COAXIAL AND WAVEGUIDE MEASUREMENT ACCESSORIES

HEWLETT ho PACKARD

COAXIAL
 AND WAVEGUIDE
 MEASUREMENT
 ACCESSORIES

introduction:

The pages that follow contain complete information about Hewlett-Packard's extensive line of high frequency measurement accessories. These coaxial and waveguide products, which enjoy worldwide accpetance for quality and precision, perform significant functions in virtually all high frequency measurement applications. This extensive listing represents but one facet of Hewlett-Packard's total capability.
Hewlett-Packard manufactures more than 2,000 electronic products ranging from basic test instruments to elaborate computational systems. In addition to our state-of-the-art electronic test instruments such as oscillators, voltmeters, counters, and oscilloscopes, HP manufactures computers, scientific calculators, medical electronics, and analytical instruments. HP's high frequency product lines range from microwave devices (e.g., transistors, diodes) and components (e.g., switches, mixers) to multi-function computer-controlled instrumentation systems.

In developing a broad line of state-of-the-art instrumentation, HP has also made numerous contributions to measurement technology. In the area of high frequency measurements, HP has pioneered the use of swept measurements and complete phase/amplitude-characterization of high frequency networks. These were made practical through such development as high directivity multihole directional couplers, precision slotted lines, and rotary vane attenuators. Other high frequency measurement contributions include precision solid-state signal generators and sweepers; fully calibrated spectrum analyzers, and high accuracy power meters. HP's reservoir of measurement technology is available from an extensive library of application notes and video tapes. Direct applications assistance is no further away than the nearest telephone. In addition to 20 domestic and international manufacturing facilities, HP maintains over 170 worldwide sales and service offices in 65 different countries. The field offices are staffed by trained engineers, each of whom has a primary responsibility of helping you solve measurement problems.
The quality of the products described here is the same HP quality that has become a standard in the electronics industry. Each product is designed for high stability, wide applicability, convenient size, and simplest possible operation. Highest quality components and materials are used in construction and utmost care is taken in manufacture. Advanced techniques of swept frequency and computercontrolled testing are used to assure that each item meets or exceeds its specifications.
general information:

HOW TO USE THIS LISTING:

The products being presented have been grouped into thirteen product categories. Each category has convenient index tabs for rapid access. A supplementary HP model number index begins on Page 4. Within each product section waveguide product specifications are shaded in blue to provide visual distinction from the coaxial product listings. The overall summaries (waveguide accessories on page 61 and coaxial items on page62) indicate, at a glance, the availability of products in any given frequency range.

HOW TO ORDER:

Products should be ordered by name and HP model number. Your Hewlett-Packard field engineer can advise you on the availability of special options or features. Your order should be made out to the Hewlett-Packard Company and sent to the nearest Hewlett-Packard field office.

PROCESSING AND SHIPMENT OF YOUR ORDER:

Hewlett-Packard's customer commitment extends to efficient order processing. From any point in our worldwide organization, orders are transmitted daily over special communication lines directly to the appropriate manufacturing facility. Most of the items listed here are available for same-day shipment.

WARRANTY:

These Hewlett-Packard products are all warranted against defects in materials and workmanship for one year from the date of delivery. We will repair or replace products which prove to be defective during the warranty period.

contents

MICROWAVE MEASURING TECHNIQUES	
DIRECTIONAL COUPLERS AND DETECTORS	
SLOTTED LINE EQUIPMENT AND SLIDE SCREW TUNERS	
ATTENUATORS; FIXED, VARIABLE, AND PROGRAMMABLE	
FREQUENCY METERS	
CRYSTAL DETECTORS	
MIXERS	
FILTERS	
MODULATORS	
OTHER DEVICES	
PHASE SHIFTERS	
WAVEGUIDE SHORTING SWITCH	
FREQUENCY DOUBLER	
TERMINATIONS	
ACCESSORIES	
INSTRUMENTATION CROSS REFERENCE	

index			
MODEL NUMBER		PAGE	PRICE
G281A	Coaxial-Waveguide Adapter	54	\$60
H281A	Coaxial-Waveguide Adapter	54	50
J281A	Coaxial-Waveguide Adapter	54	55
S281A	Coaxial-Waveguide Adapter	54	75
X281A	Coaxial-Waveguide Adapter, $\mathrm{N}(\mathrm{f})$ conn.	54	45
X281B	Coaxial-Waveguide Adapter, APC-7 conn.	54	90
	Opt. 013 Precsion $\mathrm{N}(\mathrm{f})$ conn.		15
P281B	Coaxial-Waveguide Adapter	54	95
X281B	Coaxial-Waveguide Adapter	54	90
NK292A	Waveguide-Waveguide Adapter	54	60
NP292A	Waveguide-Waveguide Adapter	54	60
HX292B	Waveguide-Waveguide Adapter	54	60
MP292B	Waveguide-Waveguide Adapter	54	80
MX292B	Waveguide-Waveguide Adapter	54	70
354 A	Step Attenuator	23	390
355 C	Step Attenuator	23	160
	Opt. $001 \mathrm{~N}(\mathrm{f})$ conn.		25
355D	Step Attenuator	23	160
	Opt. 001 N (f) conn.		25
360A	Coaxial Low Pass Filter	40	115
360B	Coaxial Low Pass Filter	40	105
3600	Coaxial Low Pass Filter	40	95
3600	Coaxial Low Pass Filter	40	90
K362A	Waveguide Low Pass Filter	40	385
M362A	Waveguide Low Pass Filter	40	350
P362A	Waveguide Low Pass Filter	40	375
R362A	Waveguide Low Pass Filter	40	420
X362A	Waveguide Low Pass Filter	40	450
P375A	Waveguide Variable Attenuator	27	250
X375A	Waveguide Variable Attenuator	27	225
G382A	Waveguide Precision Variable Attenuator		810
H382A	Waveguide Precision Variable Attenuator	27	675
J382A	Waveguide Precision Variable Attenuator	28	700
K382A	Waveguide Precision Variable Attenuator	27	725
P382A	Waveguide Precision Variable Attenuator	27	500
R382A	Waveguide Precision Variable Attenuator	27	800
S382C	Waveguide Precision Variable Attenuator	27	800
X382A	Waveguide Precision Variable Attenuator	27	425
393 A	Coaxial Variable Attenuator	23	725
	Opt. 001 Less 908A Terminations		. 70
394A	Coaxial Variable Attenuator	23	725
	Opt. 001 Less 908A Terminations		-70
420 A	Coaxial Crystal Detector	32	65

| | M0DEL | NUMBER | PAGE |
| :--- | :--- | ---: | ---: | PRICE

MODEL NUMBER		PAGE	PRICE
P752C	Waveguide Directional Coupler	14	\$225
R752C	Waveguide Directional Coupler	14	300
X752C	Waveguide Directional Coupler	14	200
H752D	Waveguide Directional Couler	14	300
J752D	Waveguide Directional Coupler	14	400
K752D	Waveguide Directional Coupler	14	275
P752D	Waveguide Directional Coupler	14	225
R752D	Waveguide Directional Coupler	14	300
X752D	Waveguide Directional Coupler	14	200
7740	Coaxial Dual Directional Coupler	13	300
7750	Coaxial Dual Directional Coupler	13	325
776 D	Coaxial Dual Directional Coupler	13	325
7770	Coaxial Dual Directional Coupler	13	350
778D	Coaxial Dual Directional Coupler	13	450
	Opt. 011 APC-7 Output Conn.		25
	Opt. $012 \mathrm{~N}(\mathrm{~m})$ Output Conn.		0
779D	Coaxial Directional Coupler	13	550
	Opt. 010 Input $\mathrm{N}(\mathrm{f})$, output $\mathrm{N}(\mathrm{m})$		0
784A	Coaxial Directional Detector	15	625
786D	Coaxial Directional Detector	15	300
787D	Coaxial Directional Detector	15	325
788C	Coaxial Directional Detector	15	350
789C	Coaxial Directional Detector	15	550
	The following options apply to 786D-789C:		
	Opt. 002 Opt. Sq. Law Characteristics		20
	Opt. 003 Positive Polarity Output		0
7960	Coaxial Directional Coupler	13	275
797D	Coaxial Directional Coupler	13	300
798 C	Coaxial Directional Coupler	13	325
805 C	Coaxial Slotted Line	19	1000
809 C	Universal Carriage	20	300
H810B	Waveguide Slotted Section	19	215
J810B	Waveguide Slotted Section	19	275
P810B	Waveguide Slotted Section	19	225
X810B	Waveguide Slotted Section	19	205
814B	Carriage	20	660
K815B	Waveguide Slotted Section	19	675
R815B	Waveguide Slotted Section	19	700
816A	Coaxial Slotted Section	19	350
	Opt. 011 Two APC-7 Conn.		25
	Opt. $022 \mathrm{~N}(\mathrm{~m})$ and $\mathrm{N}(\mathrm{f})$ Conn.		-15
817A	Coaxial Swept Slotted Line System	20	1100
	Opt. $022 \mathrm{~N}(\mathrm{~m})$ and $\mathrm{N}(\mathrm{f})$ Conn.		-15
P870A	Waveguide Slide Screw Tuner	19	275

MODEL NUMBER		PAGE	PRICE
X870A	Waveguide Slide Screw Tuner	19	\$250
J885A	Waveguide Phase Shifter	46	950
P885A	Waveguide Phase Shifter	46	900
X885A	Waveguide Phase Shifter	46	725
905A	Coaxial Sliding Load	51	300
907 A	Coaxial Sliding Load	51	450
908A	Coaxial Termination	51	45
909 A	Coaxial Termination	51	85
	Opt. $012 \mathrm{~N}(\mathrm{~m})$ Conn.		-15
	Opt. $013 \mathrm{~N}(\mathrm{f})$ Conn.		-15
H910A	Waveguide Termination	50	80
J910A	Waveguide Termination	50	95
P910A	Waveguide Termination	50	50
X910B	Waveguide Termination	50	55
911 A	Coaxial Sliding Load	51	250
G914A	Waveguide Sliding Load	50	250
H914A	Waveguide Sliding Load	50	200
J914A	Waveguide Sliding Load	50	225
P914A.	Waveguide Sliding Load	50	175
K914B	Waveguide Sliding Load	50	350
R914B	Waveguide Sliding Load	50	400
X914B	Waveguide Sliding Load	50	95
H920A	Waveguide Moving Short	50	165
J920A	Waveguide Moving Short	50	200
K920B	Waveguide Moving Short	50	325
P920B	Waveguide Moving Short	50	190
R920B	Waveguide Moving Short	50	350
X923A	Waveguide Sliding Short	50	150
X930A	Waveguide Shorting Switch	47	300
P932A	Waveguide Harmonic Mixer	37	350
934 A	Coaxial Harmonic Mixer	37	150
3750 A	75 Ohm Coaxial Variable Step Attenuator	23	165
8430 A	Bandpass Filter	40	335
8431 A	Bandpass Filter	40	335
8432 A	Bandpass Filter	40	335
8433 A	Bandpass Filter	40	335
8434 A	Bandpass Filter	40	335
8435A	Bandpass Filter	40	335
8436A	Bandpass Filter	40	335
8439A	Notch Filter	40	450
8470A	Coaxial Crystal Detector	32	190
8471A	Coaxial Crystal Detector	32	50
8472A	Coaxial Crystal Detector	32	175
8491A	(3-30dB) Coaxial Fixed Attenuator	25	60

MODEL NUMBER		PAGE	PRICE
8491A	($40-60 \mathrm{~dB}$) Coaxial Fixed Attenuator	25	\$85
8491B	(3-30 dB) Coaxial Fixed Attenuator	25	75
8491B	($40-60 \mathrm{~dB}$) Coaxial Fixed Attenuator	25	110
8492A	(3-30dB) Coaxial Fixed Attenuator	25	140
8492A	($40-60 \mathrm{~dB}$) Coaxial Fixed Attenuator	25	175
8493A	Coaxial Fixed Attenuator	25	65
8493B	Coaxial Fixed Attenuator	25	80
8721A	Coaxial Directional Bridge	15	150
	Opt. 00875 ohm Version		10
8731A	Pin Modulator	42	450
8731B	Pin Modulator	42	700
	Opt. H10 0.4-0.9 GHZ, 35 dB		0
8732A	Pin Modulator	42	450
8732B	Pin Modulator	42	700
8733A	Pin Modulator	42	450
8733B	Pin Modulator	42	700
8734A	Pin Modulator	42	450
8734B	Pin Modulator	42	700
8735A	Pin Modulator	43	450
8735B	Pin Modulator	43	700
8761A/B	Coaxial Switch	47	150
	Opt. 7XX APC-7 Conn.		35
	Opt. X7X APC-7 Conn.		35
10501A	Cable Assembly	56	8
10502A	Cable Assembly	56	12
10503A	Cable Assembly	56	13
10514A	Double Balanced Mixer	36	90
10515A	Frequency Doubler	48	150
10534 A	Double Balanced Mixer	36	70
11500 A	Cable Assembly	56	20
11501A	Cable Assembly	56	20
11503A	Flexible Waveguide	57	60
11504A	Flexible Waveguide	57	50
11511 A	Short, $\mathrm{N}(\mathrm{f})$	51	10
11512A	Short, N(m)	51	10
11515A	Adapter, K-band	54	60
11516A	Adapter, R-band	54	50
11517A	Waveguide Mixer	37	200
11518A	Mixer Taper Section	37	125
11519A	Mixer Taper Section	37	125
11520A	Mixer Taper Section	37	125
11521A	Waveguide Mixer	37	75
11540A	Waveguide Stand	55	10

MODEL NUMBER	PAGE	PRICE
11542A-11548A Waveguide Clamps	55	\$ 5
11565A Short, APC-7	51	25
11581A Attenuator Set, 8491A	25	250
11582A Attenuator Set, 8491B	25	310
11583A Attenuator Set, 8492A	25	575
11588A Coaxial Roatary Joint	56	200
11589A Bias Network	59	275
Opt. 001 APC-7 Conn.		30
11590A Bias Network	59	325
Opt. 001 APC-7 Conn.		30
11591A APC-7 Connector Service Kit	59	60
11600B Transistor Fixture	58	600
Opt. 001 Precision $\mathrm{N}(\mathrm{f})$ Conn.		-30
11602B Transistor Fixture	58	600
Opt. 001 Precision $\mathrm{N}(\mathrm{f})$ Conn.		-30
11605A Flexible Arm	57	800
11606A Coaxial Rotary Air Line	56	150
11608A Transistor Fixture, (opt 001)	58	375
Opt. $100 \mathrm{~N}(\mathrm{f})$ Conn.		-30
11608A Transistor Fixture, (opt 002, 003)	58	400
Opt. $100 \mathrm{~N}(\mathrm{f})$ Conn.		-30
11675A Leveling Cable Assembly	57	50
15520A Hybrid	15	105
Opt. 002 Siemens 2.5 mm Conn.		51
Opt. 003 Siemens 1.6 mm Conn.		51
15522A 750 hm Termination	51	36
Opt. 002 Siemens 2.5 mm Conn.		0
Opt. 003 Siemens 1.6 mm Conn.		0
15537A Hybrid	15	115
33000 C Absorptive Modulator	43	365
33000D Absorptive Modulator	43	525
33001 C Absorptive Modulator	43	415
33001 D Absorptive Modulator	43	575
33008 C Absorptive Modulator	43	395
33008 D Absorptive Modulator	43	550
33300A/B Programmable Step Attenuators	23	665
33300C/D Programmable Step Attenuators	23	690
33301 A/B Programmable Step Attenuators	23	665
33301C/D Programmable Step Attenuators	23	690
33304A/B Programmable Step Attenuators	23	900
33304C/D Programmable Step Attenuators	23	925
33305A/B Programmable Step Attenuators	23	900
33305C/B Programmable Step Attenuators	23	925

microwave measuring techniques

Hewlett-Packard offers a complete line of microwave test equipment from which systems can be assembled for making accurate reflection, transmission and frequency measurements. Equipment ranges from inexpensive CW systems which measure a magnitude response to powerful network analyzers which furnish a dynamic CRT display of frequency swept magnitude and phase. Measurement techniques and equipment functions are discussed briefly in the following paragraphs. More detailed information is available in Application Notes 64, 65, and 84, complimentary copies are available from Hewlett-Packard sales offices.

FREQUENCY MEASUREMENTS

There are two general classes of frequency measuring devices-active and passive types. Electronic counters, transfer oscillators, and frequency converters are examples of active types. HP manufactures a complete line of these instruments which measure frequency well into the microwave region with accuracies of a few parts in 10^{8}.

Where the accuracy of active devices is not required, passive devices offer direct readout at a considerable saving in cost. Passive transmissiontype frequency meters, such as the HP 532, 536A, and 537A, are two-port devices that absorb part of the input power in a tunable cavity. When the cavity is tuned to resonance, a dip occurs in the transmitted power level. This dip can be observed on a meter or oscilloscope display of the detected RF voltage. Frequency is then read from a calibrated dial driven by the cavity tuning mechanism.

The accuracy of cavity frequency meters depends upon the cavity Q, dial calibration, backlash, and effects of temperature and humidity variations. The Hewlett-Packard waveguide and coaxial passive frequency meters achieve accuracies of a few parts in 10^{4}.

IMPEDANCE MEASUREMENTS

Impedance-matching a load to its source is one of the most important considerations in microwave transmission systems. If the load and source are mismatched, part of the power is reflected back along the transmission line toward the source. This reflection not only limits maximum power transfer, but also can be responsible for erroneous measurements of other parameters or even cause circuit damage in high-power applications.
The signal reflected from the load interferes with the incident (forward) signal, causing standing waves of voltage and current along the line. SWR which is the ratio of standing wave maxima to minima is directly related to the impedance mismatch of the load. The standing wave ratio (SWR), therefore, provides a valuable means of determining impedance magnitude and mismatch.
There are two common methods for measuring

SWR; slotted line techniques and reflectometer techniques. A slotted line measures the ratio of standing wave maxima to minima while a reflectometer separates the incident and reflected voltage waves and then measures their ratio.

Slotted Line Techniques-Single Frequency

Standing-wave ratio can be measured directly with a slotted line in a setup like the one shown in Figure 1. The slotted line probe is loosely coupled to the RF field in the line, thus sensing relative amplitudes of the standing-wave pattern as the probe is moved along the line. The ratio of maxima to minima (SWR) is displayed directly on the SWR meter.

FIGURE 1. Typical setup for SWR measurements in coax.
Slotted lines feature low residual SWR (high directivity) and have the capability of inexpensive phase measurements compared to reflectometer techniques. While these methods works well for single-frequency testing, they are time-consuming for broadband applications.

The Swept Slotted Line

A measuring system which combines the speed and convenience of swept-frequency measurements and the inherent accuracy of the slotted line can be built around the HP 817A Slotted Line System. The setup is identical to Figure 1 except that the source is replaced with a sweep oscillator, the slotted line is an 817A option H03, and the 415E is replaced by the HP 8755A/181A. This system will operate throughout the frequency range from 1.8

Figure 2. Multi-sweep slotted-line measurement.
Vertical scale $0.5 \mathrm{~dB} / \mathrm{cm}$.

microwave measuring techniques

continued
to 18 GHz . The measurement results are displayed on a storage oscilloscope as an envelope of the SWR in dB. See Figure 2. At any given frequency, the ratio of the maximum and minimum amplitude of the envelope is the SWR. A plot of SWR can be generated in a few seconds and retained on the CRT for evaluation or photography. Accuracy of slotted-line measurements is limited primarily by the residual SWR of the line itself, 1.01 in waveguide and 1.02 to 1.06 in coax depending upon the frequency and type of connector.

Reflectometer techniques

The reflection coefficient (ρ) of a device or system is another useful term in establishing the impedance match of microwave devices. The following relationships of ρ and SWR are frequently used in impedance work:
$\rho=\frac{\left|E_{\text {reflected }}\right|}{\left|E_{\text {incident }}\right|}=\frac{S W R-1}{S W R+1}$
Reflection coefficient (ρ) is a linear quantity varying between zero and one. The logarthmic expression of p is known as return loss and defined as: $\mathrm{dB}=-20 \log _{10}|\rho|$. A reflection coefficient of 1.0 (total reflection) therefore, corresponds to a return loss of 0 dB and a zero reflection coefficient corresponds to infinite dB return loss. For example, if the reflected signal from a test device is 26 dB below the incident signal level, the reflection coefficient of the device is calculated as 0.05 .

The load reflection coefficient is measured by separating the incident and reflected waves propagated in the transmission line connecting the source and load. The reflectometer uses either coaxial or waveguide couplers to accomplish this separation. Reflectometers permit dynamic oscilloscope displays or permanent $\mathrm{X}-\mathrm{Y}$ recordings of reflection coefficient or return loss across complete operating bands.
The waveguide reflectometer setup shown in Figure 3 is designed to hold the incident power constant by leveling. With automatic leveling, only the relative amplitude of the reflected wave need be measured to determine reflection coefficient.
To calibrate the reflectometer, a short circuit is placed at the output port, thus reflecting all of the incident power (zero dB return loss). The detector in the reverse-arm coupler samples the reflected power and provides a proportional dc voltage for readout. By placing a calibrated attenuator ahead of the detector specific amounts of return loss may be pre-inserted for calibrating the recorder gain. The attenuator is then returned to zero, the short removed, and the test device connected and measured on the pre-calibrated display. Measurements are also possible without the pre-insertion attenuator if the detector remains within its square law region.

FIGURE 3. Typical waveguide reflectometer.
The reflectometer technique described is an economical way for making swept measurements (See HP Application Note 65 for more information). However, greater speed and convenience is possible with the HP 8755 Series Frequency Response Test Sets. These sets make precision measurements of return loss (SWR) over a continuous 60 dB dynamic range compared to the 25 dB square law range of most crystal detectors. Measured data can be either plotted on an $\mathrm{X}-\mathrm{Y}$ recorder or read directly from a fully calibrated CRT display. See Figure 5 and Hewlett-Packard Application Note 155.

Accuracy of reflectometer measurements is limited by directional coupler directivity. A residual SWR of 1.02 (40 dB directivity (is common in waveguide and 1.02 to 1.1 in coax depending on the frequency range and connectors.

ATTENUATION MEASUREMENTS

Attenuation is defined as the decrease in power (at the load) cuased by inserting a device between a Z_{0} source and load. Under this condition, the measured value is a property of the device alone. The term Z_{0} is used to describe a unity SWR condition where the load and source impedances equal the transmission line impedance.
There are three common methods for measuring RF attenuation: 1) square-law detection with audio substitution, 2) direct RF substitution, and 3) linear detection with IF substitution. Accurate square-law measurements and RF substitution are possible using crystal detectors such as the HP 423A coaxial, and 424A waveguide series.

Square-law detection technique

Figure 4 shows a waveguide system for swept attenuation measurements of 25 to 30 dB . Source power is leveled using a single 752-series 10 dB directional coupler in the ALC loop. Coupling variation versus frequency in the leveling loop causes leveled power variations of about 1 dB at the point of test device insertion. This power variation is

FIGURE 4. Swept attenuation system for measurements up to 30 dB .
nearly equal to, but opposite, the coupling variation of the readout coupler. Therefore, grid lines are plotted to remove the frequency response error and increase measurement resolution.

With the 8620A sweeping the frequency range of interest, a zero-dB reference level is established on the $x-y$ recorder without the test device in the system. The device is then inserted as indicated in Figure 4 and its attenuation versus frequency determined by the amplitude decrease from the reference level previously established.

FIGURE 5. Setup for simultaneous swept measurement of insertion gain/loss and return loss.

A much improved square-law detection technique uses the HP 8755L Frequency Response Test Set. The setup diagram in Figure 5 permits simultaneous measurements of attenuation and return loss over a continuous 60 dB dynamic range. Readout is either on a CRT display calibrated directly in dB or a $X-Y$ recorder. The 8755A is plug-in compatible with the 180 Series oscilloscopes and has a frequency range of 100 MHz to 18 GHz .

RF substitution technique

Swept attenuation measurements up to 45 to 50 dB can be made using the RF pre-insertion, X-Y recorder system shown in Figure 6. Coupler tracking and detector errors are eliminated by plotting a calibration grid on the X-Y recorder prior to the actual measurement. The grid is plotted by setting in specific values of attenuation
on the 382A near the anticipated test device attenuation and triggering single 30 -second sweeps. The 382A is then set to 0 dB and the test device inserted as shown in Figure 6. A final sweep plots attenuation of the test device over the calibration grid.

IF substitution technique

The IF substitution technique of attenuation measurement involves conversion of the microwave frequency to a constant, much lower frequency for which very accurately calibrated attenuators are available. Detection at a constant IF frequency improves the system sensitivity permitting measurements over a wide ($>60 \mathrm{~dB}$) dynamic range. Both the HP 8405A Vector Voltmeter and HP 8410A Network Analyzer shown on page 10 use these IF signal processing techniques. The 8405A measures the absolute level of two signals and the phase difference between them on a CW basis from 1 to 1000 MHz . Phase accuracy is 1.5 to 3.0 degrees and voltage accuracy $\pm 2 \%$ to $\pm 6 \%$ of full scale depending on the frequency and amplitude range settings.
The 8410 Family of instruments display amplitude and phase information of reflection coefficient, return loss, attenuation, or gain on a swept frequency basis in the range from 110 MHz to 40 GHz . The 8410 Family includes a complete set of test sets for making both waveguide and coaxial component measurements over a continuous 60 dB dynamic range. This equipment features a maximum IF attenuator accuracy of $\pm .2 \mathrm{~dB}$ and a dynamic CRT display of all measured quantities. Compared to a slotted line these systems have a much improved accuracy and readout of phase information. Compared to the other techniques mentioned in this section they offer the latest in speed, measurement precision, and user convenience.

FIGURE 6. RF pre-insertion technique for swept attenuation measurements.

associated instruments

8405A Vector Voltmeter-The 8405A tuned voltmeter measures the absolute level of two signals and the phase difference between them on a CW basis from 1 MHz to 1000 MHz

8620/8690 Series Sweep Oscillators-The HP family of sweep oscillators provides swept measurements in both solid state and BWO technologies in the frequency range of 10 MHz to 40 GHz .

features:

HIGH DIRECTIVITY
 FLAT FREQUENCY RESPONSE
 LOW SWR
 LOW INSERTION LOSS
 WIDE FREQUENCY COVERAGE
 HIGH POWER HANDLING CAPABILITY

applications:

DIRECTIONAL COUPLERS

Power Monitoring
Power Leveling
Frequency Monitoring
Reflection Coefficient (SWR) Measuring
Impedance Measuring

SPECIFICATIONS

Model:	DUAL DIRECTIONAL COUPLERS					DIRECTIONAL COUPLERS			
	774D	775D	776 D	777D	778D	779D	7960	7970	798C
Frequency Range (GHz):	.215-450	. $450-940$.940-1.900	1.900-4.000	.100-2.000	1.7-12.4	.96-2.11	1.9-4.1	3.7-8.3
Nominal Coupling (dB)*:	20	20	20	20	20	20	20	20	10
Mean Coupling Accuracy (dB):	± 0.5	± 0.5	± 0.5	± 0.5		± 0.5	± 0.5	± 0.5	± 0.3
$\text { Maximum Coupling } \dagger$ Variation (dB):	± 1	± 1	± 1	± 0.4	± 1	± 0.75	± 0.2	± 0.2	± 0.3
Minimum Directivity (dB):	40	40	40	30	$\begin{gathered} 36,0.1-1 \mathrm{GHz} \\ 32,1-2 \mathrm{GHz} \\ \text { (test port) } \end{gathered}$	$\begin{aligned} & 30,1.7-4 \mathrm{GHz} \\ & 26,4-12.4 \mathrm{GHz} \end{aligned}$	30	26	20
Maximum Primary Line SWR:	1.15	1.15	1.15	1.2	1.1	1.2	1.13	1.16	1.25
Maximum Auxiliary Arm SWR:	1.20	1.20	1.20	1.25	1.1	1.2	1.20	1.25	1.20
Maximum Auxiliary Arm Tracking (dB):			0.3	0.5	$\text { (} 4^{\circ} \stackrel{0.7}{\text { Phase) }}$				
Primary Line Power Handling Capability:	50 W ave. 500 W peak \ddagger	50 W ave.	50 W ave.	10 W ave.					
Auxiliary Arm Load Average Power:	0.5 W	2 W	0.5 W	0.5 W	0.5 W				
Maximum Primary Line Residual Loss (dB):	0.30	0.40	0.35	0.75	1.5	0.5	0.4	0.5	0.8
Primary Line/Auxiliary Arm Connectors:	$\begin{aligned} & \text { "N"(m,f)/ } \\ & \text { " } \mathrm{N} "(f, f) \end{aligned}$	$\begin{aligned} & \text { "N"(m,f)/ } \\ & \text { "N" } \mathrm{N}, \mathrm{f}, \mathrm{f}) \end{aligned}$	$\begin{aligned} & \text { "N"(m,f)/ } \\ & \text { "N" }(f, f) \end{aligned}$	$\begin{aligned} & \text { "N"(m,f)/ } \\ & \text { "N" }(f, f) \end{aligned}$	$\begin{aligned} & \text { " } \mathrm{N} "(\mathrm{~m}, \mathrm{f}) / \\ & \mathrm{CN} \mathrm{~N}(\mathrm{f}, \mathrm{f}) \end{aligned}$			$\begin{gathered} \text { "N"(m,f)/ } \\ \text { "N"(f) } \end{gathered}$	$\begin{aligned} & \text { "N"(m,f)/ } \\ & \text { " } \mathrm{N}^{\prime} \text { " }(f) \end{aligned}$
Dimensions (in/mm):	$\begin{aligned} & 9^{1 / 1 / 6 \times 31 / x} \times 1^{3 / 4} \\ & 230 \times 70 \times 45 \end{aligned}$	$\begin{aligned} & 9^{1 / 166 \times 31 / 8 \times 13 / 4} \\ & 230 \times 70 \times 45 \end{aligned}$	$\begin{gathered} 6^{5 / 6} \times 2^{5 / 16} \times 1^{3 / 4} \\ 161 \times 59 \times 45 \end{gathered}$	$\begin{aligned} & 87 / 8 \times 2^{7 / 16} \times 1^{1 / 8} \\ & 225 \times 64 \times 29 \end{aligned}$	$\begin{aligned} & 16^{3 / 4} \times 4^{3 / 8} \times 1^{3 / 16} \\ & 425 \times 111 \times 30 \end{aligned}$	$\begin{gathered} 7^{3 / 4 \times 41 / 2 \times 1} \\ 196 \times 114 \times 26 \end{gathered}$	$\begin{aligned} & 6 \times 1^{1 / 8} \times 2^{7 / 16} \\ & 152 \times 29 \times 62 \end{aligned}$	$\begin{aligned} & 47 / \times 1 \frac{11 / 3 \times 27 / 16}{16} \\ & 124 \times 29 \times 62 \end{aligned}$	$\begin{aligned} & 47 / 8 \times 1 \frac{1}{3} \times 31 / 8 \\ & 124 \times 29 \times 99 \end{aligned}$
$\text { Weight (lbs/kg): } \begin{array}{r} \text { Net } \\ \text { Shipping } \end{array}$	$\begin{aligned} & 3 / 1,4 \\ & 4 / 1,8 \end{aligned}$	$\begin{aligned} & 3 / 1,4 \\ & 4 / 1,8 \end{aligned}$	$\begin{aligned} & 2 / 0,9 \\ & 3 / 1,4 \end{aligned}$	$\begin{aligned} & 2 / 0,9 \\ & 3 / 1,4 \end{aligned}$	$\begin{array}{r} 33 / 4 / 1,5 \\ 5 / 2,3 \end{array}$	$\begin{gathered} 13 / 4 / 0,75 \\ 3 / 1,4 \end{gathered}$	$\begin{gathered} 1 / 0,45 \\ 2 / 0,9 \end{gathered}$	$\begin{gathered} 1 / 0,45 \\ 2 / 0,9 \end{gathered}$	$\begin{gathered} 1 / 0,45 \\ 2 / 0,9 \end{gathered}$
Options Available:					011, 012	010, (APC)			

[^0]Options: 010 N female input connector, N male output connector, N female auxiliary connector

011 APC-7 output connector, N female input connectors.
(APC) APC-7 connectors on any (or all) port(s) on special order

DIRECTIONAL COUPLERS
AND DETECTORS

SPECIFICATIONS

*Nominal Coupling, Coupling Factor, Coupling Attenuation are terms that describe the same parameter.
\dagger Dimension given is for length only.

SPECIFICATIONS

Model:	DIRECTIONAL DETECTORS					DIRECTIONAL BRIDGES		
	784A	786D	787D	788C	789C	8721A	15520A*	15537A*
Frequency Range (GHz):	2-12.4	0.96-2.11	1.9-4.1	3.7-8.3	8-12.4	$\frac{0.1-110}{\mathrm{MHz}}$	$\begin{aligned} & \text { 45-95 } \\ & \mathrm{MHz} \end{aligned}$	$\begin{gathered} 0.5-20 \\ \mathrm{MHz} \end{gathered}$
Nominal Coupling (dB) $\triangleright<$:						6	6	3
Low Level Sensitivity ($\mu \mathbf{V} / \mu \mathbf{W}$):	>12	> 4	> 4	>40	>20			
Maximum Coupling Variation (dB):	$\dagger \pm 1.5 \bigcirc$	± 0.2 *	± 0.2 勺	± 0.3 -	± 0.50	<0.6	± 0.5	± 0.5
Minimum Directivity (dB):	$\begin{gathered} 19,2-4 \mathrm{GHz} \\ 16,4.8 \mathrm{GHz} \\ 13,8-12.4 \mathrm{GHz} \end{gathered}$	30	26	20	17	$\begin{aligned} & 40,1-110 \mathrm{MHz} \\ & 30,0.1-1 \mathrm{MHz} \end{aligned}$	44**	54**
Maximum Primary Line SWR:	1.4	1.15	1.15	1.20	1.4	1.06	1.02	1.02
Maximum Auxiliary Arm SWR:						1.07	1.02	1.02
Equivalent Source Match:	$\begin{aligned} & 1.2,1.7-6.5 \mathrm{GH} \\ & 1.5,6.5-12.4 \mathrm{GH} \end{aligned}$	1.13	1.16	1.25	1.25			
Primary Line Power Handling Capability:	10 W ave.	10 W ave.	10 W ave.	1 W ave.	1 W ave.	0.1 W ave.	0.1 W ave.	0.1 W ave.
Characteristic Impedance (ohms):	50	50	50	50	50	$\begin{gathered} 50 \\ (75 \mathrm{opt} .) \end{gathered}$	75	75
Maximum Primary Line Residual Loss (dB):	1.0	0.25	0.35	0.6	0.7	6	6	3
Primary Line/Auxiliary Arm Connectors:	$\begin{aligned} & \text { "N" } \mathrm{Cf}, \mathrm{~m}) / \\ & \text { BNC (f) } \end{aligned}$	$\begin{aligned} & " N "(m, f) / \\ & B N C '(f) \end{aligned}$	$\begin{aligned} & " N "(m, f) / \\ & B N C(f) \end{aligned}$	$\begin{gathered} \text { "N"(m,f)/ } \\ \text { BNC(f) } \end{gathered}$	$\begin{gathered} " N "(m, f) / \\ B N C(f) \end{gathered}$	BNC/BNC	BNC/BNC	BNC/BNC
Dimensions (inches/mm):	53/4/146 \ddagger	6/152 \ddagger	$47 / 8 / 124 \ddagger$	$\stackrel{77 / 8 / 124}{\ddagger}$	$\stackrel{\ddagger}{\ddagger}$	$\begin{aligned} & 11 / 2 \times 1 \times 31 / 8 \\ & 38 \times 25 \times 79 \end{aligned}$	$\begin{aligned} & 2^{1 / 1} \times 2^{3 / 4} \times 1 / 2 / 8 \\ & 63 \times 69 \times 22 \end{aligned}$	$\begin{gathered} 3 \times 3 x^{3 / 4} \\ 75 \times 75 \times 19 \end{gathered}$
Weight (lbs/kg): $\begin{array}{r}\text { Net } \\ \text { Shipping }\end{array}$	$\begin{aligned} & 1 / 0,45 \\ & 2 / 0,9 \end{aligned}$	$\begin{aligned} & 1 / 0,45 \\ & 2 / 0,9 \end{aligned}$	$\begin{aligned} & 3 / 4 / 0,34 \\ & 2 / 0,9 \end{aligned}$	$\begin{gathered} 3 / 4 / 0,34 \\ 2 / 0,9 \end{gathered}$	$\begin{gathered} 13 / 4 / 0,78 \\ 2 / 0,9 \end{gathered}$	$\begin{aligned} & 1 / 4 / 0,1 \\ & 1 / 2 / 1,1 \end{aligned}$	3/16/0,1	5/6/0,14
Options Available:		002, 003	002, 003	002,003	002,003	008	002,003	

measure:

Standing Wave Magnitude and Phase Impedance Magnitude and Phase
System Flatness
Wavelength
Percent of Transmitted or Reflected Power

- Quickly
- Accurately
- Fixed or Swept Frequency Testing

SLOTTED LINE EQUIPMENT AND SLIDE SCREW TUNERS

SPECIFICATIONS

Frequency Range (GHz):
Characteristic Impedance (ohms):

Maximum Residual SWR:

Maximum Slope and Irregularities:

Connectors:

Waveguide I.D. (in):

Fits Waveguide Size, Nom. O.D. (in):
(EIA)

Equivalent Flange:

Dimensions (in/mm):

Weight (lbs/kg):

Carriage:

Accessories Furnished \dagger :

Accessories Available \dagger :

Options Available:

* Maximum VSWR valves (20:1) can be corrected with an accuracy of 1.02 and small SWR's may be easily corrected.

Residual loss at corrected SWR of 20 is 2 dB maximum.
\dagger See Accessories Section, page 53

- Dimension given is length only.
\ddagger Included in Residual SWR.
Options: 022 Type N male and Type N female connectors.

SPECIFICATIONS

		PROBES				SWEEP	CARRIAGES		SLOTTED LINE
	Model:	442B	444A	446B	447B	448A	8096	814B	817A
Frequency Range (GHz):		2.6-12.4	2.6-18	18-40	1.8-18	1.8-18			1.8-18
Probe Required:						$\begin{aligned} & \text { 447B } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \text { Fits } 442 \mathrm{~B}, \\ 444 \mathrm{~A}, 447 \mathrm{~B}, \\ 448 \mathrm{~A} \end{gathered}$	Fits 446B	448A Included
Probe Travel:							10 cm	.15 cm	10 cm
Accuracy:							$\begin{gathered} \text { reads SWR } \\ \text { of } 1.02 \end{gathered}$	reads SWR of 1.02	$\begin{aligned} & \text { reads SWR } \\ & \text { of } 1.02 \end{aligned}$
Detector:		Not Supplied	modified 1N 76	modified 1N 53	00423-802	$\begin{gathered} 2 \text { each } \\ 00423-802 \\ \text { Type } \end{gathered}$	$\begin{gathered} \text { Se 442B, } \\ 444 \mathrm{~A}, 447 \mathrm{~B}, \\ 448 \mathrm{~A} \end{gathered}$	See 446B	$\begin{gathered} 2 \text { each } \\ 00423-802 \\ \text { Type } \end{gathered}$
Maximum Power:						2 W ave.			2 W ave.
Connectors:		" N "(f) (output)	BNC (f) (output)	BNC (f) (output)	BNC (f) (output)	$\begin{gathered} " N "(m, f) \\ \operatorname{BNC}(f) \end{gathered}$			$\begin{aligned} & \text { APC-7 } \\ & \text { " }{ }^{\prime} \text { " }(f) \end{aligned}$
Slotted Line Section:		$\begin{aligned} & \text { Fits } \\ & 810 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { Fits } \\ & 810 \mathrm{~B} \end{aligned}$	$\begin{gathered} \text { Fits } \\ 815 B \end{gathered}$	$\begin{aligned} & \text { Fits } \\ & 816 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Fits } \\ & 816 \mathrm{~A} \end{aligned}$	Mounts 810B, 816 A	Mounts 815B	$\begin{gathered} \text { 816A } \\ \text { Included } \end{gathered}$
Carriage:		$\begin{aligned} & \text { Fits } \\ & 809 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Fits } \\ & 809 \mathrm{C} \end{aligned}$	$\begin{gathered} \text { Fits } \\ 814 \mathrm{~B} \end{gathered}$	$\begin{aligned} & \text { Fits } \\ & 809 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Fits } \\ & 809 \mathrm{C} \end{aligned}$			$\begin{aligned} & 809 \mathrm{C} \\ & \text { Included } \end{aligned}$
Dimensions (in/mm):		$\begin{aligned} & 1^{1 / 4 \times 31 / 8} \\ & (32 \times 79) \end{aligned}$	$\begin{aligned} & 11 / 4 \times 2^{1 / 166} \\ & (32 \times 52) \end{aligned}$	$\begin{aligned} & 2^{5 / 6} / 6 \times 1 \\ & (57 \times 25) \end{aligned}$	$\begin{aligned} & 31 / 2 \times 11 / 8 \\ & (89 \times 29) \end{aligned}$	$\begin{gathered} 4^{1 / 8 \times 4} \times 1 / 4 \times 7 / 8 \\ (105 \times 108 \times 22) \end{gathered}$	$\begin{aligned} & 87 / 3 \times 6^{3 / 16 \times 5} \times 13 / 16 \\ & (226 \times 174 \times 148) \end{aligned}$	$\begin{gathered} 6^{1 / 4 \times 6} \times 1 / 4 \times 6^{1 / 2} \\ (159 \times 159 \times 165) \end{gathered}$	$\left\lvert\, \begin{gathered} 131 / 2 \times 7 \times 7 \\ (343 \times 178 \times 178) \end{gathered}\right.$
Weight (lbs/kg):	Shipping	$\begin{aligned} & 3 / 8 / 0,17 \\ & 1 / 2 / 0,23 \end{aligned}$	$\begin{aligned} & 3 / 8 / 0,17 \\ & 1 / 2 / 0,23 \end{aligned}$	$\begin{aligned} & 1 / 2 / 0,23 \\ & 1 / 0,45 \end{aligned}$	$\begin{gathered} 3 / 8 / 0,17 \\ 1 / 0,45 \end{gathered}$	$\begin{aligned} & 1 / 8 / 0,39 \\ & 2 / 0,9 \end{aligned}$	$\begin{aligned} & 4 / 1,8 \\ & 5 / 2,3 \end{aligned}$	$\begin{aligned} & 4 / 1,8 \\ & 8 / 3.6 \end{aligned}$	$\begin{array}{r} 14^{3 / 4} / 6,6 \\ 22 / 9,9 \end{array}$
Accessories Furnished:									$\begin{aligned} & 11512 \mathrm{~A} \\ & 11565 \mathrm{~A} \end{aligned}$
Accessories Available:		440At	11506A**						$\begin{gathered} 11524 \mathrm{~A},{ }^{*} \\ 115252 \mathrm{~A} \\ 11533 \mathrm{~A}, 11534 \mathrm{~A} \end{gathered}$
Options Available:									022

* See Accessories Section, page 53
+ See Detector Section, page 31
- See Terminations Section, page 49
** Probe extensions Kit.
Options: 022 Type N male and Type N female connectors
coaxial and
waveguide attenuators
for a wide variety
of functions:
Reduction of Power Levels
Reduction of Source Mismatch
Reduction of Detector Mismatch
Measurement of Reflection Coefficient
Measurement of Insertion Loss

ATTENUATORS FIXED, VARIABLE AND PROGRAMMABLE

by:

Users of Bench Setups Instrument Manufacturers Systems Manufacturers

SPECIFICATIONS

Mode of Operation:
Frequency Range:
Incremental Attenuation (dB):
Attenuation Accuracy:
Maximum Residual Attenuation*(dB):

Maximum SWR:

Power Handling Capability:

Power Sensitivity:

Power Required to Switch One Section:

Solenoid Voltage:

Switching Speed:

Repeatability (typ after 10^{6} cycles):

Minimum Life:

Connectors:

Dimensions (in/mm):

Weight (lbs/kg):

Maximum Attenuation Temperature Coefficient $\left(\mathrm{dB} / \mathrm{dB} /{ }^{\circ} \mathrm{C}\right)$:

Options Available:

[^1]| 354A | $355 C$ | 355D | 393A | 394A | 33300 | 333018 | 33304 。 | 33305 - | 3750A \ddagger |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable Step | Variable Step | Variable Step | Continuously Variable | Continuously Variable | $\begin{gathered} \text { Programmable } \\ \text { Step } \end{gathered}$ | $\begin{aligned} & \text { Programmable } \\ & \text { Step } \end{aligned}$ | $\begin{gathered} \text { Programmable } \\ \text { Step } \end{gathered}$ | $\begin{aligned} & \text { Programmable } \\ & \text { Step } \end{aligned}$ | Variable Step |
| $\begin{gathered} \mathrm{DC}-12.4 \\ \mathrm{GHz} \end{gathered}$ | DC-1 GHz | DC-1 GHz | . $5 \cdot 1 \mathrm{GHz}$ | 1.2 GHz | $\begin{aligned} & \text { DC-18 } \\ & \text { GHz } \end{aligned}$ | $\begin{gathered} \text { DC-18 } \\ \text { GHz } \end{gathered}$ | $\begin{gathered} \text { DC-18 } \\ \text { GHz } \end{gathered}$ | $\begin{gathered} \mathrm{DC}-18 \\ \mathrm{GHz} \end{gathered}$ | $\begin{gathered} \text { DC-100 } \\ \mathrm{MHz} \end{gathered}$ |
| $\begin{gathered} 0.60 \\ \text { in } 10 \mathrm{~dB} \\ \text { steps } \end{gathered}$ steps | 0.12
 in 1 dB steps | $0-120$
 steps
 steps | 5-120 | 6-120 | $\begin{aligned} & 0.70 \\ & \text { in } 10 \mathrm{~dB} \\ & \text { stens } \end{aligned}$ steps | 0.42
 in 6 dB steps | $\begin{gathered} 0-11 \\ \text { in } 1 \mathrm{~dB} \\ \text { steps } \end{gathered}$ | $\begin{gathered} 0-110 \\ \text { in } 10 \mathrm{~dB} \\ \text { steps } \end{gathered}$ | $\begin{gathered} 0-99 \\ \text { in } 1 \mathrm{~dB} \\ \text { steps } \end{gathered}$ |
| $\pm 2 \mathrm{~dB}$ | $\begin{gathered} \text { See } \\ \text { Table } 1 \end{gathered}$ | $\begin{gathered} \text { See } \\ \text { Table } 1 \end{gathered}$ | $\begin{gathered} \text { Greater of } \\ \pm 1.25 \mathrm{~dB} \text { or } \\ \pm 1.75 \% \end{gathered}$ | $\begin{aligned} & \text { Greater of } \\ & \pm 1.25 \mathrm{~dB} \text { or } \\ & \pm 2.5 \% \end{aligned}$ | See $\text { Table } 5$ | See $\text { Table } 6$ | See Table 7 | $\begin{gathered} \text { See } \\ \text { Table } 8 \end{gathered}$ | $\pm 2 \mathrm{~dB}$ |
| 1.5 | See Table 2 | See
 Table 2 | | | $0.5+0.08 \mathrm{freq}$ (freq in GHz) | $0.5+0.08 \mathrm{freq}$ (freq in GHz) | $0.7+0.1$ freq (freq in GHz) | $0.7+0.1$ req (freq in GHz) | |
| $\begin{gathered} 1.5, \mathrm{DC}-8 \\ 1.75,8.12 .4 \end{gathered}$ | $\begin{gathered} \text { See } \\ \text { Table } 3 \end{gathered}$ | $\begin{gathered} \text { See } \\ \text { Table } 3 \end{gathered}$ | $\begin{gathered} \text { See } \\ \text { Table } 4 \end{gathered}$ | $\begin{gathered} \text { See } \\ \text { Table } 4 \end{gathered}$ | See
 Table 13 | $\begin{aligned} & \text { See } \\ & \text { Table } 13 \end{aligned}$ | $\begin{gathered} \text { See } \\ \text { Table } 13 \end{gathered}$ | $\begin{gathered} \text { See } \\ \text { Table } 13 \end{gathered}$ | 1.08 |
| 2 W ave. 300 W peak | 5 W ave. 350 W peak | 5 W ave. 350 W peak | 200 W ave. | 200 W ave. | 2 W ave. 500 W peak | . 25 W ave. |
| $\begin{aligned} & .001 \\ & \mathrm{~dB} / \mathrm{dB} / \text { watt } \end{aligned}$ | | | | | $\begin{gathered} .001 \\ \mathrm{~dB} / \mathrm{dB} / \text { watt } \end{gathered}$ | $\stackrel{.001}{\mathrm{~dB} / \mathrm{dB} / \text { watt }}$ | $\stackrel{.001}{\mathrm{~dB} / \mathrm{dB} / \text { watt }}$ | $\stackrel{.001}{\mathrm{~dB} / \mathrm{dB} / \text { watt }}$ | |
| | | | | | 3.3 W \dagger | $3.3 \mathrm{~W} \dagger$ | 3.3 W \dagger | 3.3 W \dagger | |
| | | | | | 0 | \bigcirc | \bigcirc | \bigcirc | |
| | | | | | 50 msec | 50 msec | 50 msec | 50 msec | |
| | | | | | $\begin{aligned} & .02 \mathrm{~dB}, \mathrm{DC}-12.4 \\ & .04 \mathrm{~dB}, 12.4-18 \end{aligned}$ | $\begin{aligned} & .02 \mathrm{~dB}, \mathrm{DC}-12.4 \\ & .04 \mathrm{~dB}, 12.4-18 \end{aligned}$ | $\begin{aligned} & .03 \mathrm{~dB}, \mathrm{DC}-12.4 \\ & .05 \mathrm{~dB}, 12.4-18 \end{aligned}$ | $\begin{aligned} & .03 \mathrm{~dB}, \mathrm{DC}-12.4 \\ & .05 \mathrm{~dB}, 12.4-18 \end{aligned}$ | |
| $\begin{aligned} & 10,000 \\ & \text { cycles } \end{aligned}$ | $\begin{aligned} & 25,000 \\ & \text { cycles } \end{aligned}$ | $\begin{aligned} & 25,000 \\ & \text { cycles } \end{aligned}$ | | | 10^{6} steps each section | |
| " N "(f) | See Options Note | BNC |
| $\begin{gathered} 4 \times 31 / x \times 41 / 2 \\ (102 \times 79 \times 114) \end{gathered}$ | $\begin{gathered} 6 \times 2^{3 / 4} \times 25 / 8 \\ (152 \times 70 \times 67) \end{gathered}$ | $\begin{gathered} 6 \times 2^{3 / 1} \times 25 / 8 \\ (152 \times 70 \times 67) \end{gathered}$ | $\begin{gathered} 12 \times 55^{1 / 2} \times 2^{3 / 4} \\ (305 \times 140 \times 70) \end{gathered}$ | $\begin{gathered} 12 \times 51 / 2 \times 23 / 4 \\ (305 \times 140 \times 70) \end{gathered}$ | $\begin{gathered} 7 \times 1^{1 / 2} \times 1^{1 / 4} \\ (178 \times 38 \times 32) \end{gathered}$ | $\begin{gathered} 7 \times 1^{1 / 2} \times 1^{1 / 4} 4 \\ (178 \times 38 \times 32) \end{gathered}$ | $\begin{gathered} 91 / 2 \times 1^{1 / 2} \times 1^{1 / 4} \\ (242 \times 38 \times 32) \end{gathered}$ | $\begin{gathered} 91 / 1 / x 1^{1 / 2 / x} \times 1 / 1 / \\ (242 \times 38 \times 32) \end{gathered}$ | $\begin{gathered} 8 \times 4 \times 21 / 2 \\ (203 \times 102 \times 64) \end{gathered}$ |
| $\begin{gathered} 23 / 1,2 \\ 4 / 1,8 \end{gathered}$ | $\begin{gathered} 11 / 2 / 0,7 \\ 3 / 1,4 \end{gathered}$ | $\begin{gathered} 11 / 2 / 0,7 \\ 3 / 1,4 \end{gathered}$ | $\begin{gathered} 6 / 2,7 \\ 13 / 5,8 \end{gathered}$ | $\begin{array}{r} 6 / 2,7 \\ 13 / 5,8 \end{array}$ | $\begin{gathered} 11 / 4 / 0,6 \\ 3 / 1,4 \end{gathered}$ | $\begin{gathered} 11 / 4 / 0,6 \\ 3 / 1,4 \end{gathered}$ | $\begin{aligned} & 11 / 2 / 0,7 \\ & 3^{1 / 2 / 2,7} \end{aligned}$ | $\begin{aligned} & 11 / 2 / 0,7 \\ & 31 / 2 / 1,7 \end{aligned}$ | 3/1,4 |
| . 0001 | | | | | . 0001 | . 0001 | . 0001 | . 0001 | |
| | $\begin{gathered} 001,003, \\ 005 \end{gathered}$ | $\begin{gathered} 001,003 \\ 005 \end{gathered}$ | 001 | 001 | ** | ** | ** | ** | |

\ddagger Characteristic Impedance: 75Ω
Options: 355C/D; 001 Type N connectors.
355C/D; 003 Panel mounting capability
355C/D; 005 Type TNC connectors.
393A/394A; 001 supplied without 908A coaxial terminations.

ATTENUATION ACCURACY		
Frequency	355C	355D
1000 Hz	$\pm 0.1 \mathrm{~dB}$	$\begin{aligned} & \pm 0.3 \mathrm{~dB} \\ & \text { to } 120 \mathrm{~dB} \end{aligned}$
DC-500 MHz	$\pm 0.25 \mathrm{~dB}$	-
DC-1 GHz	$\pm 0.35 \mathrm{~dB}$	$\begin{aligned} & \pm 1.5 \mathrm{~dB} \\ & \text { to } 90 \mathrm{~dB} \\ & \pm 3 \mathrm{~dB} \\ & \text { to } 120 \mathrm{~dB} \end{aligned}$

TABLE 2

RESIDUAL ATTENUATION		
Frequency	355 C	355 D
100 MHz	0.25 dB	0.25 dB
$100-500 \mathrm{MHz}$	0.75 dB	0.75 dB
$500 \mathrm{MHz}-1 \mathrm{GHz}$	1.5 dB	1.5 dB

TABLE 3		
SWR (input and output)		
Frequency	355C	355D
DC-250 MHz	1.2	1.2
$250-500 \mathrm{MHz}$	1.3	1.3
$500 \mathrm{MHz}-1 \mathrm{GHz}$	1.5	1.5

TABLE 5

ATTENUATION ACCURACY							
Frequency Range	Attenuator Setting (dB)						
	10	20	30	40	50	60	70
DC-12.4 GHz	± 0.5	± 0.7	± 0.9	± 1.2	± 1.5	± 1.8	± 2.1
DC-18 GHz	± 0.6	± 0.8	± 1.2	± 1.6	± 2.0	± 2.4	± 2.8

TABLE 6
ATTENUATION ACCURACY

Frequency Range	Attenuator Setting (dB)							
	6	12	18	24	30	36	42	
	± 0.4	± 0.5	± 0.7	± 0.8	± 0.9	± 1.1	± 1.2	
	± 0.5	± 0.6	± 0.8	± 1.0	± 1.2	± 1.6	± 2.0	

TABLE 7

ATTENUATION ACCURACY

	Attenuator Setting (dB)										
Frequency Range	1	2	3	4	5	6	7	8	9	10	11
DC-4 GHz	± 0.2	± 0.2	± 0.3	± 0.3	± 0.3	± 0.3	± 0.4	± 0.4	± 0.4	± 0.4	± 0.5
$4-12.4 \mathrm{GHz}$	± 0.3	± 0.3	± 0.4	± 0.4	± 0.4	± 0.4	± 0.5	± 0.5	± 0.5	± 0.5	± 0.6
12.4-18 GHz	± 0.4	± 0.4	± 0.5	± 0.5	± 0.6	± 0.6	± 0.7	± 0.7	± 0.8	± 0.8	± 0.9

TABLE 8
ATTENUATION ACCURACY

Frequency Range	Attenuator Setting (dB)										
	10	20	30	40	50	60	70	80	90	100	110
	± 0.5	± 0.7	± 0.9	± 1.2	± 1.5	± 1.8	± 2.1	± 2.4	± 2.7	± 3.0	± 3.3
$12.4-18 \mathrm{GHz}$	± 0.6	± 0.8	± 1.2	± 1.6	± 2.0	± 2.4	± 2.8	± 3.2	± 3.6	± 4.0	± 4.4

SPECIFICATIONS

	Model:	8491A	8491B	8492A	8493A	8493B	11581A*	11582A \dagger	11583A
Mode of Operation:		Fixed							
Frequency Range (GHz):		DC-12.4	DC-18	DC-18	DC-12.4	DC-18	DC-12.4	DC-18	DC-18
Attenuation Accuracy (dB): 3 dB		± 0.3							
6 dB		± 0.3	$\begin{aligned} & \pm .3, \mathrm{DC}-12.4 \\ & \pm .4,12.4-18 \end{aligned}$	$\begin{aligned} & \pm .3, \mathrm{DC}-12.4 \\ & \pm .4,12.4-18 \end{aligned}$	± 0.3	$\begin{aligned} & \pm .3, \mathrm{DC}-12.4 \\ & \pm .4,12.4-18 \end{aligned}$	± 0.3	$\begin{aligned} & \pm .3, \text { DC-12.4 } \\ & \pm .4,12.4-18 \end{aligned}$	$\begin{aligned} & \pm .3, \mathrm{DC}-12.4 \\ & \pm .4,12.4-18 \end{aligned}$
10 dB		± 0.5							
20 dB		± 0.5	$\begin{aligned} & \pm .5, \mathrm{DC}-12.4 \\ & \pm 1,12.4-18 \end{aligned}$	$\begin{aligned} & \pm .5, \mathrm{DC}-12.4 \\ & \pm 1,12.4-18 \end{aligned}$	± 0.5	$\begin{aligned} & \pm .5, \mathrm{DC}-12.4 \\ & \pm 1,12.4-18 \end{aligned}$	± 0.5	$\begin{aligned} & \pm .5, \mathrm{DC}-12.4 \\ & \pm 1,12.4-18 \end{aligned}$	$\begin{aligned} & \pm .5, \text { DC-12.4 } \\ & \pm 1,12.4-18 \end{aligned}$
30 dB		± 1							
40 dB		± 1.5	± 1.5	± 1.5					
50 dB		± 1.5	± 1.5	± 1.5					
60 dB		± 2	± 2	± 2					
Maximum SWR:		$\begin{aligned} & \text { See } \\ & \text { Table } 10 \end{aligned}$	$\begin{gathered} \text { See } \\ \text { Table } 11 \end{gathered}$	See Table 12	$\begin{gathered} \text { See } \\ \text { Table } 10 \end{gathered}$	$\begin{gathered} \text { See } \\ \text { Table } 11 \end{gathered}$	$\begin{gathered} \text { See } \\ \text { Table } 10 \end{gathered}$	$\begin{gathered} \text { See } \\ \text { Table } 11 \end{gathered}$	$\begin{gathered} \text { See } \\ \text { Table } 12 \end{gathered}$
Calibration Frequencies:		$\begin{aligned} & \text { DC, 4, 8, } \\ & 12 \mathrm{GHz} \end{aligned}$	$\begin{gathered} \mathrm{DC}, 4,8, \\ 12,18 \mathrm{GHz} \end{gathered}$	DC, 4, 8, $12,18 \mathrm{GHz}$	DC, 4, 8, 12 GHz	DC, 4, 8 , $12,18 \mathrm{GHz}$	$\begin{aligned} & \text { DC, 4, 8, } \\ & 12 \mathrm{GHz} \end{aligned}$	$\begin{gathered} \text { DC, 4, 8, } \\ 12,18 \mathrm{GHz} \end{gathered}$	$\begin{gathered} \mathrm{DC}, 4,8, \\ 12,18 \mathrm{GHz} \end{gathered}$
Maximum Input Power:		2 W ave. 100 W peak							
Connectors:		Type N	Type N	APC-7	SMA	SMA	Type N	Type N	APC-7
Dimensions (in/mm):		$\begin{aligned} & 2^{7 / 16} \times x^{13 / 6} \\ & (62 \times 21) \end{aligned}$	$\begin{aligned} & 27 / 6 \times 13 / 16 \\ & (62 \times 21) \end{aligned}$	$\begin{aligned} & 23 / 4 \times{ }^{13 / 16} \\ & (70 \times 21) \end{aligned}$	$\begin{aligned} & 19 / 16 \times 1 / 2 \\ & (40 \times 13) \end{aligned}$	$\begin{aligned} & 196 \times 1 / 2 \\ & (40 \times 13) \end{aligned}$	$\begin{gathered} \text { See } \\ \text { 8491A } \end{gathered}$	$\begin{gathered} \text { See } \\ 8491 \mathrm{~B} \end{gathered}$	$\begin{gathered} \text { See } \\ 8492 \mathrm{~A} \end{gathered}$
Weight (lbs/kg):	Shipping	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 2 / 0,22 \end{aligned}$	$\begin{aligned} & 1 / 2 / 0,11 \\ & 1 / 2 / 0,22 \end{aligned}$	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 2 / 0,22 \end{aligned}$	$\begin{gathered} 1 / 6 / 0,03 \\ 1 / 2 / 0,22 \end{gathered}$	$\begin{aligned} & 1 / 16 / 0,03 \\ & 1 / 2 / 0,22 \end{aligned}$	$\begin{aligned} & 2 / 0,88 \\ & 4 / 1,76 \end{aligned}$	$\begin{aligned} & 2 / 0,88 \\ & 4 / 1,76 \end{aligned}$	$\begin{aligned} & 2 / 0,88 \\ & 4 / 1,76 \end{aligned}$
Options Available:		**	**	**	**	**			

* Set of four 8491 A , includes $3,6,10,20 \mathrm{~dB}$ values.
\dagger Set of four 8491 B , includes $3,6,10,20 \mathrm{~dB}$ values. - In addition to the calibration stamping on the bodies of the
- Set of four 8492 A , includes $3,6,10,20 \mathrm{~dB}$ values.
** Option numbers same as attenuation values; e.g., Option'003 for 3 dB , Option 006 for 6 dB , Option 010 for 10 dB , etc.

Table 10
SWR

Attenuation	DC-8 GHz	$8-12.4 \mathrm{GHz}$
3 dB	1.25	1.35
6 dB	1.2	1.3
10 dB	1.2	1.3
20 dB	1.2	1.3
30 dB	1.2	1.3
40 dB	1.2	1.3
50 dB	1.2	1.3
60 dB	1.2	1.3

Attenuation	DC-8 GHz	8-12.4 GHz	12.4-18 GHz
3 dB	1.25	1.35	1.5
6 dB	1.2	1.3	1.5
10 dB	1.2	1.3	1.5
20 dB	1.2	1.3	1.5
30 dB	1.2	1.3	1.5
40 dB	1.2	1.3	1.5
50 dB	1.2	1.3	1.5
60 dB	1.2	1.3	1.5

Table 11
Table 12
SWR

Attenuation	DC-8 GHz	$8-12.4 \mathrm{GHz}$	$12.4-18 \mathrm{GHz}$
3 dB	1.2	1.3	1.5
6 dB	1.2	1.3	1.35
10 dB	1.15	1.25	1.3
20 dB	1.15	1.25	1.3
30 dB	1.15	1.25	1.3
40 dB	1.15	1.25	1.35
50 dB	1.15	1.25	1.35
60 dB	1.15	1.25	1.35

SPECIFICATIONS

WAVEGUIDE ATTENUATORS									
Model:	X 375 A	P375A	S382C	J382A	H382A	X 382 A	P382A	K382A	R382A
Mode of Operation:	Continuously Variable	Continuously Variable	Continuously Variable	Continuously Variable	Continuouisly Variable	Continuously Variable	Continuously Variable	Continuously Variable	Continuously Variable
Frequency Range (GHz):	8.2-12.4	12.4-18.0	2.6-3.95	5.3-8.2	7.05-10.0	8.2-12.4	12.4-18.0	18.0-26.5	26.5-40.0
Incremental Attenuation (dB):	0-20	0-20	0.60	0-50	0.50	0-50	0.50	$0-50$	$0-50$
Attenuation Accuracy:	0	\bigcirc	\dagger	greater of 0.1 dB or 2\%	greater of 0.1 dB				
Maximum Residual Attenuation (dB)*:	0.5	0.5	1	1	1	1	1	1	1
Maximum SWR:	1.15	1.15	1.2	1.15	1.15	1.15	1.15	1.15	1.15
Maximum Reflection Coefficient:	0.07	0.07	0.091	0.07	0.07	0.07	0.07	0.07	0.07
Power Handling Capability:	2 W ave.	1 W ave.	10 W ave.	10 W ave.	10 W ave.	10 W ave.	5 W ave.	2 W ave.	1 W ave.
Fits Waveguide Size, Nom. OD (in) (EIA)	$\begin{aligned} & 1 x^{1 / 2} \\ & (\text { WR90 } \end{aligned}$	$\begin{aligned} & .702 \times .391 \\ & \text { (WR62) } \end{aligned}$	$\begin{gathered} 3 \times 11 / 2 \\ \text { (WR284) } \end{gathered}$	$\begin{aligned} & 11 / 2 x^{3 / 4} \\ & (\text { WR137) } \end{aligned}$	$11 / 4 \times 5 / 8$ (WR112)	$\begin{gathered} 1 \times 1 / 2 \\ (W R 90) \end{gathered}$	$\begin{aligned} & .702 \times .391 \\ & \text { (WR62) } \end{aligned}$	$\begin{aligned} & 1 / 2 x^{1 / 4} \\ & \text { (WR42) } \end{aligned}$	$\begin{aligned} & .360 \times .220 \\ & (W R 28) \end{aligned}$
Equivalent Flange:	UG-39/U	UG-419/U	UG-584/U	UG-441/U	UG-138/U	UG-135/U	Cover (Al)	UG-597/U	Cover (AI)
Dimensions (in/mm):	$\stackrel{\ddagger}{\ddagger}$	$\stackrel{71 / 4 / 184}{\ddagger}$	$\begin{gathered} 251 / 4 \times 6 \times 8 \\ (641 \times 152 \times 203) \end{gathered}$	$\begin{gathered} 25 \times 7 / 7 \times 63 / 16 \\ (635 \times 200 \times 157) \end{gathered}$	$\begin{gathered} 20 \times 715 / 16 \times 61 / 2 \\ (508 \times 202 \times 165) \end{gathered}$	$\begin{aligned} & 155 / 3 \times 7 \% \times 411 / 16 \\ & (397 \times 194 \times 119) \end{aligned}$	$\begin{array}{r} 121 / 2 \times 73 / 4 \times 43 / 4 \\ (318 \times 197 \times 121) \end{array}$	$\begin{gathered} 75 / 86^{1 / 8} \times 4^{3 / 4} \\ (194 \times 156 \times 121) \end{gathered}$	$\begin{gathered} 63 / \times 6^{1 / 3} \times 4^{3 / 4} \\ (162 \times 156 \times 121) \end{gathered}$
Weight (lbs/kg): $\begin{array}{r}\text { Net } \\ \text { Shipping }\end{array}$	$\begin{aligned} & 2 / 0,9 \\ & 3 / 1,4 \end{aligned}$	$\begin{gathered} 13 / 4 / 0,79 \\ 3 / 1,4 \end{gathered}$	$\begin{aligned} & 18 / 8,1 \\ & 28 / 12,6 \end{aligned}$	$\begin{aligned} & 13 / 5,9 \\ & 24 / 10,9 \end{aligned}$	$\begin{aligned} & 10 / 4,5 \\ & 22 / 9,9 \end{aligned}$	$\begin{aligned} & 6 / 2,7 \\ & 8 / 3,6 \end{aligned}$	$\begin{aligned} & 6 / 2,7 \\ & 8 / 3,6 \end{aligned}$	$\begin{aligned} & 4 / 1,8 \\ & 9 / 4,1 \end{aligned}$	$\begin{aligned} & 4 / 1,8 \\ & 9 / 4,1 \end{aligned}$
Accessories Available**:								11515A	11516A

* Residual Attenuation is also referred to as Insertion Loss.
$\dagger \pm 1 \%$ of reading in dB or 0.1 dB , whichever is greater, from 0 to $50 \mathrm{~dB} ; \pm 2 \%$ of reading above 50 dB .
$\bullet \pm 1 \mathrm{~dB}$, zero to $10 \mathrm{~dB} ; 2 \mathrm{~dB}, 10$ to 20 dB .
** See Accessories section, page 53
\ddagger Dimension given is length only.

advantages:

- HIGH RESOLUTION, EASY-TO-READ DIAL
- direct reading
- broadband
- ACCURACY SPECIFIED OVER $20^{\circ} \mathrm{C}$ AND O TO 100\% RELATIVE HUMIDITY

FREQUENCY
 METERS

SPECIFICATIONS

Model:	536A	537A	J532A	H532A	X532B	P532A	K532A	R532A
Frequency Range (GHz):	0.96-4.2	3.7-12.4	5.3-8.2	7.05-10	8.2-12.4	12.4-18	18-26.5	26.5-40
Dial Accuracy (\%):	$\begin{aligned} & 1,1-4.2 \mathrm{GHz} \\ & .15, .96-1 \mathrm{GHz} \end{aligned}$	0.10	0.033	0.040	0.050	0.068	0.077	0.083
Overall Accuracy (\%):	$\begin{aligned} & .17,1-4.2 \mathrm{GHz} \\ & .22, .96-1 \mathrm{GHz} \end{aligned}$	0.17	0.065	0.075	0.08	0.10	0.11	0.12
Minimum Dip at Resonance (dB):	$\begin{aligned} & 1,1-4 \mathrm{GHz} \\ & .6, .96-1 \mathrm{GHz} \\ & 6,4-4.2 \mathrm{GHz} \end{aligned}$	1	1	1	1	1	1	1
Maximum Reflection Coefficient Off Resonance:	0.091	0.33						
Calibration Increments (MHz):	2	10	2	2	5	5	10	10
Minimum Calibration Spacing (in):	1/66	1/32	1/32	1/32	1/32	1/32	1/32	1/32
Maximum Temperature Coefficient (\%/ ${ }^{\circ} \mathrm{C}$):	0.0016	0.0016	0.0012	0.0015	0.0010	0.0012	0.0013	0.0017
Connectors:	" N "(f)	" N "(f)	WG (See below)					
Fits Waveguide Size, Nom. O.D. (in): (EIA)			$11 / 2 x^{3 / 4}$ (WR137)	$\begin{aligned} & 11 / 4 \times 5 / 8 \\ & \text { (WR112) } \end{aligned}$	$\begin{aligned} & 1 x^{1 / 2} \\ & (W R 90) \end{aligned}$	$\begin{aligned} & 0.702 \times 0.391 \\ & (W R 62) \end{aligned}$	$\begin{gathered} 1 / 2 x^{1 / 4} \\ \text { (WR42) } \end{gathered}$	$\begin{aligned} & 0.360 \times 0.220 \\ & (\text { WR28) } \end{aligned}$
Equivalent Flange:			UG-441/U	UG-138/U	UG-39/U	UG-419/U	UG-595/U	UG-599/U
Dimensions (in/mm):	$\begin{gathered} 6 \times 91 / \times 6 \times 6 \\ (152 \times 232 \times 152) \end{gathered}$	$\begin{gathered} 45 / 8 \times 533 \times 3 \times 31 / 2 \\ (118 \times 146 \times 89) \end{gathered}$	$\begin{gathered} 61 / 1 / \times 91 / 3 \times 41 / 2 \\ (159 \times 232 \times 114) \end{gathered}$	$\begin{gathered} 6^{1 / 4 \times 8 \times 43 / 8} \\ (159 \times 203 \times 111) \end{gathered}$	$\begin{gathered} 41 / 2 \times 66^{1 / 8 \times 2} \times 2 / 8 \\ (114 \times 156 \times 73) \end{gathered}$	$\begin{gathered} 41 / 2 \times 6^{1} / 4 \times 2^{3 / 4} \\ (114 \times 159 \times 70) \end{gathered}$	$\begin{gathered} 41 / 2 \times 53 / 3 \times 2 / 8 \\ (114 \times 137 \times 73) \end{gathered}$	$\begin{gathered} 41 / 2 \times 51 / 2 \times 23 / 4 \\ (114 \times 140 \times 70) \end{gathered}$
Weight (lbs/kg): $\quad \begin{array}{r}\text { Net } \\ \text { Shipping }\end{array}$	$\begin{aligned} & 10 / 4,5 \\ & 13 / 5,9 \end{aligned}$	$\begin{array}{r} 31 / 2 / 1,6 \\ 5 / 2,3 \end{array}$	$\begin{aligned} & 71 / 2 / 3,4 \\ & 11 / 5,0 \end{aligned}$	$\begin{aligned} & 6 / 2,7 \\ & 9 / 4,1 \end{aligned}$	$\begin{array}{r} 3 / 2 / 1,6 \\ 5 / 2,3 \end{array}$	$\begin{aligned} & 3 / 1,4 \\ & 5 / 2,3 \end{aligned}$	$\begin{array}{r} 1 / 2 / 0,7 \\ 4 / 1,8 \end{array}$	$\begin{array}{r} 1 / 2 / 0,7 \\ 4 / 1,8 \end{array}$
Accessories Available \dagger :							11515A	11516 A

[^2]
features:

FLAT FREQUENCY RESPONSE

LOW SWR
HIGH SENSITIVITY
EXCELLENT SQUARE LAW CHARACTERISTICS
WIDE FREQUENCY COVERAGE ECONOMICAL

CRYSTAL DETECTORS

applications:

\qquad
RF Detection
Power Leveling
Power Monitoring
Reflection Coefficient Measurements
Attenuation Measurements
Peak Power Measurements

CRYSTAL
DETECTORS

SPECIFICATIONS

Model:	8471A	423A	420A	420B	8470A	8472A	MOUNTS	
							440A**	X4858**
Frequency Range (GHz):	$\begin{aligned} & 100 \mathrm{KHz}- \\ & 1.2 \mathrm{GHz} \end{aligned}$.01-12.4	. $01-12.4$	1-4 \dagger	.01-18	. $01-18^{\circ}$	2.4-12.4	8.2-12.4
Frequency Response (dB)*:	$\begin{aligned} & \pm .6 \text { typ. } \\ & \pm .1 \text { over } \\ & 100 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \pm .2 \text { /octave } \\ \text { to } 8 \mathrm{GHz} \\ \pm .5 \text { overall } \end{gathered}$	3.5	± 3	$\begin{aligned} & \pm .2 / \text { octave } \\ & \text { to } 8 \mathrm{GHz} ; \pm .5 \\ & \text { to } 12.4 \mathrm{GHz} \\ & \pm 1 \text { overall } \end{aligned}$	$\begin{aligned} & \text { same } \\ & \text { as } 8470 \mathrm{~A} \end{aligned}$		
Minimum Low Level Sensitivity ($\mathrm{mV} / \mu \mathbf{W}$):	0.35	0.4	0.1	0.05	0.4	0.4		
High Level Sensitivity (mW):	$\begin{gathered} >75 \% @ \text { input } \\ \text { levels }>10 \mathrm{~mW} \end{gathered}$	<0.35			<0.35	<0.35		
Maximum SWR:	1.3 typ.	$\begin{aligned} & 1.2 \text { to } 4.5 \mathrm{GHz} \\ & 1.35 \text { to } 7 \mathrm{GHz} \\ & 1.5 \text { to } 12.4 \mathrm{GHz} \end{aligned}$	3.0	3.0	$\begin{gathered} 1.2 \text { to } 4.5 \mathrm{GHz} \\ 1.35 \text { to } 7 \mathrm{GHz} \\ 1.5 \text { to } 12.4 \mathrm{GHz} \\ 1.7 \text { to } 18 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \text { Same } \\ & \text { as } 84700 \end{aligned}$		1.25
Maximum Input Power (mW, peak or ave.):	$\begin{gathered} 3 \mathrm{~V} \mathrm{rms} \\ (4.2 \mathrm{~V} \text { pk) } \end{gathered}$	100	100	100	100	100		
Input Connector:	BNC (m)	" N " (m)	" N " (m)	"N" (m)	APC-7	SMA (m)	" N " (m)	
Output Connector:	BNC (f)							
Fits Waveguide Size, Nom. O. D. (in): (EIA)								$\begin{aligned} & 1^{1 / 2 / 23 / 4} \\ & (\text { WR137) } \end{aligned}$
Dimensions (in/mm):	$\begin{gathered} 2^{3 / 4} \times x^{3 / 4} \\ (70 \times 19) \end{gathered}$	$\begin{aligned} & 21562 \times 25 / 32 \\ & (63 \times 20)^{25} \end{aligned}$	$\begin{gathered} 3 \times 3 / 4 \\ (76 \times 19) \end{gathered}$	$\begin{gathered} 3 x^{3 / 4} \\ (76 \times 19) \end{gathered}$	$\begin{aligned} & 2^{1 / 2} \times x^{3 / 4} \\ & (64 \times 19) \end{aligned}$	$\begin{aligned} & 21 / 2 x 9 / 6 \\ & (64 \times 14) \end{aligned}$	$\begin{aligned} & \frac{13 / 6 \times 22^{23 / 6} 644^{1 / 2}}{(21 \times 72 \times 114)} \\ & (21) \end{aligned}$	67/16/164 \ddagger
Weight (lbs/Kg): $\begin{array}{r}\text { Net } \\ \text { Shipping }\end{array}$	$\begin{aligned} & 3 / 16 / 0,07 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 0,45 \end{aligned}$	$\begin{gathered} 1 / 6 / 0,042 \\ 1 / 2 / 0,22 \end{gathered}$	$\begin{aligned} & 5 / 6 / 0,14 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 0,45 \\ & 2 / 0,9 \end{aligned}$
Options Available:	$\begin{gathered} 004,005 \\ 006 \end{gathered}$	$\begin{gathered} 001,002, \\ 003 \end{gathered}$		001	$\begin{gathered} 001,002,003 \\ 012,013 \end{gathered}$			

* As read on a 416 Ratio Meter or 415 SWR Meter calibrated for square law detectors. See HP Catalog for details on these instruments.
+ The 420 B contains a selected crystal and video load; both are installed to achieve best response from 1 to 4 GHz , but unit is usable from $10 \mathrm{MHz}-12.4 \mathrm{GHz}$
\diamond Below 1 GHz , RF may leak through output connector; leakage may be eliminated by using a low pass filter.
** Detectors are not supplied; may use 1N21 or 1 N23 crystal for maximum detection sensitivity where SWR is not critical.
\ddagger Dimension given is length only.
Options: $423 \mathrm{~A} / 8470 \mathrm{~A}$; 001 Matched pair frequency response characteristics track within $\pm 0.2 \mathrm{~dB}$ per octave $10 \mathrm{MHz}-8 \mathrm{GHz} \pm 0.3 \mathrm{~dB} 8.12 .4 \mathrm{GHz} \pm 0.6 \mathrm{~dB} 12.4-18 \mathrm{GHz}$
$423 \mathrm{~A} / 8470 \mathrm{~A} ; 002$ Less than $\pm 0.5 \mathrm{~dB}$ variation from square law up to 50 mV peak output into $>75 \mathrm{~K} \Omega$; sensitivity typically $>0.1 \mathrm{mV} / \mu \mathrm{W}$
$423 \mathrm{~A} / 8470 \mathrm{~A} ; 003$ Positive polarity output.
8470A; 012 Stainless steel Type N male input connector.
470A; 013 Stainless steel Type N female input connector.
8471A; 004 Positive polarity output
8471A; 005 Negative polarity output; 75Ω input impedance.
8471A; 006 Positive polarity output; 75Ω input impedance.

SPECIFICATIONS

Model:	S424A	G424A	J424A	H424A	X424A	M424A	P424A	K422A	R422A
Frequency Range (GHz):	2.6-3.95	$3.95-5.85$	5.3-8.2	7.05-10.0	8.2-12.4	10.0-15.0	12.4-18.0	18.0-26.5	26.5-40.0
Frequency Response (dB)*:	± 0.2	± 0.2	± 0.2	± 0.2	± 0.3	± 0.5	± 0.5	± 2	± 2
Miminum Low Level Sensitivity (mV/ $\mu \mathbf{W}$):	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3 typ.	0.3 typ.
Maximum High Level Sensitivity (mW):	0.35	0.35	0.35	0.35	0.35	0.5	0.5		
Maximum SWR:	1.35	1.35	1.35	1.35	1.35	1.5	1.5	2.5	3
Maximum Input Power (mW, ave. or peak):	100	100	100	100	100	100	100	100	100
Fits Waveguide Size, Nom. OD (in): (EIA)	$\begin{gathered} 3 \times 11 / 2 \\ (W R 284) \end{gathered}$	$\begin{gathered} 2 \times 1 \\ \text { (WR187) } \end{gathered}$	$\begin{aligned} & 1 \frac{1}{1 / 2} x^{3 / 4} \\ & (\text { (W137) } \end{aligned}$	$\begin{aligned} & 1 / 1 / 45 / 8 \\ & (W R 112) \end{aligned}$	$\begin{aligned} & 1 \times 1 / 2 \\ & (\text { WR90) } \end{aligned}$	$\begin{aligned} & .850 \times .475 \\ & (\text { WR } 75) \end{aligned}$	$\begin{aligned} & .702 \times .391 \\ & (W R 62) \end{aligned}$	$\begin{aligned} & .500 \times .250 \\ & (\text { WR42) } \end{aligned}$	$\begin{aligned} & .360 \times .220 \\ & (W R 28) \end{aligned}$
Equivalent Flange:	UG-584/U	UG-407/U	UG-441/U	UG-138/U	UG-135/U	Cover (Al)	Cover (Al)	UG-595/U	UG-599/U
Length (in/mm):	27/6/62	21/6/52	17/48	1\%/6/40	$17 / 8 / 35$	1/25	15/16/24	$2 / 51$	2/51
Shipping Weight (lbs/kg):	2/0,9	1/0,45	1/2/0,22	$1 / 2 / 0,22$	$1 / 2 / 0,22$	1/2/0,22	1/2/0,22	1/0,45	1/0,45
Accessories Available \dagger :								11515A	11516 A
Options Available:	$\begin{gathered} 001,002 \\ 003 \end{gathered}$	$\begin{gathered} 001,002, \\ 003 \end{gathered}$	$\begin{gathered} 001,002, \\ 003 \end{gathered}$	$\begin{gathered} 001,002, \\ 003 \end{gathered}$	$\begin{gathered} 001,002 \\ 003 \end{gathered}$	$\begin{gathered} 001,002, \\ 003 \end{gathered}$	$\begin{gathered} 001,002, \\ 003 \end{gathered}$	001, 002	001, 002

*As read on a 416 Ratio Meter or a 415 SWR Meter calibrated for square law detectors. Refer to HP general Catalog for details on these instruments.
\dagger See Accessories Section, page 53
Options: 424A; 001 Matched pair. Frequency response characteristics track within $\pm 2 \mathrm{~dB}$ for $\mathrm{S}, \mathrm{G}, \mathrm{J}$, and H units, $\pm .3 \mathrm{~dB}$ for X units,
$\pm .5 \mathrm{~dB}$ for M and P units.
424A; 002 Less than $\pm 0.5 \mathrm{~dB}$ variation from square law up to 50 mV peak output into $>75 \mathrm{~K} \Omega$; sensitivity typically $>0.1 \mathrm{mV} / \mu \mathrm{W}$
424A; 003 Positive polarity output.
422A; 001 Matched pair. Frequency response characteristics track within $\pm 1 \mathrm{~dB}$ for power levels <approximately 0.05 mW .
$422 \mathrm{~A} ; 002$ Less than $\pm 0.5 \mathrm{~dB}$ variation from square law up to 50 mV peak output into $>75 \mathrm{~K} \Omega$; sensitivity typically $>0.1 \mathrm{mV} / \mu \mathrm{W}$

used for:

Harmonic Mixing
Balanced Mixing
Balanced Modulating
Amplitude Modulating
Pulse Modulating
Phase Detecting

SPECIFICATIONS

	10514A		10534A	
Input Frequency Range:	$200 \mathrm{KHz}-500 \mathrm{MHz}$		$50 \mathrm{KHz}-150 \mathrm{MHz}$	
Output Frequency Range:	DC-500 MHz		DC-150 MHz	
Maximum Input Power:	80 mW		80 mW	
Maximum Mixer Conversion Loss (dB) \dagger :	7	9	6.5	8
f_{L} and $\mathrm{f}_{\mathrm{R}}(\mathrm{MHz})$	0.5-50	0.2-500	0.2-35	0.05-150
${ }^{\mathrm{f}} \mathrm{X}$ (MHz)	DC-50	DC-500	DC-35	DC-150
Maximum Noise Performance (dB) \dagger :	6.5	9	6	8
f_{L} and f_{R}	0.5-60	60-500	0.2-50	50-165
${ }^{\text {f }}$ X	0.05-60	0.05-500	0.05-50	0.05-165
Typical Conversion Compression (dB) \dagger :				
Typical Pulse Modulator Performance:				
Rise or Fall Time	1 ns		1 ns	
Pulse Width	No restriction		No restriction	
On-off Ratio (dB):	35		35	
Saturation Pulse Amplitude:	$10 \mathrm{~mA} ; \mathrm{f}=5 \mathrm{~mW}$		$10 \mathrm{~mA} ; \mathrm{f}=5 \mathrm{~mW}$	
Modulation Source:	0		\bigcirc	
Linearity:	linear over 30 dB range		linear over 30 dB range	
Connectors:	BNC female		BNC female	
Dimensions (in/mm):	$\begin{aligned} & 2^{1 / 16 \times 15 / 8 \times 5 / 8} \\ & (52 \times 42 \times 15) \end{aligned}$		$\begin{aligned} & 2^{1 / 16} \times 1^{5 / 8} \times 5 / 8 \\ & (52 \times 42 \times 15) \end{aligned}$	
Weight (lbs/kg):	1/8/0,06		1/8/0,06	
Options Available:	001, 002, 003, 004		001, 002,003,004	

*By $\mathrm{f}_{\text {a a }}$ ane: 0.3 dB for 1 mW level. By $f_{R 2}$ signal interfering with $\mathrm{f}_{\mathrm{R} 1}: 1 \mathrm{~dB}$ for $f_{R 2}$ level of 1 mW ; 10 dB for $f_{R 2}$ level of 10 mW (f f_{L} level at 5 mW).
\diamond Either + or - polarity turns switch on. Amplitude between pulses, within 2 mV of 0 V .
†See Notes/Terminology for additional information.

Options: 001 TNC jack connectors.
002 SMA jack connectors
003 Sealectro screw-on connectors
004 Sealectro snap-on connectors.

MIXER BALANCE $(\mathrm{dB}) \dagger$

$\begin{aligned} & \text { Mixer } \\ & \text { Balance } \\ & \text { for } \end{aligned}$	$\begin{aligned} & \text { Referenced } \\ & \text { to } \end{aligned}$	10514A		10534A	
		Frequency Ranges		Frequency Ranges	
		$\begin{aligned} & \mathrm{f}_{\mathrm{f}_{\mathrm{f}}, \mathrm{f}_{\mathrm{p}}: 0.5-50} \\ & \mathrm{f}_{\mathrm{x}}: \mathrm{DC}-50 \end{aligned}$	$\begin{aligned} & f_{L} f_{f}: 0.2-500 \\ & f_{x}: D C-500 \end{aligned}$	$\begin{aligned} & f_{L_{2}, f_{R}:}=0.5-35 \\ & f_{x}: D C-35 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{L}, \mathrm{f}}^{\mathrm{f}:} \mathrm{f}: 035-150 \\ & \mathrm{f}_{\mathrm{x}}: \mathrm{DC}-150 \end{aligned}$
f_{L} at R	f_{L}	40	30	35	25
f_{L} at X	f_{L}	40	20	35	25
f_{R} at L	f_{R}	45	30	35	25
f_{R} at X	f_{R}	25	15	20	15
f_{x} at L	f_{x}	35	15	35	25
f_{x} at R	f_{x}	25	15	20	12

NOTES/TERMINOLOGY:

Impedance: The performance of the 10514 and 10534 is specified for 50Ω source and load imped ances. The mixers also work well at other impedance levels, including both 75Ω and 93Ω.
Conversion Loss: Conversion loss is the power ratio between the available input power at the " R " port and the power delivered in one of the output sidebands ("L" input $=+7 \mathrm{dBm}$). Conversion loss is not strongly dependent on the available power at the " L " port when this is above 0 dBm .
Noise Performance: For difference frequencies above 50 kHz , noise performance is specified in terms of the relative signal-to-noise ratios at the " R " and " X " ports (i.e., noise figure). The low frequency (1/f) noise contributed by the mixer is specified by the rms noise voltage at the " X " port in a 1 Hz bandwidth centered at 10 Hz

INTERNAL INTERFERENCE (dB) \dagger

Product	$\mathbf{1 0 5 1 4 A}$	$\mathbf{1 0 5 3 4 A}$	Product	$\mathbf{1 0 5 1 4 A}$	$\mathbf{1 0 5 3 4 A}$
$2 f_{L} \cdot f_{R}$	30	40	$2 f_{R}-f_{L}$	65	65
$3 f_{L}-2 f_{R}$	70	65	$3 f_{R}-2 f_{L}$	65	65
$4 f_{L}-3 f_{R}$	70	65	$4 f_{R}-3 f_{L}$	85	90
$5 f_{L}-4 f_{R}$	90	85	$5 f_{R}-4 f_{L}$	90	90
$6 f_{L}-5 f_{R}$	95	90	$6 f_{R}-5 f_{L}$	100	95
$7 f_{L}-6 f_{R}$	100	95	$7 f_{R}-6 f_{L}$	100	95

Conversion Compression: Conversion compression describes the increase in conversion loss that occurs as the input to the " R " port is increased in level. "Compression by f_{R} alone" implies that f_{R} is a single frequency input. "Compression by $f_{R 2}$ interfering with $f_{R 1}$ " describes the decrease in f_{L} ${ }^{+f_{R 1}}$ as $f_{R 2}$ is increased in level.
Internal Interference: Ideally a mixer produces only sum and difference frequencies of the local oscillator and receive frequencies. Internal interference refers to the higher order mixing products generated when single frequency inputs are impressed on " R " and " L " ports.
Balance: A double balanced mixer suppresses the "R" port signal appearing at both "L" and "X" ports. Similarly the " L " port signal is suppressed at both " R " and "X" ports. In addition, when used as a modulator, the "X" port signal is suppressed at both "L" and "R" ports. The balance specification describes how effective this suppression actually is.

SPECIFICATIONS

Madel P932A		Model 11517A		
Model:	P932A	934 A	11517A	11521A
Input Frequency Range (GHz):	12.4-18	2-12.4	12.4-40	8.2-12.4
Maximum Input Power:	100 mW	100 mW	1 mW	10 mW
Typical Sensitivity (dBm):	-10	$\begin{aligned} & -48 \text { at } 3.5 \mathrm{GHz} \\ & -25 \text { at } 10 \mathrm{GHz} \end{aligned}$	\dagger	-80
Minimum Video Output*:	0.4 mV peak-peak	1.4 mV peak-peak		
Output Impedance:	1000Ω shunted by 35 pF	1000Ω shunted by 35 pF	50Ω	50Ω
Connectors:	$\begin{aligned} & 0.702 \times 0.391 \\ & (W R 62) \end{aligned}$	$\begin{aligned} & \text { "N" (f) } \\ & \text { BNC (f) } \end{aligned}$	WG input, BNC (f)	$\begin{aligned} & \text { WR90 W.G. } \\ & \text { BNC (fi) } \end{aligned}$
Dimensions (in/mm):		$\begin{gathered} 5^{1 / 4 \times 3} \times 3 \times 1 / 21^{1 / 4} \\ (133 \times 89 \times 32) \end{gathered}$	$\begin{aligned} & 1^{31 / 32} \times 11^{13 / 16 \times 7 / 8}(50 \times 46 \times 22) \\ & (5) \end{aligned}$	$\begin{aligned} & 15 / 8 \times 213 / 6 \times 1^{3 / 8} 8 \\ & (41 \times 72 \times 35) \end{aligned}$
Weight Shipping	$\begin{aligned} & 1 / 0,5 \\ & 2 / 1 \end{aligned}$	$\frac{1 / 0,5}{2 / 1}$	9/6/0.25	$31 / 2 / 100 \mathrm{gr}$.

* With 0 dBm signal input.
$\dagger 12.4-18 \mathrm{GHz}:-80 \mathrm{dBm} ; 18-26.5 \mathrm{GHz}:-75 \mathrm{dBm} ; 26.5-40 \mathrm{GHz}:-65 \mathrm{dBm}$.

ADAPTERS FOR 11517A MIXER

Model:	11518A	11519A	11520A
Frequency Range (GHz):	12.4-18	18-26.5	26.5-40
Fits Waveguide Size, Nom. O.D. (in): (EIA)	$\begin{aligned} & 0.702 \times 0.391 \\ & (W R 62) \end{aligned}$	$\begin{aligned} & 0.500 \times 0.250 \\ & \text { (WR42) } \end{aligned}$	$\begin{gathered} 0.360 \times 0.220 \\ (\text { WR28) } \end{gathered}$
Length (in/mm) :	4/102	3/76	$2^{1 / 32} / 52$
Weight (lbs/kg):	5/6/0,13	1/8/0,06	1/8/0,06

features:

LOW INSERTION LOSS THROUGH PASSBAND
GREATER THAN 50 dB ATTENUATION BEYOND
CUT-OFF FREQUENCY
NO SPURIOUS RESPONSES

uses:

Spectrum Analyzer Preselection
FILTERS LOW PASS, BANDPASS AND NOTCH

Slotted Line Measurements
Response Determination
Checking Filter Characteristics

SPECIFICATIONS

LOW PASS FILTERS

Model:	360A	360B	360 C	360 D	X362A	M362A	P362A	K362A ${ }^{\circ}$	R362A*
Cutoff Frequency (GHz):	. 700	1.2	2.2	4.1					
Passband Frequency (GHz):					8.2-12.4	10.0-15.5	12.4-18.0	18.0-26.5	26.5-40.0
Stopband Frequency (GHz):					16-37.5	19-47	23.54	$31-80$	47-120
Maximum Passband Attenuation (dB):	$1 \dagger$	$1 \dagger$	$1 \dagger$	$1 \dagger$	1	1	1	1	2
Above Passband Minimum Rejection (dB):	$50 \diamond$	$50 \diamond$	50	$50 \diamond$					
Stopband Minimum Rejection (dB):					40	40	40	40	35
Maximum SWR:	$1.6^{* *}$	1.6**	$1.6 \ddagger$	1.6	1.5	1.5	1.5	1.5	1.8
Fits Waveguide Size, Nom. O.D. (in):					$\begin{aligned} & 1 \times 1 / 2 \\ & (\text { WR90) } \end{aligned}$	$\begin{aligned} & 0.850 \times 0.475 \\ & \text { (WR75) } \end{aligned}$	$\begin{gathered} 0.702 \times 0.391 \\ \text { (WR62) } \end{gathered}$	$\begin{aligned} & 1 / x^{1 / 4} \\ & \text { (WR42) } \end{aligned}$	$\begin{aligned} & 0.360 \times 0.220 \\ & \text { (WR28) } \end{aligned}$
Length (in/mm):	10\%/8/276	71/32/183	$1025 / 32 / 274$	$73 / 8 / 187$	$511 / 32 / 136$	$415 / 3 / 114$	311/6/94	21/2/64	$1^{21 / 32} / 42$
Shipping Weight (lbs/kg):	2/0,9	2/0,9	2/0,9	1/0,45	2/0,9	1/0,45	1/0,45	1/2/0,23	1/2/0,23

	BANDPASS FILTERS							NOTCH FILTER 8439A Δ
Model:	8430A	8431A	8432A	8433A	8434A	8435A	8436A	
Passband Frequency (GHz):	1-2	2-4	4.6	6-8	8-10	4.8	8-12.4	
Maximum Passband Attendation (dB):	2	2	2	2	2	2	2	
Below Passband Minimum Rejection (dB):	$\begin{aligned} & 50 \\ \leq & 0.8 \mathrm{GHz} \end{aligned}$	$\begin{array}{r} 50 \\ \leq \\ 1.6 \mathrm{GHz} \end{array}$	$\begin{array}{r} 50 \\ \leq \\ 3.5 \mathrm{GHz} \end{array}$	$\begin{array}{r} 50 \\ \leq 5.5 \mathrm{GHz} \end{array}$	$\begin{array}{r} 50 \\ \leq \\ \hline 7.5 \mathrm{GHz} \end{array}$	$\begin{array}{r} 50 \\ \leq 3.2 \mathrm{GHz} \end{array}$	$\begin{array}{r} 50 \\ \leq 6.9 \mathrm{GHz} \end{array}$	
Above Passband Minimum Rejection (dB):	$\begin{gathered} 45 \\ 2.2-20 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 45 \\ 4.4-20 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 45 \\ 6.5-20 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 45 \\ 8.5-20 \mathrm{GHz} \end{gathered}$	$\stackrel{45}{10.5-17} \mathrm{GHz}$	$\stackrel{45}{8.8-20} \mathrm{GHz}$	$\stackrel{45}{13.5-17} \mathrm{GHz}$	
Dimensions (in/mm):	$\begin{gathered} 5^{1 / 2} \times x^{3 / 3} \times 1 \\ (140 \times 121 \times 25) \end{gathered}$	$\begin{gathered} 51 / 2 \times 3 \times 1 \\ (140 \times 76 \times 25) \end{gathered}$	$\begin{array}{r} 4 \frac{1}{2} \times 2 \times 1 \\ (114 \times 51 \times 25) \end{array}$	$\begin{gathered} 4 \times 1 \frac{1}{2} \times 1 \\ (102 \times 38 \times 25) \end{gathered}$	$\begin{gathered} 45 / 6 \times 1 \times 1 \\ (118 \times 25 \times 25) \end{gathered}$	$\begin{gathered} 35 \times 13 / 4 \times 1 \\ (92 \times 45 \times 25) \end{gathered}$	$\begin{gathered} 27 / \times 1 \times 1 \\ (73 \times 25 \times 25) \end{gathered}$	$\begin{gathered} 7916 \times 3 \times 1 \\ (192 \times 76 \times 25) \end{gathered}$
Shipping Weight (lbs/kg):	3/1,4	3/1,4	2/0,9	2/0,9	2/0,9	2/0,9	2/0,9	$13 / 4 / 0,8$

Connectors for all coaxial models: Type N , one male, one female.

* Circular flange adapters available: K-band, HP 11515A; R-band, HP 11516A. See Accessories section, page 53
\dagger Measured below 0.9 times cut-off frequency.
\ddagger Measured to within 200 MHz of cut-off frequency.
Δ Unit is 2 MHz bandwidth Notch Filter with 60 dB attenuation at a rejection frequency of 2 GHz .

features:

MATCHED AT ALL ATTENUATIONS GREATER THAN OCTAVE BAND COVERAGE LOW INSERTION LOSS HIGH ISOLATION

uses:

MODULATORS

Amplitude and Pulse Modulate Sources With Minimum Incidental FM

Level Load Sensitive Sources Without Frequency Pulling
Switch to High Isolation, Preserving Good Match

SPECIFICATIONS

Model:	8731A	8731B	H01-87318*	8732A	8732B	8733A	8733B	8734A	8734B
Frequency Range (GHz):	0.8-2.4	0.8-2.4	0.4-0.9	1.8-4.5	1.8-4.5	3.7-8.3	3.7-8.3	7.0-12.4	7.0-12.4
Dynamic Range (dB):	35	80	35	35	80	35	80	35	80
Maximum Residual Attenuation (dB) \dagger :	1.5	2.0	2.0	2.0	$\begin{gathered} 3.5,1.8-4 \\ 4,4-4.5 \end{gathered}$	2.0	3.0	4.0	5.0
SWR, Minimum Attenuation:	1.5	1.6	1.25 ¢	1.5	$\begin{aligned} & 1.6,1.8-4 \\ & 2.0,4-4.5 \end{aligned}$	1.8	2.0	1.8	2.0
SWR, Maximum Attenuation:	1.8	2.0	1.50	1.8	2.0	2.0	2.2	2.0	2.2
Typical Rise Time (nsec)**:	40	30	40	40	30	30	30	30	30
Typical Decay Time (nsec)**:	30	20	30	30	20	20	20	20	20
Forward Bias Input Resistance (ohms):	300	100	300	300	100	300	100	300	100
Maximum RF Input Power (ave. or peak):	1 W	1 W	1 W	1 W	1 W	1 W	1 W	1 W	1 W
Maximum Bias Voltage Limits (volts):	-10 to +20								
Leakage:	\ddagger								
Connectors:	Type N								
Dimensions (in/mm):	$\begin{aligned} & 111 / \times 3 \times 1 / 4 \times 21 / 4 \\ & (283 \times 83 \times 57) \end{aligned}$	$\begin{aligned} & 113 / 9 \times 47 / \times 2 \times 21 / 4 \\ & (289 \times 124 \times 57) \end{aligned}$	$\begin{aligned} & 113 / \times 47 / \times 2^{1 / 4} \\ & (289 \times 124 \times 57) \end{aligned}$	$\begin{aligned} & 111 / 3 \times 31 / 4 \times 21 / 4 \\ & (283 \times 83 \times 57) \end{aligned}$	$\begin{gathered} 1137 \times 47 / \times 2 \times 2 / 4 \\ (289 \times 124 \times 57) \end{gathered}$	$\begin{gathered} 83 \% \times 3^{1 / 4} \times 2^{1 / 4} \\ (213 \times 83 \times 57) \end{gathered}$	$\begin{aligned} & 12^{1 / 4 \times 3 \times 1 / 4 \times 21 / 4} \\ & (311 \times 83 \times 57) \end{aligned}$	$\begin{gathered} 83 \times 311 / 422^{1 / 4} \\ (213 \times 83 \times 57) \end{gathered}$	$\begin{aligned} & 12^{1 / 4 \times 31 / 4 \times 21 / 4} \\ & (311 \times 83 \times 57) \end{aligned}$
Weight (lbs/kg): $\begin{array}{r}\text { Net } \\ \text { Shipping }\end{array}$	$\begin{aligned} & 3 / 1,4 \\ & 5 / 2,2 \end{aligned}$	$\begin{aligned} & 6 / 2,7 \\ & 8 / 3,6 \end{aligned}$	$\begin{aligned} & 6 / 2,7 \\ & 8 / 3,6 \end{aligned}$	$\begin{aligned} & 3 / 1,4 \\ & 5 / 2,2 \end{aligned}$	$\begin{aligned} & 6 / 2,7 \\ & 8 / 3,6 \end{aligned}$	$\begin{aligned} & 3 / 1,4 \\ & 4 / 1,8 \end{aligned}$	$\begin{aligned} & 3 / 1,4 \\ & 5 / 2,3 \end{aligned}$	$\begin{aligned} & 3 / 1,4 \\ & 4 / 1,8 \end{aligned}$	$\begin{aligned} & 3 / 1,4 \\ & 5 / 23 \end{aligned}$

* External high-pass filters required.
\dagger Residual Attenuation is also referred to as Insertion Loss; measured with +5 volts bias.
\bigcirc Excluding high-pass filters.
${ }^{* *}$ Driven by HP 8403 Modulator. Refer to HP general Catalog for details on this instrument.
\ddagger Radiated leakage limits are below those specified in MIL-1-6181D at input levels less than 1 mW ;
at all input levels radiated interference is sufficienti';' low to obtain rated attenuation.

SPECIFICATIONS

Model:	8735A	8735B	33000 C	330000	33001C	33001D	33008C	33008D
Frequency Range (GHz):	8.2-12.4	8.2-12.4	$1-4$	1-4	8-18	8-18	3.7-8.0	3.7-8.0
Dynamic Range (dB):	35	80	$\begin{aligned} & 35,1-2 \mathrm{GHz} \\ & 40,2-4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 65,1-2 \mathrm{GHz} \\ & 80,2-4 \mathrm{GHz} \end{aligned}$	45	$\begin{aligned} & 80,8-12 \mathrm{GHz} \\ & 70,12-18 \mathrm{GHz} \end{aligned}$	45	80
Maximum Residual Attenuation (dB)*:	$4.0 \dagger$	$5.0 \dagger$	$\begin{aligned} & 1.8,1-2 \mathrm{GHz} \\ & 2.5,2-4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 2.0,1-2 \mathrm{GHz} \\ & 3.0,2-4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 3.0,8-12 \mathrm{GHz} \\ & 3.2,12-15 \mathrm{GHz} \\ & 4.3,15-18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 3.0,8-12 \mathrm{GHz} \\ & 3.5,12-15 \mathrm{GHz} \\ & 4.5,15-18 \mathrm{GHz} \end{aligned}$	2.3	2.5
SWR, Minimum Attenuation:	1.7	2.0	1.86	1.86	2.2	2.2	2.2	2.2
SWR, Maximum Attenuation:	2.0	2.2	1.86	1.86	2.2	2.2	2.2	2.2
Typical Rise Time (nsec)	300		50	50	50	50	50	50
Typical Decay Time (nsec)			50	50	50	50	50	50
Forward Bias Input Resistance (ohms):	300	100	1 typ.					
Maximum RF Input Power	1 W ave.	1 W ave.	2 W ave. 100 W peak					
Maximum Bias Voltage Limits (volts):	-10 to +20	-10 to +20	-2 to +50					
Leakage:	**	**	\ddagger	\ddagger	\ddagger	\ddagger	\ddagger	\ddagger
Connectors:	WG (See below)	$\begin{gathered} \text { WG } \\ \text { (See below) } \end{gathered}$	SMA female	SMA female	SMA female	SMA. female	SMA female	SMA female
Fits Waveguide Size, Nom. O.D. (in): (EIA)	$\begin{gathered} 1 \times 1 / 2 \\ (W R 90) \end{gathered}$	$\begin{gathered} 1 \times 1 / 2 \\ (\text { WR90) } \end{gathered}$						
Dimensions (in/mm):	$\begin{gathered} 6^{3 / 4 \times 3} \times 3^{1 / 4 \times 21 / 4} \\ (171 \times 83 \times 57) \end{gathered}$	$\begin{aligned} & 101 / 2 \times 3^{1 / 4 \times 2} \times 2^{1 / 4} \\ & (267 \times 83 \times 57) \end{aligned}$	$\begin{gathered} 51 / 6 \times 41 / 4 \times 5 / 8 \\ (137 \times 108 \times 16) \end{gathered}$	$\begin{gathered} 57 / 16 \times 41 / 4 \times 5 / 8 \\ 137 \times 108 \times 16) \end{gathered}$	$\begin{aligned} & 311 / 16 \times 233 \times x / 6 \\ & (94 \times 60 \times 16) \end{aligned}$	$\begin{aligned} & 311 / 16 \times 233 / 85 / 8 \\ & (94 \times 60 \times 16) \end{aligned}$	$\begin{gathered} 5 \times 3 \times 5 / 9 \\ (127 \times 76 \times 16) \end{gathered}$	$\begin{gathered} 5 \times 3 \times 5 / 9 \\ (127 \times 76 \times 16) \end{gathered}$
Weight (lbs/Kg): $\begin{array}{r}\text { Net } \\ \text { Shipping }\end{array}$	$\begin{aligned} & 3 / 1,4 \\ & 4 / 1,8 \end{aligned}$	$\begin{aligned} & 3 / 1,4 \\ & 5 / 2,3 \end{aligned}$	1.1/0,5	1.1/0,5	0.4/0,19	0.4/0,19	0.75/0,33	0.75/0,33

* Residual Attenuation is also referred to as Insertion Loss.
+ Measured with +5 volts bias.
Driven by HP 8403 Modulator. Refer to HP general Catalog for details on this instrument.
** Radiated leakage limits are below those specified in MIL-I-6181D at input levels less than 1 mW
at all input levels radiated interference is sufficiently low to obtain rated attenuation.
\ddagger Level of RF signal appearing at the bias port is typically 50 dB below the level of signals applied to either RF port.

OTHER DEVICES

- phase shifters
- waveguide shorting switch
- coaxial switches
- frequency doubler

PHASE SHIFTERS

SPECIFICATIONS

Model:	J885A	X885A	P885A
Frequency Range:	5.3 to 8.2 GHz	8.2 to 12.4 GHz	12.4 to 18 GHz
Differential Phase Angle Range:	-360° to $+360^{\circ}$. Can be shifted continuously through any number of cyclles.	-360° to $+360^{\circ}$. Can be shifted continuously through any number of cycles.	-360° to $+360^{\circ}$. Can be shifted contin uously through any number of cycles.
Accuracy:	$\pm 3^{\circ}$ or 10% of phase difference in degrees, whichever is less.	$\pm 3^{\circ}$ or 10% of phase difference in degrees, whichever is less; $\pm 2^{\circ}$ or 10% of phase difference in degrees, whichever is less, 8.2 to 10 GHz .	$\pm 4^{\circ}$ or 10% of phase difference in de grees, whichever is less.
Insertion Loss:	Less than 2 dB	Less than $1 \mathrm{~dB}, 8.2$ to 10 GHz Less than $2 \mathrm{~dB}, 10$ to 12.4 GHz	Less than 3 dB
Insertion Loss Variation With Frequency: (Fixed phase setting.)	Approximately 1 dB	Approximately 1 dB	Approximately 1 dB
Insertion Loss Variation With Phase Setting: (Fixed frequency setting.)	Less than 0.4 dB	0.3 dB or less, 8.2 to 10 GHz 0.4 dB or less, 10 to 12.4 GHz	Less than 0.5 dB
SWR:	1.35 max.	1.35 max.	1.35 max.
Power Rating:	10 watts	10 watts	5 watts
Fits Waveguide Size Nominal O.D. (in): EIA:	$\begin{aligned} & 1 \frac{1}{2} \times 3 / 4 \\ & \text { WR } 137 \end{aligned}$	$\begin{aligned} & 1 \times 1 / 2 \\ & \text { WR } 90 \end{aligned}$	$\begin{aligned} & 0.702 \times 0.391 \\ & \text { WR } 62 \end{aligned}$
Dimensions Length: Height: Depth:	$\begin{aligned} & 251 / \mathrm{in} .(638 \mathrm{~mm}) \\ & 8 \mathrm{in} .(203 \mathrm{~mm}) \\ & 61 / 4 \mathrm{in} .(159 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { 155/ in. }(397 \mathrm{~mm}) \\ & 73 / \mathrm{in} \text {. }(197 \mathrm{~mm}) \\ & 5^{7 / 6} \text { in. }(138 \mathrm{~mm}) \end{aligned}$	$125 / 6$ in. (312 mm) $73 / 4 \mathrm{in}$. (197 mm) $5 \mathrm{y} / 16 \mathrm{in} .(138 \mathrm{~mm})$
Weight Net: Shipping:	14 pounds ($6,3 \mathrm{~kg}$) 25 pounds ($11,3 \mathrm{~kg}$)	8 pounds ($3,6 \mathrm{~kg}$) 10 pounds ($4,5 \mathrm{~kg}$)	7 pounds ($2,5 \mathrm{~kg}$) 10 pounds ($4,5 \mathrm{~kg}$)

X930A WAVEGUIDE SHORTING SWITCH

Reflection Coefficient: <0.01 (1.02 SWR, 40 dB return loss) in "open" position; >0.984 (125 SWR, 0.14 dB return loss) in "short" position.

Insertion Loss: Less than 0.05 dB in "open" position.
Fits Waveguide Size:
Nominal O.D. (in.): $1 \times 1 / 2$.
EIA: WR 90.
Frequency Range: $8.2-12.4 \mathrm{GHz}$.
Dimensions (maximum envelope):
Length (flange to flange): $3^{11 / 16}$ in. (94 mm).
Height: $23 / 8$ in. $(60 \mathrm{~mm}$).
Width: $41 / 4 \mathrm{in}$. (108 mm).
Weight: Net, $1 \frac{1}{4} \mathrm{lbs} .(0,6 \mathrm{~kg})$. Shipping, $2 \mathrm{lbs} .(0,9 \mathrm{~kg})$.

8761A/B COAXIAL SWITCH

Characteristic impedance: 50 ohms.
Frequency range: dc to 18 GHz .
Standing-wave ratio: looking into one of the connected ports with 50 ohms (or built-in termination) on the other, third port open.

Frequency	Connector type		
	7-mm	N	3-mm (SMA)
dc-12.4 GHz	$1.15(1.20)$	$1.20(1.25)$	$1.25(1.30)$
dc-18 GHz	$1.20(1.25)$	$1.25(1.30)$	$1.30(1.35)$

SWR in parenthesis applies to switch with built-in termination.
These specifications apply when connected ports are of the same connector type for mixed connector types, the larger of the two VSWR's applies. N-connector VSWR specifications apply to Option 4 connectors.

Insertion loss: $<0.5 \mathrm{~dB}, \mathrm{dc}-12.4 \mathrm{GHz} ;<0.8 \mathrm{~dB}, \mathrm{dc}-18 \mathrm{GHz}$.
Isolation: $>50 \mathrm{~dB}, \mathrm{dc}-12.4 \mathrm{GHz} ;>45 \mathrm{~dB}, \mathrm{dc}-18 \mathrm{GHz}$.
Power: safety handles 10W average, 5 kW peak, without built-in termination; built-in termination rated at 2 W average, 100 W peak.
Switching energy: 1.5 W for 20 ms (permanent magnet latching).
Solenoid voltages (dc or pulsed): 12-15 V, $8761 \mathrm{~A} ; 24-30 \mathrm{~V}, 8761 \mathrm{~B}$.
Switching speed: $35-50 \mathrm{~ms}$ (includes settling time).
Life: >1,000,000 switchings.
Dimensions: $1.6 \times 1.5 \times 1.5 \mathrm{in}$. $(41 \times 38 \times 38 \mathrm{~mm})$, excluding connectors and solenoid terminals.

Weight: net 5-8 oz (140-220 gm); shipping, 8-11 oz (220-300 gm).

Ordering Information
Specify solenoid voltage and connectors (including built-in 50 ohm termination) by the alphabetic suffix on the switch model number and the appropriate three-digit option number.

A: 12-15V; B: 24-30V

Option Code	Connector Type	Option Code	Connector Type
0	N Jack	4	$7-\mathrm{mm}$ for UT-250 Coax
1	N Plug	5	3-mm Jack
2	$7-\mathrm{mm}$ Jack	6	3-mm Plug
3	$7-\mathrm{mm}$ Plug	7	50 Termination

"Jack" identifies the connector with fixed threads; "plug" identifies the connector with the coupling nut.

10515 A FREQUENCY DOUBLER

Frequency Range: $0.5-500 \mathrm{MHz}$ input $1-1000 \mathrm{MHz}$ output

Impedance: 50 ohm nominal (source and load)
Input Signal Voltage: $0.5-3.0 \mathrm{~V}$
Input Signal Power: 180 mW (maximum)
Conversion Loss:*
$<13 \mathrm{~dB}$ (typically $<11 \mathrm{~dB}$) for >1 volt
$<14 \mathrm{~dB}$ (typically $<12 \mathrm{~dB}$) for >0.5 volt

Suppression of 1st and 3rd Harmonic of Input:*
$>30 \mathrm{~dB}$ for 0.5 to 50 MHz input (typically $>35 \mathrm{~dB}$)
$>10 \mathrm{~dB}$ for input to 500 MHz (typically $>15 \mathrm{~dB}$)
Dimensions: Diameter: 0.7" (18 mm)
Length: $2.5^{\prime \prime}$ (64 mm)
Connectors: Input: BNC male Output: BNC female

Weight: approximately 2 ounces (56 grams)

With a 50 ohm resistive load and a single input frequency. Suppression values are referred to the desired output level.

SPECIFICATIONS

Model:	J910A	H910A	X910B	P910A	J914A	H914A	X914B	P914A
Mode of Operation:	Fixed	Fixed	Fixed	Fixed	Sliding Load	Sliding Load	Sliding Load	Sliding Load
Frequency Range (GHz):	$5.30-8.20$	7.05-10.0	8.20-12.4	12.4-18.0	5.3-8.2	7.05-10.0	8.2-12.4	12.4-18.0
Maximum SWR:	1.02	1.02	1.015	1.02	1.01	1.01	1.01	1.01
Power Rating:	1 W ave.	1 W ave.	1 W ave.	1 W ave.	2 W ave.	1 W ave.	1 W ave.	1/2 W ave.
Fits Waveguide Size, Nom. OD (in): (EIA)	$\begin{aligned} & 1^{1 / 2 / 23 / 4} \\ & (\text { WR137) } \end{aligned}$	$\begin{aligned} & 1 \frac{1}{1 / 4} \times x^{5 / 8} \\ & \text { (WR112) } \end{aligned}$	$\begin{aligned} & 1 \times 1 / 2 \\ & (\text { WR90) } \end{aligned}$	$\begin{aligned} & 0.702 \times 0.391 \\ & \text { (WR62) } \end{aligned}$	$\begin{aligned} & 11 / 2 x^{3 / 4} \\ & (W R 137) \end{aligned}$	$\begin{aligned} & 11 / 45 / 8 \\ & \text { (WR112) } \end{aligned}$	$\begin{gathered} 1 x^{1 / 2} \\ (\text { WR90 } \end{gathered}$	$\begin{gathered} 0.702 \times 0.391 \\ (\text { WR62) } \end{gathered}$
Equivalent Flange:	UG-344/U	UG-51/U	UG-39/U	UG-419/U	UG-344/U	UG-51/U	UG-135/U	UG-419/U
Length (in/mm):	81/8/206	$5 \% / 141$	6\%/8/168	43/8/111	$151 / 2 / 394$	$111 / 2 / 267$	101/3/257	$93 / 4 / 248$
Weight (lbs/kg): $\begin{array}{r}\text { Net } \\ \text { Shipping }\end{array}$	$\begin{gathered} 11 / 2 / 0,67 \\ 3 / 1,4 \end{gathered}$	$\begin{aligned} & 5 / 8 / 0,28 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 3 / 4 / 0,34 \\ & 2 / 0,9 \end{aligned}$	$\begin{aligned} & 3 / 8 / 0,17 \\ & 1 / 0,45 \end{aligned}$	$\begin{array}{r} 27 / 8 / 1,3 \\ 5 / 2,3 \end{array}$	$\begin{gathered} 11 / 4 / 0,56 \\ 2 / 0,9 \end{gathered}$	$\begin{array}{r} 7 / 8 / 0,4 \\ 2 / 0,9 \end{array}$	$\begin{aligned} & 1 / 2 / 0,23 \\ & 1 / 0,45 \end{aligned}$

Model:	K914B	R914B	J920A	H920A	P920B	K920B	R920B	X923A
Mode of Operation:	Sliding	$\underset{\text { Load }}{\text { Sliding }}$	Sliding Short					
Frequency Range (GHz):	18.0-26.5	26.5-40.0	$5.30-8.20$	7.05-10.0	12.4-18.0	18.0-26.5	26.5-40.0	8.20-12.4
SWR:	$\begin{aligned} & 1.01 \\ & \max \end{aligned}$	$\begin{aligned} & 1.01 \\ & \max \end{aligned}$	$\begin{aligned} & 175 \\ & \mathrm{~min} \end{aligned}$	$\begin{aligned} & 175 \\ & \min \end{aligned}$	$\begin{aligned} & 100 \\ & \text { min } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{~min} \end{aligned}$	$\begin{aligned} & 100 \\ & \min \end{aligned}$	$\begin{aligned} & 125 \\ & \min \end{aligned}$
Power Rating:	1/2 W ave.	1/2 W ave.						
Fits Waveguide Size, Nom. OD (in):	$\begin{gathered} 1 / 2 x^{1 / 4} \\ \text { (WR42) } \end{gathered}$	$\begin{gathered} 0.360 \times 0.220 \\ (\text { WR28) } \end{gathered}$	$\begin{gathered} 11 / 2 x^{3 / 4} \\ \text { (WR137) } \end{gathered}$	$\begin{aligned} & 11 / 4 \times 5 / 8 \\ & \text { (WR112) } \end{aligned}$	$\begin{gathered} 0.702 \times 0.391 \\ \text { (WR62) } \end{gathered}$	$\begin{aligned} & 0.500 \times 0.250 \\ & \text { (WR } 42 \text {) } \end{aligned}$	$\begin{aligned} & 0.360 \times 0.220 \\ & \text { (WR28) } \end{aligned}$	$\begin{gathered} 1 \times 1 / 2 \\ (\text { WR90) } \end{gathered}$
Equivalent Flange:	UG-595/U	UG-599/U	UG-344/U	UG-51/U	UG-419/U	UG-595/U	UG-599/U	UG-135/U
Length (in/mm):	$61 / 8 / 156$	51/8/130	$6^{1 / 4 / 159}$	4\%/8/124	$53 / 4 / 146$	$51 / 2 / 140$	$41 / 2 / 114$	13/330
Weight (lbs/kg): $\begin{array}{r}\text { Net } \\ \text { Shipping }\end{array}$	$\begin{aligned} & 3 / 8 / 0,17 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 0,45 \end{aligned}$	$\begin{gathered} 1 \frac{1}{2} / 0,68 \\ 3 / 1,4 \end{gathered}$	$\begin{aligned} & 1 / 0,45 \\ & 2 / 0,9 \end{aligned}$	$\begin{aligned} & 3 / 8 / 0,17 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 0,45 \end{aligned}$	$\begin{gathered} 1 / 8 / 0,4 \\ 2 / 0,9 \end{gathered}$
Accessories Available \dagger :	11515 A	11516A				11515A	11516A	

[^3]
SPECIFICATIONS

Model:	905A	907A	911A	908A	909A	11511A	11512A	11565A	15522A \ddagger
Mode of Operation:	$\underset{\text { Load }}{\text { Sliding }}$	Sliding	Sliding Load	Fixed	Fixed	Fixed Short	Fixed Short	Fixed Short	Fixed
Frequency Range (GHz):	1.8-18	1-18	2-18	DC-4	DC-18	DC-18	DC-18	DC-18	$\begin{gathered} \text { DC-100 } \\ \mathrm{MHz} \end{gathered}$
Maximum SWR:	1.05	$\begin{gathered} 1.05,1.5-18 \\ 1.1,1-1.5 \end{gathered}$	**	1.05	\dagger				1.02
Power Rating:	1 W ave. 5 KW peak	1 W ave. 5 KW peak	1 W ave. 5 KW peak	$1 / 2 \mathrm{~W}$ ave. 1 KW peak	2 W ave. 300 W peak				1/4. W ave.
Minimum Load Travel:	$\begin{gathered} 1 / 2 \lambda \\ @ \\ 1.8 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 1 / 2 \lambda \\ @ 1 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 1 / 2 \lambda \\ @ 2 \mathrm{GHz} \end{gathered}$						
Connectors:	*	*	00	" N "(m)	APC-7	" N " (f)	" N "(m)	APC-7	BNC
Length (in/mm):	171/4/440	305/8/778	147/8/380	2/51	2/51	13/16/20	3/4/18	15/6/33	$11 / 2 / 28$
Weight (lbs/kg): $\begin{array}{r}\text { Net } \\ \text { Shipping }\end{array}$	$\begin{aligned} & 7 / 6 / 0,2 \\ & 2 / 0,9 \end{aligned}$	$\begin{array}{r} 2 / 0,9 \\ 14 / 6,3 \end{array}$	$\begin{gathered} 3 / 16 / 0,08 \\ 2 / 0,9 \end{gathered}$	$\begin{gathered} 3 / 16 / 0,08 \\ 1 / 2 / 0,2 \end{gathered}$	$\begin{aligned} & 3 / 16 / 0,08 \\ & 1 / 2 / 0,2 \end{aligned}$	$\begin{gathered} 2 / 6 / 0,06 \\ 11 / 2 / 0,7 \end{gathered}$	$\begin{gathered} 3 / 6 / 0,08 \\ 11 / 2 / 0,7 \end{gathered}$	$\begin{gathered} 3 / 1 / 0,08 \\ 2 / 0,9 \end{gathered}$	5/6/0,14
Accessories Furnished:	\checkmark	0	0						
Options Available:					012, 013				002, 003

- Interchangeable connector bodies and center pins for use with APC-7 and Type N male and female connectors (two of each type pin supplied).
\bigcirc Carrying case and wrench for changing connector bodies.
\dagger 909A: 1.05 SWR, DC-4 GHz; 1.1 SWR, 4-12.4 GHz; 1.25 SWR, $12.4-18 \mathrm{GHz}$. 909 A Options 012 and $013: 1.06 \mathrm{SWR}$, DC-4 GHz; $1.11 \mathrm{SWR}, 4-12.4 \mathrm{GHz} ; 1.30 \mathrm{SWR}, 12.4-18 \mathrm{GHz}$
${ }^{* *} 1.1$ SWR, $2-4 \mathrm{GHz} ; 1.07$ SWR, $4-8 \mathrm{GHz}$; 1.05 SWR, $8-18 \mathrm{GHz}$.
$\Delta \otimes$ Interchangeable connector bodies and center pins for use with SMA plug and jack (two of each type pin supplied).
\ddagger Characteristic Impedance: 75Ω.
Options: 002 Siemens 2.5 mm connector
012 furnished with Type N male connector. 013 Furnished with Type N female connector.
(omen
- adapters WAVEGUIDE-TO-WAVEGUIDE, WAVEGUIDE-TO-COAX, COAX-TO-COAX
- waveguide clamps \& stand
- cable assemblies
- airlines

ACCESSORIES

- rotary joints
- flexible waveguides
- transistor fixtures
- bias tees
- APC-7 connector service kit

ADAPTERS

Option: 013 Furnished with stainless steel Type N female connector.

WAVEGUIDE STAND AND CLAMPS

11540A Waveguide Stand

HP 11540A Waveguide Stands are cast and machined from zinc alloy. They are designed for 11541A through 11548 A Waveguide Clamps and lock the clamps at any height from $23 / 4^{\prime \prime}$ to $51 / 4^{\prime \prime}(70$ to 133 mm$)$. The 11540 A is $21 / 2^{\prime \prime}(64 \mathrm{~mm})$ high, and its base measures $43 / 4^{\prime \prime}$ (121 mm) in diameter. Shipping weight, $1 \mathrm{lb} .(0,9 \mathrm{~kg})$.

Waveguide Clamps

These Clamps consist of a plastic molding. They are offered in 7 sizes to fit waveguide equipment covering frequencies from 2.6 to 40.0 GHz . They are designed for use with the 11540A Waveguide Stand, and when mounted in the stand can be adjusted upward or downward to conform with a waveguide set-up.

Model	HP Waveguide Designation	Waveguide Size		Shipping Wt.	
		Nom. O.D. (in.)	EIA	(0z)	(g)
11542A	G	2×1	WR 187	8	220
11543	J	$11 / 2 \times 3 / 4$	WR 137	8	220
11544A	H	$11 / 4 \times 5 / 8$	WR 112	8	220
11545A	X	$1 \times 1 / 2$	WR 90	8	220
11546A	P	0.702×0.391	WR 62	8	220
11547A	K	$1 / 2 \times 1 / 4$	WR 42	8	220
11548A	R	0.360×0.220	WR 28	8	220

CABLE ASSEMBLIES, AIRLINES, JOINTS, AND FLEXIBLE WAVEGUIDES

10501A Cable Assembly
$44^{\prime \prime}$ of 50 coaxial cable terminated on one end only with UG-88C/U BNC male connector.

10502A Cable Assembly
$9^{\prime \prime}$ of 50 coaxial cable terminated on both ends with UG88C/U BNC male connectors.

10503A Cable Assembly

4^{\prime} of 50 coaxial cable terminated on both ends with UG88C/U BNC male connectors.

11086A Cable Assembly
$24^{\prime \prime}$ of 50 coaxial cable terminated on both ends with UG$88 \mathrm{C} / \mathrm{U}$ BNC male connectors.

11500A Cable Assembly
6^{\prime} of specially treated 50 coaxial cable terminated on both ends with UG-21D/U Type N male connectors.

11501A Cable Assembly

6^{\prime} of 50 coaxial cable terminated with UG-21D/U Type N male and UG-23D/U Type N female connectors.

11606A Coaxial Rotary Air Line

Frequency Range: dc to 12.4 GHz .
SWR: <1.1
Insertion Loss: $<0.5 \mathrm{~dB}$.
Uncertainty Vector: -57 dB (due to rotation).
Connectors: ${ }^{1}$ One 7-mm plug and one 7-mm jack.
Dimensions: $315 / 16$ in. $\times 3 / 4$ in. $\times 3 / 4$ in. $(100 \times 19 \times 19 \mathrm{~mm})$.
Net Weight: $51 / 2$ oz (154 gm).
Shipping Weight: $1 \mathrm{lb}(0,45 \mathrm{~kg})$.

11588A Coaxial Rotary Joint

Frequency Range: dc to 12.4 GHz .
SWR: <1.1
Insertion Loss: $<0.5 \mathrm{~dB}$.
Uncertainty Vector: -57 dB (due to rotation).
Connectors: One precision $7-\mathrm{mm}$ jack and one standard APC-7.
Dimensions: $15 / 8$ in. $\times 25 / 16$ in. $\times 13 / 16$ in. $(42 \times 59 \times 30 \mathrm{~mm})$.
Net Weight: 8 oz (224 gm).
Shipping Weight: 10 oz (280 gm).

[^4]
11605A Flexible Arm

Impedance: 50 ohms.
Reflection Coefficient of Ports: $\leqslant 0.11$ (1.25 SWR), DC to 12.4 GHz.

Connectors: Hybrid, APC-7*
Insertion Loss: $\leqslant 2.5 \mathrm{~dB}, \mathrm{DC}$ to 12.4 GHz .
Weight: $4 \mathrm{lb}(1,8 \mathrm{~kg})$ net.
Length: 10.1 in . ($256,5 \mathrm{~mm}$) closed, 25.5 in . ($647,7 \mathrm{~mm}$) extended.

11675A Leveling Cable Assembly

Length: 6 ft (1828,8 mm).
Construction: RF (RG-214) cable and leveling cable covered with single sheath.
Connectors: Male BNC's for leveling cable, Male Type N for RF cable.

11503A Flexible Waveguide

Frequency: $12.4-18.0 \mathrm{GHz}$.
Typical VSWR: 1.1
Connectors: WR-62.
Length: 12 inches (305 mm)
Weight: $1 / 2 \mathrm{lb}(0,45 \mathrm{~kg})$ net.

11504A Flexible Waveguide
Frequency: $8.2-12.4 \mathrm{GHz}$.
Typical VSWR: 1.1
Connectors: WR-90.
Length: 12 inches (305 mm).
Weight: $1 \mathrm{lb}(0,90 \mathrm{~kg})$ net.

11566A Airline Extension
Impedance: 50 ohms.
Frequency: DC-18 GHz.
Reflection Coefficient: . $018+.001$ (freq. in GHz).

Connectors: APC-7.
Length: 10.25 cm .
Weight: $1 / 2 \mathrm{lb}(0,45 \mathrm{~kg})$ net.

11567A Airline Extension

Impedance: 50 ohms.
Frequency: DC-18 GHz.
Reflection Coefficient: . 018 + . 001 (freq. in GHz).

Connectors: APC-7.
Length: 20.25 cm .
Weight: $1 / 2 \mathrm{lb}(0,45 \mathrm{~kg})$ net.

TRANSISTOR FIXTURES

Model 11600B 11602B

	Model:	11600B	11602B	11608A**
Package Types		T0-18/T0-72*	T0-5/T0-12†	Microstrip
Frequency Range:		DC-2 GHz	DC-2 GHz	DC-12.4 GHz
Lead Lengths:		up to 1.5 inches	up to 1.5 inches	
Lead Diameters:		0.016 to 0.019 inch	0.016 to 0.019 inch	
Impedance:		$50 \Omega \pm 2 \Omega$	$50 \Omega \pm 2 \Omega$	$50 \Omega \pm 2 \Omega$
Connectors:		APC-7	APC-7	APC-7
Maximum Power:		10 W	10 W	10 W
Dimensions (in/mm):		$\begin{gathered} 45 \times 6 \times 1^{1 / 2} \\ (119 \times 152 \times 38) \end{gathered}$	$\begin{gathered} 45 \times 6 \times 1 \frac{1 / 2}{2} \\ (119 \times 152 \times 38) \end{gathered}$	$\begin{gathered} 55 / 8 \times 31 / 2 \times 1 \\ (143 \times 89 \times 25) \end{gathered}$
Weight ($\mathrm{lbs} / \mathrm{kg}$):		$2^{3 / 8} / 1,1$	$2^{3 / 8} / 1,1$	13/16/0,37
Options Available:		001	001	001, 002, 003

* Unit has four snap-on dials, two for bipolars and two for FET's.
\dagger Unit has two snap-on dials for bipolars.
Stripline width: 0.082 inch; material: PPO-0.031 inch thick.
** Must specify one option when ordering.

Options: $11600 \mathrm{~B} / 11602 \mathrm{~B}$; 001 Precision Type N connectors for input and output.
1608A, 001 includes blank gounding and clamping inserts for custom machining
002 Accepts T0-51 package ($0.250^{\prime \prime}$ dia.)
003 Accepts H-Pac 200 package ($0.205^{\prime \prime}$ dia.).
All units, except 11608A, opt 001 are supplied with a short circuit termination calibrator and a 50Ω through line calibrator.

MISCELLANEOUS

BIAS NETWORKS SPECIFICATIONS		11589 A
Frequency Range (GHz):	11590 A	
Maximum SWR:	1.2	$1-12.4$
Maximum Insertion Loss (dB):	0.8	1.2
Maximum Power:	50 W	50 W
Maximum Bias Current:	1 A	1 A
RF Connectors:	Type N	Type N
Option Available:	001	001

Option 001 APC-7 connectors.

APC-7 CONNECTOR SERVICE KIT

Item No.	Quantity	Description	Use
1	1	Contact Extractor Tool	Inner conductor contact removal
2	1	Face Spanner Wrench	Coupling assembly removal, replacement
3	2	Open-end Wrench	Coupling assembly removal, replacement Connector removal, replacement
4	5	Inner Conductor Contact	Replacements for damaged contacts
5	2	Pin Vise	Inner conductor contact holder removal, replacement

WAVEGUIDE INSTRUMENTATION

Instrument Name	Uses	Family Model Number	Frequency coverage by band-GHz								
			$\begin{gathered} \mathrm{S} \\ 2.6- \\ 3.95 \end{gathered}$	$\begin{gathered} G \\ 3.95- \\ 5.85 \end{gathered}$	$\begin{aligned} & \text { J J } \\ & 5.30- \end{aligned}$	$\begin{gathered} \mathrm{H} \\ 7.05- \\ 10.0 \end{gathered}$	$\begin{gathered} x \\ 8.20- \\ 12.4 \end{gathered}$	$\begin{gathered} M \\ 10.0- \\ 15.0 \end{gathered}$	$\begin{gathered} P \\ 12.4- \\ 18.0 \end{gathered}$	$\begin{gathered} \mathrm{K} \\ 18.0- \\ 26.5 \end{gathered}$	$\begin{gathered} R \\ 26.5- \\ 40.0 \end{gathered}$
Adapters	Interconnect coaxial-waveguide systems Interconnect two different waveguide systems	$\begin{aligned} & 281 A \\ & 281 \mathrm{~B} \\ & 292 \mathrm{~A} \\ & 292 \mathrm{~B} \end{aligned}$	x	X	x	X	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	x	$\begin{aligned} & x \\ & x \end{aligned}$	X	
Low-pass filters	Output filters for signal sources to eliminate harmonics	362A					X	x	X	X	X
Variable attenuators	Measurement of reflection coefficient, insertion loss, transfer characteristics by RF substitution; reduction of power levels; reduction of source mismatch	$\begin{aligned} & 382 \mathrm{~A} \\ & 375 \mathrm{~A} \end{aligned}$	X		X	X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{X} \end{aligned}$		$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	x	X
Crystal Detectors	RF detection; reflection coefficient, attenuation measurements	$\begin{aligned} & 424 A \\ & 422 A \end{aligned}$	X	X	X	X	x	X	X	X	X
Detector mount	Tunable detector mount for accurate matching of waveguide sections to crystal or bolometer	485B					X				
Frequency meters	Frequency measurements	$\begin{array}{r} 532 \mathrm{~A} \\ 532 \mathrm{~B} \end{array}$			X	X	X		X	X	X
Directional couplers	Power measurements; power leveling; reflection measurements; isolation	$\begin{aligned} & 752 \mathrm{~A} \\ & 752 \mathrm{C} \\ & 752 \mathrm{D} \end{aligned}$			x x X	X x X	$\begin{aligned} & \mathrm{X} \\ & \text { X } \\ & \text { X } \end{aligned}$		X X X	X X X	X X X
Slotted line systems	Measurement of SWR, wavelength, impedance; fixed and swept-frequency slotted line measurements	$\begin{aligned} & 810 B \\ & 815 B \end{aligned}$			X	X	X		X	X	X
PIN modulators	Sinusoidal and complex AM and RF pulsing of microwave sources without incidental FM	$\begin{aligned} & 8735 A \\ & 8735 B \end{aligned}$					$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$				
Fixed and sliding loads	Fixed loads for terminating waveguide systems, Sliding loads for separating load reflections from other system reflections	$\begin{aligned} & 910 A \\ & 910 B \\ & 914 A \\ & 914 B \end{aligned}$			x	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$		$\begin{aligned} & x \\ & x \end{aligned}$	X	X
Fixed and sliding shorts	Establish measurement planes, reflection phase and magnitude references	$\begin{aligned} & 920 A \\ & 920 B \\ & 923 A \end{aligned}$			x	x	X		X	χ	x
Shorting switches	Establish removable short circuit in waveguide system	930A					x				
Mixers	Harmonic Mixer	923 A							X		
Slide screw tuners Phase shifters	Correct discontinuities in waveguide Provide phase control	$\begin{aligned} & 870 \mathrm{~A} \\ & 885 \mathrm{~A} \end{aligned}$			X		X		X X		

[^5]
COAXIAL INSTRUMENTATION

COAXIAL INSTRUMENTATION

WWW.HPARCHIVE.COM

HEWLETT hp PACKARD

[^0]: * Nominal Coupling, Coupling Factor, Coupling Attenuation are terms that describe the same parameter.
 \dagger Specification if for Frequency Response.
 $\diamond 30 \mathrm{~dB}, 0.1-2 \mathrm{GHz}$, to input port auxiliary arm.
 $\ddagger 0.1$ sec duty cycle.

[^1]: - Residual Attenuation is also referred to as Insertion Loss.
 \dagger Continuous operation of solenoids requires 10 watts dissipation in heat sink for 33300 and $33301 ; 13$ watts dissipation for 33304 and 33305 .
 - Available in four versions: A-12 voits, no indicator contacts; B-24 volts, no indicator contacts;

 C-12 volts, with indicator contacts; D-24 volts, with indicator contacts.
 ** Series is available with any combination of $3 \mathrm{~mm}, 7 \mathrm{~mm}$, or Type N connectors. A three digit code specifies these options. The first digit is always 0 . The second digit calls out port 1 , the third, port 3 . See table 9 for details.

[^2]: +See Accessories Section, page 53

[^3]: †See Accessories Section, page 53

[^4]: ${ }^{1}$ Combinations of standard APC-7, Type N, and miniature OSM-type connectors
 are available; prices on request.

[^5]: ${ }^{1}$ Instrument model number consists of family model number prefixed by letter of waveguide band, E.G. X281B specifies X-band waveguide to coax adapter.

