A New 60-Cycle Per Revolution Generator
for Precision Tachometry Measurements

The new -hp- Model 508A Tachometer Generator is designed to be used with the -hp- Model 522 Electronic Counter to make rapid, high-precision measurements of rotary speeds. For each revolution of its driving shaft, the generator provides 60 cycles of output voltage. This speed multiplication feature enables the combination of counter and generator to make in 1 second precision tachometry measurements that are direct-reading in revolutions per minute. The speed and accuracy obtainable with the generator and counter also make them valuable for a number of other studies of mechanical motion besides simple measurements of rpm.

The speed measurements made with the generator and counter are made to a high order of accuracy: within ±1 rpm. If higher accuracy is desired, the measurement can be made for a 10-second instead of 1-second interval, in which case an accuracy of ±0.1 rpm ±0.001% is obtained. These accuracies are achieved even by non-technical personnel, because the -hp- 522 presents the measured speed in digital form and because no operating adjustments are necessary.

Basically, the generator consists of an alnico magnet arranged in a closed magnetic loop which is interrupted when the generator shaft is turned. A pick-up coil couples the induced voltage to a coaxial type output connector. The closed-loop design enables

SEE ALSO:
"Time-Frequency Transform Table" on inside pages

The -hp- 522 Electronic Counter measures frequency by counting the number of cycles of the signal voltage that occur in an accurately-determined time interval such as 0.1, 1, or 10 seconds. See Hewlett-Packard Journal, Vol. 4, No. 5, and Vol. 5, No. 1-2. Copies available on request.

*This neglects the 522 gate-time inaccuracy which is insignificant at all but the highest rpm's.
TABLE OF IMPORTANT TRANSFORMS

In network design and analysis it is useful to have a graphic representation of common time functions and their corresponding transforms (frequency spectra). While extensive tables of function-transform pairs exist (e.g., Campbell and Foster, Fourier Transforms For Practical Applications), no convenient short illustrated table appears in the literature as far as can be determined. Such a table has been prepared by B. M. Oliver, Department of Research, and is reproduced below.

A feature of the table is that it includes a plot of the frequency functions on Log Frequency-Log Amplitude coordinates (last column). The slopes of the functions are also indicated. Unity slope is equal to 6 db per octave.

Functions 15 to 65 represent singular functions for which the Fourier transforms exist only as a limit. For example, function 15 of this group may be thought of as the limit approached by functions 1, 3, 6, 7, 8, 9, or 10 as \(\tau \) approaches 0 (as \(\tau \) approaches infinity).

Reprints of this table will be available on request in a form suitable for wall or desk use. Please allow several weeks for replies to be compiled and printing completed.

<table>
<thead>
<tr>
<th>TIME FUNCTIONS</th>
<th>NO.</th>
<th>FREQUENCY FUNCTIONS (LINEAR SCALES)</th>
<th>FREQUENCY FUNCTIONS (LOG AMPL — LOG FREQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t) = \begin{cases} 0, & t < 0 \ e^{\alpha t}, & t > 0 \end{cases})</td>
<td>1</td>
<td>(F(p) = \frac{\alpha}{p + \alpha})</td>
<td>![Graph 1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F(\omega) = \frac{\alpha}{\alpha + j \omega})</td>
<td>![Graph 2]</td>
</tr>
<tr>
<td>(f(t) = \begin{cases} 0, & t < 0 \ e^{-\beta t}, & t > 0 \end{cases})</td>
<td>2</td>
<td>(F(p) = \frac{\beta}{p + \beta})</td>
<td>![Graph 3]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F(\omega) = \frac{\beta}{\beta + j \omega})</td>
<td>![Graph 4]</td>
</tr>
<tr>
<td>(f(t) = \frac{1}{\pi} \sin \left(\frac{\pi t}{2} \right))</td>
<td>3</td>
<td>(F(p) = i)</td>
<td>![Graph 5]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F(\omega) = \frac{1}{\pi})</td>
<td>![Graph 6]</td>
</tr>
</tbody>
</table>

WWW.HPARCHIVE.COM
<table>
<thead>
<tr>
<th>f(t)</th>
<th>F(ω)</th>
<th>f(t)</th>
<th>F(ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\begin{cases} \frac{1}{\tau}, &</td>
<td>t</td>
<td>< \tau \ 0, &</td>
<td>t</td>
</tr>
<tr>
<td>(\frac{t}{\sqrt{\pi \tau^3}} e^{-\frac{t^2}{4\tau^2}})</td>
<td>(F(\omega) = e^{-\frac{\omega^2 \tau^2}{2}})</td>
<td>(\lim_{\tau \to 0} \left[\frac{\tau}{\omega}, \text{for } \omega \text{ close to } 0 \right])</td>
<td>(F(p) = F(\omega) = 1)</td>
</tr>
<tr>
<td>(\begin{cases} \frac{1}{\tau}, & 0 < t < \tau \ 0, & t > \tau \end{cases}) (UNIT STEP)</td>
<td>(F(p) = \frac{1}{p})</td>
<td>(\begin{cases} \frac{1}{\tau}, & 0 < t < \tau \ 0, & t > \tau \end{cases}) (UNIT STEP)</td>
<td>(F(p) = \frac{1}{p^2})</td>
</tr>
<tr>
<td>(\begin{cases} 1, & 0 < t < \tau \ 0, & t > \tau \end{cases}) (UNIT SLOPE)</td>
<td>(F(p) = \frac{\alpha}{p(\alpha + p)})</td>
<td>(\begin{cases} \cos \omega t, & 0 < t < \tau \ -e^{-\alpha t}, & t > \tau \end{cases})</td>
<td>(F(\omega) = \frac{\delta(\omega-\omega_0) - \delta(\omega+\omega_0)}{\omega})</td>
</tr>
<tr>
<td>(t)</td>
<td>(\frac{\delta(t-n\tau)}{\tau})</td>
<td>(t)</td>
<td>(\frac{\delta(t-\tau-\frac{n\tau}{\xi})}{\tau})</td>
</tr>
</tbody>
</table>
the generator to be used in the presence of relatively strong external fields without affecting measurements.

Speed-wise, the generator can be used over a range from 15 rpm up to a rated maximum of 40,000 rpm. Fig. 3 shows the output voltage delivered by the generator over this range to the 522 counter. The generator's open-circuit voltage is approximately 3 times that shown in Fig. 3.

Physically, the generator is small (Fig. 1) and weighs only 1 1/2 pounds. The rotor is ground on all diameters and mounted in permanently-lubricated ball bearings. Details of the coupling shaft are given in Fig. 1. Either clockwise or counter-clockwise rotation can be used.

Because of its low driving torque, the 508A can be used with all but small energy devices without constituting a significant load. At 200 rpm the required driving torque is approximately 1/4 in.-oz., and at 1500 rpm it is approximately 1/2 in.-oz.

Besides measuring rpm, the generator has many uses in studying non-periodic motion as well as periodic motion that may have torsional vibration and other effects. In such applications it is customary to connect the generator's output voltage to an oscilloscope and, at least where non-periodic motion is involved, to photograph the oscilloscope presentation for analysis and record purposes.

An interesting study of this type is indicated in the oscillogram of Fig. 4 which illustrates the output of the generator when used to investigate "screech" in a mechanical drive shaft. Close examination of the oscillogram shows that the shaft had discrete breaks in its speed of rotation as indicated by the dots in the center portion of Fig. 4. Since the generator produces 60 cycles of voltage per mechanical revolution of its shaft, each voltage cycle corresponds to 6 degrees of mechanical rotation of the shaft under test. By using this information and establishing a suitable reference, it was easy to isolate for further investigation the region of rotation at which the screech occurred.

Another interesting oscillogram obtained with the generator—a detailed study of a Geneva intermittent motion—appears in Fig. 5. Such a motion mechanically divides one rotation into desired fractions of a rotation. The oscillogram illustrates the mechanical vibrations that occur and further gives an indication of the instantaneous velocity of the motion by the amplitude of the individual voltage cycles. The time interval depicted in Fig. 5 is approximately 1/30 second.

Valuable information can also be obtained with the generator concerning torsional vibration, speed variations, accelerating and decelerating characteristics, and so on.

100 CYCLE MODEL

The generator has also been designed in a model that provides 100 cycles per revolution instead of the 60 cycles provided by the 508A. In general, measurements with this model, the 508B, are made as described above, except that the readings presented by the counter would be in units of revolutions per hundred seconds. The 508B, in combination with an oscilloscope, is also useful in obtaining higher definition of mechanical motion than is obtained with the 60-cycle model. Price and general specifications for the two models are the same, except that the voltage curve shown in Fig. 3 for the 508A is displaced to the left for the 508B.

Wm. Girdner

SPECIFICATIONS

- hp- MODEL 508A
TACHOMETER GENERATOR

SPEED RANGE: 15 rpm to 40,000 rpm.

GENERATED OUTPUT: Sixty cycles for each shaft revolution.

OUTPUT VOLTAGE: Sufficient to operate -hp- Model 522 Frequency Counter over range from 50 rpm to 40,000 rpm (see Fig. 3). Supplied at a coaxial type jack (UG-182/U).

DRIVING TORQUE: Approx. 1/4 in.-oz. at 200 rpm; 1/2 in.-oz. at 1500 rpm.

PEAK STARTING TORQUE: Approx. 4 in.-oz.

SHAFT DIMENSIONS: 1/4" diam.; available lengths, approx. 9/16" (see Fig. 1).

MOUNTING DIMENSIONS: Four 3/16" diam. holes on 2" x 3" mtg/c.

OVERALL DIMENSIONS: 3 3/8" w x 2 1/2" h x 2 1/8" d overall.

WEIGHT: Approx. 1.6 lbs.; shipping wt., approx. 3 lbs.

ACCESSORIES SUPPLIED: One 4-foot cable with coaxial type plugs (UG-88/U) at each end.

PRICE: $75.00 f.o.b. Palo Alto, California.

- hp- MODEL 508B
TACHOMETER GENERATOR

Price and specifications same as -hp- Model 508A except generates 100 cycles for each revolution. Output voltage characteristic is similar to that of 508A except peak occurs at lower frequency.

Data subject to change without notice.