HEWLETT-PACKARD JOURNAL

Advanced Digital Signal Analyzer Probes Low-Frequency Signals with Ease and Precision

Abstract

Significant new features include absolute internal calibration in the user's choice of engineering units, digital band selectable or 'zoom' analysis, fully annotated dual-trace CRT display with X and Y axis cursors, digital storage of data and measurement setups on a tape cartridge, and a random noise source to provide test stimulus.

by Richard H. Grote and H. Webber McKinney

DIGITAL SIGNAL ANALYSIS has become a widely used technique for the analysis of mechanical structures, noise, vibration, control systems, electronic networks, and many other devices and physical phenomena.
In the past, digital signal processing equipment has been expensive, difficult to move, and has required an operator that understands digital signal analysis as well as the problem to be solved. While there is a definite need for such sophisticated laboratory equipment, there is also a need for instrumentation that is less expensive, easier to use, and more portable.

Such an instrument is the new Model 5420A Digital Signal Analyzer (Fig. 1). The 5420A is a two-channel instrument that analyzes signals in the dc-to- $25-\mathrm{kHz}$ frequency range. The new analyzer has a two-tone dynamic range of 75 dB and amplitude flatness of 0.1 dB . Band selectable (zoom) analysis provides $0.004-\mathrm{Hz}$ frequency resolution anywhere in the measurement band. The 5420A makes many powerful time domain and frequency domain measurements, including transient capture and time averaging, auto and cross correlation, histogram, linear spectrum, auto and cross spectrum, transfer function, coherence function, and impulse response. All measurements are continuously calibrated, and can be easily recalibrated in the operator's engineering units. Built-in random noise stimulus and a digital tape cartridge for storing data records and instrument set-ups make the 5420A a complete measuring system. Measurement results are displayed on a fully annotated, dual-trace, high-resolution CRT, and can be output directly to an optional X-Y recorder or digital plotter. The display provides three graphic formats and 14 choices of coordinates. The display scale can

Cover: In a dramatic demonstration of its versatility, HP engineers used a Model 5420A Digital Signal Analyzer to determine the response and vibrational characteristics of a compound bow of the type used by tournament archers. Accelerometers mounted on the bow provided the input signals to the analyzer. (Bow provided by Jennings Compound Bow,Inc.)
In this Issue:Advanced Digital Signal AnalyzerProbes Low-Frequency Signals withEase and Precision, by Richard H.Grote and H. Webber McKinneypage 2
Front End Design for Digital SignalAnalysis, by Jean-Pierre Patkay, FrankR.F. Chu, and Hans A.M. Wiggers . .page 9
Display and Storage Systems for aDigital Signal Analyzer, by Walter M.Edgerley, Jr. and David C. Snyder . .page 14
Digital Signal Analyzer Applications,by Terry L. Donahue and Joseph P.Oliveriopage 17Printing Financial Calculator Sets NewStandards for Accuracy and Capability,Roy E. Martinpage 22

Fig. 1. Model 5420A Digital Signal Analyzer is a dual-channel instrument that analyzes signals in the dc-to-25-kHz frequency range. It makes many powerful time and frequency domain measurements, including spectrum, transfer function, and impulse response. Results are displayed on a fully annotated dual-trace CRT in any of three graphic formats and 14 choices of coordinates.
be set either by the operator or automatically to maximize the use of the display surface.

Measurements

The new digital signal analyzer makes an extensive set of time domain and frequency domain measurements. Here is a description of each measurement and an example of where the measurement is useful.
Time Record Average. This measurement is used to average time records, or to capture transient time records. The Fourier transform (linear spectrum) of the time waveform is also provided. Time averaging is used primarily for improving the signal-to-noise ratio of time functions. A synchronous time signal is required to trigger the time average.
Autocorrelation. The primary application for the autocorrelation function is also pulling signals out of noise. However, the autocorrelation function does not require time synchronization. The disadvantage of autocorrelation is that the autocorrelation function of complex signals is difficult to interpret. As a result, this technique is mainly used for sinusoids, which are preserved under autocorrelation.
Crosscorrelation. The crosscorrelation function is mathematically similar to the autocorrelation function. However, crosscorrelation is used to determine the relationship between two signals. A major application of crosscorrelation is the determination of relative delays between two signals.
Histogram. The histogram provides an estimate of the probability density function of the incoming time
waveform. The histogram can provide the operator with an indication of the statistical properties of a signal.
Linear Spectrum. The linear spectrum is the frequency domain equivalent of the time record average. The result of this measurement is a display of rms amplitude versus frequency. The linear spectrum requires time synchronization for averaging, and contains both magnitude and phase information.
Power or Auto Spectrum. This is the measurement performed by a traditional spectrum analyzer, that is, power as a function of frequency. The auto spectrum is calibrated in units of mean square for sinusoidal signals, power spectral density for random signals, or energy density for transient signals. The auto spectrum is used for characterizing signals in the frequency domain.
Cross Spectrum. The cross spectrum is the frequency domain equivalent of the crosscorrelation function. The cross spectrum produces a display of relative power versus frequency. The cross spectrum can be used to determine mutual power and phase angle as a function of frequency.
Transfer Function. The transfer function measurement characterizes a linear system in terms of gain and phase versus frequency. When the operator selects this measurement, the following measurements are also provided.
Coherence ($\boldsymbol{\gamma}^{\mathbf{2}}$). This function is related to the signal-to-noise ratio ($\mathrm{S} / \mathrm{N}=\gamma^{2} /\left(1-\gamma^{2}\right)$). It indicates the degree of causality between the output and the input

Fig. 2. Band selectable analysis (BSA) makes it possible to zoom in on a narrow frequency band and examine the detailed structure of measured data with resolution as fine as 0.004 Hz . Here the baseband measurement (a) shows a resonance at about 5 kHz . The $0.4-\mathrm{Hz}$ resolution of the BSA measurement (b) reveals that there are actually two resonances there.
as a function of frequency. A coherence of 1 indicates perfect causality.
Input and Output Auto Spectrum. See above.
Impulse Response. The time domain equivalent of the transfer function. The impulse response shows the time response of the system to an impulsive input.

Band Selectable Analysis (BSA)

Band selectable (zoom) analysis concentrates the full resolution of the analyzer in a narrow frequency band of the user's choice. This narrow band can be placed any where in the $25-\mathrm{kHz}$ bandwidth. Its width is selectable and may be less than 1 Hz . BSA can provide better than $4-\mathrm{mHz}$ resolution, and measurements below 250 Hz can be made with a resolution better than $40 \mu \mathrm{~Hz}$. This resolution is obtained using purely digital techniques with no sacrifice in accuracy or dynamic range. An example of the power of

BSA is shown in Fig. 2. The $25-\mathrm{Hz}$ resolution of the baseband measurement of Fig. 2a indicates the presence of a single resonance centered at 5 kHz . The $0.4-\mathrm{Hz}$-resolution BSA measurement of Fig. 2b clearly shows two resonances in the vicinity of 5 kHz .

Advanced Triggering Capability

The 5420A offers the operator a wide choice of triggering capabilities, including free run, internal triggering on either channel, external triggering ac or dc coupled, and remote start.

When the analyzer is free running, it acquires and processes input data as fast as it can. For measurement bandwidths below the instrument's real-time bandwidth, this results in overlapped processing of input data. In this case, processing periods overlap input data records, and the analyzer processes the latest available data. Overlapped processing increases the variance reduction per unit time.

All triggering modes allow the operator to condition triggering by entering a per-channel pre-trigger or post-trigger delay. Pre-trigger delays up to the time record length and post-trigger delays up to 40 seconds can be accommodated. Post-trigger delays are necessary when there are inherent delays in the measurement process, such as in measuring the transfer characteristics of an auditorium. Pre-trigger delay is of particular importance when triggering on impulsive signals that have all their energy focused in a very short time interval; without pre-trigger delay it is very difficult to capture the leading edge of the signal's energy.

Easy to Use

An important design objective for the 5420A Digital Signal Analyzer was that it be easy to use, both for the novice and for the experienced operator. Frontpanel design for such a powerful, flexible instrument poses particular problems. These were solved in part by using the CRT display to extend and simplify the front panel (Fig. 3). The display presents measurement parameters and status information. Instead of having to inspect all of the front-panel controls to determine how the instrument is set up, the operator simply pushes the view key and the setup is displayed on the CRT. The CRT is also used to display menus of choices from which the user makes selections of measurements, averaging, input signals, and triggering.

Display Features

Once a measurement has been specified, it is initiated by pushing the start button. As soon as the first time record has been digitized and processed, fully calibrated measurement results appear on the display. If stable averaging was chosen, the measure-

Fig. 3. CRT display extends the front panel, helping to make the new analyzer easy to use for both the novice and the experienced operator. For example, pushing the VIEW key causes the instrument's status to be displayed. Other keys display lists of choices from which the user can select measurement parameters.
ment continues until the specified number of averages has been done. If one of the other averaging types - exponential, peak channel hold, or peak level hold-was selected, the instrument continues processing data and displaying calibrated results indefinitely until the operator manually stops the measurement by pushing the PAUSE/CONT button. Pushing this button a second time resumes the measurement by averaging new data into the previous result.

Measurement results can be viewed in any of several display formats. Fig. 2a shows the most basic FULL format. The instrument automatically scales and calibrates the X and Y axes, generates an internal graticule, and labels both axes. The type of measurement result-transfer function in this case-is indicated in the upper left corner of the display and the number of averages used to make the measurement is indicated in the upper right corner. In the lower left corner is an "echo field" that tells the user the last sequence of front-panel buttons pushed, and in the lower right corner are error messages, such as ADC overflow.

Two measurement results can be viewed simultaneously, either UPPER/LOWER (Fig. 1), or one superimposed on the other, FRONT/BACK (Fig. 2b). The results are fully annotated and calibrated, and either trace can be modified independently of the other. These formats are of considerable benefit for such purposes as viewing two parameters of a measurement simultaneously (e.g., magnitude and phase of a transfer function), or comparing a result with that of a previous measurement.

Results can be displayed in the following coordinate systems: magnitude of the function, phase, log magnitude, \log of the horizontal axis (when log
magnitude versus log frequency is selected, the result is the classical Bode plot), real part of the function, imaginary part, real part plotted versus imaginary (Nyquist plot), and log magnitude versus phase (Nichols plot, useful in control theory applications). In dual display modes, the coordinates of the two traces can be chosen independently.

Cursor Capability

A major user convenience of the 5420A is its powerful cursor capability. The instrument can display two independent cursors in each axis. The positions of the cursors are indicated at the top of the display. At the intersection of the X cursor and the waveform is an intensified point, and the value of that point on the waveform is indicated on the display along with the cursor position. Hence one application of the cursor is to indentify numerical values associated with a measurement. For example, an X axis cursor can be used to identify the amplitude at a particular frequency, or the two Y axis cursors can be used to identify what frequency components are, say, 50 dB below a peak level.

Although the cursors are primarily means of identifying specific values of a measurement result, they can be used in other ways to enhance the power and the convenience of the instrument. In conjunction with the control and setup keys, the cursors can be used to define the center frequency and bandwidth of a new measurement.

In conjunction with the display operator keys, the cursors have other uses. If an X cursor is moved to coincide with a resonance of a transfer function, the frequency and the percent critical damping of that resonance can be determined by pushing the PEAK key.

The Module I/O Bus (MIOB)

The module input/output bus (MIOB) is the interconnect scheme for all of the modules of the 5420A Digital Signal Analyzer (cartridge, display, filters, ADC, etc.). It consists of 16 bidirectional data lines, one handshake pair for sending commands from computer to module, and one handshake pair for everything else (status flow from module to computer and data transfers). The computer can use the bus at any time to send commands to a module. The modules must accept commands at any time. However, they may send status or send or receive data only when they "own" the bus.

To maintain high speed at the system level and controllable response time, it is necessary to reduce the hardware and software overhead required for bus access. On the hardware side, this is accomplished by using burst mode transfers from 64-word FIFO memories. On the software side, all I/O is performed using two special microcoded opcodes, XCW and XIO. The computer does not use the conventional direct memory access (DMA) hardware. DMA would be useful only during the burst portion of the data transfer. It has no facilities to control response time between bursts or to perform the buffer blocking and I/O chaining required. The microcode facility of the 21 MX K-Series Computer provides far greater performance.

A time log of activity on the bus during normal system operation might look like this:

- Display sends a code word (CW) then inputs 64 words
- ADC sends CW then outputs 32 words
- Display sends CW then inputs 64 words
- Display sends CW then inputs 26 words
- Computer sends \$60HZSYNC (interrupt on power line sync) to display
- Keyboard sends CW
- ADC sends CW then outputs 32 words

Transactions are either commands from the computer to a module or burst mode transfers initiated by a module and always beginning with a code word containing the device's name and status. This structure causes the computer to be in-terrupt-driven, that is, most bus transactions are initiated by a device. Normally, real-time software associated with so many devices is very complex, but again, the ability of microcode to provide just the right elementary operations keeps complexity to a minimum.

Each module (display, ADC, etc.) is controlled by a separate software module called a device control process (DCP). Each DCP appears to own the entire computer all of the time and is unaware of interrupts. Hence the DCPs can be programmed using simple in-line structures instead of complex, shared-computer, save/restore registers-interactive structures characteristic of most interrupt-driven systems. The mechanisms for this simplification are the two MIOB I/O opcodes: XCW and XIO. When an MIOB interrupt (XCW) occurs, a microcoded interrupt processor automatically saves registers, reads the code word (CW) on the bus, and branches through a table to the
appropriate DCP. When it is ready to relinquish control, that DCP performs another XCW opcode, causing the interrupt branch table to be updated, registers restored, and the highlevel processing resumed. This entire procedure costs the DCP only 20μ s per XCW, or 20μ s per interrupt.

The other special I/O opcode, XIO, is a pseudo-DMA with many embellishments. An inescapable issue whenever hardware and software meet is the mapping of data structures. The hardware designer provides a 128-word sector, an 80-word FIFO memory, or a 2 K -word refresh buffer, while the software designer needs an N-byte text buffer, a 1000-word data buffer, or something else. The XIO opcode directly addresses this problem. The XIO opcode's operand is a chain of fourword control blocks that define the desired I/O transfer -for example, "output three commands, then input 50 words, then output two commands." The control blocks tell where to get the commands or data by pointing to the buffer structure, which may include fixed buffers, variable buffers (e.g., the next 50 words in a 1000-word buffer), buffers requiring blocking or unblocking (a composite buffer having many physical pieces, some perhaps deactivated), circular buffers, double buffers, or some other type. This opcode transforms what is usually implemented in dynamic real-time consuming software into static definitions of data structure. For example, the display DCP that produces the calibrated data display provides the display hardware with 64-word data bursts followed by two-word command bursts. It extracts these from seven buffers containing ASCII code, cursors, graticules, annotation, and so on. Each sub-buffer is separate, variable in length, and in its own natural format. Yet the DCP is only 15 lines of code instead of the many hundreds of lines of time-critical code normally required. Furthermore, the average data transfer bandwidth is higher than could have been obtained with DMA. It exceeds 200 kHz at system level, including amortization of all overhead (code words, invisible interrupts, other devices, interrupt latency, etc.) Conventional approaches would probably yield system level average transfer bandwidth much less than 10 kHz because of this overhead, plus that associated with sharing DMA between I/O channels and sharing I/O channels between devices, and because of the software required to convert buffer formats into DMA's linear sequential forms. There is also the general program complexity that seems to be always associated with interrupt subroutines.
A time-sequenced record of all MIOB transactions is automatically maintained by the extended I/O instructions. This trace-file capability is very useful in tracking down any I/O-related problems. Another feature, backgrounding, allows DCPs to create other software processes that run at the same time as the DCP. This allows a DCP to do time-consuming operations (e.g., scan a large buffer) without tying up the MIOB at all.
-David C. Snyder

Critical damping is a measure of the sharpness of the resonance and is equal to $1 / 2 \mathrm{Q}$, where Q is the quality factor familiar to electrical engineers. Finally, the cursor can be used to identify the harmonics of a particular spectral component. Pushing the HARMONic button causes the harmonics of the frequency component, identified by an X cursor, to be intensified on the CRT.

Display Operators

Powerful post-processing capabilities allow the user to manipulate measurement results. It is possible to add, subtract, multiply, or divide a measurement by another measurement or by a complex constant. These operators could be used, for example, to calculate the percent difference between two measurements. Using another post-processing operation, the

Fig. 4. Block diagram of Model 5420A Digital Signal Analyzer. The three principal sections - central processor, analog input section, and display-are connected by a common bus. The input section consists of a dual-channel analog-to-digital converter and digital filter. An HP 21 MX K-Series Computer serves as the central processor.
user can multiply or divide a frequency domain result by $\mathrm{j} \omega$, which has the effect of differentiating or integrating that measurement in the time domain. These operations are useful for converting acceleration spectrums to displacement spectrums, charge to current, and so forth. The POWER key allows the operator to calculate the total power in the display, the power at a specific line or in a band defined by the cursors, or the power in the harmonics of a particular frequency when the harmonic cursor mode is enabled. The power key turns the instrument into a frequency selective power meter.

Analyzer Organization

A block diagram of the 5420A Digital Signal Analyzer is shown in Fig. 4. The three principal elements are the central processor, the analog input section, and the display/cartridge interface section. These three functional sections are connected by a bus known as the module input/output bus (MIOB), a 50 -conductor ribbon cable on the backplane of the 5420A (see box, page 6). The MIOB conveys all control and data between the processor and the input section and between the processor and the display section by means of a 16 -wire parallel bus and eight control signals. By having all system I/O pass through one port of the processor, and by using only one cable,
module interconnections were greatly simplified while maintaining high data transfer rates.

The processor is the central controller and data manipulator of the 5420A. The processor is a microprogrammed HP 21MX K-Series Computer with 48 K words of MOS random-access memory (RAM) and 3 K words of read-only memory (ROM). The ROM is used for microprogram storage. An arithmetic booster board significantly increases the computational power of the instrument. This 90-IC board bolts onto the bottom of the computer's CPU board. The MIOB interface connects the processor to the other sections of the instrument, while an HP-IB option interfaces the 5420A to the Hewlett-Packard interface bus (IEEE Standard 488-1975).

The input section consists of a dual-channel ana-log-to-digital converter (ADC) and digital filter. Each input channel has a floating differential input (to eliminate ground loops present in many measurement environments), anti-aliasing filters to remove unwanted spectral components above one-fourth the sampling rate, and a 12 -bit successive approximation analog-to-digital converter. The input channel also has an analog trigger capable of triggering on an external signal or either of the analog inputs, and a noise generator for producing stimulus signals. The noise bandwidth is automatically adjusted to be as close as
possible to the bandwidth of the measurement being made. The digital filter, which is the key to the great frequency resolution capability of the instrument, translates the frequency components of the sampled data and then digitally filters the result with one of 16 filter bandwidths.

The third section is the display and cartridge unit. The instrument has two cartridges, both interfaced through the same drive electronics. The front-panel cartridge is used for measurement results and setup state storage. Up to 120 measurement results and 50
setup states can be stored on this cartridge. The internal cartridge is used to "boot-up" the instrument at initial power turn-on. This boot-up operation is necessary because the RAM memory in the processor is volatile, so its contents need to be loaded when power is first applied.

The display is the high-resolution HP 1332A CRT with full vector and character generation circuits. An external CRT and an analog plotter can be driven directly from the connections on the rear of the display section.

Details of the operation of these sections are described in the articles that follow.

Acknowledgments

Pete Roth originally conceived the idea for the product. Bob Puette provided support. Bob Reynolds, Al Low, and Gary Schultheis did the product design. Al Langguth designed the digitizer. Norm Rogers designed the arithmetic booster board, did micropro-
gramming, and provided general signal processing expertise. Ralph Smith, Dave Conklin, Tom Robins, Mary Foster, and Chuck Herschkowitz developed the software. John Curlett helped with the digital filter and the front panel. Dennis Kwan and Walt Noble provided support in production. Thanks also to Bob Perdriau and Ken Ramsey for their marketing efforts, to Hal Netten, John Buck, and Richard Buchanan for manuals and service policy, and to Ken Jochim and Skip Ross for many suggestions and management talent. 空

Front-End Design for Digital Signal Analysis

by Jean-Pierre D. Patkay, Frank R.F. Chu, and Hans A.M. Wiggers

THE INPUT CHANNELS of the new 5420A Digital Signal Analyzer perform the dual function of data acquisition and preprocessing. Preprocessing minimizes data storage and computational demands on the central processor while providing the user with increased measurement capability.

Some signal analyzers using the Fourier transform are limited to baseband measurements, that is, the measurement band extends from dc to a maximum frequency. If increased resolution is desired, more samples must be taken, requiring more data storage and processing time. In the 5420A front end is a hardware implementation of band-selectable analysis (BSA), a measurement technique that makes it possible to perform spectral analysis over a frequency band whose upper and lower limits are independently selectable. ${ }^{1}$ Increased resolution can be obtained by narrowing the measurement bandwidth, without increasing the data block size. BSA is realized by digitally filtering the sampled input signal to remove all data corresponding to frequencies outside the desired band.

A functional diagram of the 5420A front end is included in Fig. 4 on page 7. The hardware is divided into two plug-in modules that share a common power supply. Two analog input channels are contained in the 54410A Analog-to-Digital Converter Module. All digital filtering operations are contained in the 54470B Digital Filter Module. In combination, the two modules provide a dynamic range of 75 dB over seven input ranges from 100 mV full-scale to 10 V full-scale.

A noise generator in the ADC module provides a stimulus signal for transfer function measurement. The noise generator, a combination of an analog noise source and a digital filter, generates a flat energy
spectrum from dc to the maximum frequency of the measurement. The noise bandwidth tracks the selected measurement bandwidth.

The analog trigger input in the ADC module has a pseudo-logarithmic potentiometer to provide maximum trigger-level sensitivity around zero volts. Software features allow the user to advance or delay the measurement time window with respect to the trigger; this can be done independently for each channel.*

Analog Inputs

Each analog input channel has a buffered input, an anti-aliasing filter, and a 12 -bit successive approximation analog-to-digital-converter (ADC). The maximum measurement frequency is determined by the sampling frequency, which is the conversion rate of the ADC, and by the anti-aliasing filter. According to the Nyquist sampling theorem, the maximum measurement frequency cannot exceed half the sampling frequency or measurement errors will occur. The anti-aliasing filters insure that there are no higher-frequency components that can fold down or alias into the measurement band as a result of the sampling process. Since they do not have an infinitely sharp cutoff, they further limit the maximum measurement frequency. In the 5420A the maximum sample rate is 102.4 kHz and the maximum measurement frequency is specified as 25.6 kHz .

Without BSA the input channel would be sampled at the lowest possible frequency that would still include the measurement band of interest. This gives maximum resolution for a fixed data block size, but requires a large number of available sample rates and

[^0]

Fig. 1. The analog anti-aliasing filters in the 5420A use the FDNR (frequency dependent negative resistance) active filter approach. Any general passive LCR network can be transformed into network of resistors, capacitors, and FDNR elements that has the same voltage transfer function. Here circuit (a) has been transformed into circuit (b). D_{1} is the FDNR element. Resistors RC1 and RC2 have been added to (b) to define the dc behavior.
either a large number of fixed filters or tracking filters, both of which are costly.

The digital filter allows us to avoid this expense. The ADC runs at only two sample rates, 102.4 kHz and 1.024 kHz , so only two anti-aliasing filter ranges are required. Higher measurement resolution in intermediate bands is obtained by means of the digital filter.

Anti-Aliasing Filters-the FDNR Approach

The two anti-aliasing filter ranges in each input channel are 30 kHz and 300 Hz . In this low frequency range, the only feasible low-pass filter type is an active filter.

The active anti-aliasing filters in the 5420A use the FDNR (frequency dependent negative resistance) approach developed by Dr. L. Bruton. ${ }^{2}$ Basically, any general passive LCR network can be transformed into a topologically similar network that contains resistors, capacitors, and FDNR elements. The new network has the same voltage transfer function as the original LCR network. To illustrate, consider the passive LCR network shown in Fig. 1a. Let $\mathrm{V}_{\text {out }} / V_{\text {in }}$ $=\mathrm{N}(\mathrm{s}) / \mathrm{D}(\mathrm{s})$.
Now let us make an impedance transformation, multiplying each component by $1 / \mathrm{s}$. The transformed network is as shown in Fig. 1b. For this circuit,

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{N(s) / s}{D(s) / s}=\frac{N(s)}{D(s)}
$$

$D_{1}=1 / C_{1} s^{2}$ is the FDNR element. Resistors RC1 and RC 2 are added to define the dc behavior.

The FDNR element D_{1} can be realized by the circuit shown in Fig. 2. $\mathrm{Z}_{\text {in }}$ is a frequency dependent negative resistance.
For the $30-\mathrm{kHz}$ FDNR filter used in the 5420A, the design objectives dictated a seventh-order elliptical filter with passband ripple of 0.01 dB and rejection band attenuation of 90 dB . The corresponding normalized low-pass filter is illustrated in Fig. $3 .{ }^{3}$
Now, for $\mathrm{f}_{\mathrm{c}}=30 \mathrm{kHz}$ and $\mathrm{C}=2000 \mathrm{pF}, \mathrm{R}=1 / \omega \mathrm{C}$ $=2.65 \mathrm{k} \Omega$. Multiplying each normalized component value by 2650 results in the FDNR filter shown in Fig. 4. This circuit has greater than 80 dB of stop-band attenuation for frequencies above 60 kHz . The passband characteristics of any two filters are matched within $\pm 0.1 \mathrm{~dB}$ and phase shifts are matched within $\pm 2^{\circ}$ throughout the entire 5420A operating temperature range of $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The circuit components consist of high-bandwidth operational amplifiers, 1% mica dipped capacitors, and 1% metal film resistors.

Digital Filter

The digital filter can operate in two modes, a baseband mode and a passband mode. In the baseband case the band to be analyzed is between dc and some maximum frequency $\mathrm{f}_{1} \leqslant 25.6 \mathrm{kHz}$,

Fig. 2. A realization of a frequency dependent negative resistance.

Fig. 3. Normalized low-pass filter having the characteristics required for the 5420A's anti-aliasing filters.
as shown in Fig. 5a. The filter is switched into the baseband mode and set to the narrowest bandwidth that includes f_{1}. The available bandwidths are given by

$$
\begin{array}{ll}
\mathrm{BW}=2^{-\mathrm{k}} * \mathrm{f}_{\mathrm{s}} \quad & 2 \leqslant \mathrm{k} \leqslant 17 \\
& \mathrm{f}_{\mathrm{s}}=104.2 \mathrm{kHz} \text { or } 1.042 \mathrm{kHz}
\end{array}
$$

This gives a total of 32 bandwidth choices.
In a more general case the user wants to analyze a band between two arbitrary frequencies f_{1} and f_{2}, as shown in Fig. 5b. In this case the analyzer first calculates a center frequency $f_{0}=1 / 2\left(f_{2}-f_{1}\right)$, and by using the digital equivalent of a coquad mixer, shifts the entire frequency spectrum to the left by an amount f_{0}. This centers the desired analysis band at dc. Second, a low-pass filtering operation is used to obtain the desired bandwidth. However, there is a significant difference here from the baseband measurement. In Fig. 5a, only the positive frequency domain is shown. This is appropriate because the digital sig-
nal stream coming from the ADC represents a real signal and therefore has the property that positive and negative components are the same. ${ }^{4}$ In the bandpass measurement, the positive and negative frequency bands are not the same, since the negative part contains the information from f_{1} to f_{0} and the positive part contains the information from f_{0} to f_{2}. As a consequence, the samples describing the shifted spectrum are complex numbers instead of real ones.

This can also be seen mathematically. The effect of shifting by f_{0} in the frequency domain is the same as convolving the signal with the spectral component $e^{-j \omega_{0} n}$. This corresponds to multiplication of the time-domain ADC signal $x(n \Delta t)$ by $e^{-j \omega_{0} t}=\cos \omega_{0} \Delta t-$ $j \sin \omega_{0} \Delta t$, and so the shifted signal is $x(n \Delta t)\left(\cos \omega_{0} n \Delta t\right.$ $\left.-j \sin \omega_{0} n \Delta t\right)$. Thus for every sample $x(n \Delta t)$ that goes into the frequency shifter, two components come out, a real part $\mathrm{x}(\mathrm{n} \Delta \mathrm{t}) \cos \omega_{0} \mathrm{n} \Delta \mathrm{t}$ and an imaginary part $-j x(n \Delta t) \sin \omega_{0} n \Delta t$. The low-pass filter operation then has to be performed on these complex points. Fortunately, digital filtering operations are distributive, that is, filtering a complex signal is the same as filtering the real and imaginary parts separately. The frequency shift and filter operation is shown schematically in Fig. 6.

Frequency Shifter

To generate the values of $\sin \omega_{0} n \Delta t$ and $\cos \omega_{0} n \Delta t$ for the frequency shift operation, 1024 samples of a half-sine wave are stored in a read-only memory. The ROM address register is incremented at the sample frequency rate by an amount corresponding to ω_{0}. This register contains 16 bits. The two most significant bits are decoded to determine which quadrant of

Fig. 4. The active FDNR filter derived from the normalized filter of Fig. 3.

Fig. 5. Digital band selector in the 5420A Digital Signal Analyzer operates in either baseband mode or passband mode. The user has a choice of 32 bandwidths (BW). Sampling frequency f_{s} is either 104.2 or 1.042 kHz .
the sine wave the sample is in. For the first quadrant the sample stored in ROM is output. For the second quadrant the ROM address is inverted to get the correct value. For the third quadrant the value stored in ROM is used, but the output is inverted (this is done in the multiplier). For the fourth quadrant both the ROM address and the output value are inverted. To obtain the cosine samples a similar process is used.

The ADC sample and the $\cos \omega_{0} t$ sample are multiplied in a hardware 12 -bit $\times 12$-bit multiplier. The actual multiply takes 1.2 microseconds. A new sample can be handled every $2.4 \mu \mathrm{~s}$, corresponding to a maximum sample rate of about 400 kHz for one channel. Since the 5420A has two channels, the maximum sample rate is 200 kHz . The actual sample rate is 102,400 samples per second, and the output of the multiplier consists of 409,600 samples per second. The digital filter has to be fast enough to handle this

Fig. 6. Band selectable analysis is implemented by a frequency shift and digital filtering operation.

Fig. 7. A simple first-order digital filter can be implemented with one adder, one shift register, and one multiplier
many samples without losing any.

Digital Filter

The digital filter is based on a linear difference system. Input samples coming from the ADC or the frequency shifter are temporarily stored in holding registers. The input samples are then combined with previous sample values to give an output value. In the simplest case (Fig. 7) the output would be $\mathrm{y}(\mathrm{nt})=$ $\mathrm{x}(\mathrm{nT})+\mathrm{ax}((\mathrm{n}-1) \mathrm{T})$, which could be implemented with one adder, one shift register, and one multiplier.

Analysis of the circuit of Fig. 7 is most easily done in the frequency domain using the Fourier transform. If the Fourier transform of $\mathrm{x}(\mathrm{nT})$ is $\mathrm{X}(\mathrm{j} \omega)$ then it can be shown that the Fourier transform of the delayed time series $x((n-1) T)$ is $e^{-j \omega T} X(j \omega)$. Thus

$$
\mathrm{Y}(\mathrm{j} \omega)=\mathrm{X}(\mathrm{j} \omega)+\mathrm{ae}^{-\mathrm{j} \omega \mathrm{~T}} \mathrm{X}(\mathrm{j} \omega) .
$$

The transfer function of the circuit of Fig. 7 is

$$
\mathrm{H}(\mathrm{j} \omega)=\frac{\mathrm{Y}(\mathrm{j} \omega)}{\mathrm{X}(\mathrm{j} \omega)}=1+\mathrm{ae}^{-\mathrm{j} \omega \mathrm{~T}}
$$

or, using Euler's expression for $\mathrm{e}^{-\mathrm{j} \omega \mathrm{T}}$,

$$
\mathrm{H}(\mathrm{j} \omega)=1+\operatorname{acos} \omega \mathrm{T}-\mathrm{jasin} \omega \mathrm{~T} .
$$

Similar equations can be worked out for secondorder difference equations. In particular, it is possible to take the delayed samples and add them to the input

Fig. 8. A second-order digital filter section.
as well as to the output (see Fig. 8). The difference equations are
$\left.\mathrm{y}_{0}(\mathrm{nT})=\mathrm{x}(\mathrm{nT})+\mathrm{K}_{1} \mathrm{y}_{0}((\mathrm{n}-1) \mathrm{T})+\mathrm{K}_{2} \mathrm{y}_{0}(\mathrm{n}-2) \mathrm{T}\right)$
$\mathrm{y}(\mathrm{nT})=\mathrm{L}_{0} \mathrm{y}_{0}(\mathrm{nT})+\mathrm{L}_{1} \mathrm{y}_{0}((\mathrm{n}-1) \mathrm{T})+\mathrm{L}_{2} \mathrm{y}_{0}((\mathrm{n}-2) \mathrm{T})$
The transfer function is

$$
H(j \omega)=\frac{Y(j \omega)}{X(j \omega)}=\frac{L+L e^{-j \omega T}+L e^{-2 j \omega T}}{1-K_{1} e^{-j \omega T}-K_{2} e^{-2 j \omega T}}
$$

or
$H(j \omega)=\frac{L_{0}+L_{1} \cos \omega T+L_{2} \cos 2 \omega T-j L_{1} \sin \omega T-j L_{2} \sin 2 \omega T}{1-K_{1} \cos \omega T-K_{2} \cos 2 \omega T+j K_{1} \sin \omega T+j K_{2} \sin 2 \omega T}$
The magnitude of this transfer function is
$|H(j \omega)|^{2}=\frac{\left(L_{0}+L_{1} \cos \omega T+L_{2} \cos 2 \omega T\right)^{2}+\left(L_{1} \sin \omega T-L_{2} \sin 2 \omega T\right)^{2}}{\left(1-K_{1} \cos \omega T-K_{2} \cos 2 \omega T\right)^{2}+\left(K_{1} \sin \omega T+K_{2} \sin 2 \omega T\right)^{2}}$
at dc $(\omega=0)$,

$$
|H(j \omega)|=\frac{L_{0}+L_{1}+L_{2}}{1-K_{1}-K_{2}}
$$

The coefficients $L_{0}, L_{1}, L_{2}, K_{1}$ and K_{2} may be selected to give unity gain at dc as well as the desired passband and rejection band characteristics.

For the 5420 A , to obtain the required 80 -dB out-ofband rejection, it was necessary to implement two of the sections shown in Fig. 8, each having different coefficients. The final overall filter characteristic is shown in Fig. 9.

Resampling

It should be noted that the filter characteristic is dependent on the sample frequency f_{s}. If f_{s} were

Fig. 9. Each 5420A digital filter consists of two second-order sections and has the characteristic shown here.
twice as low, the filter passband would be twice as narrow. Also, the frequency content of the filtered signal is roughly half the content of the pre-filter signal. According to the Nyquist sampling theorem, the filter output can be resampled at half the original rate without losing information. The new sample frequency is $f_{s}^{\prime}=1 / 2 f_{s}$.

If this resampled signal is sent through the same filter the bandwidth is halved again. By successively filtering and resampling, the bandwidth can be reduced by powers of two. The same filter handware can be used for these consecutive steps if the filter is designed so that calculation of the first "filter pass"

takes less than half the sample time. The other half of the available time may then be used for calculation of one of the other "passes". An algorithm to do this is built into the 5420A. The partial sums are stored in the memory instead of a shift register, and the control section regulates which pass is being calculated.

Because the digital filter must be able to handle 409,600 samples per second, and half of the time must be devoted to other passes, the maximum allowable time for one calculation is about $1.25 \mu \mathrm{~s}$. Actually the filter performs the calculations in about half this
time. 解

References

1. H.W. McKinney, "Band-Selectable Fourier Analysis," Hewlett-Packard Journal, April 1975.
2. L.T. Bruton, "Network Transfer Functions Using the Concept of Frequency - Dependent Negative Resistance," IEEE Transactions on Circuit Theory, Vol. CT-16, pp. 406-408, August 1969.
3. A.I. Zverev, "Handbook of Filter Synthesis," pp.278-280. 4. R.N. Bracewell, "The Fourier Transform and Its Applications," McGraw-Hill, 1965.

Display and Storage Systems for a Digital Signal Analyzer

by Walter M. Edgerley, Jr. and David C. Snyder

WHILE DATA IS BEING TAKEN into the 5420A Digital Signal Analyzer and is being manipulated by the processor, the analyzer must be displaying this data graphically and alphanumerically, without flicker, and in a clear, clean manner.

A key factor in realizing the required performance is the high-resolution HP-designed CRT. It has a viewing area of $9.6 \mathrm{~cm} \times 11.9 \mathrm{~cm}$ and produces a keenly focused spot of 0.33 mm diameter everywhere in the viewing area, more than adequate to display alphanumeric characters $1.6 \mathrm{~mm} \times 2.6 \mathrm{~mm}$ in size.

Data is transmitted via the MIOB (see box, page 6), which services all modules in the 5420A. The display receives data in 16 -bit $\times 64$-word bursts from the processing module. The high-speed bus makes it possible to maintain a flicker-free directed-beam display without large amounts of memory.

Fig. 1 shows the signal flow from the processor to the CRT. The data passes from the processor to the display control board via the interface and timing board. This board not only handshakes the data from the processor, but generates all timing signals for digital operations.

On the control board, the data is tested for data type, which is either graphic or alphanumeric. If graphic, it is assumed to be in horizontal and vertical pairs and is sent to the stroke generator. If alphanumeric, it is first sent to the character generator for processing into the proper horizontal and vertical bit patterns for character construction and then to the stroke generator. The stroke generator transforms the digital information into the appropriate horizontal, vertical, and blanking analog signals.

Character Generator

Fig. 2 is a block diagram of the character generator. It is an algorithmic state machine (ASM) that accepts seven-bit ASCII codes and generates appropriate horizontal and vertical bit patterns to construct the display alphanumerics. The bit pattern construction is dependent on two control lines (A and B) at the output of the ROM. There are four possible control situations:

- Load new ASCII code into ROM address register (RAR), but do not increment character counter

Fig. 1. 5420A display system receives data from the central processor via the MIOB and displays it on a high-resolution directed-beam CRT.

Volumes 25, 26, 27, 28
September 1973 through August 1977

Hewlett-Packard Company, 1501 Page Mill Road, Palo Alto, California 94304 U.S.A. Hewlett-Packard Central Mailing Department, Van Heuven Goedhartlaan 121,

PART 1: Chronological Index

September 1973

A Low-Frequency Spectrum Analyzer that Makes Slow Sweeps Practical, William L. Hale and Gerald E. Weibel
A High-Performance Beam Tube for Cesium Beam Frequency Standards, Ronald C. Hyatt, Louis F. Mueller and Terry N. Osterdock

October 1973
The Logic Analyzer: A New Kind of Instrument for Observing Logic Signals, Robin Adler, Mark Baker, and Howard D. Marshall
A Pulse Generator for Today's Digital Circuits, Reinhard Falke and Horst Link

November 1973

A Self-Contained, Hand-Held Digital Multimeter-A New Concept in Instrument Utility, Robert L. Dudley and Virgil L. Laing
A Portable High-Resolution Counter for Low-Frequency Measurements, Kenneth J. MacLeod
A High-Speed Pattern Generator and an Error Detector for Testing Digital Systems, Thomas Crawford, James Robertson, John Stinson, and Ivan Young

December 1973

A Go-Anywhere Strip-Chart Recorder That Has Laboratory Accuracy, Howard L. Merrill and Rick A. Warp
Telecommunication Cable Fault Location from the Test Desk, Thomas R. Graham and James M. Hood
High-Efficiency Modular Power Supplies Using Switching Regulators, B. William Dudley and Robert D. Peck
January 1974
The Logic State Analyzer-Displaying Complex Digital Processes in Understandable Form, William A. Farnbach
A Laser Interferometer that Measures Straightness of Travel, Richard R. Baldwin, Barbara E. Grote, and David A. Harland
February 1974
Practical Oscilloscopes at Workaday Prices, Hans-Günter Hohmann

Laboratory Notebook-Sharp Cut-Off Filters for That Awkward UHF Band
A Data Error Analyzer for Tracking Down Problems in Data Communications, Jeffrey R. Duerr

March 1974

An Automatic, Precision 1-MHz Digital LCR Meter, Kohichi Maeda
A Moderately Priced $20-\mathrm{MHz}$ Pulse Generator with 16 -Volt Output, Günter Krauss and Rainer Eggert
Laboratory Notebook-Logarithmic Amplifier Accepts 100 dB Signal Range
Versatile VHF Signal Generator Stresses Low Cost and Portability, Robert R. Hay
April 1974
Mass Memory System Broadens Calculator Applications, Havyn E. Bradley and Chris J. Christopher

An Easily Calibrated, Versatile Platinum Resistance Thermometer, Tony E. Foster
Speeding the Complex Calculations Required for Assessing Left Ventricular Function of the Heart, Peter Dikeman and Chi-ning Liu

May 1974

The "Personal Computer": A Fully Programmable Pocket Calculator, Chung C. Tung
Programming the Personal Computer, R. Kent Stockwell
Designing a Tiny Magnetic Card Reader, Robert B. Taggart
Testing the ${ }^{\theta} \mathrm{HP}-65$ Logic Board, Kenneth W. Peterson
Economical Precision Step Attenuators for RF and Microwaves, George R. Kirkpatrick and David R. Veteran

June 1974

A New Generation in Frequency and Time Measurements, James L. Sorden

The 5345A Processor: An Example of State Machine Design, Ronald E. Felsenstein
Time Interval Averaging: Theory, Problems, and Solutions, David C. Chu

Part 1: Chronological Index (continued)

Third Input Channel Increases Counter Versatility, Arthur S. Muto A Completely Automatic $4-\mathrm{GHz}$ Heterodyne Frequency Converter, Ali Bologlu
Interface Bus Expands Instrument Utility, Bryce E. Jeppsen and Steven E. Schultz

July 1974

Powerful Data Base Management System for Small Computers, Richard E. McIntire
Quality Frequency Counters Designed for Minimum Cost, Lewis W. Masters and Warren J. O’Buch

A Versatile Bipolar Power Supply/Amplifier for Lab and Systems Use, Santo Pecchio
An Automatic Exposure Control for a Lab-Bench X-Ray Camera, John L. Brewster

August 1974

Measuring Analog Parameters of Voiceband Data Channels, Noel E. Damon

Transient Measurements, Paul G. Winninghoff
The 4940A Sine Wave Transmitter, Richard T. Lee
Nonlinear Distortion Measurements, Donald A. Dresch
Envelope Delay Distortion Measurements, Richard G. Fowles and Johann J. Heinzl
Peak-to-Average Ratio Measurements, Erhard Ketelsen
Microwave Integrated Circuits Solve a Transmission Problem in Educational TV, James A. Hall, Douglas J. Mellor, Richard D. Pering, and Arthur Fong

September 1974

A $250-\mathrm{MHz}$ Pulse Generator with Transition Times Variable to Less than 1 ns, Gert Globas, Joel Zellmer, and Eldon Cornish
Optimizing the Design of a High-Performance Oscilloscope, P. Kent Hardage, S. Raymond Kushnir, and Thomas J. Zamborelli
A Thin-Film/Semiconductor Thermocouple for Microwave Power Measurements, Weldon H. Jackson
Microelectronics Enhances Thermocouple Power Measurements, John Lamy

October 1974

A User-Oriented Family of Minicomputers, John M. Stedman
Microprogrammable Central Processor Adapts Easily to Special User Needs, Philip Gordon and Jacob R. Jacobs
Testing the 21MX Processor, Cleaborn C. Riggins and Richard L. Hammons
All Semiconductor Memory Selected for New Minicomputer Series, Robert J. Frankenberg
The Million-Word Minicomputer Main Memory, John S. Elward
A Computer Power System for Severe Operating Conditions, Richard C. Van Brunt

November 1974

Distributed Computer Systems, Shane Dickey
A Quality Course in Digital Electronics, James A. Marrocco and Barry Bronson
Simplified Data-Transmission Channel Measurements, David H. Guest

December 1974

Improved Accuracy and Convenience in Oscilloscope Timing and Voltage Measurements, Walter A. Fischer and William B. Risley Laboratory Notebook-An Active Loop-Holding Device
A Supersystem for BASIC Timesharing, Nealon Mack and Leonard E. Shar
Deriving and Reporting Chromatograph Data with a Microprocessor-Controlled Integrator, Andrew Stefanski
Adapting a Calculator Microprocessor to Instrumentation, Hal Barraclough

January 1975

The Hewlett-Packard Interface Bus: Current Perspectives, Donald C. Loughry

Putting Together Instrumentation Systems at Minimum Cost, David W. Ricci and Peter S. Stone
Filling in the Gaps-Modular Accessories for Instrument Systems, Steven E. Schultz and Charles R. Trimble
A Quiet, HP-IB-Compatible Printer that Listens to Both ASCII and

BCD, Hans-Jürg Nadig
A Multifunction Scanner for Calculator-Based Data Acquisition Systems, David L. Wolpert
Minimal Cost Measuring Instruments for Systems Use, Gary D. Sasaki and Lawrence P. Johnson
Visualizing Interface Bus Activity, Harold E. Dietrich

February 1975

High-Sensitivity X-Y Recorder Has Few Input Restrictions, Donald W. Huff, Daniel E. Johnson, and John M. Wade
Digital High-Capacitance Measurements to One Farad, Kunihisa Osada and Jun-ichi Suehiro
Computer Performance Improvement by Measurement and Microprogramming, David C. Snyder

March 1975

A High-Performance 2-to-18-GHz Sweeper, Paul R. Hernday and Carl J. Enlow
Broadband Swept Network Measurements, John J. Dupre and Cyril J. Yansouni
The Dual Function Generator: A Source of a Wide Variety of Test Signals, Ronald J. Riedel and Dan D. Danielson

April 1975

A Portable 1100-MHz Frequency Counter, Hans J. Jekat
Big Timer/Counter Capability in a Portable Package, Kenneth J. MacLeod
A High-Current Power Supply for Systems that Use 5-Volt IC Logic Extensively, Mauro DiFrancesco
Band-Selectable Fourier Analysis, H. Webber McKinney

May 1975

An Understandable Test Set for Making Basic Measurements on Telephone Lines, Michael B. Aken and David K. Deaver
A Computer System for Analog Measurements on Voiceband Data Channels, Stephen G. Cline, Robert H. Perdriau, and Roger F. Rauskolb
A Precision Spectrum Analyzer for the $10-\mathrm{Hz}-\mathrm{to}-13-\mathrm{MHz}$ Range, Jerry W. Daniels and Robert L. Atchley

June 1975
Cost-Effective, Reliable CRT Terminal Is First of a Family, James A. Doub

A Functionally Modular Logic System for a CRT Terminal, Arthur B. Lane

A High-Resolution Raster Scan Display, Jean-Claude Roy
Firmware for a Microprocessor-Controlled CRT Terminal, Thomas F. Waitman

A Microprocessor-Scanned Keyboard, Otakar Blazek
Packaging for Function, Manufacturability, and Service, Robert B. Pierce

July 1975

Modularity Means Maximum Effectiveness in Medium-Cost Universal Counter, James F. Horner and Bruce S. Corya
Using a Modular Universal Counter, Alfred Langguth and William D. Jackson

Synthesized Signal Generator Operation to 2.6 GHz with Wideband Phase Modulation, James A. Hall and Young Dae Kim
Applications of a Phase-Modulated Signal Generator, James A. Hall

August 1975

The Logic State Analyzer, a Viewing Port for the Data Domain, Charles T. Small and Justin S. Morrill, Jr.
Unravelling Problems in the Design of Microprocessor-Based Systems, William E. Wagner
A Multichannel Word Generator for Testing Digital Components and Systems, Arndt Pannach and Wolfgang Kappler
September 1975
ATLAS: A Unit-Under-Test Oriented Language for Automatic Test Systems, William R. Finch and Robert B. Grady
Automatic $4.5-\mathrm{GHz}$ Counter Provides $1-\mathrm{Hz}$ Resolution, Ali Bologlu
A New Instrument Enclosure with Greater Convenience, Better Accessibility, and High Attenuation of RF Interference, Allen F. Inhelder

Part 1: Chronological Index (continued)

October 1975

Digital Power Meter Offers Improved Accuracy, Hands-Off Operation, Systems Compatibility, Allen P. Edwards
Very-Low-Level Microwave Power Measurements, Ronald E. Pratt Active Probes Improve Precision of Time Interval Measurements, Robert W. Offermann, Steven E. Schultz, and Charles R. Trimble
Flow Control in High-Pressure Liquid Chromatography, Helge Schrenker

November 1975

Three New Pocket Calculators: Smaller, Less Costly, More Powerful, Randall B. Neff and Lynn Tillman
Inside the New Pocket Calculators, Michael J. Cook, George Fichter, and Richard Whicker
Packaging the New Pocket Calculators, Thomas A. Hender
A New Microwave Link Analyzer for Communications Systems Carrying Up to 2700 Telephone Channels, Svend Christensen and Ian Matthews

December 1975

A 100-MHz Analog Oscilloscope for Digital Measurements, Allan I. Best

An Oscilloscope Vertical-Channel Amplifier that Combines Monolithic, Thick-Film Hybrid, and Discrete Technologies, Joe K. Millard

A Real-Time Operating System with Multi-Terminal and Batch/ Spool Capabilities, George A. Anzinger and Adele M. Gadol Real-Time Executive System Manages Large Memories, Linda W. Averett

January 1976

An Automatic Selective Level Measuring Set for Multichannel Communications Systems, J. Reid Urquhart
Designing Precision into a Selective Level Measuring Set, Hugh P. Walker
Designing a Quiet Frequency Synthesizer for a Selective Level Measuring Set, John H. Coster
Making the Most of Microprocessor Control, David G. Dack
Real-Time Multi-User BASIC, James T. Schultz

February 1976

Laser Transducer Systems for High-Accuracy Machine Positioning, André F. Rudé and Michael J. Ward
Electronics for the Laser Transducer, William E. Olson and Robert B. Smith

Using a Programmable Calculator as a Data Communications Terminal, James E. Carlson and Ronald L. Stickle

March 1976

A Cesium Beam Frequency Reference for Severe Environments, Charles E. Heger, Ronald C. Hyatt, and Gary A. Seavey
Calibrated FM, Crystal Stability, and Counter Resolution for a Low-Cost Signal Generator, Robert R. Collison and Ronald E. Kmetovicz
A 50-Mbit/s Pattern Generator and Error Detector for Evaluating Digital Communications System Performance, Ivan R. Young, Robert Pearson, and Peter M. Scott

April 1976

Electronic Total Station Speeds Survey Operations, Michael L. Bullock and Richard E. Warren
Designing Efficiency into a Digital Processor for an Analytical Instrument, John S. Poole and Len Bilen

May 1976

New CRT Terminal Has Magnetic Tape Storage for Expanded Capability, Robert G. Nordman, Richard L. Smith, and Louis A. Witkin
Mini Data Cartridge: A Convincing Alternative for Low-Cost, Removable Storage, Alan J. Richards
Laboratory Notebook-A Logarithmic Counter

June 1976

Third-Generation Programmable Calculator Has Computer-Like Capabilities, Donald E. Morris, Chris J. Christopher, Geoffrey W. Chance, and Dick B. Barney
High-Performance NMOS LSI Processor, William D. Eads and

David S. Maitland
Character Impact Printer Offers Maximum Printing Flexibility, Robert B. Bump and Gary R. Paulson
Mid-Range Calculator Delivers More Power at Lower Cost, Douglas M. Clifford, F. Timothy Hickenlooper, and A. Craig Mortensen

July 1976

A Direct-Reading Network Analyzer for the $500-\mathrm{kHz}-\mathrm{to}-1.3-\mathrm{GHz}$ Frequency Range, Hugo Vifian
Processing Wide-Range Network Analyzer Signals for Analog and Digital Display, William S. Lawson and David D. Sharrit
A Precision RF Source and Down-Converter for the Model 8505A Network Analyzer, Rolf Dalichow and Daniel R. Harkins

August 1976

Series II General-Purpose Computer Systems: Designed for Improved Throughput and Reliability, Leonard E. Shar
An All-Semiconductor Memory with Fault Detection, Correction, and Logging, Elio A. Toschi and Tak Watanabe
HP 3000 Series II Performance Measurement, Clifford A. Jager

September 1976

An Easier-to-Use Variable-Persistence/Storage Oscilloscope with Brighter, Sharper Traces, Van Harrison
An Automatic Wide-Range Digital LCR Meter, Satoru Hashimoto and Toshio Tamamura

October 1976

Continuous, Non-Invasive Measurements of Arterial Blood Oxygen Levels, Edwin B. Merrick and Thomas J. Hayes
Laboratory Notebook-A Signal-Level Reference
An Accurate Low-Noise Discriminator
Card-Programmable Digital IC Tester Simplifies Incoming Inspection, Eric M. Ingman

November 1976

A Pair of Program-Compatible Personal Programmable Calculators, Peter D. Dickinson and William E. Egbert
Portable Scientific Calculator Has Built-In Printer, Bernard E. Musch and Robert B. Taggart
The New Accuracy: Making $2^{3}=8$, Dennis W. Harms
High-Power Solid-State $5.9-12.4-\mathrm{GHz}$ Sweepers, Louis J. Kuhlman, Jr.
The GaAs FET in Microwave Instrumentation, Patrick H. Wang

December 1976

Current Tracer: A New Way to Find Low-Impedance Logic-Circuit Faults, John F. Beckwith
New Logic Probe Troubleshoots Many Logic Families, Robert C. Quenelle
A Multifunction, Multifamily Logic Pulser, Barry Bronson and Anthony Y. Chan
Probe Family Packaging, David E. Gordon
Multifamily Logic Clip Shows All Pin States Simultaneously, Durward Priebe
Interfacing a Parallel-Mode Logic State Analyzer to Serial Data, Justin S. Morrill, Jr.

January 1977

A Logic State Analyzer for Microprocessor Systems, Jeffrey H. Smith
Firmware for a Microprocessor Analyzer, Thomas A. Saponas
A Versatile, Semiautomatic Fetal Monitor for Non-Technical Users, Erich Courtin, Walter Ruchsay, Peter Salfeld, and Heinz Sommer
February 1977
A Fast-Reading, High-Resolution Voltmeter that Calibrates Itself Automatically, Albert Gookin
A High-Speed System Voltmeter for Time-Related Measurements, John E. McDermid, James B. Vyduna, and Joseph M. Gorin
Contemporary Design Practice in General-Purpose Digital Multimeters, Roy D. Barker, Virgil L. Laing, Joe E. Marriott, and H. Mac Juneau

March 1977

A New Series of Small Computer Systems, Lee Johnson

Part 1: Chronological Index (continued)

HP 1000 Operating System is Enhanced Real-Time Executive, David L. Snow and Kathleen F. Hahn
Development and Application of Microprograms in a Real-Time Environment, Harris Dean Drake
E-Series Doubles 21MX Performance, Cleaborn C. Riggins How the E-Series Performance Was Achieved, Scott J. Stallard
Microprogrammed Features of the 21MX E-Series, Thomas A. Lane
OPNODE: Interactive Linear Circuit Design and Optimization, William A. Rytand
Viewpoints-John Moll on HP's Integrated Circuit Technology

April 1977

Silicon-on-Sapphire Technology Produces High-Speed SingleChip Processor, Bert E. Forbes
CMOS/SOS, David Farrington
Miniature Oscilloscope Probes for Measurements in Crowded Circuits, Carolyn M. Finch, Marvin F. Estes, and Lawrence A. Gammill
A Small, Solid-State Alphanumeric Display, John T. Uebbing, Peter B. Ashkin, and Jack L. Hines
May 1977
Signature Analysis: A New Digital Field Service Method, Robert A. Frohwerk

Easy-to-Use Signature Analyzer Accurately Troubleshoots Complex Logic Circuits, Anthony Y. Chan
Signature Analysis-Concepts, Examples, and Guidelines, Hans J. Nadig

Personal Calculator Algorithms I: Square Roots, William E. Egbert June 1977
A Wide-Ranging Power Supply of Compact Dimensions, Paul W.

Bailey, John W. Hyde, and William T. Walker
Remote Programming of Power Supplies Through the HP Interface Bus, Emery Salesky and Kent Luehman
Coaxial Components and Accessories for Broadband Operation to 26.5 GHz, George R. Kirkpatrick, Ronald E. Pratt, and Donald R. Chambers
Personal Calculator Algorithms II: Trigonometric Functions, William E. Egbert

July 1977
Small Computer System Supports Large-Scale Multi-User APL, Kenneth A. Van Bree
APL Data: Virtual Workspaces and Shared Storage, Grant J. Munsey
APLGOL: Structured Programming Facilities for APL, Ronald L. Johnston
APL/3000 Summary
A Dynamic Incremental Compiler for an Interpretive Language, Eric J. Van Dyke
A Controller for the Dynamic Compiler, Kenneth A. Van Bree
Extended Control Functions for Interactive Debugging, Kenneth A. Van Bree

CRT Terminal Provides both APL and ASCII Operation, Warren W. Leong

August 1977

New 50-Megabyte Disc Drive: High Performance and Reliability from High-Technology Design, Herbert P. Stickel
An Individualized Pulse/Word Generator System for Subnanosecond Testing, Christian Hentschel, Günter Riebesell, Joel Zellmer, and Volker Eberle

PART 2: Subject Index

Month/Year		Subject	Model
Apr.	1974	Accounting system, desk-top computer	- 9880A
Sept.	1973	Adaptive sweep in a spectrum analyzer	r 3580A
May	1977	Algorithm, personal calculator, square root	
June	1977	Algorithms, personal calculator, trigonometric	
June	1974	Algorithmic state machine design	5345A
Apr.	1977	Alphanumeric displays, solid-state HD	HDSP-2000
Nov.	1975	AM-to-PM conversion, detection of	3790A
July	1974	Amplifier/power supply	$6825 \mathrm{~A} /$ $6 \mathrm{~A} / 7 \mathrm{~A}$
Aug.	1974	Amplitude distortion, telephone measurements	4940A
May	1975	Amplitude distortion, telephone measurements	5453A
Nov.	1974	Amplitude/delay distortion	3770A
Feb.	1974	Analyzer, data transmission errors	1645A
Aug.	1975	Analyzer, digital pattern recognition	1620A
May	1977	Analyzer, digital signature	5004A
Oct.	1973	Analyzer, logic (serial)	5000A
Jan.	1974	Analyzer, logic state (parallel)	1601L
Aug.	1975	Analyzer, logic state	1600S
Jan.	1977	Analyzer, logic state	1611A
Nov.	1975	Analyzer, microwave link	3790A
July	1976	Analyzer, network, $0.5-1300 \mathrm{MHz}$	8505A*
Sept.	1973	Analyzer, spectrum, 5 Hz to 50 kHz , portable	3580A
May	1975	Analyzer, spectrum, 10 Hz to 13 MHz	3571A/
			44A/3045A*
May	1975	Analyzer, transmission parameter	5453A
Aug.	1975	Analyzing microprocessor-based systems	1600S
Apr.	1976	Angle measurements, surveying	3810A

[^1]| Apr. | 1974 | Angio analyzer | 5693A |
| :---: | :---: | :---: | :---: |
| July | 1977 | APL (a programming language) | 3000 |
| July | 1977 | APLGOL | 3000 |
| July | 1975 | Applications for phase-modulated generator | $\begin{gathered} \text { 86634A, } \\ 86635 \mathrm{~A} \end{gathered}$ |
| July | 1975 | Armed measurements, counter/timer/ DVM | 5328A* |
| Sept. | 1975 | ATLAS (abbreviated test language for avionics systems) | $\begin{array}{r} 9510 \mathrm{D}, \\ \text { option } 100 \\ 9500 \mathrm{D}, \\ \text { option } 180 \end{array}$ |
| Sept. | 1973 | Atomic frequency standard (cesium), high-performance | $\begin{array}{r} 5061 \mathrm{~A}, \\ \text { option } 004 \end{array}$ |
| Mar. | 1976 | Atomic frequency reference (cesium) | 5062C |
| May | 1975 | Attenuator, classical problem | $\begin{aligned} & 3571 \mathrm{~A} / \\ & 3044 \mathrm{~A} / \\ & 3045 \mathrm{~A}^{*} \end{aligned}$ |
| May | 1974 | Attenuators, coaxial, step, dc-18 GHz | $\begin{aligned} & 8495 \mathrm{~A} / \mathrm{B} \\ & 8496 \mathrm{~A} / \mathrm{B} \end{aligned}$ |
| June | 1977 | Attenuators, coaxial, step, dc-26.5 GHz | 8495D/K |
| Feb. | 1977 | Autocalibration in a digital voltmeter | 3455A* |
| July | 1974 | Automatic exposure control for X-rays | 43805 |
| June | 1974 | Automatic $4-\mathrm{GHz}$ frequency converter plug-in | 5354A |
| Sept. | 1975 | Automatic test system programming language (ATLAS) | $\begin{array}{r} 9510 \mathrm{D} \\ \text { option } 100 \\ 9500 \mathrm{D}, \\ \text { option } 180 \end{array}$ |
| June | 1974 | Averaging, time interval, theory B | 5345 A* * |
| Apr. | 1975 | Band-selectable Fourier analysis | 5451B |
| Jan. | 1976 | BASIC, real-time multi-user | 92101A |
| Dec. | 1974 | BASIC/3000 timeshared computer | |

PART 2: Subject Index (continued)

Feb. 1974

Feb. 1976
Dec. 1975
Nov. 1973
Feb. 1977
Aug. 1974
Nov. 1974
Aug. 1977
June 1976
Feb. 1976
June 1977
$\begin{array}{ll}\text { Oct. } & 1976 \\ \text { Dec. } & 1976\end{array}$

Sept. 1976
Mar. 1974
Oct. 1973
Nov. 1974
Nov. 1973
Feb. 1977
Aug. 1975
Nov. 1973
Mar. 1976
Feb. 1974
Apr. 1976
Sept. 1973
Jan. 1975
June 1977
May 1977
Feb. 1977
Feb. 1977
July 1975
Aug. 1975
Aug. 1977

Aug. 1977
Apr. 1974
Oct. 1976
June 1975
May 1976
Jan. 1975
Apr. 1977
July 1977
Mar. 1974
Sept. 1976
Feb. 1975
Apr. 1976
May 1975
Aug. 1974
Nov. 1974
July 1977
Aug. 1974
voiceband
Data channel measurements,
error analyzer

Data communications, desk-top computer
Data domain, analog oscilloscope
Data generator, 150 MHz PRBS
Data logging systems, programmable
Delay distortion, Bell System
Delay distortion, CCITT recommendation

3770A
$\begin{array}{lc}\text { Delay generator, 100-ps steps } & 8092 \mathrm{~A} \\ \text { Desktop computers } & 9815 \mathrm{~A} / 9825 \mathrm{~A}^{*}\end{array}$
Desktop computer, data communications

9830A
Detector, $0.01-26.5 \mathrm{GHz} \quad 8473 \mathrm{C} / 33330 \mathrm{C}$

Digital communications test, see data channel measurements
Digital IC tester 5045A

Digital IC trouble-shooting instruments and kits (logic probe, 545A,546A
logic pulser, logic clip, current tracer) 547A,548A
4261A*
Digital LCR meter
Digital LCR meter
4271A*
Digital logic analyzer
5000A
Digital logic course
5035T
Digital multimeter, hand-held
Digital multimeters, low cost
3435A,3465A/B

Digital pattern analyzer for triggering

3476A/B
Digital pattern generator, communications test

1620A
3760A
igital pattern generator, communications test

3780A
Digital pattern generator, communications test

1645A
Digital processor in a gas chromatograph

5840A
Digital storage in a spectrum analyzer 3580A
$\begin{array}{ll}\text { Digital-to-analog converter for HP-IB } & 59303 A^{*} \\ \text { Digital-to-analog converter for HP-IB } & 59501 A^{*}\end{array}$
Digital troubleshooting by signature analysis

5004A
Digital voltmeter, $51 / 2$ digit, autocalibrating

3455A*
Digital voltmeter, fast reading, systems 3437 A *
Digital voltmeters, options, for universal counter

5328A*
Digital word generator, 8-bit parallel 8016A*
Digital word generator, serial, 300 MHz

8084A/
Disc drive, 50 megabytes
Disc drive for desktop computer
Discriminator (lab notebook)
Display, CRT terminal
2640 A
Display, CRT terminal, magnetic tape
$2644 A$
$59303 A^{*}$

Displays, small solid-state alphanumeric

HDSP-2000
Display station, APL
Dissipation factor measurements
Dissipation factor measurements
Dissipation factor measurements Distance measurements, surveying
Distortion measurements, amplitude
Distortion measurements, amplitude, phase, envelope delay, nonlinear
Distributed computer systems
Dragalong (in APL/3000)
Dropouts
E
Oct. 1976 Ear oximeter
47201A

May 1974
Aug. 1974
June 1974
Sept. 1975
Aug. 1974
Nov. 1974
May 1975
Feb. 1974
Aug. 1976
May 1977
Nov. 1973
Mar. 1976
July 1974
Feb. 1977

Aug. 1976

Dec.	1973
Dec.	1976

Nov. 1976
Jan. 1977
Feb. 1974
$\begin{array}{ll}\text { Oct. } & 1975 \\ \text { Mar. } & 1976\end{array}$
Apr. 1975
Feb. 1975
June 1974
Sept. 1975
June 1974
$\begin{array}{ll}\text { Nov. } 1973 \\ \text { July } & 1974\end{array}$
Frequency counter, high-resolution module for 5300 system
Frequency counters, low cost $\quad 5381 \mathrm{~A}, 82 \mathrm{~A}$
Frequency counter, $1100-\mathrm{MHz} 5305 \mathrm{~A}$
Frequency measurements, reciprocal
Frequency profile measurements, pulsed RF

5345A*
Frequency reference, cesium beam 5062C
Frequency shift measurements
Frequency standard, high-performance cesium beam

5061A, option 004

3312A
Function generator, low distortion 3551A/3552A
G

Fault control memory 300	3000 Series II
Fault locator, test desk	4913A
Fault (low-impedance) localization in digital logic circuits	in 547 A
FET, GaAs for microwaves H	HFET-1000
Fetal monitoring	8030A
Filters, VHF coaxial (lab notebook)	-
Flow control in liquid chromatography	phy 1010B
FM, calibrated, signal generator	8654B
Fourier analysis, band selectable	5451B
Fourier analyzer	5451B
Frequency converter plug-in	5354A
Frequency counter, 4.5 GHz	5341A*
Frequency counter	$5345 A^{*}$
Frequency counter, high-resolution module for 5300 system	5307A
Frequency counters, low cost 53	5381A,82A
Frequency counter, $1100-\mathrm{MHz}$	5305A
Frequency measurements, reciprocal	al $5345 \mathrm{~A}^{*}$
Frequency profile measurements, pulsed RF	5345 ${ }^{*}$
Frequency reference, cesium beam	5062C
Frequency shift measurements	4940A
Frequency standard, high-performance cesium beam	nce 5061A, option 004
Function generator, dual source	3312A
Function generator, low distortion 355	3551A/3552A
G	
GaAs FET amplifier, chips H	HFET 1000
Gain hits measurements	4940A
Gas chromatograph, digitally-controlled	5840A
Gas chromatograph reporting integrator	3380A
Generator, digital, 150 MHz	3760A
Generator, signal, phase modulated	$\begin{array}{r} \text { 86634A, } \\ 86635 \mathrm{~A} \end{array}$
Generator, signal, synthesized 2.6 GHz	Hz 86603A
Generators, pulse; see pulse generators	
Generators, word; see word generators	
Gradient programming, liquid chromatography	1010B
Group delay detector	8505A*
Group delay measurements	4940A
Group delay measurements	3770A

PART 2: Subject Index (continued)

May	1975	Group delay measurements	5453A
H			
Jan.	1977	Heart-rate monitoring, fetal	8030A
Feb.	1975	High capacitance meter	4282
Sept.	1973	High-performance cesium beam tube	$\begin{array}{r} 5061 \mathrm{~A}, \\ \text { option } 004 \end{array}$
Nov.	1973	High-resolution counter module for 5300 system	5307A
Feb.	1975	High-sensitivity X-Y recorder	7047A
June	1976	HPL, desktop computer language	9825A*
Jan.	1975	HP-IB analyzer	$59401 \mathrm{~A}^{*}$
Jan.	1975	HP-IB, current status	
June	1974	HP-IB, counter systems	$5345 \mathrm{~A}^{*}$
Jan.	1975	HP-IB systems	
		HP interface bus, see HP-IB	
Apr.	1976	Horizontal distance and angle measurements	3810A
1			
Oct.	1976	IC tester, digital	5045A
Oct.	1976	IC testing, economic considerations	5045A
Dec.	1976	IC troubleshooting instruments and kits	$\begin{gathered} \text { 545A,546A, } \\ 547 \mathrm{~A}, 548 \mathrm{~A} \end{gathered}$
July	1974	IMAGE	$\begin{array}{r} 24376 \mathrm{~B}, \\ 32215 \mathrm{~A}-16 \mathrm{~A} \end{array}$
June	1976	Impact printer	9871A
Aug.	1974	Impulse noise measurements	4940A
May	1975	Impulse noise measurements	5453A
Oct.	1976	Incoming inspection, digital ICs	5045A
Mar.	1974	Inductance measurement	4271A*
Sept.	1976	Inductance measurement	4261A*
July	1974	Information management software	$\begin{array}{r} 24376 \mathrm{~B}, \\ 32215 \mathrm{~A}-16 \mathrm{~A} \end{array}$
Mar.	1977	Integrated-circuit technology, viewpoint	
Dec.	1974	Integrator, chromatograph, reporting	3380A
Jan.	1975	Interface, ASCII, for 5300-series instruments	5312A*
		Interface bus, see HP-IB.	
Jan.	1974	Interferometer, straightness	5526A, option 30
Apr.	1974	Inventory control system, desk-top computer	9880A
J			
K			
L			
July	977	Language, computer, APL	3000 Series II
Sept.	1975	Language, computer, ATLAS	9500D,9510D
June	1976	Language, desktop computer, HPL	9825A*
Jan.	1974	Laser interferometer, straightness	5526A, option 30
Feb.	1976	Laser transducer system	5501A*
Sept.	1976	LCR meter, automatic, digital	4261A*
Mar.	1974	LCR meter, 1 MHz automatic, digital	4271A*
Apr.	1977	LED displays, alphanumeric	HDSP-2000
July	1976	Line stretcher, electronic	$8505 \mathrm{~A}^{*}$
Oct.	1975	Liquid chromatography, flow control	1010B
June	1977	Load, sliding, 2-26.5 GHz	911C
May	1976	Logarithmic counter (lab notebook)	-
Oct.	1973	Logic analyzer	5000A
Dec.	1976	Logic clip, multifamily	548A
Nov.	1974	Logic lab	5035 T
Dec.	1976	Logic probe, multifamily	545A
Dec.	1976	Logic pulser, multifamily	548A
Aug.	1975	Logic state analyzer	1600 S
Jan.	1974	Logic state analyzer	1601L
Jan.	1977	Logic state analyzer for microprocessors	1611A

Dec. 1976

Dec.	1975
Aug.	1975
May	1977
Aug.	1974
May	1975
Nov.	1974
May	1975
July	1974
Feb.	1977
Nov.	1973
Sept.	1973

Feb.	1976	Machine positioning laser transducer	5501A*
Jan.	1974	Machine tool calibration	5526A
ay	1976	Magnetic tape cartridge, mini	
June	1976	Magnetic tape minicartridge, in desk-top computer	$\begin{aligned} & 9815 \mathrm{~A} / \\ & 9825 \mathrm{~A}^{*} \end{aligned}$
May	1976	Magnetic tape storage, in CRT terminal	2644A
Apr.	1974	Mass memory for desk-top computer	9880A
Feb.	1977	Math functions in a digital voltmeter	3455 A *
Oct.	1974	Memory, semiconductor	21MX*
Sept.	1976	Meter, LCR digital	4261A*
Aug.	1977	MFM code, for magnetic recording	7920A
Aug.	1974	Microcircuit TV receiver	
Apr.	1977	Micro-CPU chip (MC ${ }^{2}$), CMOS/SOS	
Aug.	1975	Microprocessors, logic-state analysis of	600A
Jan.	1977	Microprocessors, logic-state analyzer for	1611A
Oct.	1974	Microprogrammable central processor	21MX
Mar.	1977	Microprogramming aids	1000*
Feb.	1975	Microprogramming, performance improvement by	
May	1974	Microwave attenuators, dc-18 GHz 8495A	B-96A/B
June	197	Microwave attenuators, dc-26.5 GHz	8495D/K
Sept.	1975	Microwave counter, 4.5 GHz	5341A*
Nov.	1975	Microwave link analyzer, $140-\mathrm{MHz}$ IF	3790A
Nov.	1976	Microwave sweep oscillators, $5.9-12.4 \mathrm{GHz}$	86242C, 86250C
July	1975	Modulator, phase, for signal generator	86634A, 86635A
Dec	1974	MPET/3000, multiprogramming executive for timesharing	32010A
Aug.	1976	Multilingual computer systems 3000	Series II
Nov.	1973	Multimeter, digital, hand-held	970A
Feb.	1977	Multimeters, digital, low cost	3435 A ,
		3465 A	476A/B
Fe	1977	Multimeters, extending the ranges of	
Jan.	1976	Multiplexed communications test, frequency division	3745 A *
Aug.	1976	Multiprogramming computer systems 30	Series II
Jan.	1976	Multi-user real-time BASIC	
		N	
July	1976	Network analyzer, 0.5-1300 MHz	8505A*
Nov.	1974	Networks, computer	Series
Mar.	1975	Network measurements, 2-18 GHz	
June	1976	NMOS LSI processor	9825A*
Mar.	1974	Noise, types, in signal generators	8654A
Aug.	1974	Noise measurements, telephone	4940A
May	1975	Noise measurements, telephone	5453A
Aug.	1974	Nonlinear distortion measurements	4940A
May	1975	Nonlinear distortion measurements	5453A
Nov.	1975	Nonlinear distortion measurements on microwave links	3790A
0			
Dec.	1975	Operating systems, real-time	2001

Mar.	1977
Mar.	1977
Nov.	1976
Mar.	1975
Dec.	1975
Sept.	1974
Dec.	1974
Apr.	1977
Feb.	1974
Aug.	1975
Oct.	1973
Dec.	1975
Sept.	1976
Oct.	1976
Oct.	1976

(RTE-II, RTE-III)	92060A
PNODE	92817A
Optimization, circuit, computer aided	ed 92817A
Oscillators, sweep, 5.9-12.4 GHz	86242C,
	86250 C
Oscillator, sweep, 2-18 GHz	86290A
Oscilloscope, 100 MHz	A
Oscilloscope, 275 MHz	720
Oscilloscope, dual-delayed sweep, microprocessor-controlled, numeric display	
Oscilloscope probes, miniature	10017 A et al.
Oscilloscopes, low-cost, dc-15 MHz 122	1220A/1221A
Oscilloscope triggering on	10
digital events 123	1230A/1620A
Oscilloscope, used with logic analyzer	zer 5000
Oscilloscope, used with logic-state analyzer	1740A
Oscilloscope, variable persistence/ storage	1741A
Oximeter	47201A
levels in blood, measurement of	of 47201

Pseudorandom binary sequences (50 MHz) for testing digital communications

3780A
Nov. 1973 Pseudorandom binary sequences (150 MHz) for testing digital communications

3790A
June 1974
Pulsed RF frequency measurements
5345A*
Mar. 1974 Pulse generator, 20 MHz , counted burst

8011A
Oct. 1973
Pulse generator, $50 \mathrm{MHz}, 16 \mathrm{~V}$, counted burst

8015A
Aug. 1977 Pulse generator, 1 GHz
8080-Series
Aug. 1977 Pulse generator, dual-output with $1 / 2$ frequency

8092A/8080A
Sept. 1974 Pulse generator, variable risetime to $1 \mathrm{~ns} \quad$ 8082A

July 1974
QUERY
Q

July 1974 QUERY | 24376 B, |
| ---: |
| $82215 \mathrm{~A}-6 \mathrm{~A}$ |

PART 2: Subject Index (continued)

PART 3: Model Number Index

Model	Instrument	Month/Year	HP-22
HP-21	Calculator	Nov.	1975

Calculator	Nov.	1975
Calculator	Nov.	1975
Programmable Pocket Calculator	May	1974
Programmable Pocket Calculator	Nov.	1976
Printing Portable Calculator Programmable Printing	Nov.	1976
\quadPortable Calculator	Nov.	1976

Part 3: Model Number Index (continued)

435A	Power Meter
* 436 A	Power Meter
545A	Logic Probe
546A	Logic Pulser
547A	Current Tracer
548A	Logic Clip
911C	Sliding Load
970A	Probe Multimeter
HFET-1000	GaAs FET
*1000-Series	Small Computer Systems
1010B	Liquid Chromatograph
$1220 \mathrm{~A} / 1221 \mathrm{~A}$	Oscilloscopes, 15 MHz
1230A	Logic Trigger
1600A/S	Logic State Analyzer
1601L	Logic State Analyzer
1607A	Logic State Analyzer
1611A	Logic State Analyzer
1620A	Pattern Analyzer
645A	Data Error Analyzer
1720A	Oscilloscope, 275 MHz
1722A	Oscilloscope, dual-delayed sweep
1740A	Oscilloscope, 100 MHz
1741A	Variable Persistence/Storage Oscilloscope
HDSP-2000	Solid-State Alphanumeric Display
IMAGE/2000	Data Base Management System
2640A	Interactive Display Terminal
2641A	APL Display Station
2644A	CRT Terminal with Magnetic Tape Storage
2802A	Platinum-Resistance Thermometer
3000 Series II	Computer System
APL/3000	A Programming Language
IMAGE/3000	Data Base Management System
MPET/3000	Multiprogramming Executive
*3044A	Spectrum Analyzer, 10 Hz to 13 MHz
*3045A	Automatic Spectrum Analyzer
*3050B	Automatic Data Acquisition System
*3051A	Data Logging System
*3052A	Programmable Data Acquisition System
3312A	Function Generator
3380A	Chromatograph Integrator
3435A	Digital Multimeter
*3437A	System Voltmeter
*3455A	Digital Voltmeter
3465A/B	Digital Multimeter
3476A/B	Digital Multimeter
*3495A	Scanner
3551A	Transmission Test Set
3552A	Transmission Test Set
*3571A	Tracking Spectrum Analyzer
3580A	Spectrum Analyzer, 5Hz-50kHz
*3745A/B	Selective Level Measuring Set
3760A/3761A	Data Generator/Error Detector
3770A	Amplitude/Delay Distortion Analyzer
3780A	Pattern Generator/Error Detector
3790A	Microwave Link Analyzer
3810A	Total Station
* 4261 A	LCR Meter
* 4271 A	LCR Meter
4282A	High-Capacitance Meter
4913A	Test Desk Fault Locator
4940A	Transmission Impairment Measuring Set
5000A	Logic Analyzer
5004A	Signature Analyzer
5035 T	Logic Lab
5045A	IC Tester
5061A opt. 004	High-Performance Cesium Beam Standard
5062C	Cesium Beam Frequency Reference

Sept.	1974	*5150A	Thermal Printer
Oct.	1975	5300B	8-Digit Mainframe
Dec.	1976	5305A	$1100-\mathrm{MHz}$ Frequency Counter
Dec.	1976	5307A	High-Resolution Counter
Dec.	1976	5308A	$75-\mathrm{MHz}$ Universal Timer/Counter
Dec.	1976	${ }^{*} 5312 \mathrm{~A}$	ASCII Interface
June	1977	* 5328 A	Universal Counter
Nov.	1973	*5341A	Frequency Counter
Nov.	1976	* 5345 A	Electronic Counter
Mar.	1977	5353A	Channel C Plug-In
Oct.	1975	5354A	Automatic Frequency Converter
Feb.	1974		0.015-4.0 GHz
Aug.	1975	*5363A	Time Interval Probes
Aug.	1975	$5381 \mathrm{~A} / 5382 \mathrm{~A}$	Frequency Counters
Jan.	1974	5451B	Fourier Analyzer
Aug.	1975	5451B	Fourier Analyzer with BSFA
Jan.	1977		Capability
Aug.	1975	5453A	Transmission Parameter Analyzer
Feb.	1974	5468A	Transponder
Sept.	1974	*5501A	Laser Transducer System
Dec.	1974	5526 A opt. 30	Straightness Interferometers
Dec.	1975	5693A	Angio Analyzer
		5840A	Gas Chromatograph
Sept.	1976	*6002A	DC Power Supply, 200W
Apr.	1977	6825A/6A/7A	Bipolar Power Supply/Amplifiers
July	1974	7047A	X-Y Recorder
June	1975	7155A	Portable Strip-Chart Recorder
July	1977	7920A	Disc Drive
		8011A	Pulse Generator, 20 MHz
May	1976	8015A	Pulse Generator, 50 MHz
Apr.	1974	*8016A	Word Generator
Aug.	1976	8030A	Cardiotocograph
July	1977	8080-Series	High-Speed Pulse/Word Generator
July	1974	8082A	Pulse Generator, 250 MHz
Dec.	1974	8473C	Coaxial Detector, 0.01-26.5 GHz
		8481 A et al.	Power Sensors
May	1975	8484A	Power Sensor, High Sensitivity
May	1975	$\begin{gathered} 8495 \mathrm{~A} / \mathrm{B}, \\ 8496 \mathrm{~A} / \mathrm{B} \end{gathered}$	Step Attenuators, dc-18 GHz
Jan.	1975	8495D/K	Step Attenuators, dc-26.5 GHz
Feb.	1977	8502A	Transmission and Reflection Test Set
Feb.	1977	8503A	S-Parameter Test Set
Mar.	1975	* 8505A	Network Analyzer, 0.5-1300 MHz
Dec.	1974	8620A	Sweep Oscillator
Feb.	1977	8654A	Signal Generator, $10-520 \mathrm{MHz}$
Feb.	1977	8654B	Signal Generator with FM
Feb.	1977	8655A	Synchronizer/Counter
Feb.	1977	8660C	Synthesized Signal Generator
Feb.	1977		Mainframe
Jan.	1975	9500 D opt. 180	ATLAS Compiler and Processors
May	1975	9510 D opt. 100	ATLAS Compiler and Processors
May	1975	9601/9610	Satellite Computer Systems
May	1975	9700-Series	Distributed Computer Systems
Sept.	1973	*9815A	Desktop Computer
Jan.	1976	*9825A	Desktop Computer
Nov.	1973	*9830A	Desktop Computer (application of)
		9871A	Impact Printer
Nov.	1974	9880A/B	Desktop Computer Mass
Mar.	1976		Memory System
Nov.	1975	10017A et al.	Miniature Oscilloscope Probes
Apr.	1976	10250-Series	Trigger Probes
Sept.	1976	10254A	Serial-to-Parallel Converter
Mar.	1974	11850A	Three-Way Power Splitter,
Feb.	1975		0.5-1300 MHz
Dec.	1973	24376B	IMAGE/2000 Data Base Management System
Aug.	1974	32010A	MPET/3000 Operating System
Oct.	1973	32105A	APL/3000 Subsystem
May	1977	32215A	IMAGE/3000 Data Base
Nov.	1974		Management System
Oct.	1976	32216A	QUERY/3000 Data Base
			Inquiry Facility
Sept.	1973	33311C	Microwave Switch, dc-26.5 GHz
Mar.	1976	33321 A/B	Step Attenuators, dc-18 GHz

Jan.	1975
Apr.	1975
Apr.	1975
Nov.	1973
Apr.	1975
Jan.	1975
July	1975
Sept.	1975
June	1974
June	1974
June	1974
Oct.	1975
July	1974
Feb.	1975
Apr.	1975
May	1975
May	1975
Feb.	1976
Jan.	1974
Apr.	1974
Apr.	1976
June	1977
July	1974
Feb.	1975
Dec.	1973
Aug.	1977
Mar.	1974
Oct.	1973
Aug.	1975
Jan.	1977
Aug.	1977
Sept.	1974
June	1977
Sept.	1974
Oct.	1975
May	1974
June	1977
July	1976
July	1976
July	1976
Mar.	1975
Mar.	1974
Mar.	1976
Mar.	1976
July	1975
Sept.	1975
Sept.	1975
Nov.	1974
Nov.	1974
June	1976
June	1976
Feb.	1976
June	1976
Apr.	1974
Apr.	1977
Aug.	1975
Dec.	1976
July	1976
July	1974
Dec.	1974
July	1977
July	1974
July	1974
June	1977
May	1974

Part 3: Model Number Index (continued)

33321D/K	Step Attenuators, dc-26.5 GHz
33330 C	Coaxial Detector, 0.01-26.5 GHz
43805	X-Ray System
47201A	Oximeter
*59301A	ASCII-Parallel Converter
*59303A	Digital-to-Analog Converter
*59304A	Numeric Display
*59306A	Relay Actuator
*59307A	VHF Switch
*59308A	Timing Generator
${ }^{*}$ 59309A	ASCII Digital Clock
*59401A	Bus System Analyzer
*59501A	Isolated D-A/Power Supply Programmer
62604 J et al.	Switching Regulated Modular Power Supplies

June	1977	62605 M
June	1977	
July	1974	86242 C,
Oct.	1976	86250 C
Jan.	1975	86290 A
Jan.	1975	86603 A
Jan.	1975	86634 A
Jan.	1975	86635 A
Jan.	1975	91700 A et a
Jan.	1975	92001 A
Jan.	1975	92001 B
Jan.	1975	92060 A
June	1977	92060 B
		92061 A
Dec.	1973	928101 A

500W Switching Regulated Power Supply		
RF Plug-Ins for 8620C Sweep		1975
Oscillator	Nov.	1976
2-18 GHz RF Plug-In.	Mar.	1975
1-2600 MHz RF Section	July	1975
PM Modulation Section	July	1975
FM/PM Modulation Section	July	1975
Distributed Computer Systems	Nov.	1974
RTE-II Real-Time Executive System	Dec.	1975
RTE-I Real-Time Executive System	Mar.	1977
RTE-III Real-Time Executive System	Dec.	1975
RTE-III Real-Time Executive System	Mar.	1977
RTE Microprogramming Package	Mar.	1977
Real-Time BASIC Subsystem	Jan.	1976
OPNODE	Mar.	1977

PART 4: Author Index

Author A	Month/Year	Corya, Bruce S.	July	1975	Forbes, Bert E.	Apr.	1977
Author		Coster, John H.	Jan.	1976	Foster, Tony E.	Apr.	1974
Adler, Robin	Oct. 1973	Courtin, Erich	Jan.	1977	Fowles, Richard G.	Aug.	1974
Ainsworth, Gerald	Oct. 1976	Crawford, Thomas	Nov.	1973	Fox, Kenneth A.	Dec.	1975
Aken, Michael B.	May 1975	Crow, George	June	1975	Frankenberg, Robert J.	Oct.	1974
Anzinger, George A.	Dec. 1975				Frederick, Wayne	July	1976
Arnold, David	May 1976	D			Frohwerk, Robert A.	May	1977
Ashkin, Peter B.	Apr. 1977				G		
Atchley, Robert L.	May 1975	Dack, David G.	Jan.	1976	G		
Averett, Linda W.	Dec. 1975	Dalichow, Rolf	July	1976	Gadol, Adele M.	Dec.	1975
B		Damon, Noel E.	Aug.	1974	Gammill, Lawrence A.	Apr.	1977
B		Daniels, Jerry W.	May	1975	Globas, Gert	Sept	1974
Bailey, Paul W.	June 1977	Danielson, Dan D.	Mar.	1975	Gookin, Albert	Feb.	1977
Baker, Mark	Oct. 1973/	Deaver, David K.	May	1975	Gordon, David E.	Dec.	1976
	Oct. 1976	Dickey, Shane	Nov.	1974	Gordon, Philip	Oct.	1974
Baldwin, Richard R.	Jan. 1974	Dickinson, Peter D.	Nov.	1976	Gorin, Joseph M.	Feb.	1977
Barney, Dick B.	June 1976	Diehl, Van	Dec.	1975	Grady, Robert B.	Sept.	1975
Barker, Roy D.	Feb. 1977	Dietrich, Harold E.	Jan.	1975	Graham, Thomas R.	Dec.	1973
Barraclough, Hal	Dec. 1974	DiFrancesco, Mauro	Apr.	1975	Grote, Barbara E.	Jan.	1974
Basawapatna, Ganesh	Mar. 1975	Dikeman, Peter	Apr.	1974	Guest, David H.	Nov.	1974/
Beckwith, John F.	Dec. 1976	Dilman, Richard	Feb.	1974		Dec.	1974
Best, Allan I.	Dec. 1975	DiPietro, David M.	Apr.	1975			
Bilen, Len	Apr. 1976	Dresch, Donald A.	Aug.	1974	H		
Blazek, Otakar	June 1975	Drake, Harris Dean	Mar.	1977			
Bologlu, Ali	June 1974/	Doub, James A. Dudley, B. William	June	1975 1973	Hahn, Walliam L.		1977
	Sept. 1975 July	Dudley, B. William Dudley, Robert L.	Dec. Nov.	1973 1973	Hall, James A.	Aug.	1974/
Botka, Julius Bradley, Havyn E.	$\begin{array}{ll}\text { July } & 1976 \\ \text { Apr. } & 1974\end{array}$	Dudley, Robert L. Duerr, Jeffrey R.	Nob.	1973		July	1975
Brewster, John L.	July 1974	Dupre, John J.	Mar.	1975	Hammons, Richard L. Hardage, P Kent	Oct.	1974
Bronson, Barry	Nov. 1974 Dec. 1976	E			Hardage, P. Kent Harkins, Daniel R.	Sept.	1974 1976
Buesen, Jürgen	Aug. 1975	Eads, William D.	June	1976	Harland, David A.	Jan.	1974
Bullock, Michael L.	Apr. 1976	Eastham, Terry	June	1975	Harms, Dennis W	Nov.	1976
Bump, Robert B.	June 1976	Eberle, Volker	Aug.	1977	Harrison, Van	Sept.	1977 1976
C		Edwards, Allen P.	Oct.	1975	Hashimoto, Satoru	Sept.	1976
		Egbert, William E.	Nov.	1976/	Hay, Robert R.	Mar.	1974
Campbell, John W.	Dec. 1975		May	1977/	Hayes, Thomas J.	Oct.	1976
Carlson, James E.	Feb. 1976		June	1977	Heger, Charles E.	Mar.	1976
Chambers, Donald R.	June 1977	Eggert, Rainer	Mar.	1974	Heinzl, Johann J.	Aug.	1974
Chan, Anthony Y.	Dec. 1976/	Elward, John S.	Oct.	1974	Hender, Thomas A.	Nov.	1975
	May 1977	Enlow, Carl Jr.	Mar.	1975	Hentschel, Christian	Aug.	1977
Chance, Geoffrey W.	June 1976	Estes, Marvin F.	Apr.	1977	Hernday, Paul R.	Mar.	1975
Chen, Philip	July 1976	F			Hickenlooper, F. Timothy	June	1976
Christensen, Svend	Nov. 1975				Hines, Jack L.	Apr.	1977
Christopher, Chris J.	Apr. 1974/	Falke, Reinhard	Oct.	1973	Hohmann, Hans-Günter	Feb.	1974
	June 1976	Farnbach, William A.	Jan.	1974	Hood, James M.	Dec.	1973/
Chu, Alejandro	Mar. 1975	Farrington, David	Apr.	1977		Aug.	1977
Chu, David C.	June 1974	Felsenstein, Ronald E.	June	1974	Horner, James F.	July	1975
Clifford, Douglas M.	June 1976	Fichter, George	Nov.	1975	House, Charles H.	Dec.	1975
Cline, Stephan G.	May 1975	Finch, Carolyn M.	Apr.	1977	Huff, Donald W.	Feb.	1975
Collison, Robert R.	Mar. 1976	Finch, William R.	Sept.	1975	Hyatt, Ronald C.	Sept.	1973/
Cornish, Eldon	Sept. 1974	Fischer, Walter A.	Dec.	1974		Mar.	1976
Cook, Michael J.	Nov. 1975	Fong, Arthur	Aug.	1974	Hyde, John W.	June	1977

Ingman, Eric M.
Inhelder, Allen F.

J
Jackson, William D.
Jackson, Weldon H.
Jacobs, Jacob R.
Jager, Clifford A.
Jekat, Hans J.
Jensen, Ronald C.
Jeppsen, Bryce E.
Jeremiasen, Robert
Johnson, Daniel E.
Johnson, Lawrence P.
Johnson, Lee
Johnston, Ronald L.
Joly, Robert
Juneau, H. Mac

Oct. 1976
Sept. 1975
K
Kappler, Wolfgang
Keever, Jerome
Ketelsen, Erhard
Kim, Young Dae
Kirkpatrick, George R.
Kmetovicz, Ronald E.
Knorpp, Billy
Krauss, Günter
Kuhlman, Louis J. Jr.
Kushnir, S. Raymond

Laing, Virgil L.
Lamy, John
Lane, Arthur B.
Lane, Thomas A.
Langguth, Alfred
Larsen, James
Lawson, William S.
Lee, Richard T.
Leong, Warren W.
Link, Horst
Liu, Chi-ning
Loughry, Donald C.
Luehman, Kent

M
Mack, Nealon
MacLeod, Kenneth J.
Maeda, Kohichi
Maitland, David S.
Marriott, Joe E.
Marrocco, James A.
Marshall, Howard D.
Masters, Lewis W.
Matthews, Ian
McDermid, John E.
McIntire, Richard E.
McKinney, H. Webber
Mellor, Douglas J.
Merrick, Edwin B.
Merrill, Howard L.
Millard, Joe K.
Mingle, P. Thomas
Misson, William
Moll, John
Morrill, Justin S., Jr.

Morris, Donald E.

July	1975
Sept.	1974
Oct.	1974
Aug.	1976
Apr.	1975
Feb.	1976
June	1974
Mar.	1974
Feb.	1975
Jan.	1975
Mar.	1977
July	1977
Mar.	1975
Feb.	1977

K
Kappler, Wolfgang
Ketelsen, Erhard
Kim, Young Dae
Kirkpatrick, George R
Knorpp, Billy
Krauss, Gunter
Kuhlman, Louis J. Jr.
Kushnir, S. Raymond

Mack, Nealon

Maeda, Kohichi
Marriott, Joe E.
Marrocco, James A.
Marshall, Howard D.
Masters, Lewis W
Matthews, Ian
McIntire, Richard E
McKinney, H. Webber
Mellor, Douglas J.
Merrick, Edwin B.
Millard, Joe K
Mingle, P. Thomas
Misson, William
Moll, John

Aug. 1975
June 1975
Aug. 1974
July 1975
May 1974
June 1977
Mar. 1976
Mar. 1975
Mar. 1974
Nov. 1976
Sept. 1974

Nov.	$1973 /$
Feb.	1977
Sept.	1974
June	1975
Mar.	1977
July	1975
Feb.	1974
July	1976
Aug.	1974
July	1977
Oct.	1973
Apr.	1974
Jan.	1975
June	1977

June 1977

Dec.	1974
Nov.	$1973 /$
Apr.	1975
Mar.	1974
June	1976
Feb.	1977
Nov.	1974
Oct.	1973
July	1974
Nov.	1975
Feb.	1977
July	1974
Apr.	1975
Aug.	1974
Oct.	1976
Dec.	1973
Dec.	1975
Apr.	1975
Mar.	1975
Mar.	1977
Aug.	$1975 /$
Dec.	1976
June	1976

Mortensen, A. Craig
Mueller, Louis F. Munsey, Grant J. Musch, Bernard E. Muto, Arthur S.

June 1976
Sept. 1973
July 1977
Nov. 1976
June 1974

Nadig, Hans-Jürg
Neff, Randall B.
Nordman, Robert G.

O'Buch, Warren J.
Offermann, Robert W.
Olson, William E.
Osada, Kunihisa
Osterdock, Terry N.
Pannach, Arndt
Paulson, Gary R.
Pearson, Robert
Pecchio, Santo
Peck, Robert D.
Perdriau, Robert H.
Pering, Richard D.
Peterson, Kenneth W.
Pierce, Robert B.
Poole, John S.
Pope, Richard
Pratt, Ronald E.
Priebe, Durward
Q
Quenelle, Robert C.
Dec. 1976

R		
Rauskolb, Roger F.	May	1975
Ricci, David W.	Jan.	1975
Richards, Alan J.	May	1976
Riebesell, Günter	Aug. 1977	
Riedel, Ronald J.	Mar. 1975	
Riggins, Cleaborn C.	Oct. $1974 /$	
	Mar. 1977	
Risley, William B.	Dec. 1974	
Robertson, James	Nov. 1973	
Roos, Mark	July	1976
Roy, Jean-Claude	June	1975
Rudé, André F.	Feb. 1976	
Ruchsay, Walter	Jan.	1977
Rytand, William A.	Mar. 1977	

S

Salfeld, Peter	Jan.	1977
Salesky, Emery	June	1977
Saponas, Thomas A.	Aug. $1975 /$	
	Jan.	1977
Sasaki, Gary D.	Jan.	1975
Schrenker, Helge	Oct.	1975
Schultz, James T.	JJan. 1976	
Schultz, Steven E.	June	$1974 /$
	Jan. $1975 /$	
Scott, Peter M.	Oct.	1975
Seavey, Gary A.	Mar. 1976	
Shar, Leonard E.	Mar. 1976	
	Dec. $1974 /$	
Sharritt, David D.	Aug. 1976	
Small, Charles T.	July 1976	
Smith, Jeffrey H.	Aug. 1975	
Smith, Richard L.	Jan. 1977	
	May	1976

Smith, Robert B.	Feb.	1976
Snow, David L.	Mar.	1977
Snyder, David C.	Feb.	1975
Sommer, Heinz	Jan.	1977
Sorden, James L.	June	1974
Stallard, Scott J.	Mar.	1977
Stancliff, Roger	Mar.	1975
Stedman, John M.	Oct.	1974
Stefanski, Andrew	Dec.	1974
Stickel, Herbert P.	Aug.	1977
Stickle, Ronald L.	Feb.	1976
Stinson, John	Nov.	1973
Stockwell, R. Kent	May	1974
Stone, Peter S.	Jan.	1975
Suehiro, Jun-ichi	Feb.	1975
T		
Tabbutt, Richard D.	Dec.	1975
Taggart, Robert B.	May	1974/
	Nov.	1976
Tamamura, Toshio	Sept.	1976
Tang, Edward	June	1975
Tillman, Lynn	Nov.	1975
Trimble, Charles R.	Jan.	1975/
	Oct.	1975
Toschi, Elio A.	Aug.	1976
Tung, Chung C.	May	1974
Tverdoch, Richard	Feb.	1974
U		
Uebbing, John T .	Apr.	1977
Urquhart, J. Reid	Jan.	1976/
	Oct.	1976

V

Van Bree, Kenneth A.	July	1977
Van Brunt, Richard C.	Oct.	1974
Van Dyke, Eric J.	July	1977
Veteran, David R.	May	1974
Vifian, Hugo	July	1976
Vyduna, James B.	Feb.	1977

W	
Wade, John M.	Feb. 1975
Wagner, William E.	Aug. 1975
Waitman, Thomas F.	June 1975
Walker, Hugh P.	Jan. 1976
Walker, William T.	June 1977
Wang, Patrick H.	Nov. 1976
Ward, Michael J.	Feb. 1976
Warp, Rick A.	Dec. 1973
Warren, Richard E.	Apr. 1976
Watanabe, Tak	Aug. 1976
Weber, Lynn	Aug. 1977
Weibel, Gerald E.	Sept. 1973
Whicker, Richard	Nov. 1975
Wickliff, Robert G.	Sept. 1976
Winninghoff, Paul G.	Aug. 1974
Witkin, Louis A.	May 1976
Wolpert, David L.	Jan. 1975
Woodhull, Frederick	July 1976
X	
Y	
Yansouni, Cyril J. Young, Ivan R.	Mar. 1975
	Nov. 1973/
	Mar. 1976
7	

Zamborelli, Thomas J. Sept. 1974
Zellmer, Joel

Aug. 1977
Sept. 1974

Fig. 2. Character generator produces horizontal and vertical bit patterns for alphanumeric characters and sends them to the stroke generator.

- Load new ROM address into RAR from ROM output
- Increment RAR to next ROM address
- Load new ASCII code into RAR and increment character counter.
These control situations allow the ASM to step consecutively from one bit pattern to the next for portions of a character that are unique, or to jump anywhere within the ROM to access portions of another character that are common to the one being constructed. For example, an eight may be made from a three and a pattern unique to an eight:

$$
\}+3=8
$$

This yields maximum efficiency in the use of ROM and makes it possible to store a complete ASCII character set plus a few Greek and lower-case letters for engineering notation in 512 16-bit words of ROM.

Stroke Generator

To display high-quality lines with uniform intensity, three signals have to be generated: the horizontal component, the vertical component, and the blanking signal. This is the job of the stroke generator.

The stroke generator converts digital bit patterns into uniform line segments. The horizontal and vertical lines are voltage ramps. The blanking signal is generated from the horizontal and vertical components and determines the line's intensity and turns the beam on or off.

To generate a uniform straight line with constant intensity, the signal moving the beam should be a linear ramp, as shown in Fig. 3. A simplified diagram of the circuit used to generate this signal is

Fig. 3. Lines are drawn by moving the beam with a smooth ramp to maintain constant intensity.
shown in Fig. 4. A digital-to-analog converter (DAC) generates the desired output level. The present output value is subtracted from the DAC value to generate a difference $\Delta \mathrm{X}$, which is sampled and held. Then the integrator switch closes and the sample-and-hold switch opens, and the output ramps to the desired output value.

For a given CRT drive, a certain number of electrons per second are generated by the electron gun. If the beam is moved twice as far in the same amount of time, the electron density is halved, so the line is dimmer. It is a simple matter to generate an intensity level that will compensate for this, knowing the horizontal and vertical line lengths $\Delta \mathrm{X}$ and $\Delta \mathrm{Y}$:

$$
\text { Intensity }=\mathrm{A} \sqrt{(\Delta \mathrm{X})^{2}+(\Delta \mathrm{Y})^{2}}
$$

where A is a proportionality constant related to the integration time.

In the 5420A, this is approximated using one-half the sum of the magnitudes of $\Delta \mathrm{X}$ and $\Delta \mathrm{Y}$. This results in a slightly greater intensity for horizontal and vertical lines than for diagonal lines of the same length. However, this is of little consequence, because the compensation is applied only for lines longer than a certain threshold value. In other words, some variation in intensity is permitted, although much less than there would be without compensation. This is because a slightly greater intensity for short lines than for long lines not only livens the display, but

Fig. 4. Simplified ramp generator circuit. A digital-to-analog converter generates the desired value of the output. This is subtracted from the present value and the difference is sampled and held. Then the integrator switch closes and the sample-and-hold switch opens, and the output ramps to the desired value.
also introduces some information on how quickly a plot is changing.

Mini-Cartridge Data Storage

The mini-cartridge has proved its utility as a data storage medium in HP terminals and desktop computers. ${ }^{1,2}$ In the 5420A Digital Signal Analyzer, the minicartridge is used for data storage and as a backup store for a large semiconductor RAM memory.

The minicartridge holds about 250,000 16-bit words of information, acceṣsible at a $1-\mathrm{kHz}$ word rate. It was designed jointly by HP and 3 M corporation as a small, reliable storage device that could stand up to the vigorous demands of a computer controlled system. ${ }^{3}$ A feature of the minicartridge is its belt drive, which eliminates tape-to-capstan contact and enhances reliability.

There are two cartridge drives in the 5420A Digital Signal Analyzer. The front-panel cartridge provides the ability to store and restore instrument setups and data waveforms for later use. The second cartridge drive is hidden under the instrument's top cover. Its function is to back up 48 K words of highspeed volatile memory.

Memory Back-Up

The "personality" of the 5420A is stored in 48 K words of high-speed semiconductor RAM memory. This memory is volatile, so it must be loaded during the power-up sequence. The memory loading process is accomplished in several steps and involves the 21MX K-Series Computer, a small bootstrap program residing in ROM (non-volatile), ROM-stored micro-

Fig. 5. Two tape drives in the 5420A share read/write electronics and communicate with the central processor over the $M I O B$. One drive is used for storing data and instrument setups. The second drive is internal, and is used to back up the 5420A's semiconductor memory.
code, the module I/O bus (MIOB), and the hidden cartridge.

When the power is switched on, the computer performs an initial bootload opcode (IBL), which loads a small bootstrap program from ROM into the computer's main 48 K memory. This program checks the memory and tests the integrity of the MIOB, and then proceeds to load data stored on the hidden cartridge, filling the computer's memory. To enhance reliability, the 48 K memory contents are stored in 1 K records, and there are multiple copies of each record on the cartridge. If an error is encountered during the loading of a record, alternate copies of the record are used. If the alternate copies also have errors, the noise reject threshold used in decoding the tape head signal is changed. Thus the loading process is desensitized

David C. Snyder

Dave Snyder designed the tape cartridge hardware and the module I/O bus for the 5420A. With HP since 1971, he's been project leader for the 5451B Fourier Analyzer and has done software design for nuclear analyzers and automatic test systems. Dave Graduated from the University of California at Berkeley with a BS degree in engineering physics in 1965. Before joining HP he worked as an astrodynamicist, a software analyst, and a software designer. He's done graduate work at three universities in a variety of fields including computer science, systems, and digital design. A native of Mankato, Minnesota, Dave is married to a nurse, has three children, and lives in the Santa Cruz mountains of California. His interests include microprocessing, games, cryptography, hiking, woodworking, photography, and guitar.
to tape errors, and in fact, will load perfectly even in the presence of multiple hard errors.

Cartridge Hardware

The cartridge hardware interfaces two tape transport assemblies, each consisting of motor, head, and preamplifier, to the 5420A module I/O bus (MIOB), as shown in Fig. 5. The MIOB transactions involve sending and receiving data, receiving commands (e.g., \$RUN, \$STOP, \$READ,...), and sending status information (e.g., \%MOVING, \%EOF,...) called "code words".
The motor servo's job is to maintain the tape speed at 22 or 88 inches per second (ips), both forward and reverse. The tape velocity increases linearly from a stop to 22 ips in approximately 20 milliseconds; this corresponds to accelerating the motor uniformly from 0 to $1300 \mathrm{r} / \mathrm{min}$ within one-half of one motor revolution or about 0.5 inch of tape travel. An optical tachometer providing 2000 pulses per revolution is the control feedback element.

Data is written on the tape bit-serially, encoded in HP's delta distance format. ${ }^{2}$ This is an efficient technique in which the recording density varies between 900 and 1600 bits per inch depending on the bit composition of the data. In this format, zeros are represented by short magnets (about $600 \mu \mathrm{in}$) and ones are represented by long magnets (about $1000 \mu \mathrm{in}$).

The control portion of the cartridge hardware han-
dles all MIOB transactions, performs serial-to-parallel conversions, and handles exceptions (for example, sending status code words to the computer whenever an error is detected). The control section is implemented as a PROM-driven 32 -state algorithmic state machine (ASM).

A diagnostic mode is provided that allows software read and write arbitrary patterns on the tape, instead of being limited to reading and writing one and zeros. Using the standard xIo pseudo-DMA opcode, the signal at the tape head may be set or sensed with a resolution of about one microsecond, equivalent to a tape motion of about $20 \mu \mathrm{in}$. This capability can be used to read and record worst-case test patterns such as frequency response patterns, dropout patterns, and so on, for diagnostic purposes. 距

References

1. R.G. Nordman, R.L. Smith, and L.A. Witkin, "New CRT Terminal Has Magnetic Tape Storage for Expanded Capability," Hewlett-Packard Journal, May 1976.
2. D.E. Morris, C.J. Christopher, G.W. Chance, and D.B. Barney, "Third-Generation Programmable Calculator Has Computer-Like Capabilities," Hewlett-Packard Journal, June 1976.
3. A.J. Richards, 'Mini Data Cartridge: A Convincing Alternative for Low-Cost, Removable Storage," HewlettPackard Journal, May 1976.

Digital Signal Analyzer Applications

Analyses of two actual systems, one electrical and one mechanical, show what the analyzer can do.

by Terry L. Donahue and Joseph P. Oliverio

THE 5420A DIGITAL SIGNAL ANALYZER is basically a two-channel digital low-frequency spectrum and transfer function analyzer. A major application area is the analysis of mechanical structures, since these typically exhibit low-frequency (below 25 kHz) oscillations. However, its versatility, wide choice of measurements, and post-measurement processing capability make it a useful tool in other areas, such as acoustics, underwater sound, control system analysis, phase noise analysis, and filter design. This article describes two applications, one electrical, the other mechanical. The examples include the results of actual measurements made on an electronic speed controller and a mechanical structure.

Electronic Speed Controller

Fig. 1 is a block diagram of the speed controller for
the 5420A's own cartridge tape drive, which is driven by an armature-controlled permanent-magnet dc motor. An analog tachometer voltage is obtained by filtering the output of an optical pulse tachometer. The set point input $R(\mathrm{j} \omega)$ represents a command for the motor to run at a constant speed. The feedback is the analog tachometer voltage, which is proportional to motor speed and therefore tape speed. System noise, represented by $S(\mathrm{j} \omega)$, is contributed by several elements including the unregulated dc motor voltage, mechanical imbalances in the system, and varying frictional forces.

The solid black summing node in Fig. 1 is added to the system to introduce noise $\mathrm{N}(\mathrm{j} \omega)$ from the 5420A's random noise source. The measurement technique is to measure the transfer function $T(\mathrm{j} \omega)=\mathrm{X}(\mathrm{j} \omega) / \mathrm{N}(\mathrm{j} \omega)$ and compute the open-loop transfer function $\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)$. This is possible because

Fig. 1. Block diagram of a cartridge tape drive system to be analyzed by the 5420A Digital Signal Analyzer. The black summing node has been added to the system to introduce noise $N(j \omega)$ from the 5420A's random noise source. The technique is to measure $T(j \omega)=X(j \omega) / N(j \omega)$ and compute the open-loop transfer function $G(j \omega) H(j \omega)$.

$$
\mathrm{T}(\mathrm{j} \omega) \approx \mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega) /[1+\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)] .
$$

The black summing node in Fig. 1 must be added to the system with some care. To provide isolation from the noise source and to prevent disturbing the normal operation of the system, an operational amplifier circuit, as shown in Fig. 2, can be used. The Rs should be matched to provide a gain $|\mathrm{Y}(\mathrm{j} \omega) / \mathrm{X}(\mathrm{j} \omega)|=1$ to an accuracy consistent with normal parameter variations in the system. The circuit should have unity gain and no phase shift over the control system bandwidth.

Fig. 2. An operational amplifier circuit for introducing noise $N(j \omega)$ into a system without disturbing the system.

Fig. 3 shows log magnitude and phase versus frequency of the measured transfer function $\mathrm{T}(\mathrm{j} \omega)$. To get the open-loop transfer function $G(j \omega) H(j \omega)$ the 5420A's arithmetic operations are used to get the results illustrated in Fig. 4. From the figures, it is possible to estimate that $\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)$ contains a pole at 0 Hz
and another at about 200 Hz . An analysis of the system predicted a response dominated by the loop filter and the motor. The loop filter was expected to contribute a pole at 0 Hz and a low-frequency zero, and the motor a low and a high-frequency pole. The measured result shows the pole at 0 Hz , the high-frequency motor pole near 200 Hz , and the low-frequency filter zero nearly perfectly cancelling the low-frequency motor pole.

Stability Analysis

Once $\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)$ has been obtained, it is possible to determine the absolute and relative stability of the system. A simplified version of the Nyquist stability criterion that can usually be applied to real systems states that a system with an open-loop transfer function $\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)$ that has no poles in the right half of the complex plane is closed-loop stable if the Nyquist plot (imaginary part versus real part) of $G(j \omega) H(j \omega)$ for $0<\omega<\infty$ does not enclose the critical point $-1+\mathrm{j} 0$.

Fig. 5a shows the results of using the coordinate keys to display the measured $G(j \omega) H(j \omega)$ in the Nyquist format. The system is seen to be absolutely stable since the critical point is not enclosed. Relative stability is measured by how close $\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)$ comes to enclosing the critical point. This is traditionally measured by the gain and phase margins, which are easily determined by again changing coordinates. In Fig. 5b $\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)$ is displayed using coordinates of log magnitude versus phase. The gain margin is 23 dB and the phase margin is 75 degrees.

Fig. 3. Closed-loop transfer function $T(j \omega)$ measured by the 5420A.

Fig. 4. The result of calculating $G(j \omega) H(j \omega) \approx T(j \omega) /[1-T(j \omega)]$ using the 5420A's arithmetic keys.

The measurements were repeated on the system with an extra gain block inserted into the loop. The Nyquist display is shown in Fig. 6a superimposed on the original Nyquist display. The original system is conditionally stable. Adding gain, while not making it unstable, has decreased the relative stability. From Fig. 6b, it can be seen that the gain margin has de-
function is then just $T(j \omega)$, which is shown in Fig. 3.

Characterizing Structural Vibrations

One way of modeling the dynamic characteristics of a mechanical structure is to identify its modes of vibration. An automobile, for example, may ride smoothly at $40 \mathrm{mi} / \mathrm{hr}$, vibrate considerably at $50 \mathrm{mi} / \mathrm{hr}$,

Fig. 5. (a) Nyquist display of open-loop gain $G(j \omega) H(j \omega)$. (b) Same function in different coordinate system permits measurement of gain margin (gain at -180° phase) and phase margin (phase difference from -180° at $0 d B$ gain).
creased to 15 dB and the phase margin to 45 degrees.
The only question remaining is the shape of the closed-loop transfer function. In the general case, this is given by $G(j \omega) /[1+G(j \omega) H(j \omega)]$. If the output of the speed controller is defined to be the tach voltage, a known function of the tape speed, the system is unity-feedback, with $H(j \omega)=1$. The closed-loop transfer
and then ride smoothly again at $60 \mathrm{mi} / \mathrm{hr}$. This happens because one of the modes of vibration of the car, perhaps in the front suspension, body, or frame, is excited at $50 \mathrm{mi} / \mathrm{hr}$ but not at the other speeds. A mode is defined by a natural frequency of vibration, a damping value that defines how quickly the vibration will decay to zero when external forces are removed, and a

Fig. 6. The measurements of Fig. 5 repeated with more gain in the system. Gain and phase margins have decreased.

Fig. 7. A steel plate is to be analyzed by the 5420A. An electrodynamic shaker supplies the stimulus. The plate's response is detected by accelerometers at various points on the surface.
mode shape, or spatial distribution of the amplitude and phase of the resonant condition over the structure.

In mechanical design, one objective is to design a structure whose modes of vibration occur at frequencies outside the frequency range of known external driving forces. When this is not possible, it may be

Fig. 8. A result of the measurement of Fig. 7 for one point on the plate surface. The resonance at 551 Hz (identified by the X cursor) represents a mode of vibration with a damping factor of 0.559%.
possible to add damping material to the structure, which has the effect of damping its modes of vibration as well as reducing its amplitude of vibration at any frequency.

Modal parameters-frequency, damping, and mode shape-can be identified from transfer function measurements on a structure. The following example illustrates how the 5420A can be used to identify the modes of vibration of a flat plate.

Modal Survey

The setup is shown in Fig. 7. The 5420A's noise generator is used to excite the structure by means of an electrodynamic shaker. A force transducer mounted between the structure and the shaker provides the input signal for channel 1 of the analyzer. The accelerometer mounted on the surface of the steel plate provides the response signal for channel 2 of the analyzer. The 5420A measures the transfer function of the structure between the stimulus and response points. The result is shown in Fig. 8 for position \#1 on the surface. Each peak represents a mode of vibration of the structure. The resonant frequency (FR) and percent critical damping (\%D) of each mode can be determined by placing the X cursor on the peak and pressing the PEAK key.

Fig. 9. How modal analysis is done with the 5420A Digital Signal Analyzer.

Fig. 10. Results of a modal analysis of the steel plate.
Each response point on the structure will exhibit a different transfer function with respect to the input. For lightly damped structures the amplitude of the mode can be determined from the imaginary, or quadrature, part of the transfer function. Thus the mode shape can be drawn by recording the imaginary value of the transfer function at each measurement point for the resonance of interest and plotting these values as a function of their position on the surface. The process is shown pictorially in Fig. 9. The result of recording each imaginary value and plotting it as a function of its position on the surface is shown in Fig. 10.

Reducing Unwanted Vibrations

The two most common methods of reducing un-

Joseph P. Oliverio

Joe Oliverio received his BSEE degree in 1968 from the University of Santa Clara. After a year as a design engineer, he joined HP in 1969 as a sales engineer. Now a digital signal analyzer product marketing engineer, he's written two magazine articles on digital signal analysis. Joe was born in San Jose, California and still lives there. He's married and has two children. He's an amateur magician and an actor in local theater productions, and he enjoys skiing, tennis, and golf.

Fig. 11. Measurements before and after adding mass to the steel plate. Extra mass decreases the amplitudes and frequencies of the resonances.
wanted vibrations are to add mass to the structure and to increase its stiffness. Both will affect the frequency of a resonance. Adding mass will lower a natural resonant frequency. Increasing the stiffness will increase a natural resonant frequency. An example of the result of adding mass to the steel plate is shown in Fig. 11. Not only are the resonances lower in frequency but their amplitudes have decreased because the added mass increased the damping of the structure. 家

Printing Financial Calculator Sets New Standards for Accuracy and Capability

This briefcase-portable calculator has several new functions and is exceptionally easy to use. Most important, the user
need not be concerned about questions of accuracy or operating limits.

by Roy E. Martin

HEWLETT-PACKARD INTRODUCED its first financial calculator, the HP-80, in $1973 .{ }^{1}$ The HP-80 was followed, although never replaced, by the HP-81, the HP-70, the HP-22, ${ }^{2}$ and the HP-27.
The new HP-92 Financial Calculator, Fig. 1, while superficially similar in many respects to these units, vastly exceeds all of them in functional capability and accuracy. Originally conceived as a briefcaseportable printing calculator packaged like the HP-91 ${ }^{3}$ and the HP- 97^{4} and having the financial capabilities of the HP-22, the HP-92 in reality goes far beyond this modest goal. Among its features are:

- Compound interest keys redefined to enhance capability and ease of use
- A printed amortization schedule, correctly rounded and clearly labeled
- Internal rate of return (IRR) that allows the user to enter up to 31 cash flows with arbitrary positive and negative values
- The greatest accuracy ever achieved in any HP financial calculator
- Calendar functions with a range of 900,000 days (approximately 2464 years)
- Bond and note functions that conform to Securities Industry Association equations ${ }^{5}$
- Three types of depreciation that can be done after entering data only once
- Means, standard deviations, and linear regression for two variables.

New Compound Interest Keys

The cornerstone of the HP-80 and all subsequent HP financial calculators is the row of compound interest keys: n i PV PMT FV
$\mathrm{n}=$ number of compounding periods
$\mathrm{i}=$ percent interest per period
PV, PMT, FV specify the cash values in various problems ($\mathrm{PV}=$ present value; PMT $=$ payment; $\mathrm{FV}=$ future or final value).
These keys allow the user to solve for an unknown value by first placing known values in the calculator and then pressing the key corresponding to the
unknown.
Example: Find the monthly payment due on a 36-month, 12%, \$3000 loan.

Keystrokes

These keystrokes place the known	$\begin{array}{r} 36 \\ 1 \end{array}$	n i	(12% annual is 1% per month)
values into the calculator	3000	PV	
Then press:		PMT	
Answer displayed		99.64	Monthly Payment

This sequence of keystrokes will solve this problem on all previous HP financial calculators.*
The compound interest keys solve three types of problems, based on the following three equations. (In these and subsequent equations, i is a decimal fraction, e.g., 0.05 for five percent.)

$$
\begin{array}{ll}
\mathrm{FV}=\mathrm{PV}(1+\mathrm{i})^{\mathrm{n}} & \text { Compound Amount } \\
\mathrm{PV}=\operatorname{PMT}\left[1-(1+\mathrm{i})^{-\mathrm{n}}\right] / \mathrm{i} & \text { Loan } \\
\mathrm{FV}=\operatorname{PMT}\left[(1+\mathrm{i})^{\mathrm{n}}-1\right] / \mathrm{i} & \text { Sinking Fund }
\end{array}
$$

Each of these equations has four variables. As long as three of the four variables are known (n or i must be one of the three knowns) a user can solve for an unknown.

Because there are three distinct equations and only one set of keys, it is necessary to specify which equation is involved. This is done automatically through the use of status bits (flags). Internally, status bits are set when values associated with n, i, PV, PMT, FV are keyed into the calculator. As soon as three status bits are set, the equation is specified and a value can be computed.

On the HP-80, known values are pushed onto the stack and then lost when a value is computed, requiring the reentry of data on every new computation. The HP-70, HP-22, and HP-27 have separate registers to hold the financial values but require special functions to clear the status bits.

[^2]

Fig. 1. HP-92 Investor is a financial printing calculator with superior accuracy and capability. Keyboard is designed to prompt the user, making many problem solutions obvious even without a manual.

This design, although creatively conceived and cleanly implemented, is inconvenient for chained calculations. Also, an important class of problems, loans with a balance, cannot be solved without tedious iteration by the user.

The same keys, n, i, PV, PMT, FV, were to be on the HP-92. However, we wanted to improve and simplify their use. The most attractive alternative came in the form of a more general equation:

$$
\mathrm{PV}(1+\mathrm{i})^{\mathrm{n}}+\mathrm{PMT}\left[(1+\mathrm{i})^{\mathrm{n}}-1\right] / \mathrm{i}+\mathrm{FV}=0 .
$$

The three equations in previous calculators are all special cases of this one, up to a sign change. The basic premise in this equation and a major difference between the HP-92 and other financial calculators is that money paid out is considered negative and money received is considered positive.

Implemented in the HP-92, this equation allows free-format problem solving, letting the user change any variable at any time or solve for any value at any time. It also increases the functional capability of the calculator to include loans with a balance, fixes the roles of PV, PMT, and FV, making them easier to explain, reduces the number of equations from three to one, and eliminates the need for status bits-the data in the calculator determines the problem to be solved.

In the early stages of the project, the new compound interest equation was simulated. The increase in capability and simplicity was substantial. Within minutes, inexperienced people could understand the
concept and apply the keys to problems formerly considered too complicated to solve. Naturally, we were pleased. The new calculator would be more capable than earlier designs and easier to use as well. But our satisfaction was short-lived, for it turned out that here,

Fig. 2. Newton's method is used by the HP-92 to solve compound interest problems. Starting from some point i_{0} on the graph of an equation, the goal is to find the root of the equation, or the point where the graph crosses the axis. Drawing a tangent line to the graph at i_{0} and finding where this line crosses the axis gives a second point i_{1}. This process is repeated to find i_{2}, i_{3}, and so on, until a point is reached that is close enough to where $f=0, i_{0}$ is called the initial guess.

Fig. 3. Equations used in previous HP financial calculators have favorable graph shapes (the one shown is typical), so that starting from any initial guess i_{0} the steps taken by Newton's method are always toward the root.
as usual, nothing is free.
The numerical analysis used in solving the three equations in the HP-80 had been formidable. Yet the accuracy and reliability of the algorithms was borderline and their performance deteriorated unacceptably when they were applied to the new more general equation. The most difficult problem was solving for i in the compound interest problems. Internally, this involves the microprogrammed application of Newton's method in the solution of polynomial equations (see Fig. 2).

Newton's method requires an initial guess, i_{0}, at the root of $f(i)=0$. Subsequent values are produced using

$$
i_{k+1}=i_{k}+\frac{f\left(i_{k}\right)}{f^{\prime}\left(i_{k}\right)}
$$

until $\left|i_{k}-i_{k+1}\right|<$ required error limit. Basically, we slide down the graph of $\mathrm{f}(\mathrm{i})$ sawtoothing into the solution.
Three factors that affect the use of Newton's method are the shape of the graph, the accuracy of evaluation
of the function $\mathrm{f}(\mathrm{i})$ and its derivative, and the quality of the initial guess. For certain graphs any reasonable initial guess will produce convergence to the correct answer. This was the case with the equations solved by previous HP financial calculators (see Fig. 3).

Inaccuracy in evaluation of the function and its derivative can cause various problems. For example, a small error can cause the iteration to step in the wrong direction, say to the previous point, resulting in an infinite loop. Worse yet, it can produce a wrong answer. The new more general equation was more sensitive than the old to round-off errors, and introduced another difficulty not encountered before.

The quality of the initial guess became a critical issue. Unless the initial guess was good enough, Newton's method would fail (see Fig. 4). With this in mind, we implemented several transformations to change the shapes of the graphs in an attempt to make Newton's iteration less sensitive to poor first guesses. We also carried extra digits and programmed numerically stable formulas to diminish the impact of rounding errors on the accuracy of intermediate calculations.

But our work was far from done. Even with the transformations and increased accuracy, initial guesses in error by less than 1% proved inadequate, because convergence was too slow when n was large.

After four months of careful examination and simu-

Fig. 4. Modified equation used in HP-92 enhances ease of use, but is more difficult to solve. Shape of graph is such that some initial guesses will cause Newton's method to step away from the root. To prevent this a strategy was developed that produces initial guesses accurate to five decimal places.

Using the n, i, PV, PMT, FV Keys

Corresponding to each of these keys is a storage register. To put a value in the storage register, just key in the value and then press the appropriate key. Money paid out is represented as negative and money received is represented as positive.

Problem:

1. If you deposit $\$ 10,000$ in a fund that pays 7.75% annual rate, how much could you withdraw 12 years later?
2. If, in addition, you deposit $\$ 1000$ each year thereafter, how much would you be able to withdraw after 12 years?
3. If you wanted to withdraw $\$ 45,000$ at the end of the 12 -year period, how much would you have to deposit each year?.
4. If you could deposit $\$ 18,500$ initially, how much would you have to deposit each year to be able to withdraw $\$ 45,000$ at the end of the 12 years?

Solution:

Press CL FIN. This clears the registers.

1. Key In Then Press Comment
$12 \mathrm{n} \quad$ This is the number of years.
$7.75 \quad i \quad$ This is the periodic interest rate.
$10,000 \mathrm{CHS} \quad$ PV You are putting the money into the bank so you key it in as negative.
FV This tells the calculator that you wish to solve for the cash flow at the end of the time period.
See displayed: $24,491.05$, the amount you could withdraw in 12 years.
2. After values are keyed in (or calculated), they remain in the registers To do the second part of the problem, all we have to do is key -1000 into PMT (12 remains in $n, 7.75$ ini and $-10,000 \mathrm{in} \mathrm{PV}$) and then press FV Key In Then Press Comment
1000 CHS PMT Again payment is negative because you are giving money to the bank.
FV This tells the calculator to find the cash flow at the end of the 12 years.
See displayed 43,189.17, The amount you could withdraw after 12 years.
3. If you needed to withdraw $\$ 45,000$ and wanted to find out what your yearly deposit would be, put 45,000 into FV and then tell the calculator to solve for PMT
Key In Then Press Comment
45,000 FV At the end of the 12 years you will receive $\$ 45,000$.
PMT This tells the calculator to find the annual deposit you must make
See displayed - 1096.85, The amount you must deposit annually
4. Now put $-18,500$ into PV, then press PMT

Key In Then Press Comment
18,500 CHS PV You plan to deposit $\$ 18,500$ at the beginning of the 12 years.
What will your deposit be so that you can still withdraw $\$ 45,000$ at the end of 12 years?
See displayed 16.50 This tells you that you could withdraw this amount each year and still get $\$ 45,000$ at the end of 12 years.

Fig. 5. An example illustrating how natural the HP-92's compound interest keys are to use. An important difference from previous financial calculators is that money paid out is considered negative and money received is considered positive.
lation we devised an initial guess strategy that produces guesses correct to five places over all ranges of PV, FV, PMT, and i , and with n as large as 10^{8}. Computation time for i was reduced to about a dozen seconds.

Some of the techniques employed were:

- An initial guess strategy that selects an initial guess by problem classification, the production of as
many as three guesses, and the selection of the final initial guess based upon the three guesses
- Enhanced accuracy in $+,-, \times, \div, \ln , \mathrm{e}^{\mathrm{x}}$
- Special evaluation of $\left[(1+i)^{n}-1\right] / i$ to avoid damage from cancellation
- Carrying more digits internally than any previous HP financial calculator.
In the final implementation of the $n, i, P V, P M T$, and FV keys we were able to achieve reliable functional capability over a wide range of data and problems, a dramatic enhancement in ease of use, and definitive accuracy (see accuracy discussion) exceeding that of any previous HP calculator.

Fig. 5 demonstrates how easy the new compound interest keys are to use.

Internal Rate of Return

Given an initial investment and a series of uneven cash flows $\mathrm{CF}_{0}, \mathrm{CF}_{1}, \ldots, \mathrm{CF}_{\mathrm{n}}$ occurring at equally spaced time intervals the IRR (internal rate of return) is the interest rate that satisfies the following equation:

$$
\mathrm{CF}_{0}+\mathrm{CF}_{1}(1+\mathrm{i})^{-1}+\mathrm{CF}_{2}(1+\mathrm{i})^{-2}+\ldots+\mathrm{CF}_{\mathrm{n}}(1+\mathrm{i})^{-\mathrm{n}}=0
$$

The only other HP financial calculators to produce IRR are the HP-27, which allows eleven cash flows, and the HP-81, which allows ten cash flows. The HP-92 allows up to 31 uneven cash flows.

We again applied Newton's method to solve this equation, but in this case the shape of the graph presented a different type of problem. In the compound interest problem there is only one root (the graph crosses the axis only once). In the IRR problem it is possible for the equation to have many roots. Descartes' rule of signs allows polynomial equations with several changes of sign in their coefficients to have several roots. Since the cash flows in the IRR problem represent the coefficients of a polynomial (see equation), cash flows that change direction more than once produce this possibility. However, if there is more than one root, none of the solutions will be financially meaningful. To avoid this complication, the HP-27 will not allow more than one sign change.*

Example: Consider the following two problems. Negative values represent investment and positive values represent income.

	Problem 1	Problem 2
Initial	$-\$ 10,000$	$-\$ 10,000$
Year 1	$-\$ 1,000$	$\$ 2,000$
Year 2	$\$ 2,000$	$-\$ 1,000$
Year 3	$\$ 13,000$	$\$ 13,000$

The HP-27 produces an answer of 11.83% for Problem 1 but returns ERROR for Problem 2. To most users it is not apparent why this happens.

We wanted to remove this kind of limitation. Again

[^3]after considerable investigation we were able to im－ plement an IRR function with a much broader range． For Problem 2 above the HP－92 produces the correct answer of 12.99% ．

The IRR function on the HP－92 will produce the correct answer for any problem with up to 31 cash flows and any number of sign changes，provided that there is at least one sign change and that there is only one significant sign change．In general，this means that there is only one real root．Multiple sign changes are allowed provided that all but one of the cash flows changing sign are small in comparison to the other cash flows．

Example：

	Problem 3 Acceptable	Problem 4 Unacceptable
Initial	$-\$ 100,000.00$	$-\$ 100,000.00$
Year 1	$\$ 500.00$	$\$ 500,000.00$
Year 2	$-\$ 200.00$	$-\$ 200,000.00$
Year 3	$\$ 100.00$	$\$ 100,000.00$
Year 4	$\$ 150,000.00$	$\$ 150,000.00$

For Problem 3 the HP－92 produces the correct answer of 10.77% ．For Problem 4 the HP－ 92 will cal－ culate indefinitely．The mathematically correct but financially meaningless answers to Problem 4 are -147.31% and 362.98% ．This does not mean that the problem is financially meaningless，but only that IRR is not the way to attack it．If there is a financially meaningful answer to an IRR problem the HP－92 will find it．

Bonds

The SIA（Securities Industry Association）hand－ book ${ }^{5}$ specifies certain procedures for the calculation of bond values．Most bonds have semiannual coupon periods determined by their maturity dates．For example，if a bond matures on December 15，1985， then the coupon periods will end on June 15，1985， December 15，1984，June 15，1984，and so on．A bond is not usually purchased on a coupon date（see Fig．6）． This implies that both simple and compound interest must be used during calculations of price and yield． The SIA procedure for the calculation of purchase price involves the exact number of days in the coupon period in which the bond is purchased．The number of days in a coupon period can vary from 180 to 184. Inside the HP－92 the calendar functions determine the exact number of days to the end of the coupon period from the purchase or settlement date，automat－ ically taking leap years into account（Fig．7）．The computations can be based on a 360 or 365 －day year．

A Manual on the Keyboard

The HP－92＇s keyboard is designed to prompt the user and make it obvious how to solve many prob－ lems．Keys of the same kind are grouped together．In

Fig．6．In bond calculations，coupon dates are determined by the maturity date and are six months apart．Settlement（pur－ chase）date can be any business day．Built－in HP－92 cal－ endar functions determine the exact number of days between the settlement date and the coupon date．
many problems all required input parameters have individual storage registers．To place a value in one of these registers the user simply keys in the value and then presses the key corresponding to that register．

Example：There are three types of depreciation： straight line（SL），sum of the years digits（SOYD），and declining balance（DB）．The input parameters and the corresponding keys are life（LIFE），starting period（N1）， book value（воок），ending period（ N 2 ），salvage value （SAL），and declining balance factor（FACT）．These val－ ues are loaded into their registers using the blue and gold shift keys where appropriate．Once this is done， any or all of the three types of depreciation schedules may be calculated by pressing the SL，SOYD，or DB keys．

Accuracy and Operating Limits

Everyone who participated in the HP－92＇s design wanted to produce a calculator whose reliability，ac－ curacy，and capability would exceed whatever might reasonably be demanded of it．Previous calculators would have to be surpassed，if only because as time passes，users take previous accomplishments for granted and demand more．One target for improve－ ment was accuracy．Consider the following slightly unrealistic problem．
Example：Find the present value and the future value of 63 periodic payments of one million dollars each at the（very tiny but still positive）interest rate $\mathrm{i}=0.00000161 \%$ ．

[^4]Fig．7．A bond problem and the HP－92 solution．That Febru－ ary has only 28 days is automatically taken into account．

HP-80	HP-22,27	HP-92
PV $62,608,695.65$	$63,000,000.00$	$62,999,967.54$
FV $62,608,695.65$	$62,981,366.46$	$63,000,031.44$

The HP-92 answers are correct, but more significant, the other answers are clearly wrong: interest is positive but money is lost.

Obvious errors even on such unrealistic problems can undermine user confidence. The only way to prevent apprehension is to preclude all anomalies. For this reason, we set out to produce such robust algorithms that the user need never be concerned with questions of accuracy or operating limits. The extent of our success may be gauged by the reader's readiness to forget the limitations explained below. Calendar Functions: IS, ST, MT Dates of issue, settlement, maturity
\triangle DAYS Days between dates DATE + DAYS
g PRINT x Day of the week.
These functions accept dates from October 15, 1582 to November 25, 4046. The first date marks the inception of the Gregorian calendar, now in use throughout Europe and the Americas, in which leap years are those evenly divisible by 4 , but not by 100 unless also by 400. (The year 2000 will be a leap year, but not 1900 nor 2100 .) The second date is determined by internal register limitations, not by any special knowledge of the future.
Mathematical Operations: $+,-, \times, \div, 1 / x, \%, \% \Sigma, \Delta \%$,

$$
\sqrt{x}, e^{x}, \mathrm{LN}
$$

Error is less than one unit in the last (tenth) significant digit over a range of magnitudes including 10^{-99} and $9.999999999 \times 10^{99} . \mathrm{y}^{\mathrm{x}}$ is also accurate to within one unit in the last significant digit for 10^{-20} $\leqslant \mathrm{y}^{\mathrm{x}} \leqslant 10^{20}$; outside that range the error is less than ten units in the last significant digit.

Statistics: $\mathbf{\Sigma + , ~ \Sigma - ~}$
These keys accumulate various sums using arithmetic to ten significant digits. This determines the range and accuracy achievable by the other statistical keys \hat{y}, LR, r, \bar{x}, and s. For x data consisting of fourdigit integers, \bar{x} and s will be correct to ten significant digits and $\hat{\mathbf{y}}, \mathbf{r}$, and LR will be in error by less than the effect of perturbing each y value by one unit in its tenth significant digit. For x data with more than four digits per point the error can be significant if the data points have redundant leading digits; in this case both time (keystrokes) and accuracy will be conserved if the redundant digits are not entered, following recommendations by D.W. Harms. ${ }^{6}$
Bond Yield and Interest Rates: yIeld, i, IRR.
The error will be smaller than one unit in the last (tenth) significant digit or 0.000000001 , provided that the number of periods n does not exceed 1,000,000, and for IRR, provided that the cash flows reverse sign significantly only once as described above. These rates are calculated far more accurately than the Securities Industry Association requires.
Money Values: PRICE, PMT, PV, FV, AMORT, SL, SOYD, DB, n
Errors will be smaller than the effect of changing all input values in their tenth significant digits. Typically, this means that if $(1+i)^{n}$ does not exceed 1000 then errors will be less than one unit in the last (tenth) digit. This amounts to a fraction of a cent in transactions involving tens of millions of dollars.

Verifying Accuracy

A simple means of verifying the accuracy of a given computation on any calculator is to attempt to recalculate the known quantities using a quantity the calculator has computed based on the knowns.

Example: Key the following values into the HP-92:

$\mathrm{n}=111.1111111, \mathrm{i}=2.22222222$, $\mathrm{PV}=333.333333$, $\mathrm{PMT}=4.444444444$. These numbers are selected to make any loss of digits noticeable, but are otherwise arbitrary.

Now solve for FV. The HP-92 gives $\mathrm{FV}=$ -5931.82294 . Now recalculate the known quantities. The HP-92 answers are $\mathrm{n}=111.1111111$, $\mathrm{i}=$ $2.22222222, \mathrm{PV}=333.3333333$, $\mathrm{PMT}=4.444444443$. Note the loss of one digit in the last place of PMT. Then resolve for FV. The HP-92 again gives $\mathrm{FV}=$ -5931.82294 , showing that the lost digit has no impact.

Acknowledgments

The HP-92 represents the efforts and contributions of many people drawing upon technical advances in the mathematics of finance as well as in materials, mechanics, and electronics.

The bulk of the development was done by Paul Williams and me. The algorithms are based primarily on work done by Professor W. Kahan of the University of California at Berkeley. The product, as it is now defined, would never have been implemented without the early leadership and creative contributions of Bernie Musch. The hard work and enthusiasm of the following people contributed much to the total product and they can take pride in their extensive contributions: Jim Abrams (manual), Janet Cryer (applications book), A.J. Laymon, Dennis Harms, Hank Suchorski, Bob Youden, Bill Crowley, and John van Santen. I would also like to thank Bob Dudley for his support and encouragement. 5

References

1. W.L. Crowley and F. Rodé, "A Pocket-Sized Answer Machine for Business and Finance," Hewlett-Packard Journal, May 1973.
2. R.B. Neff and L. Tillman, "Three New Pocket Calculators: Smaller, Less Costly, More Powerful," HewlettPackard Journal, November 1975.
3. B. E. Musch and R. B. Taggart, "Portable Scientific Calculator has Built-In-Printer," Hewlett-Packard Journal, November 1976.
4. P. D. Dickinson and W. E. Egbert, "A Pair of ProgramCompatible Personal Programmable Calculators," Hewlett-Packard Journal, November 1976.
5. B. M. Spence, J. Y. Graudenz, and J. J. Lynch, Jr., "Standard Securities Calculation Methods-Current Formulas for Price and Yield Computations," Securities Industry Association, New York, 1973.
6. D. W. Harms, "The New Accuracy: Making $2^{3}=8$," Hewlett-Packard Journal, November 1976.

HP Archive

This vintage Hewlett-Packard document was preserved and distributed by www.hparchive.com
Please visit us on the web!

On-line curator: John Miles, KE5FX jmiles@pop.net

[^0]: *To use this feature, both channels must be running constantly. The software determines when to take data. The trigger signal merely tells the software that the trigger condition has been satisfied.

[^1]: *Asterisk indicates instruments compatible with the HP interface bus (HP-IB).

[^2]: *The HP-27 requires the use of a shift key but is fundamentally the same.

[^3]: It should be noted here that the techniques used in the HP-27 were the best available at the time. Many implementations of IRR take no precautions to protect the user from anomalous answers

[^4]: Problem：
 Calculate the price of a corporate bond with a settlement date of August 24，1977，a matur－ ity date of March 15，2000，a coupon rate of 8.75% and a yield of 8% ．（Calculated on 30－day month， 360 day year．）
 Solution：
 Enter the settlement date，maturity date， coupon rate，and yield．Press price．The bond＇s accumulated interest and price are then printed．

 | 8.241977 | $G T$ |
 | ---: | ---: |
 | 3.152000 | HT |
 | 8.750000 | CFN |
 | 8.000000 | YLD |
 | BONL | $* 360$ |
 | FRC | |
 | 3.86 .4583 | AI |
 | 107.768456 | \＃⿻丷木 |

