In this example, Employeelnfo is not stored, but derived from
the functions lDN, Name on Employee, and Name on Department
and Worksln. Unlike stored functions, not a]l derived fi.rnctions
are updatable.

Gomputed Function. In this case the extension is described by
a prograrn written in OpenODB's database programming lan-
guage OSQL. For example, if we want to convert all managers
who have less than a specified number of employees to pro-
grammers (assume that Programmer is a subtype of Employee),
we would write:

Create function MgrToEng (lnteger minemps) -> Boolean
as osql
beg in

declare SetType(Manager) mgrseq
dec la re Manager m,
/* get al l the managers in mgrset */

mgrset:= select dist inct atomic m for each Manager m;
for m in mgrset do

if (count(Supervises(m)) < minemps)
then

/* convert a manager to a programmer */

begin
add type Programmerto m;
remove type Manager from m;

end
endif;

en0;

External Function. For an external function OpenODB uses
code outside of itself to obtain the extension of the function.
The user specifies how to invoke this code. External code
can be specified to be invoked in the following three ways:

. Specify the implementation to be SQL and provide an SQL
statement to be executed to obtain the extension. This is
used to access SQL databases. For example, assume that
there is a table EMPHIST0RY(IDN, DEPT, JOBDESC) in an Admin
database that describes the employ'rnent historv of em-
ployees. We could create a function in OpenODB to access
this information as follows:

Create function EmpHistory(Employee e)
-> ba gtype(tupletype(Char,Chad) as external
S0L('Admin', 'JSmith'. 'ht imSJ'.

'Select DEPT,J0BDESC
from EMPHIST0RY
where IDN = :x' ,List(SSN(e)));

Here the first argument to SQL is the database narne. It could
be specified as NULL in which case the current database
would be used. To access remote SQL databases, ALLBASE/
Net must be installed, and the database must be registered
in AliasDB.s The second and third a-rguments are the user
name and the user password respectively. If the second
argument is specffied as NULL, the third must also be NULL,
and in this case the default user is used to access the SeL

table. The fourth argument is the SQL statement to be
executed. It may contain references to host variables such
as :x. The fifth parameter is a list of values to be substituted
for the host variables. In this example, IDN(e) will be evalu-
ated and the resulting string will be substituted for:x. A con-
nection will be made to the current database (if one does
not exist) using the user narne and the password. Then the
query will be executed. The result will be converted to
OpenODB format and returned to the caller.

. Specify the implementation to be 0sCommand (an OSeL func-
tion tied to operating system commands) and provide the
operating system with the command to be executed to obtain
the extension of the function. For example, we could define
a function Dir to look at a listing ofthe current directory in
HP-UX with the following OpenODB function.

Create function Di(Char d) -> bagtype(char) as
external 0sCommand (' ls $d');

. Speciff the implementation to be GeneralExtFun or SimpleExtFun
and provide the names of three routines (for GeneralExtFun)
or one routine (for SimpleExtFun) that are linked with the user
application. For GeneralExtFun the first routine is used to open
a sca.n on the result of the function for a given axgument.
The second routine is used to read the result objects. The
third routine is used to close the scan. SimpleExtFun can only
be used for functions whose result type is atomic (literal or
swrogate) or tuple type of atomic. When called, the specified
routine must return the result for a given argument.

To show how SimpleExtFun is used to implement an external
function suppose we have a C program called CreditRating that
computes the credit rating (an integer number) of the per-
son with the given identifier (assume a 9-character string).
We could make the C program the body of an OpenODB
function called CrRating as follows:

Create function CrRating(char p) -> char as external
Sim ple ExtFun('Cred itRating');

SimpleExtFun is appropriate here since the C program will
return a single integer number for each a-rgument.

Let us now consider an example that uses the general exter-
nal function to implement an external function. Suppose we
have an OpenODB function called JobHist that returns the job
history of a person as a array of character strings. We could
define an OpenODB function that uses the following C code:

Create function JobHist(char p) -> BagType(char) as external
G enera lExtFun('JobH ist0 pen','J obH istN ext','JobH istClose');

Here, JobHist0pen, JobHistNext, and JobHistClose a.re three rou-
tines written in C. When JobHist0pen is called with a person's
identi{ier, it should create a scan data structure and return a
pointer to the data structure as an integer number. One pos-
sible way to implement JobHist0pen is to have the routine
allocate storage for the returned array. JobHist0pen can then
return a pointer to a structure that contains an integer num-
ber and a pointer to the array. The integer number (initial-
ized to -1) keeps track of the the next element of the array
to be returned by JobHistNext. Each time JobHistNext is called it
is given the pointer obtained from JobHist0pen. JobHistNext
increases the integer number of the structure, accesses the
array element at that location and returns the string. When
JobHistClose is called, it is given the pointer obtained from
JobHist0pen. JobHistClose frees the storage that was allocated
by JobHistOpen.

June 1993 Hewlett-Packtrd Joumal 27

The extensions of all stored functions and some derived

functions can be changed by authorized users. Such a

change is accomplished by update functions associated with

the original function. These update functions are automati-

cally generated by the system for updatable functions. For

example, for the stored function Name on Employee, the sys-

tem might create an update function called Updname, which

takes the OID for an employee object and a string object and

creates an association between the two. Thus, after using

the Uodname function with an Employee object that has the

identifier 01D123 and a string labeled 'Smith' as parameters,

references to 0lDl23 will be associated with 'Smith' and vice

versa.

Function Name Overloading

OpenODB supports function name overloading. Many func-

tions can have the same narne but different argument types.

For example, in the functions Weight(Part) and Weight(Unit), the

function Weight(Part) returns the weight of an individual part

and the firnction Weight{Unit) returns the weight of a]l the

parts on a particular unit.

The functions that are explicitly created by the user are

lcrown as speciJic functions. For a set of specific functions

with the sarne narne, OpenODB creates a function called the

genzric fiutction, whose name is the same as those in the set.

However, the generic function has no implementation. The

name of a function by itself refers to the generic function

and is called a generic function reference. However, if the

name is followed by a type reference separated by a period,

then it refers to a specific function, and such a reference is

called a specific function reference. For example' if function

Weight is defined on type Part, the generic function reference

is Weight and the specific function reference is Weight.Part.

Since the generic firnction has no implementation, it carmot

be directly evaluated. It must first be bound to a specilic

function. OpenODB supports late binding of a generic func-

tion to a specific function. If a generic function is used in an

evaluation, then the specific function to be used is deter-

mined based on the actual axgument at run time. However, if

a specific function is used in an evaluation, then that spe-

cific function is used regardless of the argument (the argu-

ment must be an instance of the argument type). Thus spe-

cific function reference supports early binding.

For example, assume that we have the generic function

Salary on Employee that returns the salary of a given employee.

Suppose we want a manager's salary to include the bonus.

We could overload Salary on Manager to return the sum of

the manager's salary and bonus as the following example

illustrates.

Create function Salary(Employee e) -> Float as stored;
Create function Salary(Manager m) -> Float as osql

salary.employee(m) + bonus(m);

If e is an employee but not a manager, then Salary{e) will return

the salary of employee e. However, if e is also a manager,

Salary(e) will return the sum of the salary of e as an employee
plus the bonus of e as a manager.

In some cases, mapping from a generic function to a specific

function is ambiguous. This happens because objects may

belong to multiple types and there may be more than one

specific function defined on those types. OpenODB does not
prescribe default semantics for choosing a specific function

in case of ambiguities. Instead it reports an error.

Access {hnt,rol in HP OpenODB

One of the functions of a database management system
(DBMS) is access control. A DBMS must prevent unautho-

rized access to data stored in the database. Although com-

mercially available DBMSs do have security subsystems that

support access control, support for authorization in object-

oriented and functional database systems has not yet been

fully addressed. ln such systems, authorization features

must interact with advanced model and language features

such as user-defined operations, encapsulation, multiple

inheritance, generic operations, and late binding.

Object-oriented languages inherently provide some form of

access control in the way abstract data types encapsulate
private state information.6 Although abstract data types
provide support for access control at the implementation

level, there still remains the need to protect data at the

organizational level.

The authorization model in OpenODB is based on the notion

of controlling firnction evaluation. Only a sin$e privilege, that

is, the privilege to call functions, is necessary to support art

authorization model that is more powerful and has finer

levels of access granularity than the traditional authorization

model of relational databases.T

The Authorization Model of Relational Systems

The basic authorization model of standard SQL can be char-

acterized by a matrix captured by a relation schema
(S,O,M). S is the domain of all subjects that access the data-

base system (users, processes), O is the domain of objects

(base relations and views), and M is the domain of access

operations (SELECI INSERI DELETE, UPDATE, and ALTER).8

Most RDBMS implementations support the notion of owner-

ship. Each database schema has a designated system admin-

istrator, database administrator, or database creator who is

the owner of all objects created in that schema. F\rrther-

more, the creator of an object becomes the owner of the

object and typically holds all privileges on that object.

An object owner can grant access to the object to other us-

ers. Commercial systems implement mechanisms that allow

the owner to grant SELECI INSERI DELETE, UPDATE, and ALTER

privileges on objects to other users selectively. Furthermore,

an object owner can permit a GRANT privilege on the object,

thereby enabling other users to further grant privileges on

the object.

Authorization in OpenODB

Many of the concepts developed for relational database au-

thorization are fundamental and are applicable to other

technologies such as object-oriented database maragement

systems. These fundamental concepts include the notion of

ownership, users and groups, privileges, and granting and

revoking privileges. The authorization model of OpenODB

uses many of these fundamental concepts.

28 June 1993 Hewlett-Parkard Jomal

Users, Groups, and 0wners. Users are modeled by the Open-
ODB type User, which is characterized by a set of functions
that create and destroy user objects, return valid user
narnes, and match passwords. For example the strings:

Create User'Smith' Password'x012' in tester;
Create User'Jones' Password'y2' in engineer;

create the users Smith and Jones with their respective pass-
words and assign Smith to the group tester and Jones to the
group engineer.

Users can be classified by groups. Privileges granted to a
group apply to each user in the group. \pically, users are
classified based on their roles.9'10'11'12 4 user can belong to
multiple groups thereby accumulating the privileges from
each individual group. Furthermore, groups may be nested.
A nested group inherits the privileges of the nesting groups
similar to the way functions are inherited by a subtype from
a supertype.

A group is an object in OpenODB that is mocleled by the
type Group. A group has attributes such as name and mem-
bers and is made up of either individual users or other
groups. Tlpical functions defined on the type Group include
functions for creating and deleting groups, for adding and
removing subjects, for returning group members, and for
granting and revoking call privileges. The following state-
ments create the groups specified for the users Smith and
Jones in the example above.

Create group developer;
Create group engineer subgroup of developer;
Create group tester subgroup of developer;

The access-control hierarchy created for these functions is
shown in Fig. 8.

The user who creates a given frurction is said to be the owner
of the function. The owner of a function automatically has a

call privilege on the function. F\rrthermore, the owner can
grant call privileges to other users using the Grant function
which is described in the next section.

The group hierarchy is rooted in the group public which has
call authority on common system functions such as Connect
and Select. Every authenticated user by default belongs in
Pu b l i c .

Database administrators (DBAs) are special users with more
privileges than ordinary users. For example, DBAs have all
the privileges implied by function ownership.

Granting and Revoking Privileges. Call privileges can be
granted and revoked on aper-group basis. privileges can be
granted unconditionally using the Grant statement or condi-
tionally using the Grant statement with an lF option. With un-
conditional privilege granting, an authorized group member
can call a function for all possible argument values. For ex-
ample, if the user Jones from the example above wants to
grant a call privilege on the salary of employees to the group
tester, the OSQL statement would be:

Grant cal l on salary to tester;

For granting a conditional privilege, a predicate (Boolean-
valued function) is associated with the group and the func-
tion. The predicate has the sarne argument type as the func-
tion. When the function is called, the argument is used to
evaluate the predicate. Ifthe predicate returns true, the user
can call the function with that axgument. For example, sup-
pose user Jones wants to grant the privilege to tester to be
able to modify the salary for part-time employees. First the
function to filter part-time employees is created:

Create function SalaryGuard(employee e, f loat sal) ->
Boo lean as 0SOL

beg in
if (status(e) = 'part-time') return TRUE;
return FALSE;

en0;

To grant the privilege to tester:

J := funassign(function salary.employee);
Grant cal l on :f to tester i f SalaryGuard;

The OpenODB access control model is based on the single
concept of controlling function invocation by allowing only
authorized groups access to a function. The OpenODB ac-
cess control mechanism does not impact the performance of
the owner of the function, the database administrator, or
other common OpenODB services.

Acknowledgments

Many people contributed to the design and implementation
of OpenODB. We would like to aclmowledge the contribu-
tions of managers and researchers of the database technol-
ory department of HP Laboratories, and the development,
support, marketing, Iearning products, and management
personnel of the database Iaboratory of HP's Commercial
Systems DMsion.

0biect

l_
:-' ,,/

a\ ----.-_

o o
(| : - .

,1n,"{u*,

^rtff,:".''.:.,O I
o'u''oo"'

tnSin""rf

Fig. 8. An example of an access-control hierarchy in OpenODB.

Jme 1993 Hewlett-Packard Joumal 29

References
1. B. Stroustnrp , The C++ Programming Language, Addison Wesley
Publishing Company, 1987.
2. A Goldberg and D. Robson, Szzalltalk-80: The Language and' Its
Implernentation, Addison Wesley Publishing Company, 1980.

3. R. Elmasri and S. B. Navathe, Fwtdnmen'tak of Database SAstznls'
The Be4jaminiCummings Publishing Company.

4. J. M. Smith and D.C. Smith, "Database Abstractions: Aggregation
and Generalization," ACM Tharnot:tions on Datnbase SEst'ems, \,lol. 2'
no. 2, June 1977.
5. ALLBASE/Ne| (Jser's Guide, Hewlett-Packard Company, Part
Number 3621&90031.
6. J. H. Morris, "Protection in Programming Lang-rages,' Commu-
ni,cations oJfue ACM, Vol. 16 no. 1, January 1973.

7. P. P. Grifliths and B. W. Wade, "An Authorization Mechanism for
Relational Database Systems," ACM Ttansactions on Database
Systems, Vol. l, no.3, September 1976.

8. C. J. Date, A Guide to the SQL Stand,artl, Addison-Wesley

Publishing Company, 1987.

9. E. B. Fernandez. et al, "An Authorization Model for a Shared

Database," Proceed,ings of the ACM SIGMOD Intenntional

ConJerence, 1975.

10. R. Gigliardi , et il, A F'l,eri,ble and Efficien't Database Authori'za-

tion Facility, IBM Research Report 6826 (65360), November 1989.

11. J. A. Larson, "Granting and Revoking Discretionary Authority,"

Infortnation Systems Journal, Vol.8, no.4, 1983.

12. R. Ahad, et al, "Supporting Access Control in an Object-Oriented

Database Langtage," Proceed,ings of the International ConJerence

on Ertend,ittg Database TechrnlogE, 1992.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.

It also complies with X/Open's* XPG3, POSIX 1003.1 and SVID2 interface specificati0ns.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A and other countries

X/Open is a trademark of X/0pen Company Limited in the UK and other c0untries.

30 June1993Hewlett-PackardJoumal

The HP Ultra VGA Graphics Board
By increasing the display memory to 1M byte and providing some local
graphics processing, the HP Ultra VGA board is able to increase VGA
resolution to 1024 by 768 pixels with 256 colors at all resolutions.

by Myron R. Tirttle, Kenneth M. Wilson, Samuel H. Chau, and yong Deng

The HP D2325A tlltra VGA board, which represents the latest
in the evolution of HP personal computer video systems, is a
video accessory card for the HP Vectra line ofpersonal com-
puters. This board offers exceptional video performance for
graphics-intensive applications such as Microsoft@ Wndows
and AutoCADrM. It enhances overall system performance by
using hardware accelerators to relieve the CPU of common
video processing functions. For high-resolution and flicker-
free operation, the Ultra VGA board offers display resolu-
tions up to 1024 by 768 noninterlaced and refresh rates up to
72 Hz. Fnally, the board is upgradable to lM bytes of video
memory to give 256 colors in 800 by 600 and 1024by 768
resolutions..

In this article we present a brief history of the evolution of
PC video systems. We will then discuss the benefits of add-
ing acceleration to video hardware and the hardware and
software partitioning trade-offs that must be made. Finally,
the implementation of the IIP Ultra VGA board is described,
both as a plug-in accessory and as an embedded feature as it
is in the HP Vectra 486/U family of personal computers.

Evolution of PC Video
1981 marked a dramatic change in the world of computing
because that was the year the IBM personal computer was
introduced. The first IBM PC came equipped with 64K bytes
of RAM and an alphanumeric Monochrome Display Adapter
(MDA). The MDA contained 4K bytes of memory enough to
store one screen (25 lines of80 characters each) ofalphanu-
meric information. The PC with one of these adapters func-
tioned like most terminals available at the time. It had very
clean alphanumerics but lacked any graphical capabilities.
Until the introduction of the MDA, virtually all PCs or "home
computers" such as the Apple II, Commodore PEI and the
Tandy Radio Shack TRS-80 used a television monitor or a
modified television monitor as a display, grossly limiting the
resolution.

Also available from IBM in 1981 was the Color Graphics
Adapter (CGA). This adapter contained 16K bytes of memory
enough to hold four alphanumeric pages and provide limited-
resolution graphics. The graphics capabilities of the CGA
allowed it to display 320by 200 pixels in four colors, or 640
by 200 pixels in two colors. The price of memory was still a
limiting factor in display resolution. The 200-line vertical
resolution severely impacted the CGAs alphanumeric capa-
bilities because all characters were displayed in an eight-by-
eight cell and were difficult to read. Several companies, in-
cluding Hewlett-Packard, introduced their own extensions

to the CGA, allowing greater resolution. The HP 4b98lA
multimode adapter increased the resolution to 400 lines but
kept the same horizontal and color resolutiors and increased
the memory to 32K bytes. The CGA became the lowest com-
mon denominator for graphics-based programs and, in fact,
is still supported today by many applications-especially
games.

In 1982 the Hercules Company introduced the Hercules
Graphics Card (HGC). This adapter fully supported the alpha-
numeric capabilities of the Monochrome Display Adapter as
well as providing 720-by-348-pixel monochrome graphics.
Because of its modest cost and industry support, the HGC
became very popular.

The next big brealcthrough in PC video came in 1985 when
IBM introduced the Enhanced Graphics Adapter (EGA).
This was the first affordable PC video adapter to enter the
"high-resolution" arena. It supported a resolution of640 by
350 pixels with up to 16 colors simultaneously displayed
from a palette of 64 colors. The memory required was 128K
bytes. The EGA was fully backward compatible with the
CGA (and with the monochrome monitor, the MDA). In 1987
the IBM PS/Z line of PCs was introduced and with it the
Video Graphics Array (VGA) video adapter. The VGA has
become the de facto standard ofthe PC industry today. The
original VGA contained 256K bytes of video memory and
supported resolutions up to 640 by 480 pixels with up to 16
colors simultaneously displayed from a palette of 262,144
colors. As memory prices have continued to decrease, the
VGA has been enhanced. The first enhancement was the
Super VGA (SVGA) which increased the resolution to 800 by
600 (or 1024by 768) pixels. The color depth increased to
allow up to 256 colors to be simultaneously displayed. Dis-
play memory was increased to 512K bytes. The VGA is fully
backward compatible with the CGA, EGA, and HGC video
adapters.

The video adapters mentioned above map the display mem-
ory into the system processor's memory space. AII video and
graphics operations are handled directly by the system pro-
cessor. Newer display adapters, such as the HP Ultra VGA
board, have taken the next step by increasing the VGA reso-
lution to l024by 768 pixels with 256 colors available at all
resolutions (increasing the display memory to 1M bytes) and
providing some local graphics processing in the video dis-
play system. This frees the system processor from much of
the work of updating the display and accelerates display
operations.

June 1993 Hewlett-Packard Joumal 3l

HP Ultra VGA Board Implementation

In any design there axe always trade-offs to improve perfor-

mance, save board space, add more features, and so on. The

Ultra VGA board implementation was confronted with some

of these same trade-offs as well as the need to adopt some

new technologies to provide a high-resolution, flicker-free
graphics system.

Sofrbware versus Acceleration Thade-offs

In almost aII nonscientific programs, video processing is the
performance bottleneck. By taking some of the graphics

burden offthe applications, a good video solution is able to

improve overall system performance dramatically. This is

especially tme as graphics-oriented user interfaces become
more popular.

Performing the high-level graphics functions like area fill

and line drawing inside the hardware has only become pop-

ular in the last few years. The MDA and CGA video solutions

used video routines located in the main system BIOS (basic

inpuVou@ut system) of the computer and offered a few low-

resolution modes. The EGA and VGA were logical exten-

sions to MDA and CGA. They offered more modes, higher

resolutions, more colors, and had their own video BIOS.

There was no support for any highJevel graphics functions,

though a few simple graphical mixing functions like XOR

were available. It wasn't until the IBM 8514 that highJevel
graphic functions were performed in the hardware. The 8514

is an accelerated display adapter that contains a graphics

engine implemented in hardware. The problem with the

8514 is that it is not bacloarard compatible with VGA.

Since the advent of the 8514, other video manufacturers have

started to put high-level graphics functions and support for

VGA on the same card. Some manufacturers add the capa-

bilities of high-level graphics functions directly to the VGA
modes while others add special video modes and VGA modes

that have the extra capabilities the 8514 made popular.

Ttade-offs must be made to determine where the highJevel
graphics functions like line drawing are implemented. In the
past, an application would use the CPU to calculate all the
points in a line and then write each separate dot in the line

to video memory. This works very well if the CPU has band-

width to spare and all video solutions behave the same.

Since all video solutions do not work the same, each appli-

cation has to either pander to the Iowest common denomi-
nator or not work on all machines. Tlvo main solutions to

this problem have been implemented: video BIOS intermpt

calls and application drivers.

The HP Ultra VGA video BIOS contains an industry-standard

set of intermpt calls that change the configuration of the
video adapter, get information about the video solution, and

access all ofthe functions needed to work with text. All ap-
plications that know about the VGA standard can use these
intemrpt calls to perform the video BIOS functions. This is
great for text, but there is almost nothing in the VGA BIOS
that helps with drawing objects in graphics modes. Since
graphical user interfaces axe now becoming very popular,
graphics support is very important.

Display Drivet The display driver fills the graphics support
gap. A display driver is responsible for providing the means

to translate application graphics commands to hardware

commands and simulating capabilities not directly provided

in the hardware. Each display driver is tailored to a specific

application. Every application designer decides on the
graphics commands needed and how they will be imple-
mented. In the same way, each video chip maker chooses

the graphics commands to implement in hardware. The ap-
plication must supply a driver for every different video

adapter it must run on (or the hardware manufacturer must

supply a driver for every application it wants to support).
This allows video manufacturers to produce software that

allows specific applications to mn at peak performance on

their hardware.

The combination of display drivers, BIOS, and hardware
provides the excellent video performance seen with the HP

Ultra VGA video solution. The HP Ultra VGA board not only

supports all of the modes that VGA contains, but also has a

set of enhanced high-resolution modes that use a graphics

engine to accelerate the most commonly used graphics func-

tions. The enhanced modes are not standard VGA modes, but

applications can get access to them via the display drivers.
The drivers increase application performance by taking a

highJevel graphics operation like rectangle fill and perform-

ing the operation as fast as the video hardware can do it.

Applications send the display driver all graphics-related

operations and the driver decides the best way to perform

those operations. For example, to switch from mode three
(text) to mode 201 (enhanced graphics) an application will

send the driver the command to make the mode change. The

driver then has to decide whether to make the mode change

itself or send the command to the video BIOS. Tlrpically, the

driver will call the video BIOS for commands like mode

changes. However, for commands like line drawing, the
driver will usually communicate directly with the hardware

to draw the line.

The implementation of display drivers is described later in

this article.

Graphics Engine. The graphics engine is a state machine in-

side the video ASIC on the HP Ultra VGA board (see Fig. f).

Its purpose is to perform the high-level graphics functions in

hardware so that the CPU is free to do other tasks. An eight-

word FIFO buffer is provided so that the CPU can send all of

the commands needed for at least one operation (the num-

ber of commands varies between operations). The FIFO

reduces the amount of time the CPU has to wait when the
graphics engine is still performing its last command.

The highJevel graphics functions supported by the graphics

engine include rectangle fills, line drawing, short stroke vec-

tors, hardware cursor, bit-block transfers (BitBlt), and image

transfers. Rectangle fill is the ability to fill a rectangular area

of video RAM with some specific color and at the same time

change what is already at that specified location in video

RAM. For example, filling an area with all ones and the XOR

operation will invert all colors (pixels) within the rectangle

specified.

32 June 1993 Hewlell-PackadJoumal

Lllca llGA Gontollcr ASIG

rlr
14 MHz

Line drawing is the ability to draw a line between any two
points. Short stroke vectors are a special case ofline draw_
ing in which short lines of sixteen dots or less are drawn at
any forty-five degree angle (see ng. Z). Each short stroke
vector takes only one byte to specify, and the graphics en_
gine can accept two bytes at a time. This is very handy for
shapes that use many short lines, like characters, and since
only one byte is sent per line, this operation is very fast.

Bit block and image transfers are for moving rectangular
images around in video memory. A BitBlt is the fast transfer
of a rectangular image from one location in video memory to
another. Since the CPU only has to specify the source and
destination coordinates and rectangle size, it can do other
operations while the graphics engine does all of the work.
The BitBlt operation is performed by the CpU first wdting
the source, destination, and rectangle size to the FIFO buffer
if the FIFO has enough empty entries (the CpU requires four
empty entries for this operation). Then the CpU writes a com_
mand word to the FIFO that tells the graphics engine what
operation to perform. As soon as the command word propa_
gates through the FIFO and the graphics engine receives it,
the operation begins immediately. The graphics engine will
read pixels from the memory within the source rectan$e and
the corresponding pixels from the destination rectangle. The
graphics engine mixes the two sets of data in any of 2b6 dif_
ferent combinations and then writes the resulting pixels to
the destination rectangle's video memory. This will continue
until all the pixels in the destination rectangle are written. As
soon as the graphics engine has completed this command, it
will go back to the FIFO for the next command.

Image transfer performs the same function as a BitBlt ex_
cept that it transfers an image from the CpU memory to
video memory and vice versa. For this operation, the CpU
only has to compute the number of bytes to be transferred

Fig. l. A simplified block dia-
gram of the Ultra VGA board.

and then write (or read) that number of bytes to or from a
dedicated 7O register.

Since the graphic functions named above are constantly
used with any graphicat user interf'ace, a la.rge perf'ormance
gain will be seen on any benchmark that tests video using
these graphic operations. Since video is often the perfor_
mance bottleneck, application-level benchmarks tend to
improve as well.

After the CPU offloads operations to the graphics engine, it
checks the FIFO to make sure that there is enough room
before sending the next command. This means that the CpU
might still have to wait (when the FIFO if tull) if all it is do_
ing is sending high-level video commands. For benchmarks
that do a large number ofone type ofoperation, the results
may not indicate real performance. Because of this fact,
benchmarks today are moving towards using real applica_
tions performing normal operations that can be completely
automated.

Today the most useful benchmarks are applications that use
a graphical user interface. Because ofthis, many pC bench_
marks measure the performance of graphically intensive
applications such as CAD programs. Tivo industry bench_
marks, one running on Microsoft Windows and the other on
AutoCAD, showed that HP Vectra 486N machines using the
HP Ultra VGA card significantly outperformed other pCs
running the same benchmarks.

Host Bus versus the ISA Bus
Peripheral adapter cards are generally connected to a pC
via the ISA (Industry Standard Architecture) bus, which
runs at approximately 8 MHz (BCLK). BCLK is the ISA clock,
which is obtained by dividing the CpU clock by either three
or four depending on whether the processor clock is ZSMHz

June 1993 Hewlett-Packard Journal 33

s0. (010)

Uses 12 Bytes lo Encode
1l Draws and 1 Move

{c}

Fig. 2. (a) Short stroke vector directions. (b) Byte encoding of a

short stroke vector. (c) Example of a character drawn using short

stroke vectors. This character would require 48 bytes if stored as

normal long vectors-I2 X and 12 Y vaiues each tv/o by'tes long'

or 33 MHz. One-byte accesses to an accessory caxd require

a minimum of three BCLKs or approximately 375 ns' Tlvo-byte

accesses require a minimum of six BCLKs or approximately

750 ns. If the accessory board is not ready to start a cycle

when it is accessed, or ifthe access takes longer than the

minimum, additionat wait states of one BCLK each are in-

serted. In Fig. 3 the signal BALE (bus address latch enable)

signifies the start of a processor cycle and that the address

on the bus is valid. Read/write (RM)) and memory-VO (M-li0)

are control signals indicating the direction and source or

clestination of the data on the bus. The read and write data

signals indicate when the data must be stable for either type

of transfer.

The HP Ultra VGA board is implemented as a 16-bit ISA ac-

cessory board. Because of this, its performance is limited by

the bus bandwidth. For example, transferring a word from

one location to another takes a minimum of six BCLKs (750

ns) even though the memory is capable of 80-ns access time'

The HP Vectra 486 and 486/33T computers have an EISA

bus, but the additional cost of implementing the llltra VGA

board as an EISA peripheral was not justified since it could

not take advantage of the advanced features of the EISA bus

such as bus mastering. Also, being an ISA board allows it to

be used in other HP computers such as the Vectra RS 25lC,

which doesn't have an EISAbus.

In the Vectra 486/U, the video subsystem is not a plug-in

accessory board but is embedded on the processor PC

board. It is connected directly to the host bus and thus can

take advantage of the 32-bit bus width and the fast clock

speed. The chipset used in the HP Vectra 486/U allows for

four separate buses: the local bus, the host bus, the EISA'/

ISA bus, and the peripheral bus (see Fig. 4). The Intel486

processor and the secondary cache memory directly inter-

face with the local bus. This bus architecture is unique to

the Vectra 486ru. h most Intel486 designs, what we refer to

as the host bus is the local bus and the cache shares bus

bandwidth with other elements of the system. The HP 486/U

gains performance by sepa.rating the local bus from the host

bus since most high-speed critical operations axe processor

accesses to the cache. This also allows simultaneous access

to main memory or mass storage by intelligent peripherals

without interfering with the CPU.

The host bus is a 32-bit bus, operating at the Intel486 clock

speed, which connects the mdn subsystems of the processor'

As shown in Fig. 4, these subsystems include the memory

controller, the EISA/ISA bus controller, the peripheral con-

trolleq and the video controller. The EISMSA bus is the

backplane bus used for plug-in accessory cards' The periph-

eral bus connects many of the onboard subsystems in an ISA

style protocol.

Devices on the host bus receive the signal HADS (host ad-

dress data strobe) to begin a cycle (see Fig' 5)' This causes

an address decode to take place in the device' Ifthe device

recognizes the address as its own, it responds by asserting

the signal HLAC (host local access)' This causes other devices

on the host bus to remain quiescent for the duration ofthe

bus cycle. Ifno device responds, the address is propagated

onto the EISA/ISA and peripheral buses. When the respond-

ing host bus device completes its operation, it responds by

asierting the signal HRDY (host ready) which ends the cycle'

By comparing the timing diagrams shown in Figs' 3 and 5, it

can be seen that the host bus implementation can speed up

individual VO or memory cycles by afactor of four to six'

The decrease in CPU-to-peripheral transfer time and the

accelerator built into the chip (described below) contribute

to the superior performance of the embedded Ultra VGA

subsystem.

VRAM versus DRAM
Most PC video adapters use standard dynamic RAM (DRAM)

for display memory. While this is a cost-effective solution, it

leads to performance penalties. Because a DRAM has a sin$e

data port, accesses from the CPU and the display controller

must be time-multiplexed. The display controller must have

135'(01r1

rm" (100)

ffi. (ml

315 ' (1111

(al

270" (110)
\ Drawing

\ 0irection
Bits

(bl

f-)
t ,

ffiuv
Move

I t zsns l

BAtE

R/W, M-Uo

Read Data

Write Data

Fig. 3. A tlpical six-BCLK ISA cycle.

34 Junelgg3Hewlett-PackaxdJoumal

Local Bus

EISMSA Bus

a high priority because any missing data would show up as
noise or snow on the display. In the original CGA, the only
time the CPU is allowed to access display memory is during
the retrace intervals at the end of each scan line. This means
that that the CPU can get only two or three clean accesses
every 63 gs (see Fig. 6a).

The EGA and VGA architectures also use DRAM, but by using
four-bit wide chips, the CPU/display interleave is brought
down to 1:2 (see Fig. 6b). This allows a CPU access every
450 ns. This still necessitates slowing the CPU down, since if
the access just misses, the processor has to wait 450 rts until
the next access window opens.

Another RAM architecture made especially for video use is
the video RAM O|RAM). VRAM is a dual-ported device that
allows the CPU almost unlimited access to the display mem-
ory while still maintaining a noise-free display. Fig. 7 shows
a simplified drawing of a 256-bit \IRAM. The RAM array in
this case is 16 rows of cells by 16 columns. In an actual
VRAM the a"rray would be 64K bytes in a256-by-256 array.

In normal DRAM accesses, a row is selected by the row ad-
dress and read in to the sense amplifiers. The column address

is used to select one of the column sense amplifiers to read
or write a single bit of the array.

In a VRAM, access to a row is also selected by the row ad-
dress. However, instead of only one column being selected,
all of the columns are simultaneously read into a serial shift
register. The data is then shifted out of the shift register as it
is needed by the display. In this way the display controller
need only lock out the CPU for one cycle out of every 256
(or less depending on the width of the VRAMs) to present a
clean display.

The Ultra VGA board uses the VRAM mode when it is oper-
ating in its enhanced mode. In the standard VGA mode of

CPU Access

l- Retace Interval 2-3 ps-1

53 Ps ----------------

(a l

IDE
Hard Disk

' Controller
Flexible Disk Fig. 4. Basic block diagram of the

HP Vectra 486fu.Controller

HClt(

HAD$i

HI.AC

HRDY

Bead Dala

Write oata

reffiffiFR

45ll ns
{b}

Fig. 6. CPU/display memory accesses. (a) In the original CGA imple-
mentation the CPU gets access only during retrace intervals. (b) In
the EGA and VGA architectures the CPU gets access to memory one
out of every two memory cycles.

Display Access

| 3llns I

Fig. 5. T\rpical host bus cycle.

June 1993 Hewlett-Packard Joumal 35

Dot Clock
ShifVload

DRAM
Data Pon

operation the Ultra VGA board accesses video memory as if
it were DRAM.

Clock Synthesizer
Because of the many different display resolutions and moni-
tor characteristics associated with the Ultra VGA board, up
to 16 different video dot clock frequencies are needed. The
board space needed would be prohibitive if these clocks
v/ere generated with discrete crystals or oscillators. Instead
we use a clock synthesizer IC. This relatively new chip
combines analog and digital circuitry on the same chip. It

Analog outputs to Monitol

Fig. 8. Simplified diagram of a RAMDAC.

Dynamic
RAM
Array

Fig. 7. Simptified diagram of a
VRAM.

contains an oscillator, a phase-locked loop, and digital divid-

ers that drive the phase-locked loop. Except for the refer-

ence frequency crystal (14.31818 MHz) and an RC filter, all

of the necessary components axe contained on the chip.

This gives enorrnous capability in very little board space.

RAMDACS
The CGA runs its monitor with four digital signal lines: red,
green, blue, and intensity. This allows a maximum of 16

colors to be displayed. In graphics modes the colors are

fixed by the hardware and selected from two palettes of

four colors each.

The EGA extends this by providing six digital sig;nals: red,

red', green, green', blue, and blue'. This allows a maximum

of 64 different colors to be displayed. The digital-to-analog

converters (DACs) are built into the monitor and the 64

shades are fixed by the manufacturer. The EGA board has a

palette consisting of 16 six-bit entries, and each palette

entry can be progr4mmed to select one out of 64 shades.

The VGA doesn't drive the monitor with digital signals, but

uses analog signals instead, one for each primary color (red,

green, and blue). By varying these signals, an almost infrnite

range of colors can be displayed. The standard VGA uses a

RAMDAC with 256 eighteen-bit entries. Each of the entries

has six bits each for red, blue, and green (see Fig. 8). The

maximum number of colors that can be generated is 218 or

262,144. Of these, any 256 can be displayed simultaneously.

Ergonomics in PC Graphics

Higher Resolutions and Higher Refresh Rates
Since the establishment of the IBM VGA as a PC graphics
standard, there has been steady progress in the develop-
ment of higher screen resolutions. The IBM VGA offers a

Data Bus

36 June1993Hewlett-PacktrdJournal

maximum resolution of 640 by 480 pixels with 16 colors.
Recent super-VGA boards from various manufacturers sup-
port higher resolutions of 800 by 600 and 1024by 768 pixels,
along with 256 colors.

The most direct benefit of higher screen resolution is a larger
display area for the user. This translates to advantages such
as the ability to display more rows and columns of a spread-
sheet, or larger sections of a word processor document.

The display refresh rate has also been steadily improved to
address the problem of screen flicker. Flicker is perceived
by the user as a direct result of the monitor screen not being
refreshed at an adequate rate. Since all PC monitors are
based on cathode ray tube (CRT) technologr, the contents of
the screen are not static but are constantly being swept onto
the screen phosphor on a line-by-line basis. Ifthe graphics
system does not support an adequate screen refresh rate,
pixel intensity will have time to decrease between successive
refresh cycles, resulting in the perception ofrapid screen
flashing, or flicker. Viewing a monitor screen with significant
flicker, especially for long periods of time, can result in eye-
strain and other health hazards. The recent improvement in
screen refresh rates has been largely successful in reducing
the problems associated with screen flicker.

The standard VGA implements a screen refresh rate of T0 Hz
for all text and graphics modes, except for 640 by 480 graph-
ics modes, which offer a60-Hz rate. The Video Electronics
Standards Association OESA) provides standards for re-
fresh rates at higher resolutions including 72 Hz for 800 by
600 resolution and 70 Hzfor 1024 by 768 resolution.

Monitors

Increasing the screen resolution or the refresh rate will
directly increase the graphics output horizontal scan rate
(Hsync), a measure of the time between successive horizon-
tal display lines on the screen. The standard VGA uses a fixed

Hsyrrc rate of 31.5 kHz for all text and graphics modes. Com-
binations of higher resolutions and higher refresh rates can
yield an Hslmc rate ranging from 31.5 kHz to beyond64kHz.

All standard VGA-only analog monitors on the market can
support only the standard 31.5-kHz Hsync rate. To properly
support modes with higher Hsync rates, dual-symc or multi-
s;,nc monitors are required. Dual-sync monitors, such as the
HP Super VGA Display (HP Dlf 94A) and the HP Ergonomic
Super VGA Display (HP Dl195A), can support Hsync rates
other than 31.5 KHz. The capabilities of these two monitors
and others are listed in Fig. 9.

Multisync monitors are typically capable of synchronizing to
a continuous range of Hsync frequencies, allowing them to
support standard VGA modes as well as higher resolutions.
The HP Ultra VGA Display (HP D1193A) is an example of a
multisl'nc monitor.

The HPUVGA Utility
With the choice of multiple refresh rates and monitors with
different resolutions, the user needs to configure the graphics
system to select the correct refresh rates for the resolutions
supported by a given monitor. The HP Ultra VGA board is
shipped with a configuration utility called HPUVGA.EXE, which
allows the user to customize the Ultra VGA board output to
any HP PC graphics monitor.

Embedded within the HPUVGA utility is information pertain-
ing to the synchronization capabilities of all of HP's PC
graphics monitors. By correctly selecting the monitor in use,
the user is able to view the refresh rates supported by the
monitor at graphical resolutions of640 by 480, 800 by 600,
and 1024 by 768 pixels. In cases in which the monitor can
support two or more refresh rates for a given resolution, the
user is given a choice. All refresh settings are saved in an HP
CMOS video byte, which is described later.

Horizontal Vertical Colors ModeType Memory
Resolution Resolution Required

32 columns 25 rows 16 Text 5l2K Bytes

640 480 zfi Graphics 5tZK Bytes

640 480 zfi Graphics stZX Bytes

800 600 16 Graphics 5l2K Byres

800 500 16 Graphics 5t2K Byres

800 600 zffi Graphics tM Byle

800 600 2W Graphics lM Byre

1024 768 16 Graphics 5t2K Byles

1024 768 16 Graphics 5t2K Bytes

1024 768 256 Grapftics tM Byre

1924 768 256 Graphics tM Byre

01 192A-HP Monochrome Display

Dl 187A-HP 20-lnch High-Resolution Display

Dl193A-HP Uhra VGA 17-lnch Display

Dlt94A-HP Super VGA Display

Dl 195A-HP Ergonomic Super VGA Disptay

Hsync (kHz) Vsync {Hz} 01192A

31.5 70 /

D1187A 01194A 01195A
011934

t/ t/ tl

3 1 . 5 m 6 4 S h a d e s / / /

37.9 72 / /

60

72

60

72

60

10

60

70

37.9

48.1

37.9

/|8.1

48.4

56.5

/|8.4

56.5

Fig. I' SunLmary of HP PC monitor capabilities. In acldition to the capabilities listed, all of the monitors provide standard VCA modes

June1993llewlett-PackardJoumal 37

The HPUVGA utility also supports emulation modes for the
MDA, HGC, and CGA PC graphics standards. T\vo additional
l32-column text modes, with 25 and 43 rows respectively,
can also be set via the HPUVGA utility.

IIP CMOS Video Byte
Refresh rate settings for graphics resolutions of 640 by 480,
800 by 600, aorrd 1024 by 768 pixels are saved in the HP CMOS
video byte. The assignments for each bit in this byte are:

Bit 7: Alternate VO port select
Bit 6: Reserved
Bits 4 and 5: L024 by 768 refresh timing
Bits 2 and 3: 800 by 600 refresh timing
Bits 0 and 1: 640 by 480 refresh timing

The monitor timings for all supported video modes are
stored in table format in the video BIOS, with one table
entry per video mode. When an application calls the Int 10h
set-mode function of the video BIOS to enter a specific ac-
celerated graphics mode, the video BIOS accesses the HP
CMOS video byte to determine the refresh rate currently
selected, then uses the corresponding timing table to get the
correct refresh rate. This scheme allows the refresh rate
control to be application independent.

Since HP CMOS memory is a nonvolatile system resource,
the refresh rate settings are preserved in the same way as
other standard system con-figuration information. This
scheme is capable of supporting operating systems besides
MS-DOS@. Altematives to HP CMOS memory for saving re-
fresh rate settings have been carefully considered. Adding
EEPROM hardware to the HP Ultra VGA board to store the
refresh rates had the disadvantages of high cost and in-
creased design complexity. Using a TSR program (memory
resident software) to preserve the refresh rates would have
worked only for M$DOS, and other systems such as the OS/2
and UNIX* operating systems would also require specific
memory resident software. Memory resident software would
occupy valuable system memory and reduce ease of use.

Display Drivers

A display driver is a distinct program module that is made
up of a group of display functions that provide a standard
interface between an application and a particular type of
video display hardware.

The HP Ultra VGA accessory card provides many features,
such as hardware line drawing, bit-block image transfer
(BitBlt), rectangle fill, and hardware clipping. However,
these features can only be accessed through some special
video enhanced modes which are unique to the graphics
processor in the HP Ultra VGA card. In most cases, applica-
tion programs, such as Microsoft Windows and AutoCAD, do
not know (and do not want to lorow) how to enter these
enhanced modes. It is the manufacturer-specific display
driver that lets the application program take full advantage
of the graphics processor.

For example, to make the HP UltraVGA card work in
256-color enhanced mode with 1024-by-768-pixel resolution,
a display driver has to call the BIOS intermpt 10h with regis-
ters AX=0x4F02 and BX=0x205. In general, to set the display in

one of the HP Ultra VGA enhanced video modes, the driver

calls BIOS interrupt 10h with the AX and BX registers set to

values that represent different resolutions and colors.

To access hardware line drawing, BitBlt, and rectangle fi-ll

features of the HP Ultra VGA hardware, the display driver

sets the drawing command register at VO address 9AE8h.

Fig. 10 shows a definition of each bit in this register.

For example, when an application wants to draw a line on

the screen, the display driver sets the following bits in the

drawing command register at VO address 9AEBh:

Bits
13-15
04
00

Setting Meaning
001 Draw Line Command
1 Draw = Yes
I Write

The driver also has to find out the drawing direction to fill in
bits 5 to 7.

Another important feature of the HP Ultra VGA card is the
short stroke vector drawing abiliff. Using short vectors for
displaying text in the graphics mode improves video perfor-
mance. When an application program requests to display
text on a high-resolution graphics screen, the display driver
sets the short stroke vector cornmand register at the VO
address 9EE8h. Fig. 2b shows the bit definitions for the short
stroke vector register.

TVpically, an application prograrn uses a standard interface to
the display so it doesn't have to be concemed with the type
of hardware installed on the machine in which it is rurming.
This isolates the application program from the display hard-
ware. For example, most Windows applications are written
without regard to the type ofvideo adapter used. lnstead, the
programs are written to interface with Microsoft Windows.

Bit Meaning

15,11,13 Gommand Type
0ll1:Oraw Line
010: Rectangle Fill
110: BitBlt

12 BYteSwaP (1 =Yes 0=No)

1 1 0

10 {Reserved}

m Bus Size (1 = 16 bit 0 = 8 bit)

m Wait (1 = Yes 0 = No)

07,06, 05 Drawing Direction in Degrees
00ll: 0-45
fl1l:45-90
010: !10-135
011:135-180
lm:180-225
101:225-270
110: 270-315
111:315-0

04 Draw (1 = Yes 0 = Ilo)

03 Direct ionType {1=Radial 0=x-y}

U2. LastPixel {1 = Off 0= 0n)

01 Pixel Mode (1 = Multiple 0 = Single)

00 Read/Ullrite {1 =W 0=R}

Fig. 10. Definitions of each bit in the drawing command register

38 June1993Hewletl-PackardJoumal

Fig. fl. Software hierarchy from the application to the display driver.

The video adapter's display driver takes caxe of writing to
the display hardware. The Windows display driver works
with any Windows program. By going through a standard
interface, the display driver developer and the application
progr€un developer are isolated from each other (see Fig. U).

The Windows Display Driver
The display driver for Windows is a dynamic link library that
consists of a set of graphics functions for the HP Ultra VGA
display card. These functions translate device independent
graphics commands from the Windows gfaphical device inter-
face (GDI) into the commands (such as the drawing com-
mand described above) and actions the Ultra VGA graphics
engine needs to draw graphics on the screen. These fr-rnctions
also give information to Windows and Windows applications
about color resolution, screen size and resolution, graphics
capabilities, and other advanced features, such as BitBlt,
line-drawing, polygon fill, and hardware cursor suppofi.
Applications use this information to create the desired
screen oulput.

The HP Ultra VGA Windows display driver is based on the
sample driver for the IBM 8514 graphics adapter. The source
code for the 8514 driver is available from Microsoft's Driver
Development Kit. Like most Windows display drivers, the
Ultra VGA driver provides the following basic functions:

o 0utput. Draws various shapes.
r Enable. Starts or resumes display activity.
r Disable. Stops display activity.
r RealizeObiect. Creates physical objects (e.g., pens, brushes,

and device fonts) for exclusive use by the display driver.
This is where the translation between device independent
(or logical) and device-optimal (or physical) objects takes
place.

o Colorlnfo. Thanslates between logical colors, which are
passed by Windows as double word RGB values, and physi-
cal colors recognized and used by the Ultra VGA display
drivers.

. BitBlt. Supports bit-block transfers by copying a rectangular
block of bits from bitmap to bitmap while applying some
specified logical operations to the source and destination
bits. A bitmap is a matrix of memory bits that defines the
color and pattern of a corresponding matrix of pixels on the
device's display screen. Bitmaps provide the ability to pre-
pare an image in memory and then quickly copy it to the
display.

o ExtText0ut. Draws a string of characters at a specified loca-
tion on the screen and clips any portion of a character that
extends beyond a bounding box ofthe string.

. StrBlt. Supports text drawing for the earlier versions of
Windows. (It just makes a call to E)ftTextOut.)

. Control. Passes special control information to or receives
special information from the tlltra VGA display driver.

Besides the functions listed above, the following features
have been added to take full advantage ofthe graphics engine
in the Ultra VGA.

r Different Resolutions. Separate display drivers are provided
to support resolutions of L024 by 768, 800 by 600, and 640
by 480 pixels with 256 colors.

o Hardware Cursor. An onboard hardware cursor (Mby 64
pixels) for fast cursor movement in the enhanced mode.

. Fast Po$ine Draw. Onboard hardware is used to draw solid
polylines at a very fast speed.

. Polygonal Capabilities. An onboard drawing command
register and hardware axe used for quick rectangle fill and
scanline drawing.

e Fast Rectangular Clipping. Rectangular clipping is provided
via a clipping window boundary register and hardware that
discards points that are outside of a specilied rectangle or
region drawn on the screen.

. High-Speed BitBlt. Onboard hardware is used for high-
performance bitmap image transfer operations.

r FastBorder Function. A function that draws borders for
windows and dialog boxes very quickly.

. Save Screen Bitmap. The SaveScreenBitmap fr.rnction allows
Windows to save bitmaps temporarily in offscreen video
memory. This function speeds the drawing operations that
require restoring a portion of the screen that was previously
overwritten.

. Support for Large Fonts. Support for large fonts is provided
in which the font and glyph information can exceed 64K
bytes.

. DIBs Support. This function converts device independent
bitmaps (DIBs) to physical format for direct transfer to the
display without applylng a raster operation. Note that a DIB
is a color bitmap in a format that eliminates the problems
that occur when transferring device dependent bitmaps to
devices having difference bitmap formats.

. Support Device Bitmap. A device bitmap is any bitmap
whose bitmap bits are stored in device memory (such as
RAM on a display adapter) instead of main memory. Device
bitmaps can significantly increase the performance of a
graphics driver and free system memory for other uses.

June 1993 Hewlett-Packaxd Joumal 39

. Font Caching. Font caching is temporarily saving the most

recently used fonts in offscreen video memory. This firnction

speeds up text-redisplaying operations.
. Small and Large Fonts. The Ultra VGA display driver pro-

vides both small and large fonts in the 1024-by-768 high-

resolution mode.

" Vector Fonts. The Ultra VGA display driver supports vector

fonts. Avector font is a set ofglyph definitions, each con-

taining a sequence of points representing the start and end
points of the line segments that define the appearance of a

character in a particular font.

Working Together

The functions in the Ultra VGA display driver and the Win-

dows graphical device interface (GDI) work together to

make efficient use of the features provided in the HP Ultra
VGA board. The rest ofthis section describes how these two

entities work together to initialize the display and perform

some simple graphical operations.

When the user q4)es WIN to start Windows, a small program

WIN.C0M determines the mode in which Windows is to mn.
If it determines that it can run in the enhanced mode, Win-

dows runs KRNL386.EXE (via W|N386.EXE). While initializing,
Windows checks the DISPLAY.DRV setting in the SYSTEM.INI file

to determine the file name of the display driver to load. The

HPUxxx.DRV driver nlodules are the display drivers for differ-
ent resolutions and video memory configurations. The

Windows graphical device interface (GDI) then calls the

selected display driver's initialization routine.

During initialization, the Windows GDI makes two calls to

the Enable function in the Ultra VGA display driver. After the

first call, the Enable function then retums to the GDI the

GDllNF0 data structure, which describes the general physical

characteristics and capabilities of the HP Ultra VGA graph-

ics engine. The GDI uses this information to determine what

the Ultra VGA display driver can do and what the GDI must

simulate.

The second time the GDI makes a call to the Enable function,

the display driver does three things. First, it initializes the

Ultra VGA graphics engine to be ready to run Windows. This

includes saving the current mode, using the video BIOS firnc-

tion 10h calls to set the enhanced display mode and colors,
load the palette, and so on. Next, the Enable function calls the

hook_int_2Fh function in the display driver so that each call to

interrupt 2Fh will be checked to detect any screen Switch
function calls. This is because in a preemptive multitasking

environment such as 386-enhanced-mode Windows, the dis-
play driver has to save and restore the display hardware

settings, such as video mode and register data, whenever

Windows is changed between a Windows application and a

non-Windows application.

The last thing the Enable function does is to initialize and
copy the PDEVICE data stmcture. The PDEVICE data structure

defines physical objects rather than bitmaps. Physical ob-
jects define the attributes (such as color, width, and style) of
lines, patterns, and characters drawn by the display driver.

Physical objects correspond to the logical pens (used to draw
polylines and borders around objects drawn by the Output
function), bmshes (used to fill figures drawn by the Output
function and to fill rectangular areas created by the BitBlt
function), and fonts (used by the ExtText0ut function to draw
text). Physical objects also contain Ultra VGA hardware
device dependent information that a display driver needs to
generate ou@ut. These physical objects are created by the
Realize0bject function.

After the Realize0bject function is finished creating the default
pens and brushes for Windows and the bmshes needed to
draw the desl<top and fill the Program Manager window, the
BitBlt and EnText0ut functions are called to do all the drawing
on the screen. First, the BitBlt flmction draws a rectangle on
the screen with the background color by using a pattern

copy operation. Next, the BitBlt function is called to draw
some borders and rectangles. FinaJIy, to complete display
initialization all the icons, text, and pictures are put on the
Windows screen by using functions such as BitBlt, ExtTextOut,

and the bmshes created by the RealizeObject function.

When a Windows application requests to draw a line on
the screen, the GDI checks the dplines entry in the GDllNF0
structure, which was filled by the display driver during ini-

tialization, to see if the display driver supports line drawing.

Since the Ultra VGA driver supports hardware line drawing,

the GDI calls the 0utput function to draw a line on the screen.
Otherwise, the GDI has to simulate line drawing by combin-

ing scan lines and polylines.

If a Windows application asks to display text on the screen,

the GDI calls the ExtText0ut function in the display driver. The

ExtText0ut function receives a string of character values, a

count ofthe characters in the string, a starting position, a
physical font, and a DRAWMODE stl'ucture. These values are

used to create the individual glyph images on the screen.

Finally, when a user asks to quit Windows, the GDI calls the

Disable function in the display driver. This function frees any

resources associated with the physical device and restores

the Ultra VGA hardware to the state it was in before Windows

started. Alter the display driver returns from the Disable func-

tion, the GDI frees the memory it allocated for the PDEVICE

structure and frees the display driver, removing any driver

code and data from memory.

Acknowledgments

The authors would like to thank the following individuals
who participated in the development of the HP Ultra VGA
products: Mark Linsky, Mark Hanlon, Jean-Claude Roy, Larry

Durandette, Kevin Owen, Kiran Mundkur, Dave Wilkins, and

Mike Milani. We would also like to thank all the members of

the HP Vectra 486/U hardware, BIOS, and utilities teams for

their assistance and cooperation.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.

l\,4icrosoft is a U.S. registered trademark 0f lvlicrosoft C0rp0rati0n.

AutoCAD is a U.S. trademark 0f AutOdesk, Inc.

MS-D0S is a U.S. registered trademark of Microsoft Corporation.

40 June1993Hewlett-PackaxdJoumal

POSIX Interface for MPEIi)(
Differences in directory structure, f i le naming conventions, and security
were among the areas in which mechanisms had to be developed to
enable the P0SIX and MPE XL interfaces to coexist 0n one operating
system.

By Rajesh Lalwani

The IEEE standard for a Portable Operating System Interface,
or POSIX, defines a standard operating system interface and
environment to support source level application portability.
POSIX specifies the fimctions and services an operating sys-
tem must support and the application programming interf'ace
to these services and functions.

POSIX 1003.1, which defines a standard set of programmatic
interfaces for basic operating system facilities, and POSX
1003.2, which specifies an interactive interface that provides
a shell and utilities similar to those provided by the UNIX*
operating system (see Fig. 1), are integrated in the MPE XL
operating system to form the MPE/iX operating system,
which runs on the HP 3000 Series 900 system.

The programmatic interface and directory structure of
POSIX 1003.1 allow MPE/iX users to use POSIX functional-
ity without any impact on existing HP 3000 applications.
Moreover, MPEI applications are able to access POSIX files,
and POSIX applications are able to access MPE files. Thus,
MPE/iX provides interoperability and integration between
MPE and POSIX applications and data.

t From here on MPE will be used to refer t0 the l\,4PE XL version of the MpE 0perating sysrem.

Application
[evel

Hardware

POSIX is significantly different from MPE in a number of
technical areas such as directory stmcture, file system, se-
curity, user identification, file naming, process management,
and signals. In the summer of 1990, a POSIX architecture
team was formed to look at these differences and to archi-
tect a way in which MPE and POSIX could coexist on Hp
3000 Series 900 systems.

Despite the differences between MPE and POSX concepts,
the team had no problem visualizing MPE and POSIX as one
operating system. To achieve a successful integration of
POSIX and MPE, several stumbling blocks had to be over-
come. This paper describes the problems encountered in
merging POSIX and MPE in three major technical areas:
directory structure, file naming, and security. The paper
also describes the alternatives rejected by the POSIX
architecture team.

Directory Structure
MPE has a fixed, three-level directory structure. In this
model, the directory tree consists of one or more accounts.
Each account contains one or more groups and each group
has zero or more files in it (see Fig. 2). On the other hand,
POSX supports the notion of a hierarchical directory struc-
ture. Fig. 3 shows a typical POSIX directory. Some of the
features that POSIX requires in a directory stmctu_re include:

. Suppoft for the . and .. entries upon creation of a directory
o Support for a true hierarchical directory with file names of at

least 14 characters and path names of at least 2bb characters
. Support for the POSX mle for directory deletion, that is,

the directory must not contain any entries other than . and ..
for the unlink of a directory to succeed.

Root Directory

(i r
Accounts

{
PAYRott DEVtLoP SYS

(l

r l - - l
Grorps ,l JAt{92 tEB92 MPE px TETESUP puB

r I I _ i
1 l - I | |

Files { HOURS TAX|I{FO PRGFIIE ST0BE Cl
t

Fig. 2. A typical MPE directory.

System
Level

Fig. l. MPFI and POSIX applications coexist on the same system

June 1993 Hewlett-Packard Joumal 4l

Root Directory

t f - I
l ib bin tnP use*

l - t
libc.a bruna ieff

I
bin addr bk

l r

my-ls down-load

Fig. 3. A ttpical POSIX directory.

MPE groups and accounts are different from the POSIX

directories because of the special information contained in

them. To integrate the POSIX and MPE directory structures

successfully, we had to consider removing this special infor-

mation from MPE groups and accounts to accommodate the

new directory structure. The following lists some of this

special information.
r On MPE, accounts are used to manage collections of users

for file sharing. Each MPE account entry contains a pointer

to a list of users that are members of that account.
. MPE groups and accounts keep track ofthree resources:

disk space, cormect time, and CPU time.
. MPE groups and accounts contain security information that

is used to evaluate permission to access certain flles.

One of the challenges for the architecture tearn in inte$ating

the hierarchical directory of POSIX with the MPE directory

structure was to make the directory generic enough so that

future standards could be supported and the accounting and

user identification functions could be removed from the

directory in the long term. These efforts resulted in the di-

rectory shown in Fig. 4.

Conceptually, the new directory structure is just a tree

stmcture (a directed acyclic graph, to be more precise). The

root ofthis tree is designated by slash (/). The root may have

files and directories under it. Each directory may have files

and directories under it. There is no architectural limitation

on the depth of the directory tree.

The only restriction on the directory structure has to do

with the MPE groups and accounts. MPE accounts can only

exist as immediate descendants of the root directory and

MPE groups can only exist as immediate descendants of

MPE accounts. This means that although files and directories

can be placed anlwhere, MPE directory objects (groups and

accounts) are restricted to their conventional locations.

Root Directory

l
DEVETOP

[]
MPE PX

[| T l]
ledger payable data daily-log PRGFILE

I
Makefile

Accounts and groups are distinguished from POSIX files and

directories based upon how they are created. An account is

a directory that is created by the :NEWACCT command and
purged via the :PURGEACCT command. Similarly, a group is a

directory that is created by the :NEWGR0UP command and
purged with the :PURGEGROUP or:PURGEACCT commands.

In the new directory stmcture all users are registered in the

UID (user identifier) database required by POSIX, and the

combination of the UID and GID (group identifier) data-

bases replaces most of the information formerly held in the

MPE account and user directory nodes.

Rejected Directory Designs

In the beginning the architecture team considered the idea

of a dual-root directory structure. Fig. 5 shows an example

of this idea. In this scheme, a directory called MPEXL would

exist directly below the root of the hierarchical directory.

This directory would be the root of the MPE directory con-

taining all the accounts, groups, and files. Underlying this
proposal was the assumption that the MPE environment

would not be changed. Factors motivating this proposal

were the desire to maintain compatibility with existing ap-

plications, to eliminate the need to modify existing directory

services, and to isolate the POSIX hierarchical directory

services from having to interact with MPE directory struc-

tures. This idea was rejected by the architecture team for

several reasons. First, this would make the hierarchical di-

rectory nonuniform. The MPEXL directory (shown in Fig. 5)

and all its descendants would not follow the normal hierar-

chical directory rules, and applications would have to make

exceptions for them. Second, this would prevent users from

incorporating the hierarchical directory into their current

environment. Finally, this proposal was not in line with the

long-term goal of making all the directory objects in the

system one tJ,pe.

Another idea was to use the same dual-root structure but

not externalize the fact. With this idea, the directory ser-

vices would determine which of the two roots to use when

searching for a particula.r narne, and duplicate entries would

not be allowed in the two roots. Thus, for the directory

shown in Fig. 5, a name like CI.PUB.SYS would orily refer to

CI.PUB.SYS in the MPE directory and a POSIX interface would

not be able to create a directory /SYS' While this solution

solved some of the problems with the previous alternative, it

still had some problems. For example, the directory services

would have to do an extra search just to determine which

root to use, thus affecting performance. More important,

MPE and POSIX directories would not have been integrated.

L -]
users lile0

I
ieff

bin addr bk

I]
my_ls down-load

I

PAYBOtt

JANS2 FEB92

L - l
HOURS TAXINfO

f
bruna

nain.c

42 June1993Hewlett-PackardJoumal

Fig. 4. A t:,pical MPE/iX directory

Root Directory
I

MPEXT

l -

DEVEI.OP SYS

, l i Lr - l
MPE PX TETESUP PU8

- I
bin-

l
t ib

lihc.a ieff

I
tnp users

bruna

I
bin

I

PAYBOTT

- I

JAN92 fEB92

l
l i

HOURS TAXINTO PRGTITE

File Naming

l - l
STORE CI

In designing the file naming rules, the main objective was

that the existing MPE interfaces such as MPE intrinsics and

command interpreter (CI) commands should be able to refer

to all objects in the same way they did before MPE/iX. The

familiar MPE objects can be refelTed to by using the syntax

for file names file.group.account, file.group, or file. The entire file

name is first upshifted by the MPE narne server. For exam-
ple, if the file name is prgfile.px.develop, the MPE name server

refers to the file PRGFILE in group PX in account DEVEL0P. Simi-

larly, if the file name is, say, prgfile.px, it refers to the file

PRGFILE in group PX in the logon account. Finally' if the file

narne is fully unqualified (no group or account), say, prgfile, it

refers to the file PRGFILE in the current working directory
(CWD). When a user logs on, the CWD is the same as the

user's logon group. So unless the user has explicitly char-tged

the CWD, a fully unqualified file name such as prgfile contin-

ues to refer to the same object as before MPEi/iX (e.g., file

PRGFILE in logon group PX.DEVEL0P).

The file naned down-load in Fig. 4 cannot be referenced

through the MPE name server because the file is not in art

MPE group and it doesn't have a valid MPE file name. The file

name must somehow escape being processed by the MPE

name server so that it can be processed by the POSIX name

server. This is done by using the characters . or I at the begin-

ning of a fiIe name. For file names beginning with . or /, the

MPE name server does not upshift the name, but passes it to

the POSIX narne server. Therefore, the file down-load in Fig. 4

can be referred to by using the name /users/jeff/bin/down-load
(the complete path name). Alternately, if the CWD has been

changed to /users/jeff, the file can also be referred to by the

name . /bin/down-load. Fig. 6 illustrates the MPE name server

rules for MPE and POSIX file names.

MPE
File ltlames

P0stx
File Names

t Remember that MPE upshifts file names and P0SIX does not.

Fig. 6. MPE name server rules for MPFI and POSIX file uames.

addr bk

I
ny_ls down_load

Fig. 5. A directory structure that
was reiected for MPE/iX.

The name serwer used by POSIX 1003.1 ftrnctions and POSIX

1003.2 commands is the POSX name selver. However, MPE

interfaces such as intrinsics and CI commands escape to the

POSIX name server when the file name begins with the . or /

escape characters (see Fig. 7).

The POSIX narne server can also refer to all the objects in

the directory. For naming purposes, MPE accounts and MPE

groups can be treated as directories. Hence, the file

PRGFILE.PX.DEVEL0P can be referred to as /DEVELOP/PVPRGFILE.

Since the POSIX name server does not upshift names, the

name /develop/px/prgfile cannot be used to refer to this file.

Since file narnes are always in POSX syntax in POSIX appli-

cations, they don't have to begin with . or /. Thus, if the CWD

is /DEVEL0P/Px/ledger (see Fig. 4), the file name main.c will not

refer to the file MAIN in group C ofthe logon account, but to

the file named main.c in the CWD. The . is a valid POSIX

character.

A problem with the approach just described is that some

interfaces might have to do special processing to accom-

modate POSIX file names. For example, the MPE :listfile

command might have to query the MPE name server to

MPE Intrinsics, Command
Inte.preter Commands

P0SIX 1003.1 Functions,
P0SIX 1003.2 Commands

File l$arnr
Server

Fig. 7. The POSIX and MPE name servers. The MPE nanle selver

escapes t.o the POSIX name sen/er if the file name begins with or /

June 1993 llewlett-Packard Joumal 43

determine the type of file name it is dealing with (POSIX or
MPE) before accessing the file system. However, this prob-
lem is minimized because there is one central file narne
server for parsing both MPE and POSIX flle names.

Rejected File Naming Alternatives
The architecture team considered and rejected the follow-
ing alternatives for file names using the MPE command
interpreter.

PXUTII. This program would have been an MPE system utility
used for supporting POSIX file names. For exanrple, in PXUTIL
a user could have purged a POSX file as follows:

pxutil> purge /users/jeffladdr_bk.

PXUTIL would have also supported the POSX chdi() function,
allowing the above file to be purged as follows:

pxuti l> chdir/users/ jeff /
pxuti l> purge addr_bk

Among the few functions provided by PXUTIL would have
been a mechanism (using : as the first character) for escap-
ing to the MPE command interpreter so that the user could
use MPE commands from within PXUTIL. This would have
created problems when the CWD was different from the
logon group. Consider the following scenario:

:hel lo jeff .develop,px
:pxuti l
pxutil> chdir /users/jeff/
pxuti l> : l istf i le @

(logon group px.develop)
(run pxuti l)
{change working directory)
(escape back to MPE)

Ideally, in this example the MPE:listfile commancl should
display the files in the directory /users/jeff/. What happens
instead is that the :listfile command transfers control back to
the MPE command interface into the environment in which
PX.DEVELOP is the Iogon group and there is no concept of cur-
rent working directory. Hence,:listfile would display the files
in the group PX.DEVELOP.

This example illustrates that using PXUTIL and the escape
feature to the MPE command interface would have required
enhancements to the CI commands so they could have un-
derstood POSIX names and the current working directory.
We concluded that if all the CI commands were enhanced in
such a manner there would have been no need for pXUTlL.

G|_POS|X Toggle. This alternative defined a command inter-
preter variable Cl_P0SlX, which, when set, would enable
some of the MPE command interpreter commands to ac-
cept POSIX-named objects directly. The following sequence
illustrates this idea:

:hel lo jeff .develop,px

:print daily_log (try to use a POSIX file name directly
^ in the MPE CI command PRINT)

Inval id Character In Fi le Name. (CIERR 5B3l

:setvar Cl_P0SlX true (tell the CI command to accept the
POSIX file names)

:print dai ly_log

The main problem with this idea was that with the variable
Cl_P0SlX set to true, commands that were not enhanced
would not recognize POSIX named objects. Thus, in this
scheme if the :listfile command was not enhanced, the user

44 June 1993Hewlett-PackardJoumal

would run into the same problem encountered with the
PXUTIL utility. What is worse is that if the :tistfile command
were enhanced in the future to support POSIX names, the
user would be surprised to see different results. This means
that the same commands would have behaved differently
when they were enhanced to recognize a variable Iike
cr_P0srx.

It would have been nice to have an "accept POSIX names"
switch on a per-command basis. In fact, the chosen design in
which the leading characters . or / are used to escape to the
POSIX name server does precisely that.

New Command Interpreter Commands. The last rejected idea
was to create a new set of commands that would have
directly accepted POSIX names. Consider the following
scenario:

:hel lo jeff .develop,px
:chdir /users/ jeff l
:oxlistf @

Presumably, pxlistf would be a new command that behaved
like listf and:listfile and understood POSIX names and the
CWD. This command would have displayed all the objects in
the CWD (/users/jeff/) as opposed to listf and:listfile which would
have displayed all the files in the logon group pX.DEVEL0p. The
biggest concern with this idea was that multiple commands
would have been doing the same task.

FiIe Access and Security
In ttre POSIX file access model a process carr access a file in
the following ways: read, write, and execute/search. Search
access applies to a directory and execute access applies to
an executable file like a program file or a shell script file.
There is a subtle difference between read (as applied to a
directory) and search access. Ifaprocess wants to open a
directory and read the entries in it, the process needs read
permission for that directory. But if a process wants to ac-
cess a fiIe, say, /users/jeff/addr_bk, the process needs search
permission for all the directories in the path, namely, /, users,
and jeff in this particular case.

The standard file access control mechanism of POSIX uses
file permission bits, and every file in the POSIX directory
structure has file permission bits associated with it. All
directories in POSIX are just files of directory type. File per-
mission bits contain the information about a file that is used,
along with other information, to determine whether a pro-
cess has read, write, or execute/search permission for that
file. The bits are divided into three classes: owrler, group,
and other. In addition to the file permission bits there is a
user identifier (UID) and a group identifier (GID) associated
with every file. File permission bits are set at file creation
time and can be changed by the chmodfl function. These bits
can be read by using the statfl or fstat() functions.

For access control, processes are classified as belonging to
one ofthree access classes: file owner class, file group class,
and file other class. A process is in the file owner class of a
file if the effective UID of the process matches the UID of
the file. A process is in the file group class of a file if the
process is not in the file owner class and if the effective GID
or one of the supplementary GIDs of the process matches
the GID associated with the file. A specific implementation

of POSIX may define additional members of the file group

class. Lastly, a process is in the file other class if the process

is not in the file owner class or file group class.

Implementations of POSIX may also provide additional or

alternate file access control mechanisms. An additional ac-

cess control mechanism can only firrther restrict the access
permissions defined by the file permission bits. An alternate

access control mecharrism, if enabled. is used instead of the

standard mechanism. The altemate access control mecha-

nism has some constraints, the chief being that it must be

enabled only by explicit user action on a per-file basis.

Lastly, POSIX also allows privilege-based security in which

access may be granted to a process if it has the appropriate
privilege. Each POSIX implementation can define what

constitutes an appropriate privilege.

The MPE access control scheme is based on several mecha-

nisms such as a file access matrix. lockrarords, and access

control definitions (ACDs). Implementing POSX 1003.1on

MPE required a mechanism that conformed to the POSIX

1003.1 standard. The existing MPE access control mecha-

nisms did not satis$r the requirements specified in the stan-

dard. MPE file user types defined for the file access matrix

are not exclusive categories and MPE XL 3.0 ACDs cannot

express access permissions for a frle's owner or group.

To support the POSIX 1003.1 access control mechanism, the

architecture team considered either extending an existing

MPE mechanism or developing a new mechanism. It is gener-

ally preferable to extend an existing MPE mechanism since

this approach often minimizes customers'training costs and

HP's development costs. These benefits are maximized
when the modification is a logical feature extension.

The architecture team noticed the close similarity between

the evaluation of ACDs and the POSIX 1003.1 file permission

bits. In both implementations access control evaluation pro-

gresses from the most specific entry or classt to the most
general entry or class. A process can match only a single

entry or class because entries and classes are exclusive. The

two access control schemes are also similar in the way they

store access permissions locally with the file object. These

observations led to the design decision to implement POSIX

security using MPE ACDs.

In MPE/iX, POSIX 1003.1 frle permission bits have not been

implemented as a sepaxate access control mechanism.

Instead, POSIX 1003.1 firnctions support the file permission

bits via the MPE ACD mechanism. ACDs themselves have

been enhanced to enable the ACD mechanism to operate as

a POSIX 1003.1 additional access control mechanism and to
provide directory access control. Fig. 8 illustrates these ac-

cess control relationships. The translation block performs

the conversion from file permission bits to ACD format and
vice versa.

POSIX 1003.1 applications will continue to use POSIX file
permission bits to specify access permissions and will be

t Entry refers to an entry in the ACD such as I w, x:@.@ in Fig. 9, and class is one 0f the three
classes a process can be in: flle owner class, file group class, 0r lile other class.

ACD = Access Control Delinition

Fig. 8. Access control implementation in MPE/iX. Note that the
ACD mechanism is the foundation for both the MPE ACD intrinsics
and the POSIX file permission bits.

unawaxe that file permission bits are implemented on top of

the ACD mechanism. On the other hand, MPE applications
will never deal with POSIX file permission bits; they wi-ll

deal with ACDs, the file access matrix, and locloarords.

When a POSX 1003.1 interface such as open0 creates a file,

an ACD will be assigned to the file as part of the file creation

operation. When the POSIX 1003.1 function chmodO is in-

voked to set access permissions for a file or directory ACD

information will be manipulated. Similarly, the stat() and fstat()

functions will evaluate an ACD and map the access permis-

sions granted by the ACD into file permission bits using this

mapping in reverse. Fig. 9 illustrates the mapping between

file permission bits and MPE ACD entries.

File Gloup File other

Fig. 9, Mapping between the POSIX 1003.1 file permission bits and
the underlying ACD mechanism.

File
Owner

June 1993 Hewlett-Packtrd Joumal 46

Conclusion
When the MPE XL operating system was being designed for
the new PA-RISC machines, baclcvrard compatibility with HP
3000 machines running the MPE V operating system was a
major goal. This resulted in the design and implementation
of the compatibility mode on the new HP 3000 Series 900
machines. Implementing POSIX on the HP 3000 Series 900
machines presented at least as great a challenge to the ar-
chitecture team. Maintaining backwaxd compatibility while
searnlessly integrating POSIX and MPE concepts was one of
the chief objectives of the architecture team. This paper has
shown how this objective was achieved in the technical
areas of directory structure, file naming, and file access and
security.

Acknowledgments

I would like to thank the members of the architecture team
and many other engineers who worked on implementing
POSIX on the HP 3000 Series 900 machines. The core
members of the architecture team were Steve Elmer, Craig
Fairchild, Brian O'Connor, Mike Paivinen, and Jeff Vance. I
would also like to thank my managers Bruna Byrne and Ann
Stein for their support despite a very busy schedule during
the POSIX implementation. Finally, I would like to thank
Craig Fairchild, Mike Paivinen and Jeff Vance for reviewing
this paper and providing valuable feedback.

HP-UX is based on and is compatible with UNIX System Lab0ratories'UNIX* operating system.
It a I s0 compl ies with X/0pen s* XPG3, P0SIX 1 003.1 a nd SVID2 inrerface specifications.
UNIX is a regrstered trademark of UNIX System Laboratories Inc. in the U.S.A. and Other countries.
X/0pen is a trademark of X/0pen Companv Limited in the UK and other countries.

46 June 1993 Hewlett-Packtrd Joumal

A Proeess for Preventing Software
IJazards
Preventing software hazards in safety-critical medical instrumentation
requires a process that identif ies potential hazards early and tracks them
throughout the entlre development process.

by Brian Connolly

Since the occutrence of several patient i4juries related to

software failures of medical instrumentation,l much effort

has been put into finding ways to prevent these software

hazards in systems designed for medical use. Software haz-

ards are a special category ofsoftware defects. Ifthey occur

during the operation of a system they may cause grave dan-
ger to human life and property. Software by itself does not

harm anyone, but the instruments it controls and the infor-

mation it collects from those instruments can cause damage.

Therefore, since accidents in complex computer-controlled

systems involve hardware, software, and human failures,

software procedures to avoid hazards must be considered as
part of overall system safety.

Many methods of analysis, prevention, and verification have

been proposed to handle software hazards. HP's Medical

Systems (MSY) Unit has researched and experimented with

some of these methods and processes. This paper describes

how we combined the most appropriate elements ofthese

methods to develop a software hrazard avoidance process

for our organization. We will also show how the process was

applied to one product.

MSY develops and manufactures instruments that provide

clinical practitioners with patient information at bedside, a

central nursing station, a hospital information system, a doc-

tor's office, or anywhere the data is needed. Fig. 1 shows the

Iayout for a typical high-level medical information and moni

toring system. The information comes from transducers

connected to a patient. Physiologic electromechanical activ-

ity is converted to analog electric signals. These signals are

routed to data acquisition subsystems or modules of a com-
plete patient monitor. The patient monitor electrically iso-

lates the patient and digitizes the signals. Up to 12 modules

can be connected to the patient. The digital data is moved to

the monitor software subsystems where it is formatted, pri-

oritized, and queued for display on the local patient monitor

screen. In addition to local display, there is a proprietary

local network, called SDN (serial data network), which is

the pathway and protocol for displaying selected data from

tp to 24 bedside monitors on central repofting stations.

The patient data, whether at a bedside monitor or a central

station, is used by the clinician as one element in patient

treatment. Therefore, in analyzing the hazards in a medical

instrument, consideration must be given to a direct hazard

such as a software condition that produces an unsafe situa-

tion for the patient, and the possibility of patient mistreat-

ment as a result of a monitor or central station indication

\ \
I l L ! l 3 l 3 l l 3 l l 3 l \
I l l l ' : ' : l ' : l ' ; l L \ -
1 f f i 1 ' l ' " 1 \
i l o L d d o o o o l 6 0 0 t o t o t I \

I

l-
l i # f f i ' l
lEtffiffilo I-iT-|-tt-
ulJ

t
I

From Patient

Netrivork Controller

l l l l l l l l l l l lL
ill ilill llll llil
ilil | ilil l illl lll

Fig. 1. A typical high-level medi-

cal information and monitoring

system.

June 1993 Hewlett-Packard Joumal 47

providing inaccurate trend data or failing to call a patient
alarm. Preventing these problems was the motivating fac-
tor for the software quality engineering group at MSy to
investigate software hazards and their avoidance in medical
monitoring and reporting systems.

The Hazard Avoidance Process

Our hazard avoidance process is a combination ofrefine-
ments to our existhg verificatiort methodologr, which focuses
on testing for hazards, and hazard avoidance analysis, which
focuses on prevention.

Verification

When our investigation of software hazards began, the pri-
mary focus of the group was testing and veriJication of inte-
grated embedded microprocessor-based patient monitoring
systems and central reporting stations. Initially we exploited
our experience in testing for hazards to develop a verifica-
tion methodolog5r.z This methodologSr was integrated into
the normal product test development and test execution
phases of product development.

The approach, as it is currently used, involves documentation
ofthe test strategy and the creation ofa software hazard
avoidance fault tree, which shows the step-by-step verifica-
tion of safety-critical subsystems. A portion of a software
hazard. avoidance fault tree is shown in Fig. 2.

Generation of a software hazard avoidance fault tree starts
with identification of the most critical system hazards.
There are many methods for identifying these particular

hazards. The method we use involves investigating data on
edsting products and discussions with internal and external
experts. The data collected consists of HP customer com-
plaints, reports from the goverrment regulatory agencies,
joumal articles, and internal HP defect data. External experts
typically include clinicians such as nurses, technicians, doc-
tors, and biomedical engineens. Internal experts include MSy
engineers and marketing product m:rnagers. The experts use
the data and highJevel descriptions of the proposed product
to determine the highestJevel hazards to be avoided in the
new system implementation.

The fault tree format provides a hierarchical decomposition
of the areas of concern. At the lowest level of the tree, the
"leaves" are tests that must be passed to establish safety for
the lowest subsystem level. For example, tests 1.1.1.2.1
through 1.1.L.2.3 in Fig. 2 must be passed to ensure that the
patient monitor is able to detect a failure in updating patient
data in a specified time period. (Note that a failure in any
one of these lower-level tests is analogous to a logical one to
the next-higher level in the fault tree.) If any test fails, it is a
simple exercise to evaluate the effect on the system. This is
a valuable feature when considering releasing a system for
clinical or beta testing and in making the trade-offs during
development about whether to remove or correct an offend-
ing subsystem. The software hazard avoidance fault tree
provides a summary of the plan for verification of hazard
avoidance ofthe system and a way to ensure that test cases
exist for veri$ring that the systems software safety goals are
addressed.

1.1.1.2.1 ECG Response Time Test

Fig, 2, A portion of a software
hazard fault tree for a patient
moni tor .

48 Jrme 1993 Hewlett-Packtrd Joumal

1.1.1.1.1 ECG AccuracyTest

1.1.1.1.2 Pressure Accuracy Tesl

1.1.1.1.3 02 Accuracy Tesl

1.1.1.2.2 Pressure Response Time Test

1.1.1.2.3 02 Response Time Test

At MSY, hazard avoidance tests are used to verify the safe

operation of the system because when the system is par-

tially implemented, it is used in a limited basis in clinical
trials. Clinical trials provide valuable feedback from our

customers in the early phases of implementation when we

can easily make changes.

Since the hazard avoidance fault tree exists in a graphical

representation it provides developers and government regu-

lators with a clear map of the verification strategy for a
product and its subsystems.

Avoidance

The software hazard avoidance fault tree and its associated

tests provide a basis for understanding the compliance of a

system with high-level safety objectives. As is the case for

typical software defects, verification activities dudng the
development process focus on how to either find defects

earlier or ensure that they are not included in the first place.

For finding defects, a whole industry provides tools for low-

level, or white box testing. Instead of manual testing at a

system level, commercially available tools can enable the

developer to test individual software components in an auto-

mated fashion. This is more comprehensive than finding

defects in the system test cycle, which occurs at the end of

the development process. The focus is still on defect removal,

rather than prevention. In the prevention case, tools such as

formal design reviews are used on design and specification
documents, and formal inspections are used on code. These

Fig. 3. An example of fault tree

analysis.

prevention techniques are used from the earliest user re-
quirements phase ttuough the code phase. Since hazardous
defects are a subset of all software defects, prevention tech-
niques are needed to complement the veri$cation process
described above.

For our hazard prevention program, we investigated pro-
cesses and analysis techniques that would fit into our prod-
uct development process. The IEEE draft document that
defines a standard for software safety plans3 recommends
the following four documents for safety-critical software:

r Preliminary hazard analysis report. This report should doc-
ument the results of looking for potential hazards from the
initial system design documentation.

r Software safety requirement analysis report. This report
should document:
i,, The list of hazards, their criticality level, and relevant

associated software requirements
i' Software safety design requirements and guidelines
. Safety-related test requirements.

o Software safety design analysis report. This report may be
divided into two parts. The first part addresses the safety
analysis of the system's preliminary design, and the second
part addresses the safety analysis of the system's detailed
design.

. Software safety code analysis report. This report should
document:
' The rationale for and types of analyses performed on each
module

a

a

a

Fig. 4. A part of a table used to

document the results from a fail-

ure modes and effecls analysis.

Area ol Goncern Failure Mode Failure Cause Failure Eflect on
System

Risk Recommendations

Alam Pliority High-Priority Alarm
Masked by Instrument
Status Message

Alam Priority
Scheme Nonstandard

lncorect Alarm
Sounding

High Follow Scheme
0utlined in XYZ
Specification

June 1993 Hewlett-Packard Joumd 49

0n Evenl 0n Event
Initialize fimel and Beds Initialize Timer and Eeds

Message Received and
Itlo ldentity Conflict

Simple Backolf

0nline Delay Expired
Go to Online

Message Received and
ldentity Conflict

Send Backotf Message

- Recommendations for design and coding changes
Detailed test recommendations
An evaluation of safety requirements.

The draft also lists several techniques for hazard analysis
and avoidance. Some ofthese techniques include:

. Formal inspections. A formal method of peer review of
target documentation (design documents, code, test plans,
etc.) that culminates in a review meeting. Each member of
the review team has a specific role in the review meeting.
The objective ofthe inspection or review process meeting is
to identify issues and defects, which are documented and
addressed later by the reviewed document's author.4

o Fault tree analysis. A logic diagram of expected event
sequences. It can be used to show how hardware, software,
mechanical, and human interactions can cause ahazard
(see Fig. 3).

. Petri nets. A diagramming technique that enables timing
information to be incorporated into the safety analysis.S
This technique helps to identi$r software events that are
either too early or too late, thereby leading to hazard condi-
tions. While fault tree analysis accents the effect of unex-
pected events in a logical linkage, the Petri net focuses con-
cem on correct events occuring at possibly incorrect times.

o Failure modes and effects analysis. This involves an exami-
nation of all the failure modes in a system with a description
of the cause and effect associated with the failure mode.
Failure modes and effects analysis results can be docu-
mented in a table (see Fig. 4).

Requirements
0efinition

Phase

Fig. 5. An example of event trce
analysis using a state machine ap-
proach. A backoff message tells
the instrument to ignore any
further messages or alarms.

o Event tree analysis. Ttris analysis moves events logically
through the system to determine the consequenceis of these
events. An event tree analysis is different from a fault tree
analysis in that a fault tree traces an undesired event to its
causes. Fig. 5 shows an event tree analysis using a state
machine approach.

o Formal specifications. A rigorous mathematical method of
defining a system, with rules and definitions that provide
the basis of proof.6'7

Other techniques proposed in the IEEE standard include
performance analysis, sneak circuit analysis, criticality
analysis, and fault tolerant testing.

The form we chose for our hazard avoidance plan includes
modified versions of the documents defined in the IEEE
standard, some ofthe analysis techniques described above,
and the hazard verification process described in the pre-
vious section. Like the IEEE standard, our plan allows the
analysis format to be adjusted to fit the problem. The adjust-
ments are made according to the experience of the the soft-
ware quality engineer and the type of application being con-
sidered. For instance, most of our analysis is in the form of
formal inspections, but an engineer may decide that instead
of using a state machine to model some function, Petri net
analysis is more applicable. Also like the IEEE standard,
the emphasis is on analysis and documentation during the
software development phases.

0n Event
Initialize limer and Beds

Specilication
Phase

Software
Requirements

Hazard Analysis

lmplementation
Phase

Iletailed Design
Hazard Analysis

I
Software Hazard
lnspection List

I sot*rt"
f life Cvcle

Validation
Phase

Preliminary
Hazard

Analysis Proiect
Notebook

Test Archive

Software
Hazard

Avoidance
Process

f"uhfrr.f..ting 1

50 Junelgg3Hewlett-PackardJoumal

Fig. 6. Software hazard avoid-
ance process flow in the software
life cycle.

lnputs Hazard Avoidance Process Step Deliverables

Soltware Architecture and 0ther Preliminary Hazard Analysis

Evaluation Documents

Lisl ol Polentially Hazardous Areas

preliminary Hazard List, High-level Software Bequirements Hazard Recommendations lor Design changes

software Design Analysis in Areas Defined by Preliminary Hazard
Analysis

Preliminary Hazard List, Low-Level Detailed Design Hazard Analysis Recommend-ations for Detailed Design

soltware Design changes in Areas Defined by Pteliminary
Hazard AnalYsis

preliminary Hazard List and code Software Hazard Inspection List List of code Functions Requiring Formal
Inspection in Hazardous Areas

Exlernal Specilications Sofrware Hazard Avoidance Fault Validation Tests for a "Sale" System

Tree Doclmented in Fault-Tree Format

Fig. 7. Inputs and deliverables

associatecl with each of the

steps in the hazard avoidance

process.

flow diagrams, verbal descriptions, entity relationship dia-

grams, and formal specifications depending on the form of

software being developed. The areas identified as hazards in

the requirements are analyzed according to whatever

method was defined in the preliminary hazaxd analysis'

In addition to performing ahazard analysis of the require-

ments during the specification phase, a softuare hazard

auoidmlce fault tree is also generated from the data provided

in the preliminary haza.rd analysis phase.

In the implementation ptra"se, a d'etai'led desi'gn hazard

analAsis is performed to examine the same a"reas studied in

the previous phase, except this time the details of the design

and implementation are examined. Following the detailed

design hazard analysis, ttre so;ftware hazard inspection li'st

is created. This Iist is a collection of the software functions

requiring inspection in the hazardous axeas of the design'

We require inspections of all software functions that have a

cyclomatic complexity of 10 or greater.

The portion of ahazard analysis matrix shown in Fig' 9 pro-

vides an overwiew of the hazard avoidance history for two

hazards identified in the preliminary analysis phase'

Once all the analyses and tests have been completed, the

documentation is kept in the project notebook and the soft-

ware test archives for the product. The notebook and ar-

chives are kept as evidence ofprocess adherence required

by industry and govemment regulatory agencies'

Software/Hardware Hazard 3: Error Reporting Failure

Cause(s): Design lmplementalion Failure

Verification: Inspection with particiPation of SOE to verily soltware

design lor hazard avoidance. Use software hazard avoidance fault tree tests

to veiily design and implementation ol erlor handling and reporting to

correctly identify errors and lheir sources.

Level of Concern: Minor. Severe errors cause failsale inoperability ofthe

system, posing inconvenience to staff users.

Software/Hardware Hazard 4: SDN Backoff Failure

Cause{s): Design/lmplementation Failure

Verificarion: Inspection with participation of SOE to verity software

design lor hazard avoidance. Use soltware hazard avoidance lault tree tests

to veiity design and implementation to avoid conflicts and incorrect behav-

ior in backoff determination.

Level of Concern: Moderate. A confusion could occur between Gentral

stations as lo "ownership" of bedside information' This could ;esult in

misdirection ol patient inlormation, alarms, and recordings if the backofl

algorithm is incorrectly implemented.

*SOE = Software 0uality Engineering

Fig. 8. A portiorl of a preliminary ltazard analysis report'

The hazard avoidance activities that take place during the

software development phases are shown in Fig' 6' The in-

puts and deliverables to the hazard avoidance activities are

summarized in Fig. 7. Note that although the names of the

documents may differ slightly from the IEEE-recommended

documents, the contents remain the same. The one excep-

tion is the software hazard inspection list which corre-

sponds to the IEEE-specified software safety code report'

We provide the same contents as the IEEE report in terms of

results, but we are more specific in mentioning the type of

analysis used for hazard avoidance. The result is that no

matter which form of analysis is chosen in any development

phase, the process documentation contains the choice along

with the results for each phase. The overall benefit is the

capability to follow the hazard and its treatment through

each development Phase.

Analysis and Verification Together

As shown in Fig. 6, hazard analysis begins in the require-

ments phase of a project. When a project establishes user

requirements and has identified a high-level architecture for

a product to fulfill the requirements, work begins on the

preliminary hazard analE si's.

With the early documents completed, data from similar

previously released products such as enhancement requests,

defects, and government regulators' reported complaints are

combined together for analysis. An evaluation team consist-

ing ofusers, quality engineers, developers, internal regulatory

persomel, and ma.rketing engineers reviews the collected

data and proposed product architecture, and with each

member's experience base, decides on the levels of concem

for hazards identified in the new product.

The hazards are rated minor, moderate, or major based on

the consensus ofthe group. Each hazard is evaluated to de-

termine its impact on patient care if the hazard were not

removed. These hazardous axeas provide the focus for the

quality engineer's future analysis during development and

verification. To complete the preliminary hazard analysis,

each hazard has associated causes and methods of verifica-

tion listed. Each cause inclicates how a problem might occur

in the given architecture, and the verification list describes

the methods for making sure the hazatd isn't included in the

product. Fig. 8 shows a portion of a preliminary hazard report

containing the information mentioned above'

During the specification phase of product development, the

soJtuLare requirements hazard analAsis, which shows re-

sults of analyzing the software requirements, is produced'

The requirements are provided in many forms sttch as data

.lune 1993 Hewlett-Packard Joumal 51

Preliminary
Hazards

l. Date and
Iime Fail-
ure

Software
Requirements

Hazard Analysis

1.a. Time
Sources Unclear

Software Hazard
Inspection List

{Function
Names)

No code inspec,
tions required.

initl

initHdrTables

in i t 0enHdr

Software Hazard
Avoidance Fault
Tree Relerence
(Test Names)

Date/time

0o all tests in
SDltl system
subset {see lault
tree,.

Backoff

Do all tests in
SDil system
subset {see fault
tree).

2. SDt\l
Backotf
Failure

1.a. Clarity

2.a. 5.4.1.1,5, "... 2.a. Cta'ily
internal beds in
consulting,"
avoids backoff
question. How
do beds get into
consulting?

Recommendations Fixed Detail Design Hazard
Analysis Findings

1.a. Section 2.3 -
Consider what happens
when no time table.

b. Section 3.3.1 - When
rtc_sync_count reaches
0, an error should be
logged, sourcing time is
not valid.

2.a. See the document
"SDN Backotf Mecha-
nism A Hazard Analysis
using HP-S[," anached to
this repon.

Recommendations

1.a. Date and time should
source time when no time
available.

b. Log error, do not
source time because
rtc-sync count=0 could
be a system module error.

2.a. See the document
"SDN Backotl Mecha-
nism A Hazard Analysis
usirq HP-S1." anached to
this report.

Fig' 9' Hazard avoidance history for two softwarer hazarcis as they are,analvzerrl ancl verifie6 cluring thc hazard avoiclarrce r)r.o(.(.ss

Results

The software hazard, avoidance fault tree portion ofthe haz_
ard avoidance process has been used in eight MSy products
and product enhancements since l9gg. No safety defects
requiring instrument recalls have been reported for these
products. In one product line, hazard avoidance testing dis_
covered 32o/o (as compared to lbo/o in previous projects that
used traditional development and testing processes) of all
serious and critical defects that would have had an effect on
patient welfaxe.

As of writing of this article, one product has used and com_
pleted the full hazard avoidance process described in this
paper. Several otherprojects are in different stages ofusing
the process. In the project that has completed the process,
two forms of analysis were used during the preliminary haz_
ard avoidance phase: formal inspections and formal methods.
The bulk of the hazards were found using formal inspec_
tions. A total of 23 inspections were performecl on procluct
documents, finding l2o/o of aLl hazardous defects.

Using HP-SL7 (HP Specification Language) two areas of po_
tential hazards were specified and examined. Four possible
hazardous defects were identified with formal methods.

Conclusion

The MSY development and implementation of the hazard
avoidance process has helped provide products with fewer
recalls, providing a higher level of customer satisfaction.
The results achieved so far with this process have been ex_
cellent. The emphasis on defect prevention will continue to
pervade our development effort, with the hazardavoidance
process as the cornerstone.

Defect prevention and analysis are not enough, and this pro_
cess provides a verification trace back to the requirements
phase of development. A_lso this process provides a svstem

view of the objectives set in the ea.rly phases of a project to
ensure their correct implementation.

From our experience so far, the cost of using this process
depends on the form ofanalysis chosen. The form ofanaly-
sis has to be carefully considered when a potential hazard is
discovered. The types of analysis and the applicability to the
problem must be investigated. The cosVbenefit analysis may
have to consider such questions as the cost of a potential
recall, the possible reuse of functional elements in another
product, and always, the effect on the patient and user.

No matter what form of analysis is chosen, the process steps
have been standardized and documented and are available
for govemment regulators, other developers, and any other
interested parties to examine. This process provides the
evidence that we have done all we can do to prevent soft_
ware hazards before building the instrument.

References
l. E. J. Joyce, "Software Bugs: A Matter of Life and Liabilitv.,,
Datamalil,n, May 1987.
2. B. Corurolly, "Hazarcl Avoidance in patient Moritors,', Hp SoJtutare
En gineering Produc: ti.uity Conference proceerli,t tgs, August lgg0.
3. Sta'ndardfor Softtoare Safety pla,ns, Technical Committee on
Software Engineering of the IEEE Computer Society, preliminary
Draft, March 1991.
4. M. E. Fagan, "Advances in Software Inspections,,' IEEE Ttransac,
tLons on SoJttna,re Engitreeti,ng, Vol. SE_12, no. 7, July f gg6, pp.
744-751.
5. N. Leveson and J. Stolzy, ,,Safety Analysis Using petri Nets,,, IEEI.
Tl'ansa.clions on Sof[utate Engineeti.ng, Vol. SE-13, no. 3, March
1987, pp. 386-397.
6. T. Ferguson and T. Rush, SDN Backoff Mechanism: A Hazard
Analysis Usi.ng HP-SL, HP Technical Memo, June lggl.
7. S. Bear and T. Rush, "Rigorous Software Engineering: A Method of
Preventing Software Defects, " Iler.ol e t t - p ac ka?.d J oul-nal . v ol. 42.
no. 5, December 1991, pp. 24-31.

52 June l99il Ilewlett packard Joumal

Configuration Management for
Software Tests
To support software test reuse and to make it easier t0 ensure that the
correct software versions are used t0 test printer products, a softwbre
test management system has been put in place.

by Leonard T. Schroath

)
t

Many software development organizations have begun to
formalize software reuse as a way to improve productivity
and increase quahf. However, most of the effort is put into
reusable components that are used for creating software
products. Methodologies and processes can exist for the test
development effort as well. If software components can be
reused effectively, test components can be reused also. For
any reuse program to be successful, a formal process and
support tools are essential.

The sofbware quahW department that serves HP's Boise
Printer Division and Network Printer Division maintains a
vast printer test library, which includes performance tests,
conformance tests, other black-box tests, test procedures,
test results, test documentation, and lcrown-good output for
comparison. The test library requires extensive scripts to
extract and execute tests for various projects. Many new
tests are leveraged from old tests, but there is only a primitive
browsing mechanism to aid in locating them.

Fig. I shows the steps and databases involved in submitting,

reviewing, and executing tests in our existing test process.

Except for test execution, the processes shown in Fig. I are

scripts that are primarily responsible for moving test datax

from one database to another. Each database represents a

different state in the test development process.

The process begins with test data being moved from the lab

to the submit database. Next the test data is reviewed to see if

it is complete. For example, the test program is checked to

make sure it compiles. If anything is wrong with the test

data, it is sent back to the lab for correction, and if every-

thing is okay the test data is moved to the trialrun database.

During the trial run phase, the test program is executed to

flush out any problems. If there are problems, the test pro-

gram is sent back to the lab for repair. If all goes well, the

test program is moved to the testlib database. Once a test is

* Besides the test prOgram, test data may also include items such as test dOcumentatlon and
include files.

From lab Defect
Database

Metlics
Database

T""t 14^,.
Report : l^

l - - l
\l

Iest
Data

Accepl tlialrun
0atabase

lestlib
Database

Data Flow

Control Flow

Fig. 1. The existing test process

without a test management

system.

Junelgg3Hewlett-PackardJournal 53

I

in the testlib database, it is ready for formal test execution.
Test execution involves not only testing the product, but also
captudng data for various databases and generating a test
report. At any point in this process modifications can be
made to the test data, resulting in moving data from the
database (state) it is in back to the submit database.

To improve this process with tools that manage test selec-
tion and assist in test development for the various software
and firmware projects at our divisions, a test library man-
agement system, or TLMS, has been developed. This new
system is gradually being phased in to enhance and replace
parts of our existing test system. The rest of this paper de-
scribes the development, features, and test life cvcle ofthe
test library management system.

Goals

Several goals were established early in the TLMS develop-
ment process. First, there was no doubt that a need existed
to track all tests under a version control system so that pre-
vious versions of tests could be recovered and executed if
the firmware or software was revised to fix defects or add
enhancements. It was also desirable to be able to track test
versions with firmware or soltware versions so that custom-
ized test suites could be created to test specific features of a
particular version of firmware or sofbware. TLMS also needed
to ensure clear ownership for each version of a test so that
there was only one individual who was responsible for any
and all changes made to a particular version. The entire
maintenance process needed to be more formally defined
and automated as much as possible. Another important goal
was to facilitate test reuse through a test case classification
scheme and a test location mechanism. This scheme would
aid in test case selection and test suite development.

Configuration Management Tool
TLMS is based on an object-oriented configuration manage-
ment tool called CaseWare/CM,l which provides a structured
development environment with a turnkey model that can be
used for most software development projects. This configu-
ration management tool also provides both a graphical OSF/
Motif-based user interface and a command-line user interface,
and it runs on HP 9000 Series 300 and 700 workstations.

CaseWare/CM's built-in flexibility allowed us to create a cus-
tomized model to fit our test development life cycle. As user
needs change, the model can be modified without impacting
the objects stored in the database.

To help with our reuse efforts, CaseWare/CM records the
development history of the test library as tests are created,
modilied, or imported. The test library configuration is stan-
dardized across projects so that test developers or test con-
sultants who are browsing or searching for reusable tests
can easily find them. Tests and test suites are treated as
objects that can easily be included in other test suites.

Features trf TLI\,{S

Components and Attributes
Most of the operations of TLMS center around components.
A component is a related set of attributes that describe an
object such as a test program. Each component has a num-
ber of attributes including its name, t),pe, status, source,

54 June1993Hewlett-PackardJoumal

description, author, subsystem, creation date, and date of
last modification. A component also has a version attribute.
Specific versions or instances of objects are referred to as
component uersions.

Different types of components exist for different tlpes of
objects. Objects in our case are test programs, include files,
spreadsheets, documents, shell scripts, C source files, and
font files. Some component tlpes are built into the configu-
ration tool, and otherc can be created and added to the model
as needed. Specific behavior is given to each component
type, such as how the source attribute is compiled or edited.
Table I lists some of the built-in types and some of the types
that have been created specifically for TLMS.

Built-in Types

csrc

in c l

tsrc

ysrc

snsrc

L++

asc i i

swasm

TIMS Customized Types

pmac

p_incl

post

msw0r0

totus

exc el

font

testasm

suite

Table I
Component Types

Description

C source

C include

lex source

yacc source

Shell source

C++ source

ASCII text

Software assembly

Printer macro language source
(main test program)

pmac include file

PostScript@ source

Microsoft@ Word document

Lotus@ 1-2-3@ spreadsheet

Microsoft Excel spreadsheet

Soft font file

Individual test assembly

Test suite assembly

The naming convention used to designate a component
version has four parts, which helps to avoid ambiguity. Each
part is separated by a slash (/). This slash serves only to de-
lineate the four parts of the component version name and
has nothing to do with a file system hierarchy. The four parts
are: subsystem, t54te, name, and version. Thus, for a test with
a subsystem of fonts, a type of pmac, a test name of fontpri4, and
a version of 2 the four-part name is fonts/pmac/fontpri4l2. Dactr
of the four parts, along with the state of the component
version, is represented graphically in Fig. 2.

A special type of component version called an assembly is
used to group other component versions together. In the
context of TLMS, a test assembly consists of all component
versions needed to run a test. A minimum test assembly must
include a test program, a test procedure, and some expected

Example

Naming Convention
Su bsysten/Iype/llameAlersi on

Four-Part ilame
lonts/pmacflontpri1/2

Fig. 2. A graphlcal representation of a component version.

results. An assembly is somewhat analogous to a directory
in a flle system. The graphical representation of an assembly
displays an extra box around the narne to distinguish it easily
from regular component versions (see Fig. 3).

An assembly also has its own collection of attributes, includ-
ing name, status, version, owner, and subsystem. An assem-
bly may also have its own customized attributes. An exam-
ple would be an installation directory attribute, which would
serve a.s a definition of where to install source flles in the
file system once they have been extracted from TLMS.

TLMS uses two special assembly component versions which
are customized for the test library application. The frrst is of

b4)e testasm (test assembly), which is the basic building block
of test suites (see Fig. 3). There is no limit to the number of
component versions that can be included in a test assembly.
However, by TT,MS convention there should be only one main
test program per testasm, and as many include files as needed
for the test. Each test assembly should also have some test
design documentation describing what is being tested.

The other special assembly component version is of type
suite. This assembly is used for grouping test assemblies into
test suites. A test suite can consist of one or more testasms
and one or more test suites. Although there is no require-
ment that a test suite consist of only suites and testasms, most
other component version tlpes should be part of a testasm
and not a suite.

Component versions can easily be placed into an assembly

by creating a list of components to be bound into the assem-

bly. The operation reconfigure is performed, which automati-

cally selects the specified component versions and binds

them into the assembly. The list of components only needs

to have the first three parts of the four-part name for each

component, which causes the latest version of the compo-

nent to be bound into the assembly. If a specific version of a

component is desired, it may also be specified as the fourth

part of the name in the list of components.

The reuse program being developed for tests in TLMS will

make use of customized attributes found on each testasm.

These attributes make up a faceted classification scheme,2 in

which the attributes form a tuple that describes a test. Quer-
ies to TT,MS use the classifications to extract a set of tests

requested by the tester. For example, a query might be to find

all released tests for a specific printer that will exercise the

font selection capability of the printer.

Test Suite Hierarchy

Components representing tests and test suites are grouped

in a hierarchical form to facilitate test location. A catalog is

maintained of reusable testasms (test assemblies) and suites,

any of which can be easily bound into any test suite for any

project. In this marurer project-specific test suites can

quickly be developed by combining new and existing tests.

The test library has at its highest level an assembly of type

suite named testlib (see Fig. 4). This assembly consists of

other assemblies of type suite. One is named catalog, which

contains all of the tests that are used in more than one proj-

ect. This is the basis ofthe reusable library. The catalog is

hierarchically arranged into logical subassemblies, which

makes it easy to find tests. Printer conformance tests and

other black-box tests that can be used by more than one

project are found in the catalog.

- -

- -

Main Test
Program

-t''

--/

ffiffi
Test

Assembly

Fig. 3. A porlion of a Ly?ical

TLMS test assembly.
lnclude FileIest Procedure

June 1993 Hewlett-Packaxd Joumal 55

a a a

Other test suite assemblies bound to the testlib are specific to
projects and are named for the project (e.g., proiect_a or
prolect_b). Each project assembly consists of a test suite
named proj_suite, which contains all of the suites and testasms
that make up the entire test suite for that project. A proj_suite
may contain links to testasms or suites that are in the catalog,
or may have its own special component versions tailored for
the specific project. A project assembly may also contain
one or more testasms or suites with a name that corresponds
to a version of software or firmware that is being tested. For
example, a suite may be developed to test certain features of
version 1.2 of some flrmware, and hence could be named Vl.2.

The subsystem narne for all assemblies for a specific project
should match the name of the project, unless the entire suite
or testasm is being used as it came from the catalog. This al-
lows extraction or reporting on all component versions that
are specific to the project. For example, in Fig. 3 the compo-
nent versions with the subsystem name fonts are actually
from the catalog.

Roles
Much of the activity in TLMS is allowed or disallowed based
on the role of the person interacting with TLMS. Users are
assigned one or more roles. Each role allows browsing
through the test library, along with certain other privileges
briefly described below.

Author. An author is allowed to create a new component ver-
sion, derive (check out) a new component version from an
existing component version, and install tests on the flle sys-
tem for execution. An author who has created or derived a
component version becomes the owner of the component
version until it is reviewed, approved, and released.

Test librarian. The test librarian is responsible for the content
and structure of the overall test library. The test librarian is
the only one able to create or manipulate component ver-
sions of type suite. The test librarian also makes sure that
each test is executed to veri$r that it works correctly before
putting it into the test library. Finally, the test librarian is the

56 June lgg3Hewlett-PackardJourna.l

Fig. 4. A portion of a TLMS rest
suite hierarchy.

only person who can officially release component versions
into the test library.

Test Consultant. The test consultant is responsible for review-
ing test component versions before submitting them to the
test librarian for a trial test mn. Test consultants are only
able to modify component versions that belong to projects
to which they have been assigned. Test consultants, in coop-
eration with R&D, define the component versions that belong
in a test suite, but they are not allowed to create them.

Test Technician. The only activity that a test technician is
able to perform in TLMS is a test-suite build, which, in the
context ofTLMS, extracts all test sources, procedures, mas-
ters, and anything else that is required to execute a test and
places them in the file system. Tests can then be executed.

TIMS Administ]ator. The TLMS administrator is the superuser
of the system and is responsible for adding new users,
changing their roles, and making changes to the TLMS
model installed in the test library database. The TLMS ad-
ministrator is also able to modify any component version
and generally circumvent the built-in security provided by
the rules set up in the TLMS model. This role must be used
with caution.

Software Development Engineer. This role is similar to the test
technician role. An individual with this role has permission
to browse through the test library and is able to perform a
test-suite build to extract tests and place them in the file
system for execution.

Guest. A guest only has permission to browse through TLMS.
A user with this role cannot modiff any component version,
extract tests via a build operation, or perform any other
operation. This role is provided for users to look at tests
currently in the test library.

TLMS Life Cycle
The main life cycle for tests is governed by a series of states
and transitions that affect any assembly of type testasm (test
assembly) and the component versions that are bound to it.

(see Fig. 3)

A component version progresses through several states

from the time it is checked out or created until it is released

into the test library. Most transitions are made directly to

component versions attached to a test assembly, and all

component versions bound to the testasm make the transition

automatically. Thansitions can also be made directly to art

individual component version. Fig. 5 shows the states and

transitions for the TLMS main life cycle.

The initial state is called private. Most newly created test

assemblies begin the life cycle with this state as their default

status. A component version in this state can only be modi-

fied by the author (owner) who created it. A private compo-

nent version can only be bound into testasms created by the

same owner. A newversion cannot be derived from a com-
ponent version in this state because it is considered to be

unstable.

The only transition allowed from the private state is when the

testasm is ready to be published. Fublishing a test assembly

moves it from the private state to the working state. The tests

are made public for the first time which means that some-

one else can bind these component versions into another

testasm, and the Iibrarian can bind a testasm into a suite. This

transition is initiated by the owner of the test assembly.

The working state assumes that the tests bound into a testasm

are in working condition. In other words, the test can be

executed. It may not be completely correct, but at least it

runs. The owner is still the only one who can modify a com-
ponent version. New versions can be derived from any com-
ponent version in the working state (or any subsequent state),

but when this happens, the source attribute of the original

component version is frozen. The test assembly containing a

modified component version can continue to proceed along

the life cycle, but all source modifications must be made to

the new component version to avoid a double maintenance
problem.

The only transition allowed from the working state is when

the test assembly is ready to be reviewed by the test consul-

tant. This transition moves the test assembly from the working

state to the finalreview state. This transition is also initiated by

the owner of the test assembly. Electronic mail is sent to

notify the authorized test consultant that a testasm has been

submitted for final review.

The finalreview state allows the test consultant to review the

test for completeness. All tests should be complete and

must contain all of the necessary documentation. Once a

test assembly is in the finalreview state, it can no longer be
modifred by the owner. Only the proper test consultant has

modifi cation privi-leges.

Reiecl

Tlvo transitions are allowed from the finalreview state. The first

is the transition that moves the test assembly back to the

working state for rework by the owner. A report of the prob-

lems encountered is sent to the owner by electronic mail.

This report is required before the transition is made. In the
graphical user interface, a window opens that allows the test

consultant to enter the report, and in the command-Iine inter-

face, the test consultant can attach an ASCII file containing

the report.

The second transition allowed from the finalreview state

moves component versions to the trialrun state. As test as-

semblies make this transition, electronic mail is sent to the

test librarian indicating that a test is ready for a trial run.

Electronic mail is also sent to the author aclanowledging

that the test has passed final review and is ready for a trial

run. Both transitions from the finalreview state are initiated by

the test consultant.

The trialrun state allows the test librarian to review a test for

completeness and ensure that it executes properly. The test

librarian also makes sure that the testasm has a unique hstal-

Iation directory so that the test can be installed onto the file

system without overwriting other tests. The test librarian is

the only individual who can modify any component version

in the trialrun state. This is to prevent any changes to the com-
ponent version without the test librarian lorowing about

them.

T\vo transitions are allowed from the trialrun state. The first

transition moves component versions from the trialrun state

back to the finalreview state if the test assembly is rejected.

This transition is used for those tests that do not meet appli-

cable standards or do not pass the trial run. A report ofwhy

the test was rejected is sent via electronic mail to both the

test consultant and the owner (similar to the report sent

when the test assembly is sent back to the working state for

rework).

The second transition allowed from the trialrun state moves

the test assembly to the released state. This transition is

made only after a testasm has successfully completed a trial

mn and it meets all of the applicable standards. An aclcrowl-

edgment is sent via electronic mail to the author, the test

consultant, and others who are interested in lcrowing when

a test is released. Both transitions from the trialrun state are

initial.ed by the test librarian.

The final state is the released state. Any component version

in this state must have been approved by the test librarian

and by definition, be part of the official test library. A testasm

carmot be released unless all of its member component ver-

sions are released. Component versions in this state are no

Fig. 5. The TLMS main life cycle.

Test assemblies or indMdual

component verslons move

through this life cycle.

June 1993 Hewlett-Packard JomzJ 57

trceze

Fig, 6. The TLMS test suite life cycle.

longer modifiable by anyone. They are static, including all
attributes. The only exception to this is a comment attribute,
which can be updated at any time by the librarian if more
information needs to be stored with a test.

A separate, shorter life cycle for component versions oftype
suite consists of two states: unreleased and released (see Fig. 6).
This life cycle exists to facilitate the creation of large test
suites without the overhead of having to move component
versions of type suite through all five states of the main life
cycle. Remember that component versions of type suite are
typically made up of many test assemblies, and each test
assembly is typically made up of a test program and many
other files.

The initial state is called unreleased. Component versions of
type suite in the unreleased state can be modified as often as
necessa.ry, but only by the test librarian. Ttansition from the
unreleased state to the released state is allowed only when the
test suite is determined to be frozen (no more changes).
This transition can only be initiated by the test librarian. In
the case of suites, all component versions bound to it must
either be released already or released at the same time. This

From Lab
(Privals)

{finalreviewl

means that all children (test assemblies or suites) not already
released must be in the trialrun state or the unreleased state
(the only two states that allow transitions into the released
state), or the transition will fail. The released state of this
short life cycle is the same as the released state in the main
Iife cycle.

Comparison
The TLMS main life cycle is intended to improve the test
process described earlier and shown in Fig. 1. Overlaying
the TLMS life cycle states shown in Fig. b with the processes
shown in Fig. I results in the process diagram shown in
Fig. 7. This diagram shows the following benefits to the
test process with TLMS:

r Tests are maintained in one database, and there is no need
to move fi-les from one database to another to change state.

. Attribute information such as stahrs, test owner, and creation
date is easily stored and queried.

o Test development history is automatically recorded.
r The test maintenance process is easier to control.
o The test process is simpler.

Security and Access
Security rules for each model can be written and enforced
to maintain the integrity of the database. These rules and
privileges allow or disallow component version creation,
moffication, transition, and deletion based on the state of
the component version or the role of the user. Security rules
in TLMS enforce the privileges and operations described in
the life cycle section

Fig. 7. The test process with
TLMS in piace. The items in
parentheses are the states in the
main TLMS [ife cycle shown in
Fig 5.

58 June 1993 Hewlett-Packaxd Jomal

Subsystem Type Version Owner last Mod

garbage testasm lontpli4 1

garbage testasm dfltfont 1

pt testasm pt 1

tests testasm aPPlelwP 1

garbage testasm aPPlelwP 1

catalog testasm aPPlelwP 1

catalog testasm fontPri4 1

catalog testasm lontPri4 2

Its finalreview

pault working

amplify trialrun

Its triallun

amplify trialrun

amplify private

amplify private

User Interfaces

TWo user interfaces exist for TLMS. One is a graphical OSF/

Motif-based interface that mns on the X Window System.

Users can select actions from pop-up menus and navigate

through the various windows using a mouse. The other in-

terface is a command-line interface. Although a graphical

interface is helpful in giving the user a visual picture of the

elements in the test library, a command-line interface is also

available to perform many simple commalrds. Among these

are commands to create a component version, move an as-

sembly of component versions from one state to another,

modify the source attribute of a component version, install

the test suite onto the file system for execution, and import

an externally developed test into TLMS.

Reports
Reports of useful information are obtained from TLMS

through some corrunand-line queries. Some examples of

reports that are easily obtainable are a list of all component

versions in atest suite, the status ofall componentversions

in an assembly, the authors of a list of component versions'

a list of all projects using a given component version, and a

Iist of all component versions currently in a given state.

Fig. 8 shows part of a report of all testasms.

Benefits

TLMS provides an easy, consistent method of maintaining

and accessing all tests. Those who need to interact with the

test library can find what they want without having to ask art

expert. Also, the entire process oftest development and

maintenance can be structured and controlled. The develop-

ment history of tests in the test library is captured automati-

cally. Tests can be identified and selected for a given test

mn, and a customized test suite can quickly be created.

Tests that are not yet certified and released by the test

Iibrarian can still be executed if needed.

The sofl;ware test center is able to increase testing efficiency

by executing a test suite customized for a test run instead of

Fig. 8. A portion of a TLMS test
assembly report.

the myriad of redundant tests that axe present in the old test

library. It is also much easier to verifu that the proper ver-

sions of tests are executed for any version of firmware or

softrvare.

As with all programs, new enhancements and changes will

probably be requested from the user community. TLMS fea-

tures can be modified and extended without impact on the

objects stored in the database. Finally, a more formal test

reuse program can be established, which will allow test de-

velopers to take advantage of the work of others. This will in

turn decrease the total test development time, a significant

portion of a project's schedule.

Conclusion
The testing process is an important part of the software life

cycle. Without the proper tools and structure, it can become

inefficient and difficult to manage. With large volumes of

tests for any given proiect, manual processes yield errors that

can be avoided by applying configuration management prac-

tices to the test development and maintenance processes.

Customizable tools such as CaseWare/CM are available to

help control these processes. TLMS allows us to improve

and automate test development and maintenance, as well as

establish a formal test reuse program.

Acknowledgments

Special thanks to FYan McKain and Brian Hoffmann for their

ideas and vision of how to manage tests more efficiently.

Beferences
l. CaseWare Ilser's Guid"e, CaseWare, Inc., 1992.

2. R. Prieto-Diaz and P. Freeman, "Classifying Software for Reus-

ability," IEEE Software, Vol. 4, no. l, January 1987, pp. &16'

P0stscript isaregisteredtrademarkofAdobeSystems,Inc. intheU S.andothercountr ies.

Microsofi is a U.S. registered trademark of Microsoft Corp.

Lotus and 1-2'3 are U.S. registered trademarks oJ Lotus Development C0rporation.

Thu Dec 3 22:07:5111992

Fri Dec4 1316:381992

Fri Dec4 13:16:381992

Thu Dec 3 16:49121992

Thu Dec3 17:05:031!192

Thu Dec 3 17:24:1181!192

Thu Oec3 ?2:35:711t12

Thu Dec 3 t):.fi:ffilfi2

Junelgg3Hewlett-PackardJoumal 59

Implementing and Sustaining a
Software Inspection Program in an
R&D Environment
Although software inspections have become a common practice in tne
software development process, introducing the inspection process and
sustaining and measuring its success are sti l l challenges.

by Jean M. Macleod

There is not much disagreement in the industry about the
value and benefits of software inspections. However, there's
more to implementing a software inspection program than
training moderators and creating forms. This paper discusses
how the software inspection program was implemented at
HP's Patient Care Monitoring Systems Division, with empha_
sis on how the program is sustained and how its success is
measured.

One thing we learned while implementing and sustaining an
inspection prograrn is that it must be managed with a clear
organizational owner and a champion (chief moderator).
The process must be flexible enough to withstand changes
and improvements without compromising those things that
define formal inspections such as preparation, inspection,
rework, and so on. The implementation is really an evolu_
tion that needs tailoring to the culture and environment
while keeping the fundamental process intact.

We have conducted over 85 inspections at our division. Data
has been collected and maintained in a database from the
very beginning so we could anallze how well the process is
working. Besides data about the process itself, we keep data
about the rework performed a.fter each inspection, including
the time to fix defects and the cause of each defect. The
cause data helps us look at the software development
process and identify areas for further investigation and
improvement.

Background

A formal sofbware inspection process was introduced to our
division about two yearc ago to increase the efficiency of the
defect detection process and ultimately shorten the time to
market for key products in the dMsion. From our historical
data on software projects, we knou'that it takes an average
of20 hours to find and fix a defect detected during the testing
phase of a project. We also lcrow that finding and fixing de-
fects earlier in the development process takes less time. The
problem we had was to introduce software inspections into
the software development process as painlessly as possible
to gain acceptance of the process and start collecting data
that would prove the value ofthe process.

We modelled our inspection process after a method that uses
clearly defined process steps: kickoff, preparation, defect
logging meeting, causal analysis, rework, and follow-up.r

60 Jme 1993 Hewlett-PackardJoumal

Kickoff. This step is used to hand out the materials for the
inspection, assign roles to inspectors, and ensure that every_
one understands the purpose of the inspection as well as
when and where the defect logging meeting will be held.
This step car be done in a meeting or by electronic mail.

Preparation. The preparation step is critical to the success of
every inspection. This is when inspectors review and check
the document+ on their own, noting any defects to be logged.
The objective is for all inspectors to work independently to
find defects so that they will come to the defect logging
meeting prepared to report their defects.

Defect logging Meeting. This is the time when all inspectors
come together to review the document and report any de-
fects that were found. During this meeting a defect log is
maintained by the moderator. The meeting is facilitated by
the moderator and should last no longer than two hours.

Gausal Analysis. The purpose of this step is to review three to
five m4ior defects that were found during the defect logging
meeting to determine the most likely causes for the defects.
The causal analysis is done at the end of the defect logging
meeting and involves brainstorming causes of the defects
and possible actions that could be taken to prevent those
defects from occurring again.

Rework. Rework is performed by the owner of the document
that was inspected. The owner is required to fix all defects
and take appropriate action to ensure that every item logged
during the defect logging meeting is addressed. The owner
also assigns a defect cause code to every defect.

Follow-Up. In this step the moderator checks with the docu-
ment owner to determine if all defects logged during the
defect logging meeting were addressed. The moderator also
collects and reports all appropriate inspection metrics during
this step.

Our chief moderator was specially trained and then charged
with implementing the software inspection process in the
R&D lab. Although the process was modeled after the steps
mentioned above, we have made modifications to the process
that we felt were necessary to facilitate acceptance of the
process in our organization. Our first goal was to start using
inspections with one project, and then Ieverage that success

This includes architecture d0cuments, specifications, design documents, and code listinqs.

to help gain acceptance of inspections as a way of doing busi-

ness in R&D. We also constantly looked for ways to improve

the inspection process to increase the effectiveness and

efficiency of finding defects.

Implementing the Software Inspection Program

Gaining Support. It is important to gain the proper suppoft

and acceptance whenever a new prograrn is introduced. In

the case of software inspections, the impact is felt across

the entire R&D organization, and therefore it is very impor-

tart to involve as many people as possible when trying to

gain support and acceptance for the program.

Initially, the inspection process was accepted by one project

team, including the project manager. They were ready, able,

and willing to use inspections in all phases of the project,

beginning with the architecture documents and continuing

through specification, design, and code. It was important to

gain acceptance from the project manager so that time

could be allocated in the project schedule for inspections.

Because the entire team had accepted the idea, we found

that most inspections were very successful and showed a

very large return on the investment for the time spent by the

team in preparing for and participating in inspections.

While one team was targeted initially as the primary user of

inspections, other teams were also encouraged to conduct

inspections by their software quality engineering team lead-

ers. The selling process was much less formal and relied

primarily on the software qualrty engineering team leader to

gain acceptance from the project team to do inspections.

We found that this process was not as successful in gaining

the acceptance required to make inspections a success

throughout the R&D organization.

In one instance, we had data that showed that one project

team was not getting a very high return on investment from

the inspections they were holding. When we analyzed what

was going on, we found that the team had never been given

a presentation on inspections and didn't understand the pur-

pose of inspections. We found that reviews were being held

before the actual defect logging meeting to clean up the doc-

ument before the inspection took place. As a result, defect

logging meetings were held that found no critical, serious, or

medium defects; only very low-level defects were found.

Once we determined what seemed to be the root cause of

the problem, an overview session was held with the tearn to

explain the purpose and benefits ofinspections. Inspections

held after the presentation showed some improvement but

more work needs to be done to determine other causes for

the low return on investment.

All project teams must be given the same message about the

purpose of inspections and they must have acceptance from

project managers so that the proper time will be allowed for

preparation and participation in defect logging meetings.

Ghief Moderator. The chief moderator is the most important

person when it comes to implementing and sustaining a soft-

ware inspection program. It is the moderator's responsibility

to make sure that the process is being followed correctly

and to watch for variations in the data that would indicate a

problem or a need for improvement. The importance of this

role cannot be overstated when it comes to implementing

and sustaining the inspection program.

Initially, the chief moderator acted as a champion for the

inspection process, gaining acceptance from management

and project teams for the process and putting the pieces in

place to ensure that the process was followed in the same

way by all participants. This involved developing forms cus-

tomized for the site and writing a guide that could be read by

anyone to help understand the inspection process. The next
job of the chief moderator was to help other moderators

learn how to moderate inspections by observing them as they

conducted defect logging meetings and acting as a coach. It is

important that the process be followed as consistently as

possible. Having the chief moderator coach other moderators

helped maintain the consistency of the inspection process.

The begirming stages of implementing the inspection process

required constant attention by the chiefmoderator. Once the

process was in place and the other moderators had been

trained, the role of chief moderator was reduced to one of

custodian, that is, analyzing the the data to find pattems that

might indicate a problem. Although the role of the chief

moderator has changed since we introduced the inspection

process, our experience shows that without the constant

watcMulness of the chief moderator the process will get out

of control and the benefits of inspections will suffer.

Getting Started. Our initial inspections were performed on

test scripts written by software qualrty engineers in the divi-

sion. This allowed moderators to practice moderating and

inspectors to see the process in action before it was used

with project teams. Some of the bugs h the inspection forms

were worked out and minor improvements to the process

were made dwing this time.

Some shortcuts were taken to get the program started. We

decided to go forward with inspections in spite of not having

standards and checklists in place for every type of docu-

ment. We recognized that creating standards and having

them accepted by engineers as standards for writing docu-

ments and code would take too long. Although we have

some standards and checklists in place, we still don't have a

complete set. It remains a goal to develop standards for all

of the different types of documents.

We also decided not to implement the causal analysis step of

the inspection process during the initial phase of introducing

inspections. Asking inspectors to stay on at the end of a two-

hour meeting to do a causal analysis would increase resis-

tance to participating in inspections. Now that the process is

in place, we have recently started performing a causal analy-

sis of three to five major defects at the end of every inspec-

tion. These limited causal analysis meetings are possible

because inspectors are now familiar with the process and

the defect logging meetings tend to be shorter. As with any

change, however, it has been slow to take hold and it will

take time to recognize the benefits of the causal analysis

meetings.

This has proved to be a successful model for implementing

inspections. It was very useful to practice doing inspections

and make minor improvements before taking the program to

the project teams. When the task of creating standards and

checklists seemed too laxge and threatened to prevent the

program from getting offthe ground, we found it more usefi'rl

to keep moving forward in spite of not having all the tools in

place. We atso felt that eliminating the causal analysis step

June 1993 Hewlett-Packard Joumal 61

Preparation
Time

Rework Total
fime lime

30

8 2 0-

10

0
Architecture Specilication Design Code

Document Type

Fig. l. Average inspection times by document t)?e.

helped Iower resistance to the new process and facilitated
its acceptance by project teams. All of these shortcuts helped
us get the prograrn offthe ground and have inspections start
to take on a life of their own.

Sustaining and Improving the Process
Gollecting Metrics. Metrics have been collected from the very
begirming of our inspection program to enable us to mea-
sure the process and quantifii the benefits ofinspections. A
Microsoft@ Excel database w€ts created to maintain the
data. Data is collected from every inspection and includes
the type of document inspected, the number of pages in-
spected, the number ofdefects found, defect severities, and
the amount of time spent preparing for and participating in
the inspection (see Fig. 1). This datahelps us analyze how
the inspection process is working. Average inspection effec-
tiveness (defects per page), inspection efficiency (hours per
defect), and return on investment are monitored to help us
determine the overall usefulness and value of inspections
(see Fig. 2).

Every defect found during an inspection must be resolved
by the author of the document (or the engineer doing the

Average Hours/ Average Return on Avelage Detects/
Defect Inyestment Inspection

Frrrr-Fil I

15

?
8 1 0

5

0

Specification
28.40h|4171

Design
30.1Y0 (lilll

Fig.3. Inspection defect causes.

rework). The reworker must assign a severity level to each
defect and, using standard cause codes, assign a defect
cause code for every defect that is fixed. The amount of
time spent doing all of the rework is also noted. This data is
maintained in the inspection database and analyzed to deter-
mine the most frequent causes of defects found during in-
spections. We have found that design defects are the most
common types of defects discovered with inspections (see
Fig. 3).* A further breakdown of the types of design defects
is shown in Fig. 4. A more thorough analysis of this data in
conjunction with the root-cause analysis data being collected
at the end of each inspection should help us determine op-
portunities for improvement in the software development
process.

kspection metrics are also used to help sell the process to
new project teams. We are able to show the results of every
inspection held in the last two yeaxs and prove the useful-
ness of the process to the most skeptical engineers. We now
have enough data to help other engineers and project man-
agers estimate the amount of time to allocate for inspections
based on the type and size of documents (see Fig. 5).

We continue to collect data and look for new ways to ana-
lyze it to help us determine where to make improvements in
the process.

* Although we did not initially do the causal analysis step of the inspection process, we did
require each reworker to identify as best they could the cause 0f every defect thev fixed. This
is the data shown in Fio. 3.

lllodule Design
m3%{fl51

Functional Design
15.5olo {6}

Error Handling
t .6%{71

Process
Gommunication

8.8% (39)

User Intedace

Iog
Time

r

0ata
Definition
6.6% (2S)

z.sh(131
Hardware

Interface 2.3%
(101

Architecture Specification Design Code

Document Type

Fig. 2. Inspection data by document type. This data is intended to
help determine the effectiveness ofthe inspection process.

62 June 1993 Hewtett-Packaxd Jomal

Fig. 4. Design defects by subcategory.

Architecture Specification

Average Hourc/ Avetage Delects/ Average Hours/
Inspection+ Inspection** Defect***

3 0 ,
E
o
o

2 0 ?
G
o

1 0 <

30
2
o

9 2 0
6
o

+ , $n '* * L t i
* - L d ,

i : l i : l '

n

n
* I h i

Architecture Specifications Design

Document Type

Fig. 5. Average hours per page by document. Each of these times

includes preparation, defect logging, and rework time.

Intangible Benefits. We can't talk about the benefits of inspec-

tions without mentioning the intangible benefits, which are

beneflts that are hard to measure and quantify. For example,

we have changed one of the rules for conducting the defect

Iogging meeting by allowing limited discussiors about defects

when necessary. These discussions axe allowed if they lead

to a better understanding of a defect or explain how some-

thing works. However, discussions about style or how to fix

a defect axe not permitted. We have found that the increased

communication, the transfer of lurowledge, and the improved

teamwork are some of the intangible benefits from these

discussions. Inspectors leave the inspection feeling that they

have gained something as well as given something.

Managing Process tmprovements. All of the data collected is

used to measure the inspection process and look for ways to

improve it. It is important for the chief moderator and other

moderators to be vigilant about the data from inspections

and to look for opportunities for improvement. All of our

moderators meet periodically to talk about what is working

and what is not working. It is easy for the process to break

down and lose some of its effectiveness.

We have found that analyzing the data over time is usefirl to

show us whether our process is getting better or worse. For

example, when we looked at the effectiveness and efficiency

data points mentioned above at three-to-four-month inter-

vals we saw that inspections were not as effective at finding

defects as they were when we first started doing inspections

(see Fig. 6). As a result, we have recently launched an in-

spection improvement project aimed at determining why

our effectiveness and efficiency are dropping and what we

can do to reverse the downward trend.

Defect Prevention, As mentioned eaxlier, when inspections

were originally introduced, we decided not to include the

causal analysis step of the process to facilitate acceptance

of the process. ultimately, however, the goal of software

inspections is to help prevent defects from occurring again

in the process. We are now trying to collect data on how

some ofthe defects found during inspectiqns could have

been prevented by doing a causal analysis at the end of each

Three-to-Four Month Intervals

hi = Hours lor Each Inspection

di = Delects Found 0uring Each InsPection

n = Number of lnspections Conducted 0uring a Particular Interval

Inspection Hours = Total Moderator Hours + {Kickoff ltlleeting Hours x
Number of Participantsl + Total Preparation Hours + (Delect Logging
Meeting Hours x Number of Participants) + Rework Hours

Defects = Gritical, Serious, and Medium Delects

Fig. 6. Software inspection trends. The calculation of each of these

data points is based on the total number of clefects, nspectlon

hours, and inspections that occur within a particular interval.

inspection. We select three to five of the major defects that

were reported during the defect logging meeting and try to

get to the root cause ofthe defect by asking why it occurred.

Over time we hope that we will accumulate enough data to

help us pinpoint axeas in the development process that need

improvement.

Conclusion
The software inspections prograrn at HP's Patient Care

Monitoring Systems Division has been very successful. We

lmow from our data that software inspections are a much

more efficient way of finding defects than testing software

at the end of the development process. We also lcrow that

we are getting a better retum on investment for our inspec-

tion hours by investing them in inspecting the architecture,

specification, and design documents for a product, rather

than the traditional approach of inspecting only code.

Acknowledgments
Patsy Nicolazzo is the chief moderator and primary imple-

mentor of the software inspection program in the R&D orga-

nization at our division. It is because ofher efforts that the

program has been so successful.

Reference
l. T. Gilb, Prtnciples of SoJtware Engi'neering Management,

Addison-Wesley Publishing Company' 1988.

Microsoft is a lJ.S. registered trademark of lvlicrosott C0rp

June 1993 Hewlett-Packtrd Jotmal 63

The Use of Total Quality Control
Techniques to rmprove the software
Localization Proeess
By implementing a few inexpensive process improvement steps, the time
involved in doing translations for text used in HP's medicar products nas
been signif icantly reduced.

by John W. Goodnow, Cindie A. Hammond, William A. Koppes, John J. Krieger, D. Kris Rovell-Rixx,
and Sandra J. Warner

Text is a m4ior elentent in the human interface of diagnostic
ultrasound imaging products manufactured at Hp's Imaging
Systems Division (ISY). The ultrasound systems, which dis-
play real-time two-dimensional images of the anatomy, also
display measurement and calculation labels, operator
prompt messages, help screens, and anatomical annotation
text (Fig. 1).

Regulatory requirements of certain countries stipulate that
medical equipment sold in these countries must be localized
with respect to software and hardware text and related user
documentation.

Even where regulatory requirements do not stipulate lan-
guage as a requirement, it can be a competitive advantage to
have a localized product available.

ISY introduces new products or revisions of existing prod-
ucts at international medical conventions, where potential

customers from all around the world see English-language
product demonstrations. However, there is usually a large
time delay between English-Ianguage and localized product
availabilif. This can result in lost sales opportunities. Ln addi-
tion, some international sales contracts specify a financial
penalty if a product is not delivered on schedule.

Localizing the software text in a product requires a signifi-
cant engineering effort. Engineers must design the English
product, provide documentation for the translators, imple-
ment the translated text, and assist with the language verifi_
cation and software validation testing. It is prudent to make
the time spent doing this localization work as efficient as
possible.

This paper describes how Total Quality Control (TeC) was
applied to the software localization at our division to reduce
the time required to localize embedded software text used in

: 1,1,: ir,,j,: ,: l..i ;.,:- ,r, :,1 I l'i
I :::]*:,.::- r,l:rlr,:' l,-:a:.,,.r,:

Fig. l . A screen f rom an HP
SONOS phased array imaging
system.

64 June lg93 l{ewlett-Packard Joumai

1. lssue

Reduce the time required to localize the system software

2. Why Selected

for all local language releases,
which increases customel satisfaction and leduces the costs
associated with tJansition plans outside ol the U.S.

Reduces engineering resources required fol localization.

3. Beginning Status
Elapsed Iime by Translation Step

Step I Create LoLA File

Step2 Translation

Step 3 Greate Language
Software

Step4 LanguageVerili-
cation

Siep 5 Release

Step 1 Step 2 Step 3 Step 4 Step 5
Localization

Average Time fol 150-Stting Proiecl

{c)

Fig. 2. Panels for the first part of the TQC storyboard for the soft-
ware translation enhancement project.

our medical diagnostic ultrasound systems. At first we

thought that much of the delay in the localization process

occurred in the translation step. By using TQC we discov-

ered that we could reduce delays in areas originally thought

to be beyond the control of the R&D lab.

The TQC Technique

The nine major stages of the TQC process improvement

model axe:
1. Issue
2. Why Selected
3. Beginning Status
4. Analysis
5. Actions
6. Results
7. Problems Remaining
8. Standardization
9. Future Plans.

We applied these nine steps to the issue of software

localization.

The lssue. Our first step was to choose an issue and formu-

late a concise issue statement. A TQC issue statement must:

Indicate a.change or direction
Have an indicator of quality in a product or service

Declare the process or operation involved.

The issue statement for our project is shown in Fig. 2a.

Why Selected. This stage should state why the issue was se-

lected. It should show that benefits can be gained by making

improvements and conversely, that undesirable results will

occur if the process continues unmodified. Fig. 2b shows

the output from this stage for our proiect.

Beginning Status. Before beginning any changes to a process,

the status of the current process must be understood. We

first listed all the details involved in the current localization
process. From these numerous details, we abstracted five

major steps from the current process (see Fig. 2c).

The actions performed during this process include the

following steps:
. Step 1: Create a LOLA file. The localization engineer ex-

tracts the English text from the source file and sends it to

the translator in the form of a LOLA file. LOLA, which stands

for local language, is an HP Vectra PC-based intemal soft-

ware tool for translation text entry. In LOLA, the translator

sees the software text as isolated text strings.
. Step 2: Tfanslation. The translator translates the text strings

to the local language using LOLA. The translated text is sent

back to the originating division for implementation.
. Step 3: Create language software. The translated text is en-

coded into software and memory chips (ROMs). The proto-

type system ROMs are then delivered to the translator.
. Step 4: Language verification. The translatorverifies the

translated text on a prototype product. During this step, the

translator sees the text in its proper context and can veriff

that the wording is appropriate for the context. The transla-

tor sends conections back to the Iocalization engineer at

the originating division.
. Step 5: Release. The localization engineer corrects the lan-

guage software text, qualiff assurance performs final soft-

ware validation, and manufacturing releases the localized

products for shipment.

Because time was the indicator in our issue statement,

we classified the following three different time process

performance measures (PPMs) :

PPM-I: The calendar time required for each of the five

steps in the localization Process
PPM-2: The calendar time from the English language

release to the local language releases

PPM-3: The number of person days of R&D effort

consumed during each step in the localization
process.

To determine the time required for our current localization

process, we evaluated several recent localization projects

based on these PPMs. The average size ofthese projects

was 150 software text strings (see Fig. 2c).

Analysis. During this stage we used brainstorming techniques

to analyze previous projects to determine where time was

spent. To promote an open and nonintimidating atmosphere,

we followed these typical brainstorming guidelines:
. All ideas are permitted with one person speaking at a time
. Evaluation and discussion of ideas is postponed until later
. Questions are asked only to clarify ideas
o After all ideas are presented, the items on the list are

clarified to be sure they are understood by all.

a

a

a

June 1993 Hewlett-Packrd Joumal 65

4. Analysis

Text is frozen very late, delaying the stan of the tmnslation process.

Local language releases have low visibility and are poorly managed.

Local language releases are often given low priority.

Not enough communication with the translators.

Translation tools used by R&D are poor (significant manual etfort reqIired]

R&D doesnt develop text with translation in mind.

5. Actions

Stabilize text and start the translation process earlier in the development
cycle.

Inc.ease the visibility of translation activities by providing regular status
updates.

lncorporate translation activities into the prolect managemenl documents.

Work to establish a better "team" relalionship with the translators.

Develop better translation tools.

Provide soltware development gridelines for text.

5. Results
Elapsed line by Translation Step

Beginning BeforeTOC Aft
Revision Average Revision 1 Rer

15ll Srrings 50 Strings 245

(cl

Localization

Fig. 3. Panels for the second part of the TQC storyboard for the
software translation enhancement Droiect.

Several m4ior items pertaining to ISY procedures were
found from these brainstorming sessions:

. Preparing the original Engtish LOI"A file required many
hours of manual effort to cut and paste text from the source
code into the LOIA file. This process is tedious and error
prone.

n The product development schedule did not provide enough
time for localization activities. As soon as English was re-
leased engineering resources were dedicated to higher-
priority projects. Localization was not a formal item in the
product's release protocol.

r Most engineers at our division had an English-focused view-
point and did not realize that certain design considerations
are needed to make the software text localizable. Also,
since no one was given the responsibility for localization, it
was seen as someone else's job.

66 June 1993 Hewlett-Packtrd Joumal

. Messages in languages other than English typically require
between 30olo and 50/o more text characters. Often, the design
of the original English text did not take this into account.

. Syntax in languages other than English is typically different.
Sometimes engineers would construct text messages from
individual translated words assuming that the sSmtax was
universal. This resulted in nonsense localized messages.

. No attempt was made to stabilize software text before
English release. Engineers continued to make text changes
until final testing had begun. The translators either had to
wait until the English product was released to begin, or they
began earlier but had to revise the text numerous times.

In addition to the major items above, we also identified
many smaller process items that involved our interactions
with the translators. Fig. 3a summarizes all the issues found
in the brainslorming session.

To better evaluate why these items occurred, we created
several cause and effect diagrams, also called "fishbone"
diagrams because of their visual similarity to a fish skeleton.
We found four m4jor categories in which time could be lost:
process, communications, people, and tools. The categories
are drawn a.s branches off the backbone of the cause and
effect diagram shown in Fig. 4.

Each of these categories was branched further until root
causes were identified. Each fishbone diagram highlights
the causes for the step being addressed, which in this case is
step 2 (translation).

Initially we created fishbone diagrams for Step 1 (create
LOtA file) and Step 3 (create language software) because
each required a large amount of engineering time and they
were steps over which we had control. We believed that
R&D had little control over Step 2 (translation), but since it
took the longest time, we diagrammed it.

The fishbone diagram shown in Fig. 4 revealed some impor-
tant issues. Since we do not have exclusive use ofscarce
translation resources, we must be on time in delivering
translation materials to the translators. If we are late in
sending our translation materials, the translators work on
tasks from other HP divisions. We can keep our place in the
work queue by giving more accurate dates to the translators.

Low estimates of the number of text strings to be translated
were another cause of delay. The translators schedule their
time based on the estimate we give them. If we underesti-
mate the number of strings, our text cannot be translated in
the time allotted. The translators then spend a lot of time
juggling their projects to find time to translate the extra
strings.

Our estimates of the number of strings were low because
when the scope ofthe project increased, we did not update
the estimate.

Poor communication between the translators and our dM-
sion led to many small time delays, which together had a
large impact on the turnaround time.

After creating the flshbone diagrams, we tied the root
causes to the PPMs mentioned above. This gave us the in-
sight needed for the next stage: developing the appropriate
action plan.

Process

Low Pliority Poor Text Change Gontrol

People

\
Too Few Translators \

Linited Use of
l{umber of Strings Estimates Pool 0utside

.9

Assigned Priority ilot
Comnunicated

Too ltllany Phone Calls to
Slows them oown

Translators Hesitant
to Ask Ouestions

Gommunications

t-ig. 4. Cause and effect iiiagram for step 2 (transiaiion) of the originai iransiaiion process.

Step 2 Translation

Poor Use of [01,A by l$Y
Lack of Highlights
on Ghanged Text

Action: Investigate softwaxe development guidelines for
text string design.

Froblem: English text must be reworked to function with
translations.

PPMs: 1, 2, and 3

Results. After we generated the action plan, we began ad-
dressing the action items. This resulted in the following
m4ior changes to our localization process:

. In striving to release localized products earlier, stabilization
of text has become a priority for softwaxe developers.

. The visibiliW of the translation activities has increased.

. Commturication with the translators has improved, as has
our credibility with them. By working as a tearn with the
translators, we have improved communication and reduced
turnaround time.

. Softrvare development guidelines for handling localization
have been established, published, and distributed internally.

Next, we evaluated the effect these actions had on our origi-
nal goals by examining two localized product releases that
occurred during the course of our activities. Fig. 3c shows
PPM-I (elapsed time between process steps) for the tvro
product releases compared with the beginning average data
from Fig. 2c. Revision 1 was before taking the actions listed
above, while revision 2 shows the effects of the actions.

As we collected the data to generate the graph, we found that
otrr PPMs were flawed. We did not have a good mechanism
for scaling the results based on the number of text strings.
Obviously, revision 1, which contained approximately 50
strings, would take a shorter period of time to localize thart
revision 2, which contained approximately 245 strings.
Despite this problem, it is still appaxent that our efforts have
significantly reduced the times for steps 2 and 4. Because

(continued on page 69)

Junelgg3Hewlett-PackardJoumal 67

Changes in Return Dates
not Communicated

Vacation Schedules
not Communicated

q'""$

v"y

PPM:

Actions. We held another brainstorming session to gather

ideas to address the root causes ofthe delays. This resulted

in a list of thirteen specific action items which were evalu-

ated for impact, effort, and the amount of control we had

over the action item. We also idenffied owners for the action

items. Fig. 3b summarizes the main themes of the action

items.

The following list ties the main themes of the action items

to the problem they solve and the process performance

measures (PPMs) that are impacted:

Action: Stabilize text and start the translation process

earlier.
Problem: Text is frozen very late, delaying the start of the

translation process.
2-English-toJanguage release time

Action: Include translation activities in project manage-
ment documents.

Problem: We often give local language releases a low
priority and thus they are poorly managed and
have low visibility.

PPMs: 1, 2, and 3-elapsed time for each step, English-
to-language release time, and the number of R&D
person days consumed

Action: Establish a better tearn relationship with the
translators.

Problem: Communication
PPMs: 1, 2, and 3

Action: Investigate the development of our translation
tools.

Problem: Significant manual effort is required to convert
between LOI"A and the source code.

PPMs: 1. 2. and 3

Tools for the Language Thanslation Process

The software translation enhancement project described in the accompanying
article identified the need to reduce engineering time required to prepare text for
translation and integrate translated text into the product. Partially automating the
preparation and integration of local language text through the use of new devel-
0pment t0ols reduces inc0nsistencies between languages and frees valuable
engineering resources.

Gurrent Process
The currenttranslation process is based around L0LA, or local language software
tool. which is a PC-based application used by HP's medical products divisions for
language translations. LOLA requires that files be in a special format, consisting of
general information (such as revision, language, c0ntext), format specifications,
and translatable text. The engineer responsible for localization manually c0nverts
a source file containing text to the required L0LA format. Converted files are
moved from a workstation to the PC and sent t0 the translators. Translators using
LOLA translate the files to the local language and return the translations t0 the
originating division. The engineer then moves the files from the PC to a work-
stati0n and manually converts the translati0ns to source code.

Bequirements
The requirements identi f ied by the TOC team f0r automatic handling of local
language translat ions were:

. A unique text file format must be specified that will hold master English text and
associated local language translations. The text format must be C-like in its con-
structi0n and must contain all the information in a C source file as well as the
information in a standard L0LA file.

. English and local language text files must be placed under revision control.

. The tools must automatically generate:
, , English L0LA files from master English text files
: English C source files from master English text files
:, Local language text files from local language L0LA files
' Local language L0LA files from local language text files
' Local language C files from local language text files
.r A file reporting differences between two different versions 0f a text file.

Text Format
With the above requirements in mind, a file format was specified. Formats and
global information take the form of functions. The name of the function indicates
the format t0 be set, and the function argument indicates the value of the format
(e.9., justify(CENTER)J. Global formats, such as character sets and fonts, are usually
software platf0rm dependent, and are contained in the construct gtobat{}. Text and
f0rmats to be interpreted as translatable are contained in the c0nstruct str ing{}.

Development
Workstations

a a a

Fig. 1. The run{ime environment f0r the translati0n t00ls.

C source code that logical ly belongs in the f i le can be included outs ide these
additional constructs and will not be interpreted by the tools. A typical string
def in i t ion is as fo l lows:

string {
size(4, 501; /* max size - 4 lines, 50 chars each */

capitalize{LINE}; /* capitalize first word of line */

iustify(LEFf); /" left iustify te)d */

const char *const User_def_msg= { /*user message that*/
"Enter a comment to describe the", /*a ppears on display*/
"100P (up to 16 characters) :" ,0] ;

description(Dialog box prompt that appears when the user
selects 'Manual Entry ' f rom the store dia log box. The
user is able to type in any l6-character string to
describe the file to be stored. 0KAY and CANCEL butrons
will appear below the message. The user selects 0KAY
when satisfied with the comment or CANCEL
to select a comment from the list instead.):

)

Localization Tools
The following localization tools were created t0 perform the required file conver-
sions, calculate differences between revisions, and transfer files to and from a
translation database. Fig. 1 shows the environment in which these tools run.

. neMextfile. This program generates header and global text information for the
0articular software environment.

otexuhex, hex2text. and hex2c. These tools perform the file conversions specified in
tne requrrements.

.textdiffs. This is an interactive X Windows application. When an English file is
changed, the engineer uses this program t0 generate the LOLA database files.

o readyloclang. This program transfers any f i les in the source tree t0 the L0LA
database and checks the consistency of that database,

.transferloclang. This program moves L0LA f i les from the L0LA database to the
PC server. l t also puts the f i les in D0S format.

o receiveloclang. This program moves L0LA f i les from the PC server t0 the
development workstat ion.

. lolarc. This program runs 0n the PC, and depending 0n the parameters sent to it,
transfers LOLA files between the PC server and the PC.

The following scenario in conjunction with Fig. 2 shows the typical life of a text
f i le using the local izat i0n t00ls.

1. A new English text file, which has been placed under revision control, is converted
to hexadecimal and placed in a LOLA file.

2 TheLOLAfi leisaddedtothetranslat iondatabaseautomatical lybyreadytoctang
when the database is ready for translation. Readyloclang will inform the user if
textdiffs needs to be run on the file.

3. The LOLA files to be translated are transferred to the PC and archived.

4. The archived file is sent to the translators via e-mail for translation into the
local language.

5. When the translators are done, the file is returned (via e-mail), unarchived,
transferred to the PC server workstation, and then moved t0 a development work-
station. This results in a local language L0LA file containing a reference to the
English revision 0f the text file from which it was derived

6. The original English revision of the text file and the L0LA local language file are
used to create the local language text file.

7. The local language textf i le is checked in and C source code is automatical ly
generated.

When engineers revise an English text file, the process is slightly more compli-
cated. The engineer uses textdiffs to create the necessary L0LA files for the data-
base. Textdiffs allows the engineer to match strings interactively that are the same

68 June 1993 Hewlett-Packard Journal

0evelopmenl
Wortstdtion

tnglish Text Files
under Revision

Cont]ol

[oLA Files

v
To

Translators
(a)

@
From

Translators
via e-mail

PGSorvsl

rs*?
._*_L _ j r .

- lronslated
' TBxt

Unarchivsd
IOLA Filbs

0ovrlopmcnt
Wo*station

PC Sewer

-t
l--

i t
l *_t_

LOI.A
Database

LOTA
Databaso

locrl Langua0e
Text File

' I

I .G
"**.

Embedding the format and comments in the text f i le central izes documentati0n
Previously, the documentation was disseminated through the C f i le and the LOLA

fi le. Having only a single f i le format to keep under revision control provides easier

tracking of changes.

Ult imately, the new tools and processes wil l reduce the engineering resources
required for translat ing t0 local languages and improve the quali ty of translated

tEXI.

George Rom
Software Design Engineer
HP lmaging Systems Division

We developed three star-rdard documents. The first of these

documents, the Ttanslation Status Memo, is published

monthly. This document helps maintain high visibility for

translations and cleaxly communicates changes to the

schedule. The second document, the DMsion Release Plan,

details the features and products scheduled for release in

upcoming months. This document has been updated to in-

clude both local and English language release dates' Lastly,

the Guide for Creating Translatable System Text has been

published and distributed to the software development staff,

and is a living document in our software environment.

C Files
- t

i
j

v

Product
R0Ms

between two revisions of the file. When the translator first l00ks at a matched
line 0f text, the translated text from the previous revision will be shown.

Gonclusion
The scheme outlined above helps to reduce the chance of inc0nsistencies between
languages. Since al l translated f i les refer back to English, c0mments, text formats,

and code {other than text external to the additional constructs) are identical in all
languages. Having a single f i le format to maintain ensures that changes t0 an
English text f i le are canied through t0 the English L0LA f i le and the local language
texl file immediately after a change. Software testers use LOLA reports showing
all the text t0 help them verify the operation of the system. These reports can be
made avai lable soon after any changes, reducing redundant defect report ing.

our action plan did not specifically address the R&D-intensive

cutting and pasting process, steps 1, 3, and 5 did not improve

significantly.

Problems Remaining. Although we were able to achieve a

significant degree of success, we did not solve aII of the lo-

calization issues we discovered during analysis (see Fig. 5a).

Standardization. The TQC process should lead to the devel-

opment of standards. Standards help to maintain a process

and provide a platform from which to continue to build

(see Fig. 5b).

June 1993 Hewlett-Packard Joumal 69

7, Problems Remaining

Localization toolset is defined but not implemented.

Proiect managemenl documents still need to be updated.

The relative priority of localization vercus new feature developnent is still
an issue.

"ldle time" (time lost between translation stopsl needs to be accounted for
bBtte. in the procoss modol rnd then measured.

L Standardization

Tlanslation Status llleno published monthly by the translation coordinator.

Release Plan updated to include local language releases.

Guide tor Croating Translatable System Text published and distributed
internally.

Future Plans. The final stage in the TQC process is generating
plans for the future (see Fig. 5c). We plan to update our
product life cycle process, and continue to collect metrics
on local language releases.

In addition, we plan to collect metrics on a new localization
tool set, which is design to improve our efnciency in handling
English and translated text (see "Tools for the Language
Tbanslation Frocess" on page 68). This toolset will obviate
the need to cut and paste, and will automate many of the
other steps in the localization process. Without our TeC
elforts, we would not have been able to justify the high cost
of implementing these tools.

Conclusion
Our group, although untrained in TQC methodologies, suc-
cessftrlly applied TQC principles to a real problem. Even
though we focused on the results rather than the process, we
learned a lot about the process. We were able to scale the
use of TQC so that the process did not overshadow the prob-
lem at hand. In addition, we identified causes of problems
that may not have been uncovered with an unstructured, ad
hoc approach.

Given the positive experience we had with TQC methods
during this project, we will enthusiastically and confidently
use it again.

Acknowledgments
The authors would like to thank Paul Kelly for his encour-
agement and advice in the writing of this article.

Fig. 6. Panels for the third part of the TQC storyboard for the soft-
ware translation enhancement project.

70 June lggSHewlett-packaxdJournal

9. Future Plans

Update the Product Life Cvcle to better address translation related activities.

lmplonent the localization Tool Set.

Colrtinue to collect metrics regarding localization time associated with n6w
releases.

A Thansaction Approaeh to Error
Handling
The transaction-based recovery c0ncept used in databases can be
appl ied to commercial appl icat ions to help provide more reusable
and maintainable programs.

by Bruce A. Rafnel

Commercial programs contain two mqior paths: a forward
path that does the work and a reverse path that rolls back
the work when errors are detected. TVpicaIIy, these paths
are so tightly bound together that both paths are difficult to
read. Code that is difficult to read results in code that is
diffrcult to write, debug, enhance, and reuse.

For example, in the object-oriented programming method-
ologr, one reason why objects axe not as reusable as they
should be is that they are tightly bound together at the error-
handling level. Marry times error codes even give ciues about
how an object is implemented.

The solution is to handle errors in programs as they are han-
dled in a database transaction* recovery mechanism. Irr a
database transaction, the transaction either executes in its
entirety or, if an error is detected in any of its operations, it
is totally canceled as if it had never executed. If an error is
found, all work is automatically rolled back to the beginning
of the transaction.

Error Handling
Software developers have sometimes been dismayed by how
difficult commercial programs are to maintain and design,
compared to progralns they developed in school. Someone
typically points out that programs developed in school were
"toys," which assumed perfect inputs and hardware with
unlimited memory and disk space. In addition, most software
engineers have very little formal training in error-handling
methods. Tlpically, software developers Ieamed error han-
dling by example or by trial and error, and they use the tradi-
tional error-handling model: check for an error, find an error,
and return an error code.

Many formal design processes, such as structured analysis
and structured design, recommend that errors be ignored
during design because they are an implementation detail. It
seems that this implementation detail can take up to one
third of the code in commercial prograrns. This is not just
code added around algorithms, but code placed directly in
the middle of the algorithms. The resulting programs are
difficult to read, debug, and reuse.

* A database transaction is a unit of work that inv0lves one or more operations on a database.
For example, the operation of insertlng data in the database could be a transaction if it 's the
only operation performed. ll the insert is combined with an update, both operations would be
considered one transaction.

Validate Results

Setup
Validate Inputs

Validate Resulb
0peration
Validac Besula
Return

* Function G
Setup
Validat6 Inputs

Retuln

Fig. 1. Traditional error-handling program flow. The forward path

does the work ofthe program and the reverse path does the error

handling. Notice that error-handling code is dispersed throughout
t h p q l o n r i f h m

Exception handling, or error handling, has a large academic
base and many of the ideas given in this paper are probably
not new. However, most of the ideas presented here are
based on 15 years of observations and e:rperiences with a
lot of good feedback from experienced programmers. This
paper will describe a prograrnming style that separates most
of the error-handling process from the main algorithms.

Mixed Forward and Beverse Path Problem
The two major paths in commercial prograrns are shown in
Fig. 1. The forward path is the path doing the work that
the program is designed for. The reverse path is the error-
handling code needed to keep the forward path working
correctly. It does this by detecting problems, fixing them,
and rolling back partially completed work to a point where
the algorithm can continue forward again.

Thamp Error Problem
Often an intermediate function in a program has to stop what
it is doing in the middle of the algorithm because a function
it called cannot complete its designed task. This can lead to

Fonrard Path

+Funct ionA

Reverse Error Path

Setup
validate Inputs '

Call Function C

Call Function C

Jnne1993Hewlett-PackardJoumal 7l

Error Definition

In the accompanying article errors are not defects. Enors are exceptions that a
particular algorithm is not designed to handle. Defects are errors that are out of
the design l imits of a whole appl icat ion 0r system.

For example, many algorithms are designed with the assumpti0n that there is
unl imited memory. When there is not enough memory for the algori thm to com-
plete successful ly, this is an enor A whole appl icat ion must be designed to handle
these out-of-memory errors. lf an application does not handle these errors and the
program halts or the program behaves in an undocumented way, this is a defect. In
other words, efrors are relative in that thev depend on what level of the software
hierarchy is being observed.

Enor handling consists of four main parts: detecti0n, correcti0n, recovery, and
reporting. Error recovery is the main focus of the accompanying article.

"tramp errors."* Thamp errors are errors in functions that
axe not directly related to the current function.

Tfamp errors axe the result of a real error occurring in a
lowerlevel function. For example, function A0 calls function B0.
Function B0 needs some memory so it calls the malloc0 memory
allocation function. The malloc0 function retums an out-of-
memory error. This is a real error for the mallocfl function.
Function B0 does not kmow how to get more memory so it has
to stop and pass the error back to function A0. From the per-
spective of function B() and probably function A0, an out-of-
memory error is a trarnp error.

Tiamp errors prevent functions from being the black boxes
they were designed to be. In the above example, notice that
function A() now knows something about how function B0 is
implemented.

Thamp errors are really part of error recovery and not part of
error detection because if the real errors could be corrected
immediately, trarnp errors would not occur.

Unreadable Code and Poor Reuse
Mixed forward and reverse paths and tramp errors combine
to obscure the main forward path of the prograrn, which is
doing the real work. The correction and recovery parts of
error handling are the main areas that obscure the code. Most
of the detection and reporting code can be put in separate
functions.

Because of tramp errors, almost every furction has to handle
errors generated by all lower-level functions called. This can
cause tight data coupling which makes code reuse more
difficult.

Tbansaction Error-Handling Solution
To solve the above problems, two things need to be done:
separate the forward processing path from the reverse error-
processing path and use context independent error codes.
This method of error handling is very similar to the way
databases handle error recovery. Ttansactions are used to
control the rollback process when a group of database
operations cannot be completed successfully.

* The term tramp error is used because it is very similar t0 the tramp data term used In
structured analysrs and structured desrgn

'

Separate the Paths
The traditional defensive way of programming is to assume
that a function may have failed to complete its designed
task, resulting in a lot of error-handling code to check for
the errors and to roll back partially completed work. This is
what we have in Fig. 1.

Reverse this assumption and assume that returning func-
tions have completed their designed tasks successfully. If
the function or any of the functions it calls has errors, it will
pass processing control to a recovery point defined by the
programmer. In other words, transaction points are defined
so that if there are any problems, the work will be rolled back
to those points and the processing will proceed forward
again.

With this approach, there is no need to check for errors after
each function call, and the forward path is not cluttered
with tramp error-detection code. Only error-detection code
for real errors remains, and most of the error-correction and
recovery code is clustered around the begiruLing and end of
the transactions (see Fig. 2).

Because errors are processed separately from where they
are detected, the error codes need to hold the context of the
erTor.

Context Independent Error Codes
Error codes that provide more information than just an error
number are context independent er:ror codes. Information
such as what function generated the error, the state that
caused the error, the recommended correction, and the error
severity must be encoded in the error code so that it can be
corrected in a location separate from the forward processing
path.

Usually contexts of errors axe encoded for error-reporting
functions. For example, the names of the program, function,
error type, and error code are saved and reported later.
However, sophisticated encoding schemes are raxely used
because with traditional error handling, the context of the

Forward Path Reverse Error Path

t
Function A

BeginTransaction --
Setup
Validate Inputs 'l

- -Cal l Funct ionC

I C"ll Function B

I
End Transaction

L-*Function B
Setup
Validate Inputs

I Gall Function C

i operation
l. Validate Besult -|

\. Return I
t \L-Funct ionC

Setup
Validate Inputs -
0peration
Validate Result J
Return

Fig. 2. Tfansaction error-handling program flow.

72 Junelgg3Hewlett-PackardJoumal

error is already lcrown because checking is done right a.fter

a call to the offending function.

With transaction error handling, the recovery process is

separated from the forward processing path so context

independent error codes are required. This may involve the

creation of unique error codes across a whole application

or system (with the codes bound at compile time). An alter-

native would be to assign code ranges or other unique

identifiers to functions at run time.

Code Readability and Reuse

The transaction approach makes programs easier to read

because the reverse error process paths are visually sepa-

rated from the forward process paths.

The transaction error-handling style makes it possible to

create some general error-recovery interfaces so that func-

tions (modules or objects) will only be loosely connected at

the error-handling level. This is possible because the number

oftramp errors used to control the recovery process is

reduced and only the real errors need to be handled.

Implementation

The following are some ideas about how to start developing

a transaction error-handling library. The list is not exhaustive
and there axe some problem areas, but it does offer some

concrete ideas for building a transaction error-handling
mechanism.

Tbansaction Control Management

Some language support is needed to implement the mecha-
nism that controls error recovery. Languages like HP's Pascal-

MODCAL have a try/recover feature that can be used to support
a transaction error-hartdling sWle. The try/recover statement
defines error-recovery code to be executed if an execution
error is detected within a particular area of a program. Fig. 3
shows the flow of control for a try/recover statement.

For other languages a feature usually called a "global goto"

must be used. This feature allows a lower-level function and
all other functions above it to exit to a point defined in a
higher-level function without passing error-code flags
through all the other tunctions. In C this is done with the
setjmp and longjmp library routines. The setlmp function saves
its environment stack when it is called, and longjmp restores

the environment saved by setjmp. The examples given later in
this article are written in C and show how these functions
are used.

The new C++ exception-handling feature2 provides an excel-
lent foundation for a transaction-based error handler. Refer-

ence 3 also describes how to add C++ error-handling func-

tions to regular C programs. However, overuse of the C++

exception-handling feature could lead to code that isjust as

cluttered as the traditional error-handling style. Tlansaction

boundaries for objects must be designed with the sarne care

that goes into the design of an object's interface.

If the language is missing a global goto (or multithreaded)
feature, macros or other wrapped functions can be used to

build recovery processes that are mostly invisible. Wrapper

functions are described in more detail later.

Some of the features that might be considered for a

transaction error-handling package include:
o Allowing nested transactions by keeping the transaction

begin points on a stack
r Allowing functions to share a common transaction stack
o Allowing functions to define their own transactions with a

common transaction stack or allowing functions to define

their own transaction stack for special cases
. Definin€i special transaction points to handle errors in

common categories (For example, abort the whole pro-

grarn, restart the whole program, close all files and restart,

close current file and restart, and release all memory not

needed and restart.)
. Making provisions for the transaction error handling to be

turned on and off (When it is off, a function retums error

codes in the traditional way.)
r Defining expected errors for some functions by masking out

the errors needed. (This feature can be simulated by turning

off transaction error handling, but then unexpected errors
will also have to be managed.)

TFansaction Data Management

Recovery involves more than just rolling back functions
because there may be some intermediate work that needs to

be undone. This may involve releasing unneeded memory or

changing $obal variables back to the values they had at the

beginning of the transaction.

Memory. Memory is best managed with a mechanism similar

to the mark/release memory feature provided in some imple-

mentations of the Pascal programming language. The marld

release procedures allow dynamic allocation and deallocation

of memory in an executing Pascal progr€un.

The C language functions malloc() and free(), in co4junction
with a stack of pointers to keep track of the memory allo-
cated, provide the best features for allocating and freeing

memory. With these features, a mark function can be called
just before the program transaction's start point to mark the

current stack point. ff a longjmpfl goes to this recovery point,

a release function is called to free any memory allocated
after the mark point.

A commit function, which indicates the successful comple-

tion of a transaction in the database context, is needed at

the end of a program transaction to remove pointers from

the mark/release stack. Nested transactions, however, need to

be considered. A simple solution would be to have each
transaction keep its own mark/release stack.

* Wrapperfunctions(ormacroslareusedt0addfunctional i tytoexist ingfunctionsthatcannot
be changed {e.9., library functions}.

Error

Error I

Error I-l

Recover
Error-Recovery

Try :

f coa"
l .
l o

Area of Prooram under | -
t.

Trv and Reci'ver Control I uode

t :
l o
\ Gode

:
Code

Fig. 3. The control flow for a trylrecover statement

June 1993 Hewlett-Packaxd Joumal 73

Globals. Global variables (and other static variables) can be
rolled back with a strategr similar to the memory manage-
ment problem. Just before a transaction's begin point the
states of all the $obals that might be changed in a transaction
are saved on a stack. This allows transactions to be nested.

Gontext lndependent Error Godes. The traditional error-
handling style of checking error codes after each function
call automatically gives errors a context. The transaction
eror-handling style needs to provide this context information
in another way.

The biggest challenge here is that error codes alone are not
very usefirl. For example, 97 could be the letter "a" (ASCII
code), the digits "6" and "1" (BCD format), index g7 into a
message array, the 97th enor, an out-of-memory error, a
disk-full error, a divide-by-zero error, and so forth.

To decode an error code the source ofthe error must be
lcnown. Some information that may need to be saved when
an error occurs includes the machine narne, program narne,
process number, module name, function narne, and of
course, the error code. This information needs to be sent
only when it is necessary to roll back a transaction.

The amount of information that has to be saved is depen-
dent on the location ofthe transaction recovery point and
the run-time environment. For example, a client-server
application may need more information than a simple PC
application. Each recovery point can usually find higher-
level context information fairly easily. For example, the
names of the machine, prograrn, module, and function can
easily be passed down to a lower-level recovery point. How-
ever, lower-level context information cannot be collected
because the function that had the error would no longer be
active.

Implementation Summary
The following axe some points to consider when implement-
ing a transaction error-handling scheme:

r Put the rollback points (if any) at the beginning of functions
. Put error detection and default substitution at the beginning

of firnctions
. Put some error-detection code in the middle of functions to

check intermediate values
o Put error-detection code at the end offunctions to validate

the results
. Do not put error-handling code for managing rollbacks in

the middle of afunction.

Examples
Traditional Error-Handling Style. The following example pro-
gram, which reads a binary formatted file, is coded with a
common error-handling style.The code would have been
more cluttered without the aExitErr() and aRetErr() macros to
manage the error reporting and recovery. This example uses
the simple error-recovery process: detect error, report error,
and exit. However, notice how much error-handling code is
mixed in with the algorithm.

read.c - Bead a binary formatted file
This program reads and prints a binary file that has the
following structure:

Eecord type code (The last record has a value of 0)
Size Number of characters in Msg

*l

/* Msg 0 to 2048 characters
/* Record type code
/* Size
/* Msg

#define aExitEn(pMsg, pErd
#define aBetEn(pMsg, pErr)

typedef struct {
long Type;
int Size;

) aFi leHead;

/* Fonruard Algorithm:
l*
l* Main
f 1. Open the f i le.
l* 2. Call the Read process.
f 3. Close the f i le.

main() {
int Err;
FILE * InFi le;

i f ((lnFi le = fopen("f i le.bin", "rb"l) == NULL) {
aExitErr("Error: Could not open: f i le.bin", l) ;

)
i f ((Err = aRead(lnFi le)) != 0l {

aExitEn{"Enor: While reading: f i le.bin", 2};
)
i f (fclose(lnFi le) {

aExitErr{"Error: Closing: f i le.bin", 9};
)

) / * ma in() * /

Forward Algorithm continued:

Read Process
l. Read the Type and Size values.
2. lf Type = 0, exit.
3. Read Size number of characters into the

Msg variable.
4. Printthe Msg.
5. Go to steo l .

int aRead(pHandlel
FILE * pHandle;

{
int Err, N;
char * Mtg;
long RecNum;
aFileHead RecHead;

i f ((Msg = (char *) malloc(20a8)) == NULL){
aRetErr("Error: 0ut of memory",3);

)
RecNum = 0L;
wh i le (t) {

i f (fseek(pHandle, RecNum, SEEK_SET) < 0) {
aRetErr("Error: in fseek", 4);

)
N = fread((char *) &RecHead, sizeof(aFileHead), 1, pHandle);
i f (N < ()){

aRetErr("Error: in fread", 5);
) e l s e i f (N ! = l) {

aRetErr("Error: short fread", 6l;
l

puts(pMsg); exit(pErr)
puts(pMsg); return(pEn)

*l

*l

l*

74 June 1993Hewlett-PackardJoumal

i f (RecHead.TyPe == 0L) {
return(0); lx EOF *l

]
i f (RecHead.S ize) {

i f ((N = fread{Msg, RecHead.Size, 1,
pHand le l) < 0) {

aRetErr("Error: in fread", 7);
) e lse i f (N l= 1) {

aRetErr("Error: short fread",8);
)
i f ({Err = aPrint(Msg,

RecHead.S ize)) != 0) {
aRetEr("Error: in aPrint", Err);

)
)
RecNum = RecNum + RecHead.Size + sizeof(aFileHead);

)
] / * aRead() * /

Transaction Error-Handling Method. The following listings show
an implementation of the transaction error-handling style.
The first listing shows the program (transaction) read.c rewrit-

ten to incorporate the transaction error-handling style. The

other listings show the support functions for the transaction
error-handling method.

Notice in the main body of the algorithm that the code fol-
lowing the recovery sections is clearer than the traditional
error-handling example and there is no error-handling or
recovery code mixed in with the algorithm.

There are some obvious shortcomings in the support mod-

ules. For example, most of the macros should be functions
and the vEnv values should be saved in a linked list.

A number of engineers have pointed out that the transaction
implementation of read.c is not really shorter than the tradi-
tional implementation of read.c because the error-handling
code was simply moved out of read.c and put in the support
functions. But that is exactly the goal to remove the error-
handling code from most firnctiors and encapsulate the error-
handling in common shared code.

The Main Program. This program performs the same function
as the read.c program given above. However, it has been
recoded to use the transaction style oferror handling. The
functions erSet, erUnset, and erRollBack provide the error han-
dling and are defined in the include file erpub.h, which is
described below.

The include file epub.h contains wrapper macros which are
defined so that the appropriate transaction error-handling
functions are called in place of the standard library function.
For example, when the standard function fclose is invoked,
the ftrnction eClose is actually called.

read.c - Read a binary formatted f i le
This program reads and prints a binary f i le that has the
fol lowing structure:

Becord type code (The last record has a value of 0)
Size Number of characters in Msg
Msg 0 to 2048 characters
Record type code
Size
Msg

inc lude "erpub.h"

inc lude "epub.h"

typedef struct {
long Type;
int Size;

i aF i leHead;

Forward Algori thm:

Main
1 . Open the f i le .
2. Call the Read process
3. Close the f i le.

m a i n () {
FILE * InFi le;

erRec0n = 1;
i f {erSet0} { /* Transaction rol lback point */

printf("Error: %d in function: %s\n", erErr,
erFun);

erUnset();
exit{ 1);

) /* End Recovery section */

lnFi le = fopen("f i le.bin", "rb");
a Rea d(| nFi le);
fclose(lnFi le);
erUnset{);

) /* main0 */

/* Forward Algori thm continued: * l

l* *l

l* Read Process *l

l* 1. Read the Type and Size values. * l

l* 2. lf Type = 0, exit. *l

l* 3. Read Size number of characters into the *l

l* Msg variable. * l

l* 4. Printthe Msg. * l

l" 5. Go to step 1. *l

l* *l

in t aRead(pHand le)
FILE * pHandle;

{
char * Mrg ;
long RecNum;
aF i leHead RecHead;

Msg = (char *) ma l loc {caMsgLen) ;

RecNum = 0L;
w h i l e (1) {

fseek{pHandle, RecNum, SEEK-SET);
fread((char ") &RecHead, sizeof(aFileHead), 1, pHandlel;
i f (RecHead.Type == 0L) {

return; /* E0F */

)
i f (RecHead.Size) {

f read(Msg, BecHead.S ize , l ,pHand le) ;
aPrint(Msg, RecHead.Size);

)
RecNum = RecNum + RecHead.Size + sizeof(aFileHead); "

)
] /* aRead() */

File erpub.h. The macros and global data structures defined
in this file form a crude error transaction manager. The
following operations are performed by these macros:

r erSet. This macro adds a rollback point to the vEnv
(environment) stack.

o erUnset. This macro removes the top rollback point from

the vEnv stack.

Junelgg3Hewlett-PackardJoumal 75

. erRollBack. This macro saves the function name and error
code in a global area (erFun and erErr), and if the erRec0n flag
is true, control is passed to the rollback point defined on the
top of the vEnv stack. If erRecOn is false, erRollBack will simply
return the usual error code.

Remember that these macros are for illustration only. Thus,
there are no internal checks for problems, and the $obal data
structues shonld be defined as static values in a library mod-
ule or collected into a structure that is created and passed to
each of the transaction enor-handling functions.

/* erpub.h - Error Recovery Public Include f i le */

#include <setimp.h>

/" Private Variables */

#define vMaxEnv 5
jmp_buf vEnv[vMaxEnv];
int vLevel =-l ;

/* Public Variables */

#define cerFunNameLen32
#define erSet() setjmp(vEnv[++vlevel])
#define erUnset0 --vlevel
#define erRollBack(pFun, pErr, pRet) \

strncpy(erFun, pFun, cerFunNameLen); \
erFun[cerFunNamelen-l] = \0; \
erErr = pErr; \
i f (erRec0n && vLevel >= 0) { \

longjmp(vEnv[vLevel], pErr]; \
) e l s e { \

return(pRet); \
)

int erErr = 0:
char erFun[cerFunNameLenl;
int erRec0n = 0:

File epub.h. This file contains wrapper macros that cause the
functions defined in the file e.c to be called in place of the
standard library functions. The functions in e.c will behave
the same as the standard library functions, but if the er:ror
transaction manager is on (erRecOn is tme in erpub.h), control
will be passed to the last defined rollback point, rather than
just retuming the same error code as the associated standard
library function.

Using these wrapper macros makes it easier to add trans-
action error handling to old programs, but if it is desired to
make the error-handling process more visible, the functions
defined in e.c would be called directly instead of the standard
Iibrary functions.

This file is also a good place to define context independent
error codes.

/* epub.h - Error Library Wrapper Macros (only a few are
shown here) */

#define ceE0F I
#define ce0ut0fMem 2
#define ceReadEn 3
#define ceReadShort 4

#ifndef vlnE
#define fclose(pStream) eClose(pStream)
#define fopen(pFileName.pType) e0pen(pFileName,pType)
#define fread(pPtr, pSize, pNltem, pStream) \

eRead(pPtr, pSize, pNltem, pStream)
#define fseek(pStream, p0ffset, pPrtName) \

eSeek(pStream, pOffset, pPrtName)
#define malloc(pSize)
#endif

76 June 1993 Hewlett-Packtrd Jouma.l

File e.c. This file contains the implementations of the wrapper
macros defined in epub.h. Only two of the functions are
shown in the following listing. Notice that these functions
behave exactly like the standa.rd library firnctions with the
sarne narne because they call the standard library functions.

For more flexibility, a real error transaction manager might
allow the user to define the error codes that determine
whether or not a rollback occurs.

/* e.c - Error Library Wrapper Functions (only a few are
shown here) */

#define vlnE
#include "epub.h"

void * eMalloc(pSize)
size_t pSize;

{
void * Mem;
if ((Mem = malloc(pSize)) == NULL) {

erRollBack("malloc", ce0ut0fMem, Mem);
)
return(Mem);

)/* eMalloc */

size_t eRead(pPtr, pSize, pNltem, pStream)
char * pPtr;
size_t pSize, pNltem;
FILE * pStream;

{
size,t Num;
Num = fread(pPtr, pSize, pNltem, pStream);
if (feof(pStream)) {

erRollBack("fread", ceE0E Num);
) else i f {Num <= 0) {

erRollBack("fread", ceReadErr, Num);
) e lse i f (Num < pNl tem){

erRollBack("fread", ceReadShort, Num);
)
return(Num);

]/* eRead */

Conclusion

When transaction error handling was introduced on a proj-
ect, engineers initially resisted removing lF statements after
calls to functions using transaction error handling. Alter
seeing how much easier the code was to write and read, the
resistance faded and engineers started setting up their own
transaction recovery points.

It would seem that debugging code using the transaction
error-handling style would be difficult. However, eq)erience
has shown the debugging time to be a little better than the
debugging time for a traditional error-handling style. This
decrease in time can probably be attributed to less em-
bedded error-handling code, causing defects to stand out
more. Also when error-handling code is added, it is added in
a structured way that disturbs very little of an already de-
bugged program. This supports the way most engineers
traditionally like to code.

So far this error-handling style has not been used on any large
projects, but it has been used on small programs and func-
tions written for enhancing old programs. One of the nicest
features of this style is that it can be used independently of
other error-handling styles.

eMalloc(pSize)

In summary, a transaction error-handling style can lead to
the following benefits:

r More reuse because error handling can be separated from
the algorithm so that the coupling between functions is
looser

. Improved code supportability because it is easier to read
the algorithm and see what happens with enors

. Better code quality because there are fewer error-handling
statements in the main algorithm, so the code is easier to
read and the defects stand out.

Just as the fi.urctional parts of algorithms are being separated
from user interfaces (clienVserver models), error handling
can also be separated from the functional algorithm.

Acknowledgments

The author would like to thank a number of coworkers who
helped review and refine the ideas presented in this paper,
in particular: Andra Marynowski and Kevin Wentzel who
were there at the birth of this coding style. Also thanks to
King Wah Moberg for a number of reviews.

References
l. M. PageJones, The Fracti,cal C,uidc to Strttctured Systems Design,
Yourdon Press, 1980, p. 104.
2. B. Stroustrup and M. Ellis, The Annotated C++ ReJermce Manual,
Addison-Wesley Publishing Company, 1990.
3. C. Vidd, "Exception Handling," The C Ussrs Joutnal, September
1992.

Authors
June 1 993

6 0BCA, .bontoryRoho!

Gary B. Gordon

Gary Gordon was the project
manager for the HP Labora-
tories phase of the OBCA
robot project. He joined HP
ful l{ ime in 1966 as a digital
designer on the computing
counter project, HP's first
arithmetic unit to employ
digital lCs. Later he became

project manager and then section manager for HPs
first laser interferometer. Gary is perhaps best known
for pioneering HP's entry into instrumentation for dig-
ital designers with such instruments as the logic
probe, cl ip, and pulser and the l0gic analyzer and
signature analyzer ln 1979 he transferred to HPs
central research laboratories, where he has been a
project manager for a series of instruments for the
HP Analyt ical Products Group including the just-
introduced high-sensitivity capillary electrophoresis
detector. Presently he heads a micromachining effort.
Gary received a BSEE degree in BF communications
from the University of California at Berkeley in 1962
and an MSEE degree in computer design from Stan-
ford University in 1970. He has authored a dozen ar-
ticles, has had products featured on seven magazine

covers, is named as an inventor in 23 patents, and is
listed in Who's Who in California. He served four
years as a U.S. naval officer and is an associate pro-
fessor at California State University at San Jose. His
hobbies include large{ormat photography (he shot
this issue's cover), f lying, and designing and bui lding
modern furniture and houses.

Joseph G. Roark

Software design engineer
Joe Boark was born in
Springfield, 0hio and stud-
ied chemistry at Denison
University (BS 1 974) and
Duke University (PhD 1 980).
He joined HP Laboratories in
1 980, where he worked on

:}w1 prototypes for the HP 1046A
fluorescence detector and the HP MicroAssav Svstem.
More recently, he moved to the Scientific Instruments
Division and contributed t0 the architecture and the
method development software for the 0RCA robot
project. He s presently working on networking and
automation for HP ChemLAN pr0ducts. A member of
the American Chemical Society, Joe is named as a
coinventor in a patent related to robot motion. 0utside
work, he plays jazz piano and soccer and coaches
youth soccer and baseball teams. He is manied and
has two chi ldren.

Arthur Schleifer

A New York City native,
Artie Schleifer has held sev-
eral technical and manage-
ment posit ions since joining
HPs Avondale Division in
'I 974. He contributed to the
development of the HP
8450/51 diode array spectro-
photometers and was proj-

ect manager for robotic systems at HP Genenchem,
HP's.joint venture with Genentech, Inc. Now at the
Scienti f ic Instruments Division, he was project man-
ager for the Analytical Products Group for the 0BCA
project and currently w0rks on hyphenated instrument
control and DOS and Windows systems software.
Artie received a BS degree in chemistry from the City
University of New York in 1971 and worked at Wyeth
Laboratories before coming t0 HP He is the author of
six papers and conference presentations on chemistry
instrument software, and aut0mati0n and is named
as an inventor in three patents on software algorithms
and robotics. Art ie coaches soccer and baseball , has

two sons, and enjoys sai l ing, boardsai l ing, tennis,
softball, golf, woodworking, gardening, and skiing

m HPOpenODB

Rafiul Ahad

As architect of the HP
OpenODB program at HPs
Commercial Systems Divi-
sion, Bafiul Ahad is respon-
sible for software design
and development and con-
sultation with customers.
Born in Rangoon, Burma, he
studied physics and computer

science at Rangoon University. His degrees (BSc in
physics and MSc in computer science) were awarded
in 1 973 and 1 975. He continued his studies at the
Asian Institute of Technology in Bangkok, Thailand,
from which he received an MSc degree in computer
applications in 1 980. After coming to the United
States, he completed work for a PhD degree in com-
puter science at the University 0f Southern California
in 1985. Before coming to HP in 1989, he was an as-
sistant professor at the University 0f Maryland. Rafiul
is the author of four technical articles in the area of
database systems and has presented papers at nu-
merous conferences. He is a member of the ACM and
the IEEE. He is manied, has two children, and enjoys
tennis and vol leybal l .

Tu-Iing Cheng

R&D section manager
Tu-Ting Cheng was born in
Bangkok, Thailand and at-
tended National Taiwan
University, from which he
received a BSEE degree in
'1969. Later, he completed
work for an MSCS degree
from the University of

Wisconsin at Madison (1971)and for MS and PhD
degrees in computer science from 0hio State Univer-
sity (1975 and 1976). With HP since 1976, most of his
work has been in the database area. and he is now
responsible for the HP 0pen0DB program. Tu-Ting
and his wife have one chi ld, and he l ikes bal lroom
0ancrng.

Jtme 1993 Hewlett-Packaxd Joumal 77

31 HP Ultra VGA Graphics Board Yong Deng

Myron R. Tuttle

A development engineer at
the Cali fornia PC Division.
Myron Tutt le studied elec
tr ical engineering at the
University of California at
Berkeley (BSEE 1973 and
MSEE 1974). With HP since
1 974, he worked on the HP
2625/28 terminals and the

original mult imode video board for the HP Vectra. He
contr ibuted to the development of the video subsys-
tem for the HP Ultra VGA board and is now involved
in video and graphics development. Myron is named
as the inventor for a patent on aut0mated software
testing and is coauthor 0f an earlier HP Journal article
as well as a oaoer for an HP software conference. He
also served jn the U.S. Navy as an electronic techni-
cian. His hobbies include computer programming,
home improvement projects, and classical music.

Kenneth M. Wilson

With HP's Cali fornia PC
Division since 1989, Ken
Wilson has worked on a
series of HP Vectra products,
including the Vectra 4BB|25I
and 33T, the Vectra 4B6s/20,
and the HP Super VGA
board. Most recently, he
contributed to the develop-

ment 0f the HP Ultra VGA board. He completed work
for a BSEE degree from Cali fornia State P0lytechnic
College at San Luis Obispo in 1 9BB and expects t0
receive his MSEE degree from Stanford University in
1 993. His professional specialty is computer architec-
ture. and when he takes a break from work, he enjoys
boardsai l ing and relaxing in his hot tub.

Samuel H. Chau

R&D engineer Sam Chau
was born ln Hong Kong and
attended the University of
Cali fornia at Berkeley. He
received his BA degree in
computer science in 1 984
and came to HP's Santa
Clara Division in 1985. Now
at the Cali fornia Personal

Computer Division. he contr ibuted t0 the devel0p-
ment of the HP Super VGA board and worked on the
hardware and display t imings for the HP Ultra VGA
board and the HP Vectra 4B6U embedded Ultra VGA+
Sams outside interests include personal computers,
audio and video technologies, photography, piano,
classical music, and badminton.

Born in Shanghai, China,
software design engineer
Yong Deng joined HP's
Cali fornia Personal Com
puter Division in 1989. He
studied for his bachelors
degree in computer science
at the University of California
at Santa Cruz and graduated

in 1986. In the past, he was responsible for software
drivers and uti l i t ies for HP's intel l igent graphics con-
trol lers. He developed a new display redraw method
that improved CAD display l ist performance. He also
ported Texas lnstruments Graphics Language {TIGA)
2.05 and 2.20 to HP s i ntel I i gent graphics control lers.
For the HP Ultra VGA graphics project, he was respon'
sible for the AutoCAD and Windows high-resolut ion
display drivers and video Bl0S. His other professional
experrence includes software development at Nati0nal
Semiconductor and Autodesk Inc. His professional
interests include high-resolut ion display drivers and
application development for Windows and CAD tools.
Yong is married and has a young daughter.

4l P0SIX Interface for MPE/iX

A software engineer at the
Commercial Systems Divi
sion, Rajesh Lalwani joined
HP in 1988. He was born in
Mandsaur in the Madhya
Pradesh state of lndia. He
received a master of tech-
nology degree in computer
science from the lndian

Institute of Technology, New Delhi in I 9BG and an
MSCS degree from Pennsylvania State University in
i9BB. In the past, he enhanced and maintained com-
mand interpreter software and components of the
MPE operating system kernel. More recently, he de-
veloped a procedure for parsing MPE and P0SIX f i le
names and a directory traversal routine. He s cunently
working on symbolic links functionaliry and device files
for MPE/|X. Rajesh is the author of several POSIX
articles, has presented a number of conference papers
on the same t0pic, and is working on a book on
POSlX.1. His outside activi t ies include tennis, watch-
ing classic movies, and staying in touch with his
wife, who is f inishing her medical degree ln India.

47 Preventing Soltware Hazards

Brian Gonnolly

engineering for several bedside monitor and central
reporting stati0n products. He has written several
oaoers related to hazard avoidance and software
quali ty and test ing for internal HP publication Hes
also a member 0f the IEEE. His educational back-
ground include a BS degree in physics and engineer
ing awarded by Loyola College in 1977, and an MES
degree (1983) in digital systems. also from Loyola.
Brian is married and has two chi ldren. His leisure
activi t ies include running, swimming, w00dw0rking.
and coaching youth soccer

Sl ConfigurctionManagementlor
Tests

Leonard T. Schroath

With HP since 1985, sofl
ware quali ty engineer Len
Schroath worked at the
Logic Systems Division and
the Colorado Springs Divi-
sion before moving to his
current posit ion at the Boise
Printer Division. He's the
author or coauthor of six

papers for HP conferences related to softlvare quality,
test ing, and reuse. Len was b0rn in Detroit , Michigan
and attended Brigham Young University, from which
he received a BS degree in computer science in 1 985
He is manied, has three small chi ldren, and is a
coach at his local YMCA. He also enjoys music and
sports and off iciates at basketbal l games.

60 Softwarelnspections

Jean M. Macleod

A native of Arl ington,
Massachusetts, Jean
MacLeod studied elementary
education and sociology at
Emmanuel College in Boston,
Massachusetts, and received
a BA degree in 1 971 . She
has worked in the software
quali ty f ield since 1974, ini-

t ial ly in several small to mid-sized companies before
joining Apollo in 1987. At Apollo, she was responsi-
ble for ini t iat ing a software inspection program in an
B&D lab She joined HP's Corporate Engineering Soft-
ware Initiative in 1 991, and contributed to the improve-
ment 0f software inspections for the Patient Care
Monitoring Systems Divisi0n at Waltham. She's now
working on software process improvement with other
divisions in the N0rtheast. Jean is a member of the
Society of Women Engineers. She has two teenage
children and enjoys golf, racquetbal l , and reading.

,@

,'i.l
:t

Brian Connolly is a project
manager for software quality
engineering in HP's Patient
Monitoring Systems Division
and has been with the com-
pany since 1984. Previously,
he developed real{ ime sofl
ware systems for Raytheon
Corporation and Westing-

house Corporation. Since joining HB he has worked on
real{ime software development for a bedside monitor-
ing application, objecloriented software development
in a cl inical information system, and software quali ty

Raiesh [alwani

78 June 1993 Hewlett-Packard Joumal

64 TOG for Soltware Loealization John J. Krieger

John W. Goodnow

A section manager at HP's
lmaging Systems Division,
John Goodnow joined HP in
1 983 shortly after receiving
a BS degree in electr ical
engineering from the Univer
sity of Pennsylvania. He
earned an MS degree in
electr ical engineering in

1 9BB from Stanford University through the Honors
Coop program. His first HP projects included work on
HP PageWriter electrocardiographs and ultrasound
system software, and he continued work on ultra-
sound software development as a project manager
and now as a section manager. John s professional
interests include computer and system architecture,
operating systems, and image processing. Born in
York, Pennsylvania, he is married and enjoys board-
sai l ing, ski ing, woodworking, and vacationing on
Martha's Vineyard.

Cindie A. Hammond

Cindie Hammond has been
with HP's lmaging Systems
Division since 1989. Born in
Nassau, the Bahamas, she
studied computer science at
the University of Utah, from
which she received a BS
degree the same year she
started at HP An R&D soft-

ware development engineer, her professional interests
include ultrasound imaging and image processing.
She's a member of the ACM and tutors mathematics
at a local elementary school. Her 0utside activi t ies
rnclude softbal l . boardsai l ing, drawing and paint ing,
and renovating her home.

William A. Koppes

Bil l Koppes was born in
Morristown, New Jersey
and studied electr ical engi-
neering at the University ol
Washington at Seattle
{BSEE 1 976) and at the
University of Cali fornia at
Berkeley (MSEE 1978) At
Berkeley's Donner Labora-

t0ry he als0 developed positron emission tomography
and rec0nstructi0n algori thms. He joined HP's lmag-
ing Systems Division in 1978, where he f i rst was a
hardware development engineer and then a software
development engineer, project manager, and section
manager. Now principal engineer at the Advanced
lmaging Systems group, his professional interests
include medical imaging and cl inical diagnosis, soft
ware development, and R&D management. He is
coauthor 0f a paper related to digital signal and image
processing and has actively participated in several
professional conferences. Bi l l is manied, has a son
and daughter, and enjoys composing and performing
musrc.

John Krieger joined HP's
Waltham Division in 1974,
where he worked on the
digital hardware and soft
ware design of the HP
4721 0A capnometer. After
moving to the lmaging Sys-
tems Division, he contr ib-
uted to the software design

and development for the HP S0N0S 1 00 and 1 000
cardiovascular imaging systems. He's now special iz-
ing in diagnostic ultrasound imaging. He's the auth0r
of two previous HP Journal art icles related to the HP
47210A capnometer. and has presented papers at
two HP software engineering productivity confer-
ences. He is also the inventor of a patent related to a
help faci l i ty for the HP S0N0S '100 Born in Santa
Monica, Cali fornia. John received a combined bache-
lors and masters degree in electr ical and biomedical
engineering from the University of Cali fornia at Los
Angeles in 1973. He is married and has two daugh-
ters. Active in his church, he enjoys acting in c0mmu
nity theater and is renovating his home, an 1 B50s
vintage New England farm house

Daniel Kris Rovell-Rixx

Kris Bovell-Rixx has been
with HP since 1990 and is a
software development engi
neer at the lmaging Systems
Division. Previously, he de
signed and implemented
real{ ime software for auto-
mated test equipment and
fuel controls for jet aircraft

at the Hamilton-Standard Division of United Technol
ogies. He also worked for Ashton-Tate, and for a small
manufacturer of IBM PC peripherals. Born in Miami,
Florida, he completed work for a BS degree in engi-
neering {computer science emphasis) in 1979 from the
University of Florida and an MS degree in engineering
management in 1987 from Western New England
College. Hes a member of the ACM and the IEEE. Kris
is a sai l ing enthusiast. He and his wife have sai led in
the Virgin lslands and Windward lslands, and in 1992
he was a volunteer fOr Sail Boston '92, a parade of
tal l ships. He s also an amateur radi0 operator {cal l
sign WXlZ) and enjoys al l types of music.

Sandra J. Warner

Sandy Warner joined HP in
1 984 as a cl inical appl ica-
t ions special ist in the Mid-
west sales organization and
is now a global izat ion spe'
cial ist in the lmaging Sys-
tems Division. Her profes
sional interests include
market research on customer

needs, foreign language translat i0ns, and IS0 9000
coordination. She was born in Rochestet New York
and has a BS degree in zoology from The Ohio State
University {1 976) Before joining HP she managed a
mobile cardiovascular test ing service for a diagnostic
service 0rganizati0n and before that she managed a
diagnostic lab tor a medical center. 0utside 0f w0rk,
she teaches astronomy for an HP sponsored school
science program, and l ikes ski ing, carpentry, Iand-
scaping, and backyard barbecue extravaganzas.

71 Transaction Error Handling

Bruce A. Rafnel

Software development
engineer Bruce Bafnel has
worked in the R&D labs at
eight HP divisions since join-
ing the company's General
Systems Division in 1981 .
His contr ibutions include the
development of software for
the HP 1 50 and HP Vectra

personal computers and working 0n the dict ionary
team for the HP 3000 and HP 9000 computers. He's
now in the Professional Services Division. A graduate
of Cali fornia Polytechnic State University at San Luis
Obispo, he received a BS degree in computer science
in 1 981 He's a member of the IEEE and the C Users
Group, and includes document management systems,
c0mputer graphics and image processing, oblect-
oraented programming, and neural networks as pro-
fessional interests. Bruce is married and has a young
daughter. His hobbies include home automati0n with
vorce control.

Sl HP-UX System Administration

Mark H. Notess

l\/ark Notess was born in
Buffalo, New York and
studied English and teaching
English as a second language
at Virginia Polytechnic Inst i-
tute and State University. He
received a BA degree in
English in 1979 and an MA
degree in education in 1 981 .

He was an instruct0r at the University of Alabama
and later was a programmer and instructional designer
at the Virginia Cooperative Extension Service before
completing an MS degree in computer science, again
from Virginia Polytechnic Inst i tute, in 19BB Since
joining what is now HP's Open Systems Software
Division the same year, he has designed, imple-
mented, and tested software for several projects,
including user rnterfaces for HP-UX system adminis-
trat ion. His work on the object act ion manager for
HP'UX has resulted in a patent appl icat i0n. He is a
cOauthor 0f two articles and has presented several
papers at technical conferences. He's also a member
of the ACM and SlGCHl. Mark is manied and has
three chi ldren. His leisure interests include reading
medieval hist0ry and l i terature, hiking, and playing
acouslrc gurtar.

June 1993 Hewlett-Packard Joumal 7g

A User Interface Management System
for HP-UX System Administration
Applications
Developing applications to simplify HP-UX system administration has
been made easier by the creation of a tool that addresses the needs of
the develooer.

by Mark H. Notess

The HP-UX* system administration manager (SAM) provides

basic system administration functionality for standalone
HP-UX systems and diskless clusters. The SAM tool simpli-
fies HP-UX system administration so that the administrator
does not have to be a technical expert to manage an HP-UX
system. Tlpical HP-UX system administration functions
such as adding aperipheral, setting up the spooler, and add-
ing or deleting users are provided in SAM. See "SAM versus
Manual Administration" on page 81 for an example of the
simplification provided with SAM.

By any measure, SAM is a large, complex interactive appli-
cation. Of the approximately 150,000 lines of noncomment
source code, almost half of it is directly related to the user
interface. The SAM user interface consists of over 270 dis-
tinct screens, excluding help screens and messages. A sub-
stantial number of software, human factors, and learning
products engineering hours have been spent working on
SAM.

Any interactive application the size of SAM faces a m4ior
challenge in achieving a consistent user interface. User inter-
face consistency includes many topics of concern such as:

r Interaction paradigm
. Selection and navigation methods
. Position, labeling, and behavior of common elements
. Relative layout of elements on the screen
r Colors, fonts, cursor shapes
. Message Wpes
. Error handling.

With many developers coding portions of the SAM user inter-
face, it is impossible to achieve consistency without some
mechanisms in place to assist in the process. Style guides

have been useful consistency mechanisms, but rarely suf-
fice. We adopted a "no rules without tools" approach and
decided to create a user interface tool that would enforce,
where possible, consistency €unong developers. Where a
semantic understanding of the interface was necessarf,/, we
developed a style guide, but the goal was to let the tool han-
dle as much as possible. The other motivation for our tool
was rapid development. Many general-purpose user interface
toolkits are not easy to leam, are hard to use, and take a long
time to master. Even user interface management systems that
are easier to work with are still general-pulpose and contain

80 June 1993 Hewlett-Packard Journal

a lot of features that are irrelevant for a given application or
class of applications. We wanted SAM developers to be
as productive as possible, so we wanted to minimize the
following:

. Time to learn the user interface tool
n Time to prototype
o Time to write working code.

To achieve rapid development, we needed to hide the under-
lying user interface technologrt and provide an application
progr€un interface (API) that was at our developers'level of
interest.

The result of our concern for user interface consistency and
rapid development is the object action manager (ObAM), an
application-class-specific API for SAM and SAM-like applica-
tions. The remainder ofthis paper describes the design of
ObAM and reviews our preliminary results.

Design and Development

The old SAM user interface architecture did not shield de-
velopers from the underlying user interface technology and
as a result they had to learn more about the technologl thart
they wanted. While we did have a library of convenience
functions such as message handlers, developers still found
the API difficult to learn and a distraction from their primary

focus-putting tunctionality in SAM. Providing SAM devel-
opers with a user interface toolkit they could use meant that
we had to study the requirements of user interfaces for sys-

tem administration and then factor out common elements
and highJevel constructs that would be most useful. Exam-
ples of common elements used by every application include

displaying messages to the user and validating user input. The
following sections list some of the higher-lever constructs
we factored out.

list Management. Much of system administration is a matter

of adding, deleting, or modifying items in a list. For example,

system administrators frequently select an object such as a
device file, print job, or disk from a list to perform some
operation on. List manipulations such as filtering or sorting

items can be usefirl for large lists and require the same type

of interaction independent of what Wpe of item is in the list.

t User interface technology includes components such as window managers, display handlers,
and graphics routines.

SAM versus Manual Administration

To illustrate the simplification provided by SAM consider the following example,
which shows what is involved in adding a user called samt to the group users
without SAM and with SAM.

Without SAM. The following keyboard operations are required to add a user to
the system.

1. Add the new user t0 the group users by editing the file /etc/group. After the edit
we have:

users::20:john,harry,sue,klv,samt

2. Add samt to the /etc/passwd file. First make a backup copy of the file:

cp /etc/passwd /etc/passwd.old

3. Edit the /etc/passwd file to add a line for the the new user The new line for
samt might look like:

samt,..:l 20:300:sam thomas,x2007:/users/samt/bin/ksh

4. Create a home directory for the user:

cd /users (go to users directory)
mkdir samt (create a directory called samt)
chown samtsamt (set ownership)
chgrp users samt (set group ownership)
chmod samt {set permissions for samt)

5. Create a login environment for the new user by copying the default profile file
from /etc to the new users directory:

cp /etc/d.profile /users/samV.profile

With SAM. After selecting the Add... item from the SAM Users and Groups
Actions menu, the administrator fills in a form. lf the default values on the form
are adequate, all the administrator has to do is:

1. Type in a login name and select 0K.

2. Enter a password (f,vice) and again select 0K.

SAM does the rest. This approach avoids enor-prone procedures such as editing
files and typing command strings

Task 0rientation. System administration is task-oriented. A
Wpicd task sequence consists ofselecting an object to oper-
ate on, choosing the action to perform, supplying the neces-
sary task parameters, launching the task, and verifying the
success ofthe task.

Selectorc. Supplying task parameterc can be done with a
small set of user interface elements we call selectors. Exam-
ples of selectors axe a field for text entry a list to choose
from, or an option to toggle.

Procedures. Some tasks consist of multiple, possibly interde-
pendent or sequential steps. While doing the steps, users
want to be able to figure out where they are in the process,
redo or revisit earlier steps, and so on.

The new SAM user interface architecture (Fig. 1) completely
shields developers from the underlying user interface tech-
nolosi. Developers have only one API to learn, which is tai-
lored to their needs. With this axchitecture developers retain
direct control over the items most important to them while
the ObAM conhols the common elements. For example, ele-
ment narnes, object attributes, and messages axe controlled

Graphics Display Character-8ased

Ffu. l. The SAM user interface software architecture.

by the developer, and fonts, window positioning, labeling,
and control button layout are under ObAM control.

Choosing the Underlying Technology
Most user interface tools only support one display tech-
nology. With SAM, however, we wanted to provide an OSF/
Motif graphical user interface while continuing to support a
character-based terminal user interface. After an extensive
evaluation, we selected a third-parby tool called Dialog Man-
ager from ISAt to provide the plafform on which to build our
user interface management system. Dialog Manager provides
multiplatform support (OSF/IVIotif, terminals, Microsoft@
Windows, MPE/iX, Presentation Manager, etc.), 16-bit inter-
nationalization, and run-time binding of the user interface.

ObAM
The m4lor components of the ObAM are shown in Fig. 2.
The description file defines the various screens used by a
particular application and declares the firnctions to use in
callbacks. These functions, which axe associated with items
on the screen via definitions in the description file, perform
operations associated with those items. For example, a
menu item for mounting a disk might eventually result in the
execution of a C function containing a series of HP-IIX sys-
lgm salls to accomplish the task. At run time the description
file is read in and parsed, and a data structure is created
with the appropriate linkages to the developers'callback
functions. The object-list executor is responsible for listing
objects on the screen (see Fig. 3) and facilitating user opera-
tion of the display, and the dialog box builder is responsible
for creating dialog boxes on the screen.

Description FiIe
The description file allows developers to define the type of
objects they are managing, the attributes ofthose objects,
the actions that can be applied to the objects, and the inputs
that are necessary for those actions to proceed. ObAM inter-
prets the contents of the description frle at run time to
create all the SAM screens.

The description file shown below is for a simple file man-
ager application. The ObAM description file language is not
a full-featured progamming language; it contains only defi-
nitions and variables. No sequencing, branching, or looping
constructs are defined in the language.

t Informationssysteme fiir Computerintegrierte Automatisierung GmbH.

June 1993Hewlett-PackardJournal 8l

l ibrary "cal lbacks.sl" /* points to shared l ibrary */

object_list-screen sample {
label "Fi le Manager"
status_item fi_path
label "Directory:"
subarea f i les { /* mult iple subareas may be defined */

labe l "F i les"
entry callback fi_pwd() /*get path for current directory*/

/*define the format and labels to show on the screen */

table {
ini t " /bin/ l l -a 'pwd' l /bin/grep -v

'^total' I awk '{print$l; print $2; print
$l; print $4; print $5; print $6; print $7;
print $8; print $9 l"'

attr f i_perm { label "Permissions" column I }
attr f i_l inks { label "Links" type numeric

justify right)
attr f i_owner { label "Owner" column 2 }
attr f i_group { label "Group" column 3 }
attr f i_size { label "Size (bytes)" column 4

width 12 type numeric justify right)
attr fi_month { label "Month" column 6 width 3}
attr f i_day { label "Day" column 5 type

numeric just i fy r ight)
attr fi_time { label "Time/ \nYear" column 7 }
attr f i_name { key label "Fi le Name" column I }

)
/*Actions associated with the Actions menu item */

User

Cha.acter-
Based

Terminal

Workstation
Graphics
Display

PC Graphics
0isplay

Fig. 2. The main components in
and associated with ObAM.

action fi_remove {
label "Remove"
mnemonic "R" /* Keyboard input selector */

do "rm $(f i_name)"
gray when no selections

)
action fi_cd {

label "Change Directory"
mnemonic "C"
do f i_changedir

]
action f i-cd-immed {

label "Change To"
mnemonic "T"
gray when no or mult iple selections
do fi-cd-to0

l
)

)

/* define dialog box for the change directory action */

task_dialog f i_changedir {
label "Change Working Directory"
/" when the 0K button is selected execute fi_cd-doit () */

ok cal lback f i_cd_doitO
text_edit fi_cd_path {
label "New Directorv:"
width 30 l

)

Fig. 3 shows the object-list screen that ObAM creates for
this application. The List, View, 0ptions, Actions, and Help menu
items axe put on the screen automatically. This is the same
for other standard screen items. Object-list screens provide

list manipulation with the List menu item. The Actions menu
item contains a pull-down menu with actions that can be
performed on the selected object. The View pull-down menu

allows users to customize the list presentation through speci-
fying the attributes (columns) to display, the order to display
the columns, the objects to filter out, and how to sort the
data.

Fig. 4 shows the dialog box defined by the task dialog
fi_changedir in the listing above. When the action item Change
Directory is selected from the Actions pull-down menu, ObAM
accesses the task fi-changedir to determine what to do. Accord-
ing to the definitions in fi changedir, when the user enters the

desired directory in the selector and pushes the 0K button,
the callback function fi-cd-doit is executed. The callback

nhn 1O2L 1 1 Jun A9:44
nhn 1024 22 May I 3: 53

98 1 I Jun 1Ot \2 IDMERR(

m h n 2 4 6 7 2 1 M a y 1 4 : 1 8 b r . u i

n h n 3 2 7 7 l r l a y 1 3 : 4 6 c a l l b a c

r w - r . . r - - n h n 6 9 3 1 M a y 1 5 : 2 3 c a]] b a .

n h n u s e r s 1 2 6 5 1 7 M a y 1 5 : 2 3 c a l l b a c

f r n 4 3 l l J u n O 9 : L L f o n t . r €
- r w - r - - r - n h n u s e r s 4 6 4 7 M a v 1 5 : l

f f in 74 7 Mav 13 :27 nakef i

! ts-r . ' . r -- nhn users 1849 7 May 14:50 ssple! t s - r - r - - n h n u s e r s l u 4 v / n a y 4 :) u s $ p l e
- r w - r - - r - - n h n u s e r s 7 B 7 o 7 M a y 1 5 : 5 1 s i l p l e .

n h n 1 1 9 3 I M a y 1 4 : 2 3 s c o p e

Fig. 3. The SAM screen that appears when the description file asso-
ciated with our simple file manager example is parsed and displayed

82 Jme 1993 Hewlett-Packard Joumal

F i l € s l j n f i l t e r e d
Di rec tory : /users /nhn/u i lD{ /ob4df

I ine /

I 4 o n Y e a r F i l e N a

Fig. 4. The dialog box that appears when the Change Directory action
item is selected from the Actions menu.

function executes the chdir command to change to the new
directory.

For dialog boxes we wanted to lay out selectors (text_edit in
this example) automatically rather than requiring develop-
ers to worry about positioning objects on the screen. As we
designed our dialog-box builder, we realized it was unlikely
that we could do all the layout automatically because too
much semantic lcrowledge of the task is required to make
the appropriate layout decisions. Our solution was to lay out
selectors in the order in which they appear in the descrip-
tion file. In addition, if the developer defines more selectors
than will fit on the screen, we add scroll bars to the screen
automatically. ObAM also provides some simple layout con-
structs that allow specification of columns, skipping lines,
indenting, and grouping. In trading off control for flexibility,
we chose to control only where we had enougfr information
to control appropriately.

Application functionality can be connected to the screens in
trvo ways: callback functions, which can be used to get data
from the screens and perform actions with that data, and a
shell interface, which provides direct access to HP-UX com-
mands from ObAM. Direct calls to commands can include
variables as axguments so that screen data can be used in
command execution. The Remove action in the sample de-
scription file uses this capability to remove one or more
files.

User Interface Library
Within the developer's callbacks, the user interface library
(uilib) functions provide access to the data on the screens
and allow developers to control a limited number of screen
characteristics such as visibility and graying. The code be-
Iow shows the C functions associated (via a shared library)
with the simple file manager example deflned above.

int fi_cd_doit()
{

char buf[1025];

ui_get_data("f i_cd_path",buf);
chdi(buf);
return(0);

) /* fi_cd_doit "/

int fi_cd_to{)
{

char bufl l025l;

ui_get_objeclf ield("f i_name",buf);
c hdir(buf);
return(0);

)/* fi_cd-doit */

int fi_pwd()

t
char buf[1025];

ui_set_status(l,getcwd(buf,1 025));
return(0);

) /* fi*pwd */

Evaluation and Discussion

Since ObAM has been in use for SAM development, our ini-
tial evaluation suggests that we have been successfirl in
achieving our goals.

Developer Learning. Learning the new user interface tools is
an order of magnitude faster and easier than the old tool.
Users have reported learning times of two or three days for
the new system as opposed to two or three weeks for the
old system.

Ptototyping. An entire functional area of SAM can now be
prototyped in a day or two. Because ObAM supports using
HP-UX commands directly as well as C callbacks, a com-
pletely functional prototype can be built without the devel-
oper having to write and compile any C code. Tlrrning an
ObAM prototype into an ObAM product is evolutionary. The
screens can be constructed rapidly, and the functionality to
support the screens can be added incrementally.

Development. Developer satisfaction is much higher with the
new tools. Our old development tools required us to central-
ize screen creation responsibilities. If we had allowed devel-
opers to create their own screens with our old system. we
would have paid a healy price for having everyone learn the
cumbersome screen creation tool we had available, and it
would have been much more difficult to enforce consistency
across all the areas of SAM. Consequently, in the old system,
most of the SAM screens were created by one engineer. Re-
quests for new screens or changes had to be funneled
through that one person, even ifthe need was as trivial as
changing the name of a callback or lengthening a field. In
contrast, ObAM puts developers in control ofthe parts of
the interface that are most important to them and reduces
time-consuming dependencies between engineers.

Gonsistency. Our consistency issues can be divided into two
categories: semantic and syntactic. Semantic consistency is
achieved by mapping different sets of functionality onto
ObAM capabilities using the same set of mles. This mapping
has to be done by hand because ObAM is not intelligent
enough to determine the attributes of a printer object, or to
figure out what steps are needed to add a disk. We have pro-
duced a SAM user interface style guide to help developers
with these decisions. Syntactic consistency is achieved by
ensuring that similar user interface elements look and feel
similar. ObAM has made our syntactic consistency effort
much easier. ObAM code lcrows, for example, that a push-
button label should be followed by "..." if pressing it leads to
another screen; the developer doesn't have to think about
this decision.

An unstated goal of our ObAM work was to create some-
thing that would be useful beyond SAM. SAM itself is not so
much a single application as it is a collection of related ap-
plications such as a file system manager, a user accounts
manager, a cluster configuration tool, and so on. We know
that other projects have similar needs for rapid development
ofconsistent user interfaces. Over the years, the SAM team

June 1993 Hewlett-Packad Joumal 83

has received many inquiries about how to create SAM-like
user interfaces. This interest suggests that we have achieved
an application-category user interface management system,
not just a SAM-specific user interface management system.

Areas for Improvement
ObAM is still in its early stages, but we have already found
areas for improvements and new features. Some of these
axeas include:

. More factoring is needed. Some messaging and error han-
dling is repetitive enough that we could support it in the
description-file, firrther reducing the amount of application
developer code.

. Performance could be improved by precompiling screen
descriptions. Our current architecture requires two separate
parsing cycles for task dialog descriptions.

o Better error messages would aid learning and prototyping.
Currently, ObAM identifies the point of failure when parsing
a description file, but it could provide more helpful error
messages.

Conclusion
Our success in creating an application-specific user inter-
face management system suggests that other types of inter-
active applications could speed development and improve

user interface consistency if an appropriate system existed
that was tuned to the requirements of each type of applica-
tion. Application-specific user interface management systems
are likely to be beneficial when the target user interface has
the following characteristics:

. Large size (many screens)

. Factorability (many similarities between interactions)

. Multiplatform (more than one user interface display
technology must be supported)

. Developers do not have to be user interface designers.

Acknowledgments
ObAM was a team effort. Significant R&D contributions
came from Mike Conca, Tammy Heiserman, Mike Kingdom,
and Scott "Warren, with Paula Curtis and Dan Castle provid-
ing human factors input. Management support came from
Aland Adams the SAM project manager.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX" operating system.
It als0 compl ies with X/0pen's" XPG3, POS lX 1 003.1 a nd SVI D2 interface specifications.

[JNIX is a registered trademark of IJNIX System Laboratories Inc. in the U.S.A. and other countries.

X/0pen is a trademark of X/0pen C0mpany Limited in the UK and other countries.

Microsoft is a U.S. reglstered trademark of Microsoft Corp.

CHANGE OF ADDRESS:
5091 -7203E

Bulk Rate
U.S. Postage

Paid
Permit No. 3913

Portland, 0R

:+P i4

L'! i

'? lJ 0ali5 -L 3i3

To subscribe, change your address, or delete y0ur name from our maillng list, send your request t0 Hewlett'Packard Journal.
P0. Box 51 827, Palo Alto, CA 94303-0724 U.S.A. Include your old address label. if any. Allow 60 days.

Hewlett-Packard Company, P.0. Box 51827
Palo Alto, CA 94303-0724

ADDRESS COBBECTION REOUESTED

, 5 s : 6 3 J J , t r i S i l ?
) T I L L I 4 A i T

. l " l . l ' r r i i ;LL ,1 . ! , ' l: i i i 'o?. ,11 - 2 ' ' r r r i
$: L L j : v L t : t l q r d

HP Archive

This vintage Hewlett-Packard document was
preserved and distributed by

www.hparchive.com

Please visit us on the web!

On-line curator: John Miles, KE5FX

jmiles@pop.net

 for his contribution of this material.
The HP Archive thanks Dennis Tillman

